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ABSTRACT

Training neural network acoustic models on limited quantities
of data is a challenging task. A number of techniques
have been proposed to improve generalisation. This paper
investigates one such technique called stimulated training.
It enables standard criteria such as cross-entropy to enforce
spatial constraints on activations originating from di�erent
units. Having di�erent regions being active depending on the
input unit may help network to discriminate better and as a
consequence yield lower error rates. This paper investigates
stimulated training for automatic speech recognition of a
number of languages representing di�erent families, alphabets,
phone sets and vocabulary sizes. In particular, it looks at
ensembles of stimulated networks to ensure that improved
generalisation will withstand system combination e�ects. In
order to assess stimulated training beyond 1-best transcription
accuracy, this paper looks at keyword search as a proxy for
assessing quality of lattices. Experiments are conducted on
IARPA Babel program languages including the surprise
language of OpenKWS 2016 competition.

Index Terms� limited resources, stimulated training,
joint decoding, keyword search

1. INTRODUCTION

There are several important issues one needs to address
when training neural network acoustic models. For small
sample problems that arise in limited resource conditions
generalisation may be one of the most important issues. As
the amount of data gradually decreases, standard procedures
for building automatic speech recognition (ASR) systems
yield less and less accurate transcriptions [1]. Another related
issue is that of a model complexity control [2] that becomes
particularly acute with these forms of models. Finally,
non-convex optimisation makes parameter initialisation
important. A lot of work has been done to address these inter-
connecting issues. For instance, approaches examined for

This work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Defense
U. S. Army Research Laboratory (DoD/ARL) contract number
W911NF-12-C-0012. The U. S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
o�cial policies or endorsements, either expressed or implied, of
IARPA, DoD/ARL, or the U. S. Government.

network initialisation range from using generative model pre-
training [3], monophone initialisation [4] to the use of multi-
language data [5]. Rather than using monophone networks
for initialisation only, it is also possible to train a network
with both monophone and context-dependent output layers
[6]. A similar approach is often used to train multi-language
networks [7]. These multi-task networks are expected to
yield representations that generalise better due to the need
to solve multiple tasks simultaneously [8]. Another group
of approaches attempts to increase the amount of training
data. The extra data may come from various sources such as
other languages [5], untranscribed data [9], waveform [10] or
parameter sequence [11, 12] perturbation. Finally, the most
related to this work is a group that enhances generalisation
through a modi�cation of the standard training process.
Examples include dropout [13] and stimulated training
[14, 15]. Procedurally, the dropout consists of randomly
eliminating activation function values during training. This
is supposed to improve generalisation since it encourages a
network to learn robust representations. Stimulated training
[14, 15], in addition to robustness, addresses another issue
that all neural networks have in speech processing. This is
a poor interpretability of quantities such as network weights
and activations. By organising activations into a grid with
superimposed phone targets, the stimulated training enables
representations to be learnt that yield high activations for any
given phone only in the vicinity of that phone superimposed
on the grid.

The previous work with stimulated training has looked
at both interpretability [14] as well as generalisation for
ASR of English and Javanese [15]. There are a number of
important questions that remain to be answered. The nature
of the phones superimposed on the grid is fundamental to
stimulated training. Are language independent attributes,
such as position in a word or syllable, as well as language
dependent attributes, such as diacritics in languages like
Pashto, of any use in producing representations that generalises
well? It would be interesting to see how well stimulated
training can handle model complexity issues such as network
size. Another question is whether gains seen from stimulated
training of systems would translate over to ensembles. Finally,
in applications beyond 1-best transcription, the quality of
generated lattices is of a more paramount importance. This
paper looks at keyword search as a proxy. Experiments are
conducted on 8 option period 3 languages of the IARPA Babel
program including the surprise language of the OpenKWS
2016 competition.
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The rest of the paper is organised as follows. Section 2
describes stimulated training. Section 3 discusses the choice
of units for embedding into the grid. Experimental results are
presented in Section 4. Conclusions drawn from this work are
given in Section 5.

2. STIMULATED TRAINING

A number of di�erent neural networks have been examined
for acoustic modelling in speech recognition [16, 17]. Among
them, a feed-forward form is one of the simplest. This network
applies layers of non-linear transformations to the input
observation o to yield a distribution over targets at the
output

θ = σ(L)(W(L)σ(L−1)(. . .σ(1)(W(1)o+b(1))+b(L−1))+b(L))
(1)

where b(l), W(l) and σ(l) are bias, weight matrix and non-
linear transformation associated with the l-th layer, θi =
P (S = i|o) is the posterior probability of the i-th target given
observation o. Targets typically correspond to hidden Markov
model (HMM) states with probability density functions given
by

p(o|s) = 1

P (s)
P (s|o)p(o) (2)

where state s prior P (s) is usually estimated from training
counts and the distribution of observations p(o) is usually set
to a constant. The feed-forward networks are usually trained
in stages. The �rst stage optimises a frame-level objective
function such as cross-entropy

L(λ) = − 1

T

T∑
t=1

log(P (st|ot)) (3)

where λ are network parameters. The second stage optimises
a sequence-level objective function such as minimum Bayes
risk

L(λ) = 1

R

R∑
r=1

∑
w

P (w|O(r))`(w,w
(r)
ref) (4)

where R is the number of sequences, wref and O are reference
word and observation sequences, ` is a loss function that may
be de�ned at various levels such as state and phone [18].

One standard issue with these forms of models is a poor
interpretability. Consider, for example, an 1024-dimensional
output from one of the non-linearities arranged in a two-
dimensional 32×32 grid in Figure 1 (a). There, bright regions,

(a) Unstimulated Activations (b) Stimulated Activations

Fig. 1. A typical impact of stimulated training on activations

corresponding to high activations, are scattered all over the
place as one would expect from a distributed representation.
Unfortunately, this may cause issues for regularisation
and speaker adaptation as it is hard to relate one weight
to another [15]. Although various approaches have been
proposed to visualise feature space transformations [19, 20],
they rarely focus on how to modify network behaviour
simply by altering the space. Stimulated training [14, 15], in
contrast, attempts to encourage activations to group in an
interpretable way. Consider superimposing a phone set on the
grid, which is roughly divided in half with vowels clustered at
the bottom and consonants at the top, as shown in Figure 2.
If activations corresponding to the vowels could have been
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Fig. 2. Superimposed phone set

enhanced at the top and weakened at the bottom such an
approach would have not only improved interpretability
of the network but also encouraged better discrimination.
This is exactly what stimulated training does but at even
a �ner phone level. Figure 1 (b) shows activation pattern
corresponding to observation of phone /ay/. As can be seen
activations are the highest in the vicinity of the phone.

Stimulated training can be implemented as a simple
modi�cation to the standard training procedure. Consider
augmenting an objective function, such as equation (3) or (4),
with a regularisation term

F(λ) = L(λ) + αR(λ) (5)

where R(λ) is the average per frame Kullback-Leibler
divergence from normalised activation to a phone-speci�c
prior given by

R(λ) = 1

T

T∑
t=1

L∑
l=1

N(l)∑
i=1

g(s
(l)
i , s

(l)
pt ) log

(
g(s

(l)
i , s

(l)
pt )

σ
(l)
i,t

)
(6)

The normalised activation is given by

σ
(l)
i,t =

σ
(l)
i,tβ

(l)
i∑N(l)

j=1 σ
(l)
j,tβ

(l)
j

(7)

where β
(l)
i re�ects the importance of activation σ

(l)
i,t at time t

to the weights of the following layer

β
(l)
i =

√√√√N(l+1)∑
j=1

W
(l+1)2

i,j (8)



The phone-speci�c prior

g(s
(l)
i , s

(l)
pt ) =

exp
(
− 1

2γ2
‖s(l)i − s

(l)
pt ‖22

)
∑N(l)

j=1 exp
(
− 1

2γ2
‖s(l)j − s

(l)
pt ‖22

) (9)

is the normalised distance of the i-th activation to the target
phone at time t with γ controlling smoothness. There are
few options how activations can be arranged in a grid to

map any individual activation σ
(l)
i to its position on the two-

dimensional grid s
(l)
i . However, there is a great �exibility

in arranging phones to map any individual phone p to

its position s
(l)
p on the grid. One option is to used data-

driven approaches such as t-SNE [21]. This consists of
collecting phone-speci�c �rst and second order statistics
in the observation space and then projecting it down to the
two-dimensional grid space. Figure 2 shown earlier is an
example of a typical projection.

3. UNIT SELECTION

The choice of a phone set is of fundamental importance as it
de�nes the space where regularisation is performed. Standard
phonetic lexica provide many interesting choices. Consider for
a example an entry from a Cantonese dictionary

g^II aM^MF;3 f^MI EM^FF;1

Here, each character represents a syllable and maps into two
phonemes. There are two sorts of extra phone information:
position and tone. The former o�ers information about
position within a word and syllable after a caret symbol (^).
Letters I, M, F are used to denote initial, middle and �nal
position respectively. Hence, MI stands for the �rst phone of
a syllable that is located in the middle of a word. The tones
are speci�ed using their numeric value after a semi-colon (;).
Both position and tone may have a large impact on phonetic
realisation with the latter being also linked with semantics.

For limited resource languages orthographic dictionaries
are a popular alternative as they typically do not require
expert phonetic knowledge to make [1]. These make use of
written symbols, graphemes, to construct �pronunciation�.
Typically, rules are enforced to handle special cases such as
signs and diacritics in languages like Kazakh and Pashto.
Consider an example from Kazakh showing a phonetic and
orthographic entry for English word seven

ñåìü sAP^IIP e^MMP mAP^FFP
ñåìü G41^IIP;D2 G10^MMP;D2 G30^MMP;D2D8

where P is a primary stress that illustrates another type of
positional information. The place of phones in the orthographic
entry are taken by graphemes G1, G2, etc. In contrast to
Cantonese, Kazakh graphemes carry attributes such as script
(D2 for Cyrillic) and sign. The soft sign ü despite being
marked in the orthography is treated similar to a diacritic
by altering the preceding grapheme with an attribute D8.
Another example is from Pashto, which illustrates the use of
attributes to communicate diacritics

G1 G10 G24 G1 G21 G14 G6

G1 G10 G24 G1 G21 G14 G6;DF

G1 G10 G24 G1 G21 G14 G6;DT

where DF stands for Farsi (letter) and DT stands for tail
diacritic. Other attributes include non-full letters (hamza),
diacritics (madda), nunations (fathatan).

The decision tree construction may also have an impact
on what is the best unit for grid generation. In limited
resource conditions state-speci�c [22, 23] decision trees may
be preferred over state and grapheme speci�c [24] trees as
they enable model synthesis for unseen graphemes. Although
questions regarding grapheme identity may be asked, there
is no guarantee that di�erent graphemes may not end up
in the same leaf node. This issue makes separation of these
graphemes impossible, which may also complicate stimulated
training when identical targets map to di�erent regions on
the grid.

Thus, the use of `pure` phone or grapheme sets may not
be the best choice for grid generation. Although, the state-
speci�c decision tree issue may not be easy to address it is
possible to examine the usefulness of extra phone/grapheme
information.

4. EXPERIMENTS

Experiments in this section were conducted on 7 development
languages and 1 surprise, Georgian, language of the IARPA
Babel program in the option period 3.1 Table 1 provides
basic information about each language. For all languages an

Language Family System Script Graphemes

Pashto Indo-European Abjad Arabic 47
Guarani Tupian Alphabet Latin 71†

Igbo Niger-Congo Alphabet Latin 52†

Amharic Afro-Asiatic Abugida Ethiopic 247
Mongolian Mongolic Alphabet Cyrillic 66†

Javanese Austronesian Alphabet Latin 52†

Dholuo Nilo-Saharan Alphabet Latin 52†

Georgian Kartvelian Alphabet Mkhedruli 33

Table 1. Summary of languages used in this study

automatic, unicode based, graphemic dictionary generation
[1] was applied. `Pure` graphemes are appended with position
information and language dependent attributes. Scripts
marked with † utilise capital letters. Amharic graphs represent
consonant-vowel sequences where vowels are clearly marked.
Splitting each such graph into two yields 77 graphemes
including singleton graphs.

A full language pack (FLP) was used for each language.
This consists of 40 hours of conversational telephone speech
(CTS). An additional 10 hours are available for development.
Language models (LM) are standard n-grams and recurrent
neural networks (RNN) trained using the CUED RNN LM
toolkit [25]. These were trained on acoustic data transcripts
containing about 500,000 words. Additional n-gram LMs were
trained on data scraped by Columbia University from the
internet [26]. These web LMs were then interpolated with the
FLP LMs by optimising weights on the development data.
Acoustic models are speaker adaptively trained Tandems

1Pashto IARPA-babel104b-v0.4bY, Guarani IARPA-babel305b-
v1.0a, Igbo IARPA-babel306b-v2.0c, Amharic IARPA-babel307b-
v1.0b, Mongolian IARPA-babel401b-v2.0b, Javanese IARPA-
babel402b-v1.0b, Dholuo IARPA-babel403b-v1.0b, Georgian IARPA-
babel404b-v1.0a



and (stacked) Hybrids which share the same set of features.
Features are a concatenation of perceptual linear prediction
coe�cients [27], pitch [28], probability of voicing [28] and
multi-language bottleneck (BN) features extracted by IBM
and RWTH Aachen. These were trained on FLP data of 24
Babel languages and CTS data of 4 additional languages,
English, Spanish, Arabic and Mandarin, released by LDC.
IBM features are language independent whereas RWTH
Aachen additionally �ne-tuned their BN extractors to each
target language. Thus a total of 4 acoustic models were
built for each language as illustrated by Figure 3. Stacked
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Fig. 3. 4-way Joint Decoding

Hybrids were trained with and without stimulated training
using monophone initialisation followed by cross-entropy
training and Minimum Phone Error training [24]. Unless
otherwise stated, the grids for stimulated training were
built using the sets of graphemes extended with position
information and attributes. The regularisation term weight
α in equation (5) was set to 0.1. In order to achieve high
accuracy of transcription the �nal system combined all 4
acoustic models. In order to avoid decoding the data 4 times,
a single joint decoding was used [4]. As shown in Figure 3,
joint decoding combines acoustic models at test time. The
combination is performed in the log-likelihood domain

log(p(o|s;Λ))← α1 log(p(o|s;λ1))+ . . .+αN log(p(o|s;λN ))
(10)

where α1, . . ., αN are acoustic model weights set in this
work to 0.125 for Tandem and 0.5 for Hybrid. The same
approach, excluding Tandems, produced hypotheses re�ned
with RNN LMs for speaker adaptation. Keyword search is
performed using joint decoding lattices pruned to yield on
average 20,000 arcs

s
densities. About 2,000 keywords available

for each language [29]. The performance is measured using
maximum term weighted value (MTWV).

The �rst experiment looked at the importance of position
and attribute information for Pashto, which provides the most
interesting set of attributes. A simpler cross-entropy Hybrid
trained on RWTH Aachen BN features and FLP language
model were used. The grid size is 32× 32 which corresponds
to 1024 activation functions. Table 2 summarises token error

rate (TER) results for all possible combinations. Stimulated

Position Attribute Graphemes TER (%)

� � � 48.4
7 7 37 48.0
3 7 107 48.0
7 3 49 48.0
3 3 137 48.1

Table 2. Impact of position and attribute information on
stimulating training ASR performance in Pashto.

training shown on lines 2-5 shows gains over standard
training shown on line 1. Among di�erent combinations
of word position and attribute information it seems that
simpler grapheme sets with position or attribute only or none
information show marginally better results. Such results may
be explained by a rather small size of training data which
does not permit robust representations to be derived that
discriminate well.

The second experiment compared standard and stimulated
training on all languages in a more challenging con�guration
combining 4 acoustic models and interpolated FLP and web
data LMs in a single joint decoding run. The overall MTWV
results are presented alongside in-vocabulary (IV) and out-
of-vocabulary (OOV) query only results. Such a split is useful
to assess whether an additional sub-word decoding is needed
to improve performance on OOV queries which are otherwise
searched in a generally less accurate phone index. The results

Language Stimulated
TER MTWV
(%) IV OOV Total

Pashto
7 44.6 0.4720 0.3986 0.4644
3 44.4 0.4752 0.4032 0.4672

Guarani
7 45.2 0.5823 0.5614 0.5800
3 44.9 0.5885 0.5712 0.5869

Igbo
7 55.3 0.4007 0.3673 0.3974
3 55.1 0.4020 0.3680 0.3986

Amharic
7 41.1 0.6500 0.5828 0.6402
3 40.8 0.6619 0.5935 0.6521

Mongolian
7 47.8 0.5382 0.4805 0.5316
3 47.6 0.5497 0.4910 0.5431

Javanese
7 50.9 0.4991 0.4448 0.4924
3 50.7 0.5024 0.4679 0.4993

Dholuo
7 38.5 0.6547 0.5551 0.6434
3 38.3 0.6563 0.5585 0.6451

Georgian
7 39.4 0.7184 0.7066 0.7179
3 38.9 0.7275 0.7197 0.7265

Table 3. Stimulated training performance on all languages

in Table 3 show that ASR gains are seen even after system
combination for all languages. Similarly, gains can be seen in
KWS performance for all languages which can be as small as
0.0012 for Igbo and as large as 0.0119 for Mongolian.

Experiments have so far examined a 32×32 grid. In order
to assess whether stimulated training scales with increasing
the grid size another experiment was performed on the 4 most
challenging languages. The use of a larger 45 × 45 grid in
Table 4 shows ASR and KWS gains for all languages. Further
increase in the grid size for the most challenging language,
Igbo, shows little bene�t. The results in Tables 3 and 4



Language Grid
TER MTWV
(%) IV OOV Total

Pashto
32× 32 44.4 0.4752 0.4032 0.4672
45× 45 43.8 0.4828 0.4083 0.4750

Igbo
32× 32 55.1 0.4020 0.3680 0.3986
45× 45 54.7 0.4071 0.3680 0.4026
55× 55 54.6 0.4079 0.3555 0.4024

Mongolian
32× 32 47.6 0.5497 0.4910 0.5431
45× 45 46.8 0.5606 0.5171 0.5559

Javanese
32× 32 50.7 0.5024 0.4679 0.4993
45× 45 50.5 0.5043 0.4679 0.5001

Table 4. Impact of grid size on four most challenging
languages.

illustrate advantages of stimulated training which results in
good ASR and KWS gains across all examined languages.

5. CONCLUSIONS

Limited resource conditions cause generalisation issues for
training neural network acoustic models. It is also hard to
regularise these models as relationships between quantities
such as targets and activations are distributed and hard
to interpret. One exception is a stimulated training which
enforces spatial ordering such that di�erent phones cause
di�erent activations. A total of 8 limited resource languages
have been considered con�rming the bene�ts of such training
against strong baselines. This paper has also discussed
options for selecting the set of phones or graphemes which
may be extended with additional information such as position,
tone, stress, diacritic, etc. Finally, it con�rmed that such
training produces not only better 1-best hypotheses but also
lattices by showing improved performance in keyword search
tasks for all examined languages.
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