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SUMMARY 

 

Reversible phase separation, which underpins the role of FUS in ribonucleoprotein granules and 

other membrane-free organelles, is in part driven by the intrinsically disordered low complexity 

(LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in 

the LC domain and arginines in structured C-terminal domains also contribute to phase 

separation. These interactions are modulated by post-translational arginine methylation, wherein 

arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant 

hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration, induces 

FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule 

function and impair new protein synthesis in neuron terminals. We show that transportin acts as a 

physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and 

gelation of methylated and hypomethylated FUS, and rescuing protein synthesis. These results 

demonstrate how FUS condensation is physiologically regulated, and how perturbations in these 

mechanisms can lead to disease.  
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INTRODUCTION 

FUsed in Sarcoma (FUS) is an RNA binding protein involved in RNA transcription, 

splicing, transport and translation. FUS undergoes rapid, physiologically reversible phase 

separation between dispersed, liquid droplet and hydrogel states (Han et al., 2012; Kato et al., 

2012; Murakami et al., 2015; Patel et al., 2015). The droplet and hydrogel states are stabilised by 

hydrogen bonding between antiparallel β-sheet motifs formed by core residues 39-95 in the low 

complexity (LC) domain (Murray et al., 2017) (Figure 1A). The ability of FUS and other proteins 

with intrinsically disordered domains to undergo phase separation likely contributes to their role in 

the formation of transient membrane-free organelles such as ribonucleoprotein (RNP) granules 

(Weber and Brangwynne, 2012). These dynamic structures take-up, sequester, transport and 

then release key RNA and protein cargos that regulate local RNA and protein metabolism in 

subcellular niches such as axon terminals and dendrites (Holt and Schuman, 2013; Sephton and 

Yu, 2015). When these processes go awry (e.g. due to pathogenic missense mutations), they 

trigger diseases such as familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobar 

degeneration (FTLD). 

 

Given the crucial role of intrinsically disordered proteins like FUS in multiple fundamental 

biological processes, understanding the molecular and cellular factors that control their reversible 

condensation would be invaluable. This knowledge could also yield points for therapeutic 

intervention in diseases associated with aberrant assembly of these proteins, such as FUS-

associated ALS (fALS-FUS) and frontotemporal lobar degeneration (FTLD-FUS).  

 

A potentially powerful clue to the identity of such factors is the observation that arginines 

in FUS, which are predominantly located in the structured C-Terminal Domain (sCTD), are 

normally heavily methylated as mono- or dimethylated forms (Figure 1A) (Rappsilber et al., 

2003). However, in FTLD-FUS, FUS is hypomethylated and accumulates in neurons as nuclear 

and cytoplasmic aggregates that frequently also contain EWS, TAF15 and transportin 1 (TNPO1) 

(Dormann et al., 2012; Neumann et al., 2012). These observations suggest that physiological 

fluctuations in its arginine methylation and/or its interactome might physiologically control FUS 

phase behaviour. 

 

To assess this possibility, we investigated the effect of manipulating i) the number and 

post-translational methylation state of arginines (Figure 1A); and ii) interactions with known FUS-

binding proteins. These experiments confirm that FUS phase separation is exquisitely modulated 

by: i) arginine methylation state (which tunes the strength of cation-π interactions between the 

structured C-terminal and the disordered N-terminal domains); and ii) by binding of TNPO1, 

which acts as a molecular chaperone in peripheral compartments of neurons.  Crucially, 
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hypomethylation of FUS promotes formation of stable condensates comprised of intermolecular 

β-sheet-rich FUS assemblies that disrupt RNP granule function in neuronal terminals, and could 

cause FTLD-FUS.  

 

RESULTS 

FUS phase behaviour in vitro is modulated by salt and FUS concentration 

Prior work has established that the LC domain of FUS can form β-sheet-rich condensates 

when cooled at high protein concentrations (50-133µM) in the presence of crowding agents (e.g. 

polyethylene glycol and dextran). However, to gain a quantitative understanding of how regions 

outside the LC domain might influence the phase behaviour of full-length FUS, we expressed and 

purified wild-type, full-length human FUS from eukaryotic Sf9 cells. We chose this system over 

bacterial production systems because it allows analysis of FUS that has undergone physiological 

eukaryotic post-translational modification. We then used this material to explore the impact of 

variations in temperature (4-37 °C) and salt (50-150 mM NaCl or KCl) at physiological FUS 

protein concentrations (≤ 5µM). 

 

These experiments revealed that variations in temperature (4-37 C) had little effect on 

the phase state of full-length FUS at physiological concentrations (~1µM). In contrast, FUS phase 

behaviour was profoundly affected by variations in the concentration of salts such as NaCl and 

KCl. Specifically, at 1µM FUS, decreasing concentrations of NaCl or KCl from 150 to 50 mM 

caused rapid phase separation of FUS into hundreds of small droplets (2.29 ± 0.15μm diameter; 

n = 128 assemblies) (Figure 1B). These assemblies, which appeared within seconds, were 

approximately spherical (Figure 1C-E), and underwent fusion events that could be monitored 

using structured illumination microscopy (Figure 1E, Movie S1). These effects were not 

influenced by the presence/absence of Emerald GFP (EmGFP)-tag. 

 

Hypomethylation of selected FUS arginines promotes phase separation  

To explore the effects of changes in FUS methylation, we isolated full-length, wild-type 

human FUS, with or without an EmGFP tag, from eukaryotic Sf9 cells grown in the presence of 

25µM adenosine-2,3-dialdehyde (AdOx), a widely-used inhibitor of arginine methyltransferase 

activity (Dormann et al., 2012). Arginine methyltransferases are components of RNP granules, 

and therefore likely relevant to the biology of FUS phase separation (Scaramuzzino et al., 2013). 

Western blots of FUS protein from AdOx-treated cells showed a significant reduction in 

asymmetrically di-methylated FUS (ADMA FUS)(Figure 1A; S1A).  

 

To identify which arginines were methylated, and to quantitatively assess the reduction in 

arginine methylation induced by AdOx, we used both isobaric tags for relative and absolute 
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quantitation (iTRAQ) and spectral counting mass spectrometry methods. In full-length FUS from 

untreated Sf9 cells, methylation was not homogeneously distributed across all 37 arginines 

(Figure S1B). At least 9 arginines were dimethylated, and these were predominantly located in 

glycine-rich clusters. However, several arginines were predominantly unmethylated, even when 

neighbouring arginines were dimethylated. The effect of AdOx was also nonuniform. Thus, 

arginines 216, 259, 407, 473 and 476 were converted from a significantly dimethylated state to a 

predominantly mono- or un-methylated state. In contrast, arginines 394 and 481 remained 

predominantly dimethylated (Figure S1B). These differences were robust, being replicated in both 

the iTRAQ and the spectral counting analyses, and were not altered by the presence/absence of 

the EmGFP tag.  

 

To assess the effects of reduced methylation on FUS phase behaviour, we repeated the 

phase transition experiments on hypomethylated FUS (HYPO FUS) purified from AdOx-treated 

Sf9 cells. HYPO FUS condensed into many small assemblies (1.46 ± 0.11μm), often with non-

spherical shapes, fewer fusion events, and right-shifted the phase diagram in a manner similar to 

the effects of fALS- FUS mutations (Figures 1B,D,E;  2B and Supplemental Movie 2: ADMA FUS 

= black; FUS P525L = green; HYPO FUS = lower red line; p< 0.0006). These differences were 

not influenced by the EmGFP tag. 

 

The dramatic effect of FUS arginine methylation on phase separation raises the question 

as to what proportion of FUS needs to be hypomethylated before significant changes in phase 

behaviour could occur. If this proportion was small, then modulating FUS methylation might 

provide a physiological mechanism to dynamically change FUS assembly. Furthermore, if this 

process became uncontrolled, the accumulation of excessive quantities of hypomethylated FUS 

might then cause disease by promoting the formation of irreversible fibrillar hydrogel assemblies 

in a manner analogous to fALS-FUS mutations (Murakami et al., 2015). To address this question, 

we repeated the phase separation experiments at the boundary conditions of 2µM full-length FUS 

and 40 mM NaCl at 23 °C, but included varying quantities of fully unmethylated FUS (UM FUS) 

purified from E. coli (0.5%-5% of total FUS). These studies revealed that when UM FUS 

comprised more than 1% of total FUS there was: i) increased formation of small non-spherical, 

non-fusing assemblies; and ii) the appearance of larger diffuse assemblies that are likely fibrillary 

hydrogel condensates (Figure 1F, middle and lower panels, p<0.01). These results indicate that 

even small quantities of unmethylated FUS (<5%) could induce transition of dispersed FUS into 

liquid droplets, and its gelation into irreversible fibrillar condensates. 

 

Cation-π interactions participate in FUS phase separation 

Our observation that differential methylation of arginines in the C-terminal structured 
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domain of FUS can modulate phase separation in a salt-dependent manner raises the question of 

what these arginines interact with during condensation. FUS contains only 5 acidic residues in 

the LC domain, making these unlikely to be the principal drivers of the implied electrostatic 

interaction. However, FUS has 27 tyrosines (but no tryptophan or phenylalanine) in the LC 

domain, which might allow protons in the guanidino moiety on the arginine side-chains to form 

cation-π interactions with electrons in the benzene ring of tyrosines.  

 

To explore this idea, we investigated phase separation in purified full-length FUS proteins 

in which: i) multiple arginines in the sCTD were mutated to alanine or lysine; or ii) in which 

multiple tyrosines in the LC domain were mutated to alanine or phenylalanine. In the arginine 

mutagenesis studies, we focussed on the six arginines (216, 259, 407, 472, 473 and 476) that 

showed the greatest variability in methylation state after AdOx treatment. In the tyrosine 

mutagenesis studies, we focused on seven “near core” tyrosines (hereafter “ncYs”: 113, 122, 

130, 136, 143, 149, 161) adjacent to the β-sheet-forming core of the LC domain (aa 39-95). We 

chose not to investigate tyrosine replacement in the core LC domain to avoid confounding the 

experiment by disrupting the ability of the core domain to form anti-parallel β-sheet assemblies. 

 

FUS phase separation was abrogated when cation-π interactions were disrupted by: i) 

replacement of arginines with alanine (FUS 6RA) (Figure 2A): ii) by enzymatic conversion of 

arginine to citrulline (Cit-FUS) by protein arginine deiminase (PAD), which replaces the positively 

charged ketimine group (=NH) with an uncharged ketone group (=O) (Figure 2A,E; S2); and iii) by 

conversion of the ncYs to alanine (FUS ncYA) (Figure 2A,D). However, phase separation was 

maintained when cation-π interactions were preserved by: i) substitution of the arginines with 

lysine (FUS 6RK), which has a cationic side-chain; or ii) substitution of ncYs by phenylalanine 

(FUS ncYF), which contains an aromatic ring in its side-chain (Figure 2A,C,D).  

 

We next investigated the effect of increasing the cation-π drive by strategic substitution of 

9, 16 or 21 additional arginines to create more RGG and GRG motifs in the sCTD (FUS +9R, 

FUS +16R, and FUS +21R respectively). The circular dichroism (CD) spectra of these proteins 

were indistinguishable from either ADMA FUS or HYPO FUS, implying that they were properly 

folded (Supplemental Figure 2A). However, these constructs had significantly increased 

propensity to phase separate (as measured by turbidity; Figure 2B) and form gel-like structures 

(as measured by increasing numbers of nonspherical condensates; Figure 2C,D). This behaviour 

was strongly dependent on the number of extra arginines (Figure 2A,B). To confirm that this 

effect was due to enhanced cation-π interactions, we mutated the ncYs to alanine in the construct 

with 16 extra arginines (FUS +16R ncYA), thereby reducing the number of tyrosines available 

to form cation-π interactions with the extra arginines in the parental FUS +16R construct. This 
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FUS +16R ncYA construct rescued liquid droplet formation (Figure 2A,C,D).  

 

To examine the implied cooperativity between the tyrosine-rich disordered LC domain and 

the arginine-rich sCTD we separately purified these two domains and investigated their phase 

behaviour alone or mixed together. The EmGFP-tagged LC fragment formed droplets and gels 

when cooled at high concentrations (>50µM FUS), but did not phase separate at 1µM at 23°C, 

even when mixed with dextran (Figure 2F). The mCherry-tagged arginine-rich sCTD also showed 

minimal phase separation under these conditions (Figure 2F). In contrast, robust phase 

separation rapidly occurred when the LC and sCTD fragments were mixed at 1:1 molar ratios, 

even in the absence of crowding agents (Figure 2F). However, unlike condensates from full-

length FUS, these condensates were unstable, and dissolved within minutes, implying that full 

stabilisation of condensed polymers requires tethering of the LC domain to the sCTD. 

 

Arginine:tyrosine cation-π interactions modulate FUS phase separation in cells 

We next investigated FUS phase separation in SH-SY5Y cells transiently expressing 

either YFP-tagged full-length FUS or YFP-tagged versions of the arginine/tyrosine-modified FUS 

constructs described above. These cells were then treated for 24 hours with either DMSO control 

or varying doses (0-20µM) of AdOx. Hypomethylation of FUS was confirmed by western blotting 

(Figure S3A).  

 

The results of these cellular studies were in good agreement with our initial biochemical 

studies. Thus, SH-SY5Y cells expressing FUS ncYF, with intact cation-π drive, were 

indistinguishable from cells expressing ADMA FUS (Figure 3C). Similarly, AdOx treatment and 

expression of FUS constructs with additional arginines caused a significant increase in the 

number of cells displaying intracellular FUS granules (Figure 3A, B; p<0.01). Crucially, the 

magnitude of these increase were dependent on the AdOx dose or number of extra arginines 

respectively, and the visible FUS aggregates were accompanied by increased abundance of FUS 

in RIPA-insoluble fractions of cell lysates (Figure 3A,D,E; S3B). Conversely, FUS granule 

formation was significantly reduced in cells expressing FUS variants that diminish cation-π drive 

(either FUS ncYA or FUS 6RA)(Figure 3C, S3B -D).  

 

These experiments support the notion that differential methylation of arginines in the 

sCTD of FUS can regulate FUS assembly through modification of cation-π interactions with 

tyrosines in the N-terminal LC domain. 

 

TNPO1, but not EWS or TAF15, acts as a molecular chaperone for FUS 
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Because hypomethylated FUS deposits in FTLD-FUS brain tissue contain EWS, TAF15 

and TNPO1, we wondered whether these proteins might modulate FUS phase behaviour. We 

therefore performed protein mixing experiments in which purified ADMA FUS or HYPO FUS were 

mixed with equimolar concentrations of TNPO1, EWS, TAF15, bovine serum albumin (BSA), or 

buffer alone, and the phase separation behaviour was investigated as above. When ADMA FUS 

or HYPO FUS were mixed with TAF15, EWS or BSA, their phase behaviour was essentially 

indistinguishable from ADMA FUS or HYPO FUS alone (Figure 4A-B). However, TNPO1 strongly 

suppressed phase separation of both ADMA FUS and HYPO FUS (Figure 4A, fourth column; 4B, 

p<0.001, n = 6 replications).  

 

Similar results were obtained in cell-based experiments in SH-SY5Y cells expressing 

YFP-FUS and mCherry vector alone, mCherry-EWS, mCherry-TAF15 or mCherry-TNPO1. Thus, 

although both EWS and TAF15 colocalised with HYPO FUS granules induced by AdOx, their co-

expression had no impact on granule formation (Figure 4C, top right and bottom left panels; 

Figure 4D, p<0.001, n = 8 replications). By contrast, TNPO1, suppressed FUS granule formation, 

and TNPO1 was largely absent fromHYPO FUS granules that did form (Figure 4C, lower right 

panel; Figure 4D; p<0.001, Figure 4E p<0.05, n = 8 replications). These inhibitory effects of 

TNPO1 were not attributable to: i) TNPO1-induced changes in the abundance or methylation 

state of FUS (Figure S4A); or ii) AdOx-induced changes in the abundance of EWS, TAF15 or 

TNPO1 (Figure S4B). 

 

Taken together, these experiments lead to the intriguing conclusion that TNPO1 may act 

as a cellular molecular chaperone for both ADMA FUS and HYPO FUS. 

 

Biophysical analysis of FUS phase separation probed with amyloidophylic dyes  

To gain insight into the secondary and quaternary structures of ADMA FUS and HYPO 

FUS assemblies during phase separation, we applied two complementary approaches. The first 

approach employed the amyloidophylic fluorescent dyes - thioflavin T (ThT) and pentameric 

formyl thiophene acetic acid (pFTAA) - as chemical probes that could be applied to both protein 

and to cellular preparations. The second approach employed atomic force-infrared 

nanospectroscopy (AFM-IR - next section). 

 

ThT showed only minimal binding and fluorescence enhancement upon addition to either 

purified ADMA FUS protein condensates (Figure S5A, black line) or purified HYPO FUS protein 

condensates (Figure S5A, red line). By comparison, equimolar concentrations of α-synuclein (a 

conventional amyloid-forming protein) displayed robust ThT binding and fluorescence (Figure 

S5A, purple line). In cell-based experiments, ThT displayed minimal binding and fluorescence to 
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HYPO FUS in AdOx-treated SH-SY5Y cells (data not shown). This result is in good agreement 

with prior studies showing poor binding of ThT to pathological fibrillar FUS assemblies in human 

FTLD-FUS and fALS-FUS tissues, and in C. elegans models (Urwin et al., 2010). Further work 

with ThT was abandoned. However, pFTAA showed more promising results. 

 

pFTAA is a high affinity, cell permeant, luminescent oligothiophrene dye that discriminates 

different conformers of β-sheet-containing aggregates of tau and PrP (Klingstedt et al., 2013). 

pFTAA showed modest binding and fluorescence to ADMA FUS condensates (Figure 5A, first 

column of images), but significantly greater binding and fluorescence with condensates 

composed of HYPO FUS, FUS +9R or FUS +16R (Figure 5A, p<0.001). Crucially, pFTAA was 

also able to detect the chaperone-like activity of TNPO1. Thus, premixing TNPO1 with ADMA 

FUS or HYPO FUS dramatically reduced the number of assemblies that bound pFTAA (Figure 

S5B, p<0.001). In cell-based experiments, pFTAA displayed significant binding and fluorescence 

with HYPO FUS condensates in AdOx-treated SH-SY5Y cells (Figure 5B)  

 

These experiments suggest that liquid droplet condensates of ADMA FUS contain a small 

proportion of FUS in an antiparallel β-sheet conformation, and this antiparallel β-sheet content is 

then significantly increased upon conversion to hydrogel-like HYPO FUS condensates. 

 

Structural analysis of FUS phase separation by AFM-IR nanospectroscopy  

To further explore the relationship between the three-dimensional morphology and the 

secondary and quaternary structures of individual ADMA FUS and HYPO FUS assemblies, we 

next applied a recently developed single-molecule technique that combines atomic force 

microscopy (AFM) with infrared nanospectroscopy (IR) (Dazzi et al., 2012). In contrast to 

conventional bulk approaches, AFM-IR provides a unique tool to probe, at nanoscale resolution, 

the morphological, nanomechanical, chemical and secondary/quaternary structural properties of 

individual protein assemblies - a feature that is crucial for characterising heterogeneous 

molecular systems (Ruggeri et al., 2015b).  

 

We applied this approach to investigate ADMA FUS, HYPO FUS and FUS +16R 

condensates generated using the same conditions as in earlier experiments. The condensates 

were placed on zinc selenide (ZnSe) windows. AFM was then used to acquire nanoscale 

resolved maps on the 3D morphological (Figure 6A) and nanomechanical properties of the 

assemblies (Figure 6B). The nanomechanical state was assessed by measuring the shifts in the 

tip-sample contact resonance (Figure 6C), which varies monotonically as a function of the 

intrinsic Young’s modulus of the sample (Dazzi et al., 2012). Because of the complexity of 

defining the absolute nanomechanical properties of soft biological samples, we measured the 
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stiffness of each assembly relative to the stiffness of the underlying ZnSe window. We then 

acquired nanoscale resolved IR spectra from several locations within each assembly (denoted by 

"+" in Figure 6A). Because each nanospectroscopy measurement has a lateral resolution down to 

20nm (Ruggeri et al., 2015b), it allows exquisite characterisation of the secondary/quaternary 

chemical structure across multiple locations in individual condensates (Galante et al., 2016). The 

average spectrum from all assemblies for each group was then calculated (Figure 6F), and the 

corresponding average second derivatives in amide band I (Figure 6G) were evaluated to extract 

the principal structural components of the condensates. Cumulatively, we acquired 216 spectra 

with corresponding detailed nanomechanical data from ADMA FUS, HYPO FUS and FUS +16R 

assemblies. 

 

ADMA FUS: homogeneous spherical liquid-like structures with low β-sheet content  

ADMA FUS condensates had relatively homogeneous morphological and mechanical 

properties, with high sphericity and low relative intrinsic stiffness akin to that of a liquid. In 

agreement with the nanomechanical data, the chemical responses of different ADMA FUS liquid 

droplets were also relatively homogeneous, all being comprised of α-helical, native β-sheet, 

random coil, β-turn and residual antiparallel β-sheet structures (Figure 6D, top panel, S6A-D). 

 

HYPO FUS: heterogeneous assemblies with liquid and gel-like condensates 

By contrast, HYPO FUS condensates were both morphologically and mechanically 

heterogeneous. Crucially, this heterogeneity existed both within individual HYPO FUS assemblies 

and between different HYPO FUS condensates (Figure 6 A-D, 2nd row; S6A). This intra-sample 

heterogeneity is quantitatively demonstrated in Figure 6 for a representative HYPO FUS 

condensate. This particle has a spherical component (red circle, middle panel Figure 6B) fused to 

a non-spherical component (orange ellipse, middle panel Figure 6B). The spherical component 

showed softer mechanical properties, like those of ADMA FUS condensates. The nonspherical 

component showed stiffer nanomechanical features more suggestive of a gel. This regional 

heterogeneity within a single condensate is of note because it suggests conversion between 

liquid droplet and hydrogel conformations.  

 

IR spectra of HYPO FUS assemblies were also highly heterogeneous, and this 

heterogeneity correlated with the nanomechanical heterogeneity. The regions within a single 

droplet possessing higher stiffness were also the ones possessing higher absorption at 1695 cm-

1, corresponding to antiparallel -sheets. More importantly, on average, deconvolution of amide 

band I of the HYPO FUS IR spectra revealed increased antiparallel β-sheet, random coil and β-

turn content compared to ADMA FUS assemblies (Figure 6G, S6B,C,E). Furthermore, amide 

band II of HYPO FUS assemblies was shifted towards lower wave numbers, confirming 
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independently increased hydrogen bonding (Figure 6G, S6 B,C,E). In addition, on average, 

HYPO FUS assemblies had reduced and shifted signals originating from the methyl group 

absorption (δas(CH3), methyl asymmetric stretching at 1445 cm-1), confirming their lower 

methylation state (Figure S6F). 

 

Remarkably, at the level of individual HYPO FUS assemblies there was considerable 

heterogeneity in the spectral data. Thus, HYPO FUS condensates with liquid-like 

nanomechanical properties (e.g. within the red circle in Figure 6B) had IR spectra like those of 

ADMA FUS condensates. But the HYPO FUS condensates with stiffer nanomechanical 

properties (e.g. within the orange ellipse in Figure 6B) had higher antiparallel β-sheet content and 

increased intermolecular hydrogen bonding, suggesting the presence of a hydrogel-like structure 

(Ruggeri et al., 2015a).  

 

FUS +16R: stiff, non-spherical parallel β-sheet rich hydrogen bonded assemblies 

The FUS +16R condensates displayed a predominantly non-spherical 3D morphology and 

stiffer nanomechanical properties, like those of the gelled HYPO FUS condensates (Figure 6A-D, 

lower panels). Quantitative analysis of the IR spectra for FUS +16R assemblies was complicated 

by partial overlap in the absorption spectra of the extra arginine side-chains, which absorb at 

1635-1675 cm-1. As a result, it was not possible to quantitatively compare the 

secondary/quaternary structural composition of FUS +16R with HYPO FUS or ADMA FUS 

assemblies. Nevertheless, the spectra for FUS +16R reveal significant intermolecular antiparallel 

β-sheet and parallel amyloidogenic β-sheet (1625 cm-1) content, which would promote enhanced 

intermolecular hydrogen bonding (Ruggeri et al., 2015b), and lead to the observed stiffer 

nanomechanical properties of FUS +16R condensates. 

 

These results support the notions that: 1) both liquid droplet and hydrogel phase 

transitions are associated with increasing inter-molecular hydrogen bonding and increasing 

antiparallel β-sheet, random coil and β-turn structures; and 2) these structural shifts are 

associated with selective binding of amyloidophyllic dyes such as pFTAA. Finally, the AFM-IR 

analyses of FUS +16R condensates demonstrate that enhancing the arginine: tyrosine cation-π 

interaction by increasing the number of arginines in the sCTD, promotes formation of stabilised 

hydrogels. This observation suggests that FUS constructs with additional arginines ("cation-π 

enhanced" constructs) can at least partially replicate the propensity of HYPO FUS to form 

pathologically stable FUS granules, and might therefore be useful as a molecular model of FTLD-

FUS (see below). 
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Arginine methylation status regulates neuronal FUS RNP granule function  

The experiments described above support our hypothesis that FUS phase transition can 

be regulated by: 1) methylation of arginines in the sCTD of FUS; and 2) by interactions with 

TNPO1. We were therefore curious to determine whether manipulation of the arginine 

methylation status of FUS and its interaction with TNPO1 might alter FUS RNP granule function 

in distal neuron terminals.  

 

To address this question, we examined FUS assembly, FUS conformational state, and 

FUS RNP granule function in ex vivo Xenopus retinal neuron cultures prepared as previously 

described (Lin and Holt, 2007). The distribution of FUS assemblies was assessed in mock-

treated or AdOx-treated axons (20µM for 30 minutes) either by anti-FUS immunofluorescence (for 

endogenous FUS) or by GFP fluorescence (for live imaging of axonal FUS granules in neurons 

expressing GFP-tagged FUS) (Figure 7A-F). A caveat to the use of AdOx to induce 

hypomethylation of FUS is the potential for AdOx to alter the methylation state of numerous other 

neuronal proteins. To circumvent this caveat, in parallel experiments, we also expressed the 

"cation-π enhanced" constructs in axon terminals (FUS +5R, FUS +7R, FUS +9R, FUS +16R and 

FUS +21R).  

 

In good agreement with our earlier biochemical and cellular experiments, AdOx treatment 

of isolated axons and axon terminals induced the formation of bright FUS granules that showed 

increased pFTAA fluorescence (Figure 7A-F; p<0.05, p<0.01), Crucially, the parallel experiments 

in neurons expressing "cation-π enhanced" constructs revealed an arginine-dose-dependent 

increase in similar axonal FUS granules (Figure 7D, p<0.001). pFTAA labelling was not 

investigated in neurons expressing "cation-π enhanced" constructs because the 

excitation/emission spectra of their GFP tags overlap those of pFTAA. 

 

Hypomethylated FUS assemblies impair neuronal new protein synthesis  

We next used puromycin labelling of nascent proteins in isolated axon terminals (Lin and 

Holt, 2007) to assess the impact of AdOx (HYPO FUS) and of "cation-π enhanced" constructs on 

FUS RNP granule function (Figure 7G-I). These experiments demonstrated that new protein 

synthesis was significantly attenuated in both AdOx-treated axon terminals (HYPO FUS), and in 

the axon terminals expressing "cation-π enhanced" constructs (Figure 7G-I; p<0.001). Crucially, 

the magnitude of this effect (~0.60-0.80 of control) approximated that of  fALS-FUS mutations 

(~0.80 of control) (Murakami et al., 2015).  

 

TNPO1 rescues impaired protein synthesis in axon terminals 
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Outside of the nucleus, TNPO1 colocalises with some cytoplasmic RNA granules, where it 

coexists with FUS; purine-rich element binding protein A (Pur-α, which modulates toxicity of ALS-

associated FUS mutants); and Staufen-1 (a marker of neuronal transport granules) (Jain et al., 

2016). In this non-nuclear role, TNPO1 facilitates the import of protein components into RNA 

granules in a Ras-related Nuclear protein-GTP-independent fashion (Twyffels et al., 2014). In 

agreement with this prior work, we found that mCherry-TNPO1 is also present within motile 

granules in axon terminals (Movie S3).  

 

Given that TNPO1 is expressed in axon terminals, and may function as a molecular 

chaperone, we next investigated whether modest overexpression of TNPO1 might restore FUS 

RNP granule function in axon terminals treated with AdOx or expressing "cation-π enhanced" 

FUS constructs. As predicted, mCherry-TNPO1 fully rescued new protein synthesis in both 

AdOx-treated neurons and in neurons expression "cation-π enhanced" constructs (Figure 7E,I, 

p<0.001). However, mCherry-TNPO1 had no effect on new protein synthesis in mock-treated 

(ADMA FUS) axon terminals.  

 

DISCUSSION 

The experimental data described here reveal that the phase behaviour of FUS is 

modulated by i) the post-translational methylation state of arginines in the structured C-terminal 

domain; and ii) by molecular chaperones such as TNPO1. This conclusion provokes several 

broad lines of thought. 

 

Cation-π interactions and cooperativity between N- and C-terminal domains 

Previous reports have shown that the N-terminal LC domain of FUS (residues 1-214) is 

necessary and sufficient for phase separation and gelation of FUS, and does so by forming β-

sheet rich fibrils. The experiments described here support and extend this view. Thus, our AFM-

IR experiments clearly reveal that intermolecular hydrogen bonding between β-sheet regions 

contributes to both liquid droplet and hydrogel formation.  

 

However, our data also lead to the conclusion that FUS phase separation is regulated by 

additional factors beyond just the β-sheet forming LC domain.The experiments described here 

reveal that phase separation is also driven by cation-π interactions, which occur physiologically 

between multiple arginines in the sCTD and multiple tyrosines in the LC domain. In support of 

this, we have shown that cation-π pairing and FUS phase separation are impeded by i) 

replacement of sCTD arginines by alanines; ii) conversion of these arginines to citrullines; or iii) 

replacement of N-terminal tyrosines with alanines. Conversely, we have shown that phase 

separation is maintained by amino acid replacements that preserve the cation-aromatic ring 
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pairing (arginine to lysine; tyrosine to phenylalanine). Finally, we have shown that phase 

separation is augmented in a arginine-dose-dependent manner by increasing the number of 

arginines in the sCTD, presumably by enhancing the number of cation-π interactions. Two further 

observations underscore the importance of domains outside the LC domain in promoting liquid 

phase separation and gelation. First, as shown here, FUS phase separation is also modulated by 

TNPO1, which binds to FUS via its sCTD. Second, fALS-FUS mutations map predominantly to 

the sCTD. 

 

Additional work will be required to fully understand the mechanics of the co-operative 

interaction between the sCTD and the β-sheet-forming LC domain. Our mixing experiments 

suggest a model in which multi-valent cation-π interactions initiate phase separation, thereby 

bringing LC domains close together in a restricted volume and at higher local concentration. We 

propose that this close apposition permits formation of more stable, intermolecular hydrogen-

bonded β-sheet rich condensates driven by the LC domain. We suspect the transient nature of 

this condensation when physically separate LC domain and sCTD proteins are mixed, is because 

i) the untethered sCTD proteins are less efficient in restraining the egress of LC domain peptides 

from nascent condensates during initial soldroplet phase separation; or ii) the untethered 

arginine-rich sCTD proteins also bind to tyrosines within the β-sheet-forming parts of the LC 

domain, and interfere with further condensation.  

 

Converting Liquid Droplets to Gels 

Our observation that some HYPO FUS assemblies contain regions that are liquid droplet-

like while other regions are gel-like, suggests liquid droplet and hydrogel states are alternate but 

mechanistically related, and potentially inter-convertible states within a single FUS assembly. 

This interpretation is supported by theoretical work indicating that in systems close to a critical 

point, variations in interaction strength or solvation volume can allow coexistence of phase 

separation and gelation (Harmon et al., 2017). 

  

TNPO1 as a chaperone in non-nuclear compartments 

There are likely to be active processes to maintain FUS and other phase separating 

proteins in a dispersed state, and to reverse gelled forms. As is the case for TDP43 (Gotzl et al., 

2016), autophagy and proteasome pathways are likely important components of this process. 

However, molecular chaperones are also likely to be involved. Indeed, our experiments show that 

TNPO1 is a molecular chaperone for ADMA FUS and HYPO FUS that acts in peripheral 

subcellular compartments of neurons, as well as at the nuclear pore. 

 

Methylation as a physiological/pathological regulator 
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Our observations that arginine methylation status profoundly influences FUS phase 

separation, and that adding very small amounts of un-methylated FUS (≤ 5%) to ADMA FUS 

results in rapid phase separation and gelation raises the possibility that arginine methylation state 

might be a physiological method to regulate FUS phase state. This conclusion raises several 

critical questions. Which differentially methylated arginines are essential for a change in FUS 

phase behaviour. How do unmethylated arginines increase the cation-π interaction strength? Do 

the quanidino moieties of asymmetrically di-methylated arginines form cation-π interactions via 

tyrosine-based “aromatic cages”, as proposed for cation-π interactions in Tudor domain proteins 

(Tripsianes et al., 2011)? Do unmethylated arginines alter the thermodynamics of interactions 

with the “aromatic cage”? Or do unmethylated arginines form promiscuous, methylation-

independent interactions with tyrosines or other charged residues that are not in conventional 

aromatic cages, as proposed for some other Tudor domain proteins (Zhang et al., 2017)? Finally, 

how is methylation and demethylation of individual arginines regulated, both physiologically and 

pathologically? Multiple PRMT enzymes are known, at least some of which are components of 

RNP granules (Scaramuzzino et al., 2013). However, to date, only a single arginine demethylase 

has been identified (Jumonji domain-containing 6 - JMJD6 (Blanc and Richard, 2017)). 

 

FUS and FTLD 

While not directed at generating a model of FTLD-FUS, the experiments reported here 

have obvious implications for understanding this disorder. Our observation that HYPO FUS and 

fALS-mutant FUS assemblies have similar biochemical and biophysical properties, and similar 

effects on FUS RNP granule function suggests that gel-like assemblies of hypomethylated wild-

type FUS and of fALS-mutant FUS represent a common final mechanism for FUS-related 

neurodegeneration.  

 

We speculate that neuron subtype-specific differences in molecular chaperones, 

methylases and demethylases might account for why hypomethylated non-mutant FUS 

accumulates in fronto-temporal neurons in FTLD-FUS, while normally methylated fALS- mutant 

FUS accumulates in corticospinal and spinal neurons in fALS-FUS. Why FUS becomes 

hypomethylated and inadequately chaperoned in FTLD-FUS is unknown. Mutations have not 

been detected in the PRMT genes tested to date. However, our results offer other candidate 

genes that are worth investigating, including TNPO1 and JMJD6. 

 

One important difference between our model and FTLD concerns the fact that nuclear 

assemblies of FUS in FTLD contain EWS, TAF15, and TNPO1, whereas in our model TNPO1 is 

largely absent from FUS aggregates. The explanation for this difference is not immediately 

apparent. It might arise from the fact that in our model the level of TNPO1 expression is not a 
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limiting factor because it is overexpressed. In contrast, in neurons TNPO1 might be titrated out by 

an excess of hypomethylated FUS. Regardless, the work reported here provides a starting point 

to investigate how pathological methylation and phase separation of FUS that escapes from its 

normal molecular chaperones might be targeted therapeutically. 

 

Clearly, several reagents and methods developed here including pFTAA, AFM-IR, and the 

cation-π-enhanced constructs will be useful tools to delve further into the biophysics of FUS 

phase separation, and to create molecular models of increased FUS phase separation propensity 

in FTLD-FUS.  
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FIGURE LEGENDS 

FIGURE 1  

Phase separation of full-length FUS at physiological temperature and protein 

concentration is modulated by salt concentration and arginine methylation.  

A: Schematic of domain architecture and location of tyrosine-rich and arginine-rich domains (left). 

Arginine methylation species (right). RRM = RNA Recognition Motif; RRG = Arginine Arginine 

Glycine-rich domain. 

B: Salt dependent phase separation of ADMA FUS and HYPO FUS. Top: Representative images 

of phase separation of 1µM EmGFP-tagged ADMA FUS in 50 - 150 mM NaCl. At 150 mM NaCl, 

ADMA FUS is mono-dispersed, but phase separates into spherical droplets at lower salt 

concentrations. Middle: Representative images of ADMA FUS for KCl concentrations of 50 - 150 

mM. Bottom: Identically prepared HYPO FUS phase separates at higher salt concentrations (100 

mM) into small, irregularly shaped condensates. White boxes indicate location of magnified 

images in C. Scale bar = 25 µm. 

C: High magnification images of condensates from B. Scale bar = 5 µm. 

D: Quantitative analysis of sphericity: ADMA FUS condensates (grey) in 50 mM NaCl are 

spherical. HYPO FUS condensates (red) are less spherical (t=3.47, P=0.0006). n ≥ 121 particles/ 

FUS subtype; n > 3 independent replications, error bars = SEM.  

E: Sequential structured illumination microscopy images of individual droplet collisions at 0 ms, 

200 ms and 680 ms. ADMA FUS (top) fuse. HYPO FUS collide but do not fuse. Scale bar = 2 µm. 

Movies of the same experiments are included in the Supplemental Information section as Movie 

S1 (ADMA FUS) and Movie S2 (HYPO FUS). 

F: Representative images and quantitative turbidity graphs of phase separation arising from 

mixing EmGFP-tagged ADMA FUS with the indicated percentage of fully unmethylated UM FUS. 

Preparations containing >1% UM FUS form small non-spherical, non-fusing and amorphous 

assemblies. Scale bar = 25 µm. Two-way ANOVA with Bonferroni post hoc test versus ADMA 

FUS at 40mM, n ≥ 3 replications, ** p<0.01, *** p< 0.001, error = SEM. 

See also Figure S1 

 

FIGURE 2 

A: Phase separation is driven by cation-π interactions between arginines in sCTD RGG 

motifs and tyrosines near the core of the LC domain (ncY), and can be modulated by 

varying the number of residues. Row 1: Representative images of phase separation by 

EmGFP-tagged ADMA FUS in 50 -150 mM NaCl. Row 2: Mutating arginines 216, 259, 407, 472, 

473 and 476 to alanine (6RA) abrogates phase separation. Row 3: enzymatic conversion of 

arginines to citrullines abrogates phase separation. Row 4: mutation of these arginines to lysine 

(6RK) preserves phase separation. Row 5: mutating ncYs 113, 122, 130, 136, 143, 149, 161 to 
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alanine (ncYA) reduces phase separation. Row 6: mutating the same tyrosines to 

phenylalanine (ncYF) preserves phase separation. Rows 7, 8 ,10: addition of arginine residues 

(FUS +9R, FUS +16R, FUS +21R) permits phase separation at higher salt concentrations. Row 

9: Adding ncYA to FUS +16R (FUS +16R ncYA) rescues phase separation (150mM). Scale 

bar = 25 µm.  

B: Phase separation/turbidity diagram for constructs in A. Error bars = SEM; n ≥ 3 replications. 

C: Representative images of highly spherical ADMA FUS and FUS 6RK assemblies. The 

nonspherical FUS +16R droplets can be rescued by FUS +16R ncYA mutations.  

D: Circularity (sphericity) graph: ADMA FUS are spherical. Replacing ncYs with alanine (ncYA) 

increases circularity, likely because there is reduced progression to gelation (student's t-test, 

Satterthwaite method for unequal variances: t=7.46, df=155, P=5.91x10-12). Replacing ncYs with 

phenylalanine (ncYF) supports normal phase separation (t=1.69, df=213, p=0.092). 

Augmenting cation-π interactions increases gelation and reduces circularity (i.e. FUS +9R, FUS 

+16R, FUS +21R)(Student-Newman-Keuls multiple comparisons of means test: F=64.57[6, 6674], 

P=2.84x10-78).  Decreasing the augmented cation-π drive in FUS +16R by reducing the available 

near-core tyrosines (FUS +16R ncYA) restores normal phase separation and circularity (FUS 

+16R-ncYA versus FUS+16R: t=16.84, df=987, p=3.97x10-56); FUS +16R-ncYA versus 

ADAM FUS: t=3.98, df=257, p=8.98x10-5). N > 3 independent replications, error bars = SEM.  

E: Schematics of PRMT mediated dimethylation of arginine to create ADMA FUS; PAD-mediated 

conversion of arginine to citrulline; and cation-π interactions between tyrosine rings and arginine 

guanidino side-chain. 

F: Tyrosine-rich LC domain and arginine-rich sCTD cooperatively support phase separation. Top 

row: Representative images of EmGFP-LC domain (aa 1-214) alone (left) and mCherry-CTD (aa 

215-526) alone (right) at 1µM FUS, 50 mM NaCl, showing minimal phase separation. Bottom row: 

brief (<2 minutes) phase separation occurs upon mixing LC domain (green) with sCTD (red). 

Merged (orange). Scale bar = 25µm. 

See also Figure S2 

 

FIGURE 3  

FUS phase separation in SH-SY5Y cells is modulated by FUS methylation, by the number 

of tyrosines near the LC core (“ncY”), and number of arginines in the sCTD. 

A: Representative images of FUS granules in SH-SY5Y cells expressing either YFP-tagged FUS, 

with or without AdOx treatment (HYPO or ADMA FUS respectively), or FUS with variations in the 

number of tyrosines or arginine. More cells had granules after AdOx treatment (HYPO FUS) and 

after expressing FUS with additional arginines (e.g. FUS +9R etc). Fewer cells had FUS granules 

after expressing FUS with tyrosines converted to alanine (ncYA). Cells with tyrosines converted 

to phenylalanine (ncYF) had normal granule formation. Scale bar = 10μm.  
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B: AdOx causes a dose-dependent increase in cells with FUS granules. n = 100-200 cells / 

replicate experiment. Mean ± SEM, n=5 replicates **p<0.01, ***p<0.001, One-way ANOVA with 

Dunnett post hoc test.  

C, D: Quantification of A. n >200 cells/replicate. One-way ANOVA with Dunnett post hoc test, n = 

3-7 independent replications, *p<0.05, ***p<0.001, error = SEM.   

E: Quantification of RIPA-insoluble FUS, normalised to input, in cells expressing: ADMA FUS; 

HYPO FUS, FUS ncYA or FUS with additional arginines. One-way ANOVA with Dunnett post 

hoc test, n = 4, *p<0.05, ***p<0.001, error = SEM. 

See also Figure S3. 

 

FIGURE 4  

TNPO1 is a molecular chaperone for ADMA FUS and HYPO FUS. 

A: Representative images of FUS phase separation in the presence of equimolar concentrations 

EWS, TAF15 or TNPO1. EWS and TAF15 had minimal impact on FUS phase separation. TNPO1 

suppressed both ADMA FUS and HYPO FUS phase separation. Scale bar = 25 µm. 

B: Quantification of A. Kruskal-Wallis test, Dunn’s post-hoc n =32-35 fields of view, *p<0.05, 

***p<0.001, error = SEM. 

C: Representative images of FUS granules in AdOx-treated SH-SY5Y cells expressing YFP-FUS 

(green) and mCherry, mCherry-tagged EWS, mCherry-tagged TAF15 or mCherry-tagged TNPO1 

(red). FUS granules co-localized with EWS and TAF15, but not with TNPO1 or mCherry alone. 

Scale bar = 10μm, n = 8 replicates. 

D: Quantification of C: FUS co-localised with EWS (100±0.0%) and TAF15 (99.1±1.7%). FUS 

colocalised poorly with TNPO1 (14.3 ±8.5%) or mCherry only (1.0±1.4%). One-way ANOVA, 

Tukey post-hoc, n = 8 replicates, ***p<0.001.  

E: TNPO1 reduced the number of SH-SY5Y cells with AdOx-induced FUS granules. One-way 

ANOVA, Tukey post-hoc, n = 8 replicates, *p<0.05. 

See also Figure S4. 

 

FIGURE 5 

pFTAA differentially binds and fluoresces with FUS hydrogel condensates.  

A: Representative images of mCherry-tagged FUS (red – top row) labelled with pFTAA (bottom 

row. ADMA FUS weakly binds pFTAA. AdOx treated (HYPO FUS), FUS +9R and FUS +16R 

strongly bind pFTAA. Kruskal-Wallis test, Dunn’s post hoc, n>190 droplets, n=3 independent 

replications, *** p<0.001, error bars = SEM. Scale bar = 20µm. 

B: AdOx-treated cells have intracellular HYPO FUS granules that co-stain with pFTAA (bottom 

row). Mann-Whitney U test, n>140 cells over 6 fields of view, ***p<0.0001, error bars = SEM. 

Scale bar = 20µm. 
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See also Figure S5. 

 

FIGURE 6  

Nanoscale resolution analysis of the mechanical and secondary/quaternary structural 

properties of individual FUS condensates reveal substantial differences between ADMA 

FUS versus HYPO FUS and cation-π enhanced FUS condensates. 

A: Representative AFM 3D morphology maps of individual ADMA FUS (top), HYPO FUS (centre) 

and FUS +16R granules (bottom). Crosses represent position of nanoscale localized IR 

spectroscopy measurements. 

B: Representative tip-sample contact resonance maps of nanoscale stiffness for ADMA FUS 

(top), HYPO FUS (middle) and cation-π enhanced FUS +16R condensates (bottom). Coloured 

circles indicate where contact resonance shift was evaluated. 

C: Histogram of tip-sample contact resonance shift (“stiffness”) for representative ADMA FUS 

(top) HYPO FUS (middle) and FUS +16R (bottom) condensates. ADMA FUS and FUS +16R 

condensates have homogeneous (but different) nanomechanical properties. HYPO FUS 

condensates are heterogeneous, with softer and stiffer regions. The coloured average curves 

correspond to the distribution of contact resonance shifts in the coloured regions in panel B. 

D: Individual nanoscale raw localised spectra and their average (in bold) from locations indicated 

by “+” on AFM maps for corresponding ADMA FUS (top), HYPO FUS (centre) and FUS+16R 

(bottom) condensates. n=3 independent methylated ADMA FUS assemblies; n=4 independent 

hypomethylated FUS assemblies; n=4 for the FUS +16R assemblies, error bars = SEM. 

E: Relative stiffness of the FUS assemblies. ADMA FUS (green) and round HYPO FUS (red) 

display soft nanomechanical properties. The non-spherical HYPO FUS and FUS+16R, display 

stiffer properties. n≥3 independent ADMA FUS; HYPO FUS; FUS +16R condensates, error = SD. 

F: Average IR spectra in amide band I and II for ADMA, HYPO and FUS +16R, which derive from 

the average of the average of 55 ADMA FUS, 73 HYPO FUS, 88 FUS +16R spectra. Error bars = 

SEM. 

G: Deconvolution of amide band I reveals that: i) HYPO FUS droplets (red line) have a significant 

increase of antiparallel β-sheet, random coil and β-turn structures, compared to the ADMA FUS 

droplets (green line). ii) FUS +16R assemblies (purple line) are stabilized by parallel 

amyloidogenic β-sheet content (1625 cm-1). Error = SEM. 

See also Figure S6. 

 

FIGURE 7  

Hypomethylation of FUS or FUS constructs with additional arginines promote FUS granule 

formation and attenuate axonal new protein synthesis, which is rescued by TNPO1. 
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A. Representative images of endogenous FUS (anti-FUS antibody - green) and pFTAA binding 

(red and heat maps) in fixed axon terminals, showing AdOx-induced increased FUS aggregates 

and pFTAA binding (right). Scale bar = 5 µm.  

B. C. Quantification of A, Unpaired t-test, n = 26 and 16 axon terminals, *p<0.05, **p<0.01, error 

bars = SEM.  

D. AdOx treatment (HYPO FUS) or expression of FUS with additional arginines increases FUS 

granules in live distal axon segments. Unpaired t-test, n = 20-30 axon segments, **p<0.01, 

***p<0.001, error bars = SEM. 

E. Number of FUS-GFP granules per 50μm live distal axon segments following mock or AdOx 

treatment, or expressing FUS with additional arginines, and co-expressing mCherry or mCherry-

TNPO1. Unpaired t-test, n = 20-30 axon segments, NS = not significant, *p<0.05, *** p<0.001, 

error bars = SEM. Movie S3 displays movement of TNPO1 (red) in FUS granules in the axon 

shaft of neurons expressing ADMA FUS. 

F. Representative images showing colocalization of FUS and TNPO1 in distal axons. Scale bar = 

5 µm.  

G. Representative images (pseudo-coloured green) and heat maps of puromycin-labelled newly 

synthesized proteins in mock- (ADMA FUS, left) or AdOx-treated (HYPO FUS, middle) or FUS 

+21R-GFP-expressing axon terminals (FUS +21R, right). Scale bar = 5 µm.  

H. Quantification of G. Unpaired t-test, n>100 axon terminals, NS = not significant. **p<0.01, 

***p<0.001, error bars = SEM. 

I. Coexpression of mCherry-TNPO1 rescues new protein synthesis in AdOx treated neurons and 

neurons expressing FUS with additional arginines. Unpaired t-test, n>100 axon terminals, NS = 

not significant, *** p<0.001, error bars = SEM. 
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SUPPLEMENTAL FIGURE LEGENDS 
 
FIGURE S1 RELATED TO FIGURE 1 

25µM AdOx treatment significantly reduces asymmetric dimethylation of FUS purified from 

Sf9 cells.  

A: Left: Representative western blot of MBP-FUS-EmGFP protein purified from Sf9 cells after 4 

days of 25µM AdOx, or DMSO control. Right: Quantification of western blots. n=4 per 

experimental group, one-tailed, Mann-Whitney U test, * p ≤ 0.05, error bars = SEM. 

B: Top: FUS dimethylation sites differ in their apparent susceptibility to AdOx treatment. Depicted 

are the relative proportion of peptide-to-spectrum matches (CID MS2 spectra of unlabeled 

peptides identified with the PEAKS algorithm) comprising a given FUS arginine residue observed 

in an unmodified, mono- or dimethylated state.  For most FUS arginine residues, methylation 

decreased in AdOx treated relative to mock treated cells, except for R394 and R481 which were 

consistently observed to be dimethylated. Middle: Orbitrap CID MS2 spectrum of a chymotryptic 

FUS peptide dimethylated at R407 identified with confidence exceeding 99%. The other arginine 

residue present (R422) was unmodified, as evidenced by a continuous y-ion series indicating no 

post-translational modification in this part of the peptide. The spectrum is representative of 77 

peptide-to-spectrum matches for this region of FUS, which consistently identified (mono or di) 

methylated R407 accompanied by unmodified R422. Bottom left: Evidence for AdOx-dependent 

inhibition of arginine methylation. The graph depicts the relative ratios of unmethylated, 

monomethylated and dimethylated versions of the FUS peptides 209-

GQQDRGGRGRGGSGGGGGGGGGGY-232 and 398-

GGGGSGGGGRGGFPSGGGGGGGQQRAGDW-426 in untreated and AdOx-treated FUS 

preparations. Circles represent individual quantifications. The number of quantifications (based 

on separate peptide-to-spectrum matches) underlying each cumulative quantification are listed 

above the graph.  Horizontal marks depict median Log2 ratios for a given peptide and 

modification. Bottom right: AdOx treatment did not affect overall abundance of peptides in 

untreated versus AdOx-treated samples.  Abundance ratios of nine chymotryptic peptides from 

the MBP-FUS-EmGFP. All peptides depicted either lack arginine residues or contain arginine 

residues but were not observed to be methylated or dimethylated. 

 

FIGURE S2 RELATED TO FIGURE 2 

Hypomethylated FUS and FUS with additional arginines have CD spectra are 

indistinguishable from ADMA Citrullination of FUS, and so are likely to be properly folded. 

Protein arginine deiminase treatment converts arginines to citrulline.  

A: Circular dichroism (CD) spectrum of ADMA FUS, Hypo-FUS, 9R, 16R, 21R, ncYA, ncYF 

were measured on a JASCO-810 Spectropolarimeter at 25 °C. 5µM of each purified protein was 
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placed in a 1 mm path length quartz cuvette and the far-UV spectrum recorded in the wavelength 

range of 195 – 250 nm. Scans were repeated ten times and then averaged to yield a final 

spectrum for each construct. 

B: At 1µM FUS and 50 mM NaCl, FUS undergoes phase transition. Upon addition of active PAD 

(in presence of calcium) phase transition is abrogated. 

C: Representative western blots showing: top panel: anti-modified citrulline antibody detects a 

band in FUS + active PAD sample. Middle panel:  equal FUS protein loading is detects by anti-

FUS antibody. Bottom panel: Coomassie staining also detects equal FUS protein loading in each 

sample. 

D: Orbitrap ETD MS2 spectrum of a tryptic FUS peptide citrullinated at R514 and R518 identified 

with confidence exceeding 99% from a PAD treated FUS preparation. 

 

FIGURE S3 RELATED TO FIGURE 3 

Substitution of alanine for six arginines that are differentially methylated reduces FUS 

aggregation propensity after AdOx treatment, whereas lysine substitution still supports 

FUS aggregation propensity. 

A: AdOx treatment causes hypomethylation of YFP-FUS in SH-SY5Y cells. Representative 

image of a western blot of immunoprecipitation of YFP-FUS from SH-SY5Y cells showing a 

significant reduction in asymmetrically dimethylated arginine (ADMA) epitopes after AdOx 

treatment. Unpaired t-test, n = 5, * p<0.05, error bars = SEM. 

B: Western blot analysis of RIPA soluble and insoluble FUS in SH-SY5Y cells expressing YFP-

FUS with or without AdOx treatment (HYPO and ADMA FUS respectively), or mutant FUS 

including FUS with fewer tyrosine residues (ncYA) or more arginine residues (quantified in 

Figure 3E). Cells were lysed directly into loading buffer to determine FUS input. Hypomethylation 

of FUS results in increased levels of insoluble FUS with a concomitant decrease in soluble FUS, 

as does increasing the number of arginine residues, in a dose-dependent manner. ADMA and 

ncYA FUS are predominately soluble but a longer exposure shows that FUS ncYA is more 

soluble compared to ADMA FUS.  

C: Representative confocal images of SH-SY5Y cells expressing YFP-FUS with 6 arginine 

residues mutated to alanine (6RA) or lysine (6RK), with DMSO (ADMA FUS) or AdOx 

treatment (HYPO FUS), with quantification of the number of cells with nuclear granule clusters on 

the right. Scale bar = 10 µm. Number of cells counted >100. One-way ANOVA with Tukey 

posthoc test, n = 3, *p<0.05, ***p<0.001, error = SEM.  

D: Mutating the same 6 arginine residues to alanine (6RA), but not lysine (6RK), leads to 

reduced levels of AdOx induced (HYPO FUS) RIPA insoluble FUS compared to wildtype with 

quantification of the amounts of RIPA insoluble FUS on the right. One-way ANOVA with Tukey 

posthoc test, n = 4, ***p<0.001, error = SEM. 
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FIGURE S4 RELATED TO FIGURE 4  

TNPO1 expression does not affect FUS expression and does not change asymmetric 

methylation caused by AdOx treatment 

A: FUS immunoprecipitation and western blot studies show that overexpression of mCherry-

TNPO1 has no effect on total YFP-FUS expression or FUS methylation. Representative of n = 3.   

B: mCherry western blotting studies show that AdOx treatment has no effect on TNPO1, EWS, 

TAF15 or FUS expression. Representative of n = 3. 

 

FIGURE S5 RELATED TO FIGURE 5 

A: Phase-separated FUS assemblies only weakly bind ThT. Fluorescence spectroscopy 

reveals weak ThT binding to methylated FUS (black line) but stronger ThT binding to 

hypomethylated FUS (red line). No fluorescence was detected from methylated FUS (yellow line), 

hypomethylated FUS (blue line) or ThT alone (green line). ThT binding to α-synuclein generated 

>5-fold greater fluorescence (purple line).  

B: Phase-separated FUS assemblies bind pFTAA, especially hypomethylated FUS. 

Plot of pFTAA fluorescent assemblies perμm2 for either ADMA FUS or hypomethylated FUS with 

and without TNPO1. There is strong pFTAA fluorescence from hypomethylated FUS assemblies 

which is dramatically reduced in the presence of equimolar amounts of TNPO1. Kruskal-Wallis 

with Dunn’s post hoc, n>40 droplets over 3 replications, ***p<0.001, NS = not significant, error 

bars = SEM. 

 

FIGURE S6 RELATED TO FIGURE 6.  

Nanoscale Infrared Spectroscopy reveals that ADMA, HYPO FUS and FUS+16R assemblies 

display different stiffness and secondary/quaternary organisation. 

A: AFM tip-sample Contact Frequency measurements of ADMA and HYPO FUS assemblies. The 

average frequency shift for 3 different ADMA-FUS droplets (green), for 6 regions within 4 different 

HYPO FUS droplets (red and orange) and 5 regions within 4 FUS +16R droplets, with the relative 

standard deviation. 

B: Average IR spectrum of each measured ADMA, HYPO and FUS +16R granules and their 

average.  

C, D: Second derivatives of IR spectra at specific wavenumbers of each individual ADMA, HYPO 

and FUS+16R granules and their average. We acquired a total of 55, 73, 88 spectra for the WT, 

HYPO and +16R droplets, respectively. ADMA and +16R droplets show higher degrees of 

homogeneity than HYPO ones, which show higher structural heterogeneity. 
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E. The relative conformational change between ADMA and HYPO -FUS assemblies is displayed 

as histograms, and shows increased random coil, β-turn and antiparallel β-sheet content (black 

bars), and decreased native β-sheet and α-helical content (white bars) in HYPO FUS assemblies.  

D. HYPO FUS assemblies show lower and shifted signals of methyl group absorption (δas(CH3), 

methyl asymmetric stretching), confirming a lower methylation state of HYPO FUS assemblies. 

Error bars = SEM. 

 

TABLE S1 RELATED TO KEY RESOURCES 

Listing by name and mutation architecture of the FUS expression constructs used in this 

study. 

 
MOVIE S1 RELATED TO FIGURE 1E 

Structured illumination microscopy movies of representative single droplet collisions for 

ADMA FUS at 0 ms, 200 ms and 680 ms. ADMA FUS droplets fuse into a single larger droplet, 

confirming their liquid phase state. Scale bar = 2 µm.  

 

MOVIE S2 RELATED TO FIGURE 1E 

Structured illumination microscopy images of individual droplet collisions for HYPO FUS 

at 0 ms, 200 ms and 680 ms. HYPO FUS droplets collide but do not fuse, indicating that they 

either have high viscosity and high surface tensions or have converted to a gel-like state. Scale 

bar = 2 µm.  

 

MOVIE S3 RELATED TO FIGURE 7E 

Live cell imaging reveals that mCherry-tagged TNPO1 exists in motile granules in distal 

axon shafts. TNPO1 can be seen in granules moving bidirectionally over a 50-second interval. 

Scale bar = 10 µm. 
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STAR METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Peter St George-Hyslop (phs22@cam.ac.uk and 

p.hyslop@utoronto.ca) 

 

EXPERIMENTAL MODEL DETAILS 

Cell lines 

SHSY-5Y cells were cultured in DMEM high glucose medium (Sigma) supplemented with 

10% FCS and 100 units/mL of penicillin and 100 µg/mL of streptomycin in a humidified incubator 

at 37 ˚C and 5% CO2.  SH-SY5Y cells stably expressing EYFP-FUS were generated by 

electroporation, followed by selection with geneticin. Cells were transiently transfected with 

plasmids of EYFP-FUS, FUS mutants, mCherry, mCherry-TAF, mCherry-EWS, and mCherry-

TNPO1 using lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer’s 

instructions. AdOx (Adenosine-2′,3′-dialdehyde, Sigma), or equal volume of DMSO vehicle, was 

added to cells for 24 hours at a final concentration of 20µM, unless otherwise stated in the figure 

legends. 

 

Xenopus embryonic retina culture 

Xenopus laevis embryos were fertilized in vitro and raised in 0.1x Modified Barth’s Saline 

at 18°C. Capped mRNAs of mCherry, mCherry-TNPO1 or FUS-GFP were synthesized using 

mMessage mMachine SP6 Transcription Kit (ThermoFisher Scientific), polyadenylated using 

Poly(A)-tailing kit (ThermoFisher Scientific), and injected into the two dorsal blastomeres at four-

cell stage as described (Leung and Holt, 2008). Eye primordia from stage 34 embryos were 

dissected and cultured in 60% L15 on laminin-coated coverslips at 20°C for 24 hours. 

 

METHOD DETAILS 

Expression and purification of FUS TNPO1, EWS and TAF15 

Constructs encoding FUS residues 1-526 and its mutants, LC-mEmerald (aa1-214) and 

CTF-mCherry (aa215-526), were cloned into pACEBac2 vector with a TEV cleavable N-terminal 

MBP tag and an EmGFP or mCherry-6xHis- C-terminal tag. Proteins were expressed and purified 

from insect Sf9 cells infected with the baculovirus. After four days of infection cells were 

harvested by spinning at 4000rpm for 30 minutes. Cell pellets were mixed with the resuspension 

buffer containing 50 mM Tris, 1 M KCl, 0.1% CHAPS, 1 mM DTT, 5% glycerol at pH 7.4, and 

proteins purified using three steps purification scheme including, Ni-NTA affinity column, Amylose 

affinity column followed by size exclusion chromatography in the buffer containing 50 mM Tris, 

mailto:phs22@cam.ac.uk
mailto:p.hyslop@utoronto.ca
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1 M KCl, 1 mM DTT, 5% glycerol at pH 7.4. For Thioflavin T binding experiment, FUS samples 

were produced without the C-terminal GFP tag.  

 

Constructs encoding full length human EWS or human TAF15 were cloned into 

pBACEBac2 vector with a TEV protease cleavable N-terminal MBP tag. Proteins were expressed 

in Sf9 cells and purified on an amylose column. Fusion proteins were subjected to TEV protease 

cleavage and the MBP tag was further removed by size exclusion chromatography.  

 

Gene encoding TNPO1 protein was cloned into pOPINS vector containing an N-terminal 

His-Sumo Tag and a ULP protease cleavage site separating the tag from TNPO1. Protein was 

expressed in E. coli BL21(DE3) in an overnight TB autoinduction media at 37 °C for 5 hours 

followed by an overnight incubation at 25 °C. Cells were harvested and subjected to lysis using 

high pressure cell disruption system. Clarified lysate was loaded on a Ni-NTA column and purified 

using standard procedure. Protein containing fractions were pooled, and dialysed in 25mM 

HEPES pH 7.5, 50mM NaCl, 1mM DTT and 5% glycerol buffer after addition of ULP protease to 

remove the His-Sumo Tag. Protein was further purified on a size-exclusion column and the 

fractions containing purified protein were pooled for all subsequent experiments.  

 

For seeding experiments, a construct encoding full length FUS protein was cloned into 

pOPINS vector with an N-terminal His6-SUMO tag. Protein was expressed in E. coli BL21(DE3) 

using TB autoinduction medium, with induction at 25 °C for 24 hours. Cells were lysed by 

sonication and proteins purified on Ni-NTA resin, followed by buffer exchange step into 50 mM 

Tris, 500 mM NaCl, pH 7.4. 

 

Protein modification of FUS 

For the preparation of hypomethylated FUS samples, the insect cell cultures were 

subjected to a repeated dose of 25µM AdOx solubilised in DMSO for four days. Protein was 

subjected to same methods of purification as unmodified FUS. 

 

For the preparation of citrullinated FUS sample, 20µg of Protein arginine 

deiminases (PAD) cocktail comprising five (PAD1-5) full length GST tagged recombinant proteins 

was mixed with prewashed 50µl of anti-GST agarose bead in PAD cocktail buffer (0.1M Tris, 

10mM CaCl2, pH 7.4).  After incubating at 4°C for 1 hour, the sample was spun, supernatant was 

discarded and the beads were washed three times with PAD buffer before being incubated with 

100µg of purified Em-GFP- FUS protein in 100µl of PAD buffer plus 200mM NaCl. The mixture 

was incubated at 37°C shaking for 2 hours. Post incubation the sample was centrifuged and the 
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supernatant containing the citrullinated protein was collected and kept at 4°C until further 

analysis.   

 

Immunoprecipitation (IP) 

AdOx treated YFP-FUS expressing SHSY-5Y cells were lysed in RIPA buffer (50 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 0.25 % sodium deoxycholate, 1 % NP-40, 1 mM EDTA) with 

Protease and Phosphatase Inhibitor cocktail (Pierce) and 1mM PMSF for 20 minutes on ice. 

Supernatants were cleared by centrifugation and equal amounts of protein taken for total lysate 

input or for IP with anti-FUS antibody or normal mouse IgG control, followed by incubation with 

Protein G-Agarose (GE Healthcare) or Dynabeads Protein G (Invitrogen). Beads were washed 

four times with RIPA buffer before the addition of 1x LDS sample buffer (Thermo) containing 2.5 

mM DTT (LSD/DTT), and samples analysed by standard immunoblotting techniques. Protein 

expression was quantified using densitometry analysis with Image J software, and the amount of 

ADMA-FUS, normalised to FUS input, was expressed relative to control treated protein levels.  

 

RIPA Insoluble FUS  

Equal numbers of AdOx or DMSO treated YFP-FUS expressing cells were lysed directly 

in 1x LDS/DTT for input control, or in RIPA buffer as performed for IP. Lysates were cleared of 

insoluble material by centrifugation (16,000 xg) at 4 °C, the RIPA soluble supernatant diluted in 

1x LDS/DTT, and the RIPA insoluble pellet washed again in RIPA buffer, re-centrifuged and 

suspended in 1x LDS/DTT. All samples were denatured by heated at 95°C, and analysed by 

immunoblotting.  

 

FUS Droplet Assay 

  FUS purified proteins (0.5μM-2μM) were subjected to a series of NaCl concentration 

(40mM-500mM) in a total volume of 20μL. Samples were deposited on 8-well glass bottom Ibidi 

slides, incubated at room temperature for 10 minutes before being imaged on a Zeiss Axiovert 

200M microscope with Improvision Openlab software using 100X magnification objective. Droplet 

formation was followed over time by collecting a series of images in both the bright field and FITC 

channels. ImageJ software was used in all image processing. For all purified proteins n ≥ 3. 

 

LC-mEmerald and CTF-mCherry co-operative mixing experiments 

Purified LC-mEmerald and CTF-mCherry were buffer exchanged to a buffer containing 

150mM NaCl. 1µM each were mixed and the concentration of the NaCl dropped to 50mM to 

induce droplet formation. 

 

Turbidity Assay  
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 2µM FUS protein was mixed with various NaCl concentrations in a 50 L total volume in a 

Greiner 96 well half-are clear microplate. Sample were incubated at room temperature for 10 

minutes prior to the absorption (turbidity) measurement at 600nm in a SpectraMax microplate 

reader. Readings were recorded in triplicate for each protein sample. All assays were performed 

in triplicate (n = 3). 

 

Thioflavin (ThT) Binding 

ThT binding was evaluated by monitoring ThT fluorescence. The ThT solution, containing 

10µM of ThT in 50mM Tris, 40mM NaCl (pH 7.4) buffer, was mixed with 2µM of control treated 

FUS, 2µM AdOx treated FUS and 5µM Synuclein and incubated for 15 minutes at room 

temperature. Fluorescence emission spectra of ThT, excited at 446 nm, were recorded between 

455 and 550 nm on a PerkinElmer LS55 luminescence spectrometer using excitation and 

emission bandwidths of 2.5 nm. All binding experiments were carried out in triplicate (n = 3). 

 

Circular dichroism (CD) 

CD spectrum of ADMA FUS, HYPO FUS, FUS +9R, FUS +16R, FUS +21R, FUS ncYA, 

FUS ncYF were measured on a JASCO-810 Spectropolarimeter at 25 °C. 5µM of each purified 

protein was placed in a 1 mm path length quartz cuvette and the far-UV spectrum recorded in the 

wavelength range of 195 – 250 nm. Scans were repeated ten times and then averaged to yield a 

final spectrum for each construct.  

 

pFTAA binding  

Cells expressing FUS were imaged on μ-slides glass bottomed chambers (ibidi GmbH, 

Germany). Pentameric formyl thiophene acetic acid (pFTAA) was used at a concentration of 

300nM diluted in PBS for cellular assays.  

 

To image FUS in solution, borosilicate glass coverslips (VWR international, 22 × 22 mm, 

product number 631-0124) were cleaned using an argon plasma cleaner (PDC-002, Harrick 

Plasma) for at least 1 h to remove any fluorescent residues. Prior to use, each batch of cover-

slides were tested for fluorescent artefacts. FUS was diluted at a concentration of 1μM in low salt 

buffer, adding pFTAA at a final concentration of 300nM. A drop of 8μl of this mixture was placed 

over a coverslip and another coverslip was placed on top.  

 

Imaging was performed using a 60x Plan Apo TIRF, NA 1.45 oil objective, (Nikon 

Corporation) mounted on an Eclipse TE2000-U microscope (Nikon Corporation) fitted with a 

Perfect Focus unit. Fluorescence was collected by the same objective was separated from the 

returning beam by a dichroic (Di01-405/488/532/635, Semrock), and passed through an emission 
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filter (FF03-525/50-25, Semrock) for both CFP and pFTAA signals. Cells expressing CFP-FUS 

were excited with a 405nm laser (LBX-405-50-CIR-PP, Oxxius), while pFTAA was excited with a 

488 nm laser (0488-06-01-0060-100, Cobolt MLD). The excitation power was 25 W/cm2 for both 

lasers measured in epifluorescence mode. Cells were imaged in epifluorescence mode, while 

protein in solution was imaged in HiLo. The images were recorded on an EMCCD camera 

(Evolve 512, Photometrics) operating in frame transfer mode (EMGain of 6.8 e−/ADU and 250 

ADU/photon). Each pixel was 241 nm in length.  The microscope was controlled with 

Micromanager software, and bursts of images were recorded at 20 frames per second. Each 

analysed image corresponds to an average of 50 images.  

 

In the experiments mixing FUS with TNPO1, the untagged FUS assemblies were mixed 

with an equimolar concentration of TNPO1, and the same NaCl and pFTAA concentrations and 

imaging paradigms. The pFTAA-positive assemblies were automatically counted using an ImageJ 

(NIH) macro with the function Find Maxima, and statistics were computed with Matlab 

(Mathworks) and GraphPad Prism.  

 

Mass spectrometry and relative quantitation of FUS methylation 

Samples of purified Sf9-cell expressed MBP-FUS-mEmerald from AdOx-treated and 

untreated cultures, totalling 100 µg of protein each, were separately incubated at 60oC for 30 

minutes with 20 mM Tris(2-carboxyethyl)phosphine. Subsequently, sample solutions were 

adjusted to 7.45 M urea and 45 mM 4-vinylpridine before being incubated in the dark for one 

hour. The denatured and reduced protein samples were concentrated by centrifugation within 

Microcon YM-30 filter cartridges (EMD Millipore, Billerica, MA, USA). The filters embedded in 

these cartridges were washed with 300µl of 10 mM triethylammonium bicarbonate (TEAB) then 

covered in 50 µL of 10 mM TEAB containing 2 µg of bovine chymotrypsin (for methylation 

analysis) or porcine trypsin (for citrullination analysis) (Promega, Fitchburg, WI, USA) and shaken 

for five minutes at 600 rpm.Proteolytic digestion was carried out at 37oC for 14 hours. 

 

Next, peptides were collected by passing the digest and an additional 50 µl volume of 0.5 

M NaCl through the cartridges. Chymotryptic digests were divided for unlabeled and iTRAQ 

analyses.  One aliquot of each digest was diluted with 20 µl of 1 M TEAB before addition of 

iTRAQ 8plex reagent in 210 µL of ethanol (Sciex, Concord, ON, Canada).  iTRAQ reaction 

mixtures were left for 2 hours then concentrated in a centrifugal evaporator at 36oC before being 

diluted in 100 µL of 0.1% formic acid in water then combined.  The samples were acidified with 

formic acid then desalted using Bond Elut OMIX C18 pipette tips (Agilent, Santa Clara, California 

USA) according to the manufacturer’s instructions.  Desalted samples were concentrated in a 

centrifugal evaporator at 36oC, diluted in 0.1% formic acid, and analysed on an Easy-nLC 1000-
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Orbitrap Fusion system (Thermo Scientific, Waltham, MA, USA). Mass spectra were collected 

over 60-minute-long HPLC runs, during which the acetonitrile content of the mobile phase was 

increased from 0 to 30% (v/v) over 40 minutes, then to 99.9% over 10 minutes and finally held at 

99.9% acetonitrile for 10 minutes. The two mobile phases used were water and acetonitrile, each 

with 0.1% formic acid (v/v).  The flow rate of the HPLC system was 300 nl/min and the Acclaim 

PepMap RSLC (Thermo Scientific) analytical column used was 25 cm long with a 75 µm internal 

diameter, packed with 2 µm C18 particles having 100 Å pores. 

 

All mass spectra were collected in positive ion mode with a nanoflow electrospray 

ionization source potential of 2200 V and an ion transfer tube temperature of 275oC.  The data 

acquisition cycle for the iTRAQ analysis was 3 seconds long, beginning with an orbitrap precursor 

ion scan from m/z 400 to 2,000 at a resolution of 30,000 followed by MS2 scans and MS3 scans of 

the most abundant precursor ions and their dissociation products respectively. The MS3 spectra 

were collected at a resolution of 30,000. Ions detected in any survey scan having charge states 

less than 2 or greater than 6 or having intensities under 10,000 counts or that had been subjected 

to MS2 four times in the preceding 20 seconds of analysis were excluded from MS2 and MS3. 

Instrument parameters used in the analysis of unlabelled samples were identical to those used in 

the iTRAQ analysis, except MS3 scans were omitted. 

 

Peptide sequencing and quantification from the LC-MS data were performed on Proteome 

Discoverer version 2.1.0.81 software (Thermo Scientific) with peptide-to-spectrum matches 

produced by Sequest HT. Cleavage specificity was set to the C-termini of phenylalanine, leucine, 

tryptophan and tyrosine residues with up to two missed cleavages allowed. Precursor and 

product ion mass tolerance were 20 ppm and 0.4 Da respectively. The FASTA protein database 

used for the search included all human canonical and isoform entries (Uniprot version Dec 20, 

2015, downloaded Mar 1, 2016), all Uniprot annotated Spodoptera frugiperda entries 

(downloaded Mar 13, 2017), bovine chymotrypsin (Uniprot accessions P00766, P00767, 

Q7M3E1), the small ubiquitin-like modifier of Saccharomyces cerevisiae (Uniprot accession 

Q12306), as well as the sequence of the MBP-FUS-mEmerald construct. False discovery rate 

estimation was performed using Percolator and quantification was undertaken with Reporter Ion 

Quantifier algorithm, both under default settings. The mass spectra were also interpreted using 

PEAKS Studio version 8 (Bioinformatics Solutions Incorporated, Waterloo, ON, Canada) with 

default settings. 

 

AFM-IR   

Analysis by conventional Atomic Force Microscopy and nanoIR2 (Anasys Instrument, 

USA) was performed on hydrophobic ZnSe windows (Platypus Technologies, USA). An aliquot of 
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10 µl of each sample was deposited on the surface for 1 minute. Successively, the droplet was 

rinsed by 1 ml of Milli-Q water and dried by a gentle stream of nitrogen. 

 

A nanoIR2 platform (Anasys, USA), which combines high resolution and low noise AFM 

with a tunable OPO laser with top illumination configuration was used. The samples morphology 

was scanned by the nanoIR microscopy system, with a rate line within 0.05-0.2 Hz and in contact 

mode. A silicon gold coated PR-EX-nIR2 (Anasys, USA) cantilever with a nominal radius of 30 

nm and an elastic constant of about 0.2 N/m was used. In order to avoid and reduce polarization 

effects, because of the gold coating of the tip, IR light was polarized parallel to the surface of 

deposition. All images were acquired with a resolution between 800x200 and 1000x500 pixels per 

line. The AFM images were treated and analysed using SPIP software. The height images were 

first order flattened, while IR and stiffness related maps where only flattened by a zero order 

algorithm (offset). Average frequency shift, related to the intrinsic stiffness of the sample(Volpatti 

et al., 2016), was calculated on 3 WT, 4 hypo-methylated (HM) and 4 FUS +16R droplets. The 

last ones could be divided into different regions according to their relative stiffness. Relative 

stiffness was calculated as the normalized ratio of the average frequency shift of each region. 

The relative values were measured at both the 1st and 2nd resonance of oscillation of the 

cantilever with consistent results. 

 

The spectra were collected by placing the AFM tip on the top of the FUS droplets (Figure 

S1) with a laser wavelength sampling of 2 cm-1 with a spectral resolution of 4 cm-1 and 256 co-

averages, within the range 1400-1800 cm-1 (Muller et al., 2014). 

 

Within a droplet, several spectra at different positions were acquired. For each droplet, an 

average spectrum was obtained as the average of the spectra at different positions within its area 

and by subtracting the baseline signal of the substrate. Successively, they were smoothed by 

Savitzky-Golay filter (second order, 9 points) and normalized. Spectra second derivatives were 

calculated and smoothed by Savitzky-Golay filter (second order, 9 points)). In total, 55 spectra 

were acquired for three methylated FUS droplets, 73 spectra for four hypo-methylated 

assemblies and 88 for four FUS +16R droplets. Relative secondary/quaternary organization was 

evaluating integrating the area of the different secondary structural contribution in the amide band 

I. Spectra were analysed using the microscope’s built-in Analysis Studio (Anasys) and 

OriginPRO. All measurements were performed at room temperature and with laser power 

between 1-4% of the maximal one and under controlled Nitrogen atmosphere with residual real 

humidity below 5%. 

 

Quantification of cells with FUS granule clusters  
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For live cells, images were taken immediately after 24 h mock and AdOx treatment. For 

fixed cell quantification, cells were initially fixed with 4% PFA in medium at 37˚C for 15 min and 

then with 4% PFA in PBS at room temperature for 15 min.  Hoechst or DAPI was used for nuclear 

counter-staining. Images were taken using a Zeiss 710 confocal microscope.  For transient 

transfected cells, AdOx was added 3 hours before transfection. All the experiments were 

replicated at least three times. To quantify the percentage of cells with FUS granule clusters, 

more than 250 cells were counted for each sample. 

 

Immunocytochemistry, puromycin labelling and imaging in retinal cultures  

For immunocytochemistry detecting endogenous FUS proteins, heat-induced antigen 

retrieval in sodium citrate buffer (10mM sodium citrate, 0.05% Tween 20, pH 6.0) was performed 

after 4% paraformaldehyde/15% sucrose fixation. Cultures were subsequently permeabilized with 

0.1% Triton (Sigma) for 5 minutes, blocked in 5% heat-inactivated goat serum and incubated at 

4°C overnight with anti-FUS antibody (Abcam, ab70381). For puromycin labelling, axons pre-

treated with DMSO or 20µM AdOx for 30 minutes were severed from their cell bodies and 

subsequently incubated with 10µg/ml puromycin (Sigma) for 10 minutes. After fixation, 

permeablisation and blocking steps, puromycin-incorporated nascent peptides were labelled with 

Alexa Fluor 647-conjugated anti-puromycin antibody (1:250, Millipore) overnight. 161 Randomly 

selected noncollapsed growth cones in each condition from 3 independent biological replicates 

were imaged using a Nikon Optiphot inverted microscope equipped with a 60x oil-immersion 

objective and a CCD camera (Hamamatsu).  

 

For quantitation of fluorescence intensity, the growth cone outline was traced on the 

phase contrast image using Volocity (PerkinElmer), then superimposed on the fluorescent image. 

The software calculated the fluorescent intensity within the growth cone, giving a measurement of 

pixel intensity per unit area. The growth cone outline was then placed in an adjacent area clear of 

cellular material to record the background fluorescent intensity. This reading was subtracted from 

the growth cone reading, yielding the background-corrected intensity. All quantitative analysis 

was performed ‘blind’ to experimental condition and normalized to the control. 

 

FUS-GFP fluorescence in live distal axon segments was imaged under a Perkin Elmer 

Spinning Disk UltraVIEW ERS, Olympus IX81 inverted microscope with a 60x 1.4NA silicone oil 

objective, equipped with a Flash4.0 camera (Hamamatsu). Images were acquired at maximum 

speed for 1 minute with 500ms exposure time.   

 

QUANTIFICATION AND STATISTICAL ANALYSES 
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In all figures the mean and SEM are described along with the number of biological 

replications, and the statistical tests applied.  

 

DATA AND SOFTWARE AVAILABILITY 

 Raw image data of full Western blots are deposited in Mendeley Data at: 

http://dx.doi.org/10.17632/4mjh8y579j.1. 
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SUPPLEMENTAL INFORMATION 

FIGURE S1 RELATED TO FIGURE 1: AdOx treatment significantly reduces asymmetric 

dimethylation of FUS purified from Sf9 cells.  

 

FIGURE S2 RELATED TO FIGURE 2: Hypomethylated FUS and FUS with additional arginines 

have CD spectra are indistinguishable from ADMA, and so are likely to be properly folded. 

Protein arginine deiminase treatment converts arginines to citrulline.  

 

FIGURE S3 RELATED TO FIGURE 3: Substitution of alanine for six arginines that are 

differentially methylated reduces FUS aggregation propensity after AdOx treatment, whereas 

lysine substitution still supports FUS aggregation propensity. 

 

FIGURE S4 RELATED TO FIGURE 4: TNPO1 expression does not affect FUS expression and 

does not change asymmetric methylation caused by AdOx treatment 

 

FIGURE S5 RELATED TO FIGURE 5: A: Phase-separated FUS assemblies only weakly bind 

ThT; B: Phase-separated FUS assemblies bind pFTAA, especially hypomethylated FUS. 

 

FIGURE S6 RELATED TO FIGURE 6: Nanoscale Infrared Spectroscopy reveals that ADMA, 

HYPO FUS and FUS+16R assemblies display different stiffness and secondary/quaternary 

organisation. 

 

TABLE S1 RELATED TO KEY RESOURCES: Listing by name and mutation architecture of the 

FUS expression constructs used in this study. 

 
MOVIE S1 RELATED TO FIGURE 1E: Structured illumination microscopy movies of 

representative single droplet collisions for ADMA FUS.  

 

MOVIE S2 RELATED TO FIGURE 1E: Structured illumination microscopy images of individual 

droplet collisions for HYPO FUS.  

 

MOVIE S3 RELATED TO FIGURE 7E: Live cell imaging reveals that mCherry-tagged TNPO1 

exists in motile granules in distal axon shafts. 

 



 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-FUS Santa Cruz 
Biotechnology, 
Heidelberg, 
Germany 

sc47711 
RRID:AB_2105208 

Anti-dimethyl-arginine asymmetric Merck Millipore, 
Watford, UK 

ASYM24 
RRID:AB_310596 

Anti-GAPDH Cell Signalling 
Technology, 
Danvers, USA 

5174S 
RRID:AB_1062202
5 

Anti-Puromycin-AlexaFluor647  Merck Millipore, 
Watford, UK 

MABE343-AF647 

Rabbit polyclonal anti-mCherry  Abcam Cat# ab167453; 

RRID:AB_2571870 

Anti-Modified Citrulline Antibody, clone C4 
 

EMD Millipore MABS487 

Anti-FUS (Xenopus) Abcam ab70381 

 

Bacterial and Virus Strains  

 

E. coli BL21(DE3) New England 
Biolabs 

C25271 

Biological Samples   

Chemicals, Peptides, and Recombinant Proteins 

Thioflavin T Sigma 2390-54-7 

pFTAA This manuscript  

Puromycin Sigma P8833 

AdOx (Adenosine-2′,3′-dialdehyde)  Sigma  

Bovine chymotrypsin Promega, Fitchburg, 
WI, USA 

 

AcTEV™ Protease 
 

ThermoFisher 
Scientific  

12575015 
 

ULP protease Purified in the lab  

PAD Cocktail, Active  SignalChem P312-37C 

   

   

Critical Commercial Assays 

mMessage mMachine SP6 Transcription Kit  ThermoFisher 
Scientific 

AM1340 

polyadenylated using Poly(A)-tailing kit  ThermoFisher 
Scientific 

AM1350 

Deposited Data 

Experimental Models: Cell Lines 

Human: SH-SY5Y neuroblastoma cells ATCC CRL-2266 

Sf9 cells ThermoFisher 
Scientific 

 

DH10EMBacY Geneva Biotech  

Experimental Models: Organisms/Strains 

Key Resource Table



Xenopus laevis Nasco LM00715MX 

Oligonucleotides 

Recombinant DNA 

pACEBac2 vector Geneva Biotech  

pOPINS vector This lab N/A 

mCherry-TAF Table S1 N/A 

mCherry-EWS Table S1 N/A 

mCherry-Transportin-1 Table S1 N/A 

FUS Table S1 N/A 

FUS 6RK Table S1 N/A 

FUS 6RA Table S1 N/A 

FUS +16R Table S1 N/A 

FUS +16R ncYA Table S1 N/A 

FUS +21R Table S1 N/A 

FUS ncYF Table S1 N/A 

FUS ncYA Table S1 N/A 

LC Table S1 N/A 

CTD Table S1 N/A 

Software and Algorithms 

Proteome Discoverer version 2.1.0.81 software Thermo Scientific  

PEAKS Studio version 8 Bioinformatics 
Solutions 
Incorporated, 
Waterloo, ON, 
Canada 

 

ImageJ 1.50i (Java 1.8.0_131 (32-bit)) Wayne Rasband, 

NIH, USA 

http://imagej.nih.go

v/ij 

Zen 2.3 SP1 Black (v14.0.0.201) Carl Zeiss 

Microscopy Gmbh 

RRID:SCR_01367

2 

Matlab Mathworks  

Volocity PerkinElmer - 

GraphPad Prism GraphPad Software, 
Inc 
 

 

Other 

μ-slides glass bottomed chambers Ibidi GmbH, 
Germany 

 

ZnSe windows Platypus 
Technologies, USA 
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