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Abstract: We propose an adaptive sequential loading algorithm that approaches the ILP
throughput. Of 2,000 network realizations tested, shortest path routing achieves >90 % of the
maximum throughput in 341 cases c.f. 1,904 with the proposed algorithm.
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1. Introduction

Routing and wavelength assignment is a well known optimization problem in optical communications [1]. An NP-
hard problem, it is further complicated by the increased flexibility of transparent and elastic optical networks [2]. This
complexity severely limits the size, and number, of networks that can be optimized with reasonable computing power,
even with an efficient mixed integer linear program, MILP. Sequential loading offers a fast method to model network
activity that, despite providing no guarantee of reaching optimal throughput, could replace traditional optimization
heuristics for large networks where an approximate solution is better than none at all.

2. Methodology

Optimal network capacity was found using the MILP described in [3]. This models a transparent, fixed-grid network
and assigns modulation formats according to signal-to-noise ratio, SNR, estimates for the worst-case, central WDM
channel. We consider polarization multiplexed m-ary quadrature amplitude modulation (PM-m-QAM) at 25 GBd on
a 32 GBd signal. This overhead was used for forward error correction capable of recovering signals with bit-error
rates below 1.5 %. The highest-order modulation format considered was PM-1024-QAM which transmitted 20 bits
per symbol but required an SNR of above 30.3 dB. PM-BPSK, at 2 bits per symbol, was the simplest format used and
needed SNR of just 3.7 dB; routes with an SNR below this limit were deemed infeasible. Nonlinear noise from both
self- and cross-phase modulation was modeled while four wave mixing was neglected. The fiber, α = 0.22 dB/km,
was assumed to be the only lossy component in the network and these losses were ideally compensated by Erbium
doped fiber amplifiers with a noise factor 5, spaced 80 km apart. Uniform traffic was required between all node pairs
and each demand had up to 15 route options, calculated using Yen's algorithm [4]. The resulting MILP was solved
using IBM's CPLEX optimization suite.

The layouts of the NSF [5] and DTAG [6] networks, with 14 and 9 nodes respectively, were the ba-
sis of continental- and national-scale test networks. The nodes of each network are shown in Fig. 1.

Fig. 1: Node positions of (a) NSFnet and (b) DTAG Fig. 2: Distributions of network capacity for NSF-
TestSet (green) and DTAG-TestSet (purple).

We created the test networks by selecting the N(N− 1)/2 possible links on each layout using a genetic algorithm,
GA. To ensure these networks were geographically sensible, the GA sort to minimise the product of total fiber length
and longest shortest path; node degree was restricted to between 2 and 5, inclusive. 1,000 networks for each layout
were selected and were labeled NSF-TestSet and DTAG-TestSet. The mean node degree was 3.1, with standard devi-
ation 0.2, and 2.6 (s.d. 0.2), respectively; the longest shortest path was 6,300 km (s.d. 400) and 1,100 km (s.d. 100). The
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capacities were found using the MILP described above and the results are shown in Fig. 2. Uniform traffic constrains
throughput on NSF-TestSet and DTAG-TestSet to multiples of 9.1 Tb/s and 3.6 Tb/s, respectively. Higher capacities
were achieved on DTAG-TestSet due to its smaller size allowing higher-order modulation formats.

3. The algorithms

Simulation of uniform traffic for sequential loading typically uses a truly random traffic sequence where each demand
is chosen with equal probability irrespective of previous demands. This rarely results in a uniform distribution for the
final traffic configuration. Consequently, we suggest a pseudo-random approach which sees the N(N−1)/2 possible
demands as cards in a pack, shuffles, deals, and repeats until a demand cannot be routed: this guarantees the traffic
matrix is uniform each time the entire pack has been dealt and allows a direct comparison to the MILP solution.

We introduce two basic routing algorithms that take the K shortest paths, as described above, and search them
for viable wavelengths in order of their cost. These costs are path length for K-Shortest Path routing, K-SP, and the
number of links used by each path for K-Fewest Hops, K-FH. Both algorithms search wavelengths ordered from most
to least congested and select the first viable route and wavelength pairing they encounter, terminating when no such
pairing exists for a given demand. By repeatedly running these algorithms, with pseudo-random demand sequences,
we can record the maximum uniform throughput for a given network however, as these repetitions are not connected,
their number is an arbitrary choice. Each demand is PM-BPSK and if the route SNR allows for a higher-order format,
subsequent demands are routed along the same route and wavelength until the capacity of the lightpath has been
reached, at which point a new route and wavelength pair is searched for in the manner described.

A congestion adaptive algorithm, CA shown in Alg. 1, repeatedly calls 15-SP but, by changing the link
weights based on prior congestion, the order in which these K routes are searched changes: a longer, but
less congested, route may supersede a shorter, more congested route. We use this template to define CA-SP
and CA-FH, which differ only in their inputs: the former defines G using link lengths, whilst the latter uses
equal weights for all links, the first iteration for these algorithms are therefore 15-SP and 15-FH, respectively.

Algorithm 1: CA, congestion adaptive sequential loading based on shortest path routing

Inputs: Link Weights Matrix, G; Route Information, R; MaxReps
Outputs: Maximum Throughput, Tmax; Optimal Weights Matrix, GmaxT
1. Gopt = G; Gnew = G; Reps = 0
2. while Reps < MaxReps do
3. [T , LinkUtilization] = 15-SP( Gnew, R ); Gold := Gnew
4. if LinkUtilization < 70 then LinkUtilization := 0
5. Gopt := Gopt + (LinkUtilization/80) * G ;
6. Gnew := normalize Gopt; update R from Gnew; δ := ||Gold−Gnew||2
7. if δ < δth do
8. Gnew := GmaxT ; R := RmaxT
9. MaxReps := Reps + 250
10. Reps++

Changes in the route search order are dictated by lines 4 and 5 of Alg. 1. We first define two weight matrices Gopt
and Gnew: the former grows in size with each iteration and is then normalized to make the latter. After initializing
both with the original links weights G, we iteratively increase Gopt along links using more than 70 WDM channels,
of the possible 80, by the fractional link usage multiplied by its original weight. This increases the cost of traversing
links that were fully utilized slightly more than it does those that were merely mostly utilized. The scale of the in-
crease is roughly constant but, if a certain link is consistently congested, the corresponding entry in Gopt grows with
each iteration: this mimics simulated annealing, as the effective step size gets smaller with each iteration. After each
iteration, we normalize Gopt to create Gnew, the elements of which must sum to the number of links of the network
and it is this that determines the search order for the next iteration. Normalization decreases the cost of traversing
under-utilized links relative to the previous iteration in addition to providing a solution of constant magnitude which
simplifies comparisons. We track the change in Gnew using δ and reset the algorithm to the weights that gave the max-
imum throughput thus far once this change is smaller than a threshold value: it was found that 10−3 was a reasonable
value for δth. After being reset, the algorithm was allowed 250 more iterations to maximally exploit this solution.
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4. Results and Discussion

K-SP and K-FH, using K values of 1 and 15, were repeated on each network 1,000 times; CA-SP and CA-
FH were given up to 1,000 iterations per network. The maximum throughput achieved with each algorithm was
recorded. Figs. 3a and 3b show the number of networks reaching optimal throughput for NSF-TestSet and DTAG-
TestSet, respectively: we see very little difference between CA-SP and CA-FH but both see better performance
on the larger NSF-TestSet networks (844 and 841) than on DTAG-TestSet (665 and 647). Figs. 3c and 3d show
the number of networks that achieved better than 90 % of maximum throughput for each algorithm on NSF-
TestSet and DTAG-TestSet, respectively. For DTAG-TestSet, this metric shows CA providing a reasonable esti-
mate of network capacity in 98.1 % and 98.3 % of cases with CA-SP and CA-FH, respectively. For NSF-TestSet
we see slightly worse performance but these metrics remain above 90 % for both CA strategies. Interestingly, al-
though 1-SP and 1-FH perform identically, 15-FH outperforms its shortest path counterpart on both test sets.

Fig. 3: (a) and (b) show the number of solutions that are optimal for various algorithms on NSF-TestSet and DTAG-TestSet, respectively. (c)
and (d) show the number of networks achieve at least 90 % of optimal throughput NSF-TestSet and DTAG-TestSet, respectively.

On these small networks, the advantage of this method is minimal because of the high efficiency of traditional opti-
mization heuristics: 481 of the 1,000 DTAG-TestSet solved faster using the MILP than with CA-SP, for instance. And
on NSF-TestSet, the MILP was less than an order of magnitude slower in over 70 % of cases. However the variance
in solve time was very much higher: the slowest network took over 7 hours compared to just 72 seconds to run both
CA-SP and CA-FH for that same network. The sub-optimal solution, in this case 93 % of capacity, now seems a rea-
sonable trade-off, especially if the number of nodes was increased, say greater than 20, when each MILP would take,
on average, several hours to solve. The increased predictability of solve times allows many networks to be simulated
without worrying about incredibly slow outliers and this enables, for instance, a heuristic to find the optimal network
topology on an arbitrary set of nodes. While the current algorithm, as presented, assumes uniform traffic preliminary
investigations have found that it can be extended to non-uniform traffic when required and likewise it can be extended
towards flex-grid networking.

5. Conclusion

We have presented a new sequential loading algorithm for fast routing and wavelength assignment that learns from
previous iterations to delay the onset of congestion and hence increase network throughput. This method was able to
achieve at least 90 % of maximum throughput in over 95 % of cases, thereby providing a fast estimate of network
throughput.
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