
New models to study vascular mural cell embryonic origin: implications in vascular diseases  

Sanjay Sinha1 and Massimo Mattia Santoro2 

1 Anne McLaren Laboratory, Wellcome Trust and Medical Research Council Cambridge Stem Cell 

Institute, Forvie Site, University of Cambridge, Robinson Way, Cambridge CB2 0SZ, UK. 

ss661@cam.ac.uk 

2 Laboratory of Angiogenesis and Redox Metabolism, Department of Biology, University of Padua, 

Via U. Bassi 58/b, 35131, Padova, Italy. massimo.santoro@unipd.it 

 

Abstract 

A key question in vascular biology is how the diversity of origin of vascular mural cells, namely 

smooth muscle cells and pericytes influences vessel properties, in particular the regional propensity 

to vascular diseases. This review therefore first describes the role and regulation of mural cells 

during vascular formation, with a focus on embryonic origin. We then consider the evidence that 

connects heterogeneities in smooth muscle cell and pericyte origins with disease. Since this idea has 
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Abstract 

A key question in vascular biology is how the diversity of origin of vascular mural cells, namely 

smooth muscle cells and pericytes influences vessel properties, in particular the regional propensity 

to vascular diseases. This review therefore first describes the role and regulation of mural cells 

during vascular formation, with a focus on embryonic origin. We then consider the evidence that 

connects heterogeneities in smooth muscle cell and pericyte origins with disease. Since this idea has 

major implications for understanding and modelling human disease, then there is a pressing need 

for new model systems to investigate mural cell development and the consequences of 

heterogeneity. Recent advances arising from in vitro strategies for deriving mural cells from human 

pluripotent stem cells as well as from the zebrafish model will be discussed and the medical 

relevance of these discoveries will be highlighted. 

 

1. Introduction 

Cardiovascular diseases such as myocardial infarction and stroke are the main causes of death in 

Europe1. The vast majority of these cases are secondary to atherosclerotic disease of the arterial 

wall.  Other diseases of the vessel wall such as aortic aneurysms are less common but can have 

devastating consequences, often in young people with no warning. The high prevalence and severity 

of arterial diseases has resulted in an urgent need to better understand the underlying biology of the 

vessel wall in both health and disease.  

An increasing body of work suggests that developmental factors continue to influence the response 

of adult blood vessels under physiological and pathological conditions. The vasculature is 

heterogeneous in terms of structural composition and function2. Moreover there are striking 

regional heterogeneities in disease development that are thought to be governed by hemodynamic 

factors as well as vessel structure3. Although structure and anatomy are developmentally 

determined, the prevailing hemodynamic view does not take into account the multiple different 

embryonic origins of vascular mural cells, namely smooth muscle cells (SMC) and pericytes, and the 

consequences of this heterogeneity on disease4,5.  
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This review will therefore initially discuss the development and regulation of SMCs and pericytes 

during blood vessel formation, with an emphasis on their embryonic origins. We will accordingly 

focus on lineage specific variations in the signalling pathways that regulate mural cell development 

and impact on their distinct functional properties. These functional differences may lead to distinct 

differences in pathological responses and we will next emphasise the evidence connecting 

heterogeneities in SMC origins with disease and will examine both clinical and experimental studies. 

Since the idea of a developmental basis for the vascular disease response has important 

connotations for our understanding of human disease and for vascular regenerative medicine, then 

new experimental model systems that would allow us to examine vascular cell development and the 

consequences of mural cell heterogeneity, are urgently required. In recent years, we and others 

have progressed human pluripotent stem cells and the zebrafish model for investigating mural cells 

of distinct embryonic origins and their role in vascular development and disease. These model 

systems will be discussed in detail and we will highlight the translational potential of these exciting 

new tools. 

2. Vascular mural cell embryonic development 

Vascular mural cells are an essential component of the vasculature and are required for the normal 

development and homeostasis of mature blood vessels. The initial events in vascular development 

are differentiation of a primary endothelial vascular plexus from angioblasts which then undergoes 

angiogenic remodelling6,7. Vascular mural cells are recruited by developing blood vessels in a process 

called vascular myogenesis8. During this process, mesenchymal precursors are recruited by 

endothelial cells and ensheathe established blood vessels9–12.  

Vascular mural cells have been traditionally classified into vascular SMC and pericytes depending on 

their density, morphology, location, and expression of specific markers13–16. Vascular SMCs are found 

mainly in medium and large blood vessels where a continuous single or multilamellar SMC layer 

surrounds the endothelial cell lining and provides contractility to modulate blood flow and stability. 

SMCs are separated from the endothelium by a basement membrane. SMCs secrete most of the 

extracellular matrix in the media, consisting mainly of elastin and fibrillar collagens I and III, which 

together with fibroblast-derived adventitial collagens largely determine the mechanical properties of 

the vessel wall2. Other common matrix components include laminin, collagen IV, nidogen, perlecan, 

and fibulins17–19. Secretion of extracellular matrix from SMCs is essential for normal function and 

development while matrix abnormalities are commonly seen in vascular disease20,21. Modulation of 

the mural cell phenotype by extracellular matrix components is dependent on their binding to 

specific integrin and non-integrin receptors22,23. 

Pericytes are mural cells found in microvessels such as terminal arterioles and capillaries, with high 

densities particularly in the brain, eye and kidney24–27. Pericytes are isolated cells and unlike SMCs do 

not form a continuous layer. Their key feature is that pericytes are embedded within the basement 

membrane and make direct contact with the underlying endothelial cells. Functionally, their 

predominant roles likely include regulating capillary permeability, endothelial stabilisation and 

microvascular contractility28.  

It is important to appreciate that SMC and pericytes are found as a continuum of mural cells, with a 

gradual change in morphology and features as the vasculature branches into smaller vessels. Indeed 

there are no specific molecular markers that unequivocally distinguish pericytes from SMCs and 



validated markers for pericytes such as RGS5, CD146, NG2 (CSPG4), PDGFR-β and desmin may all be 

expressed in SMCs under a variety of conditions29. For these and other reasons, pericytes and SMCs 

are often thought of as related cell types with developmental links30. For the purposes of this review, 

we will use the general term ‘mural cell’ when referring to both SMCs and pericytes or when the cell 

type has not been clearly defined.  

Vascular SMCs represent a mosaic tissue produced from multiple unique and non-overlapping 

developmental origins31 (figure 1). Pioneering studies conducted in avian embryos showed the first 

indication that vascular smooth muscle origins might be diverse. SMCs in the great vessels were 

traced back to a distant source of progenitors at the dorsal surface of the cranial neural tube32,33. We 

now know that SMCs of the aorta and many of its proximal branches have multiple different 

developmental origins. The ascending aorta and arch, the pulmonary trunk, the brachiocephalic, 

subclavian and carotids are all derived from the neural crest. The secondary heart field contributes 

to a domain overlapping neural crest derived SMCs at the base of the aortic root34 while the 

descending aorta is derived from somites35.  

Although most of the work on ontology has been carried out on SMC, in cases where studies have 

been carried out on the embryonic origin of pericytes, they have been found to have a concordant 

origin with the SMC in the larger vessels supplying that territory. The majority of the SMC and 

pericytes in the head region, including those that vascularise the central nervous system, are neural 

crest derived, as demonstrated in chick-quail chimeras24,36 and indicated by marker expression in 

mice37. Recent studies on thymus development demonstrated that also the mural cells in the thymus 

are derived from neural crest. The origins of vascular SMC in the gut38 and liver39 have been mapped 

to the mesothelium, the single-layer squamous epithelium that lines the coelomic cavities and its 

organs and originates from the lateral plate mesoderm. Coronary vessel mural cells in the heart 

appear to have a similar development. Here, the epicardial mesothelium is thought to give rise to 

cardiac mesenchymal cells, including coronary SMCs and pericytes. The case of pulmonary mural 

cells is interesting, as despite the proximal large pulmonary vessels originating from the neural crest, 

the more distal pulmonary artery SMCs and pericytes, consistent with vessels in other coelomic 

organs appear to be derived from pulmonary mesothelium40.  Further studies are still required to 

determine to what extent there is concordance between SMC and pericyte ontology and whether 

there are any vascular beds, in normal development or in response to disease processes that result 

in discordant origins for these mural cells.  

3. Signaling pathways implicated in the developmental of mural cells 

Mural cells are significant contributors to vascular development and vessel remodeling as well as 

disease. Although a unique list of markers defining mural cells is a desiderata for many biologists and 

clinicians such effort remains a puzzling task (reviewed in detail by Shen and McCloskey30). Some of 

these markers vary between pericytes and vascular SMCs and change due to the heterogeneity and 

plasticity of these cells during time and space. The anatomical relationship between mural and 

endothelial cells suggests close interactions involving paracrine or juxtacrine signaling but also less 

studied factors such as mechanical forces, cell-matrix contacts and lipid signaling. Here we 

summarize the major endothelial-mural cross-talk signaling described so far. Importantly, the role of 

many of these pathways varies depending on the embryonic lineage of the mural cells. 

3.1 PDGF-BB/PDGFR-β 



PDGF receptor (PDGFR)-β expression is considered as one of the first indicators of mural cell 

lineage41–43. PDGF-BB is released from angiogenic endothelial cells and binds to PDGFR-β expressed 

on the surface of emerging mural cells. As a result, PDGFR-β-positive mural cells (or their 

mesenchymal progenitors) are recruited with the angiogenic sprouts and microvessel wall41,44. 

PDGFR-β is expressed broadly by pericytes and developing vascular SMCs, and PDGF-BB probably 

plays a role also in the proliferation and differentiation of aortic and venous vSMCs. Knockout of the 

pdgfb or pdgfrb genes in mice results in virtually identical phenotypes and perinatal lethality 

resulting from vascular dysfunction caused by mural cell deficiency45,46. The degree of this deficiency 

varies extensively between different organs, suggesting that other signaling pathways may play a 

similar role to that of PDGF-BB/PDGFR-β in mural cell recruitment47–49. Regional variations in other 

signaling pathways have been shown to depend on embryonic origin (see TGF-β and Notch sections) 

suggesting a possible developmental explanation for the regional variation in PDGF-BB signaling. 

3.2 TGF-β signaling 

Cytokines of the transforming growth factor-β (TGF-β) family, including TGF-βs, bone morphogenic 

proteins (BMPs), activins, and nodal, play crucial roles in embryonic development and adult tissue 

homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-

renewal and lineage-specific differentiation 50. In the cardiovascular system, TGF-β signaling has 

been shown to play crucial roles in vasculogenesis, angiogenesis, and lymphangiogenesis including 

regulation of mural cell differentiation, proliferation and migration 51. Recently, pericytes have been 

suggested to differentiate from tissue myeloid progenitors in the skin vasculature through TGF-β 

signaling 52. TGF-β pathways also interact with other key vascular signaling pathways. For example, in 

cerebral endothelial cells the TGF-β/SMAD4 pathway has been shown to cooperate with Notch/RBP-

Jk pathway to regulate N-cadherin expression and stabilize contacts between endothelial cells and 

pericytes 53.  

Importantly, studies have shown a specific requirement for Smad254 and Mkl255,56 in development by 

the neural crest-derived aortic arch SMCs. Meanwhile in adult SMCs, TGF-β elicits key differences in 

the response of SMC of different embryonic origins with proliferation of neural crest-derived aortic 

arch SMCs and suppression of proliferation in mesoderm derived SMCs57. Additionally, angiotensin II 

signaling which enhances TGF-β signaling also has a lineage dependent effect on SMC. Owens et al 

demonstrated a divergent effect of angiotensin II infusion with SMC hyperplasia in the ascending 

aorta and hypertrophy in the descending aorta58. These findings highlight that the complex and 

pleiotropic actions of various growth factor signaling cascades on SMC development and function 

are further modified by their embryonic origins. 

3.3 Notch signaling 

In the development and differentiation of vascular SMCs, the roles of the Notch pathway can be 

categorized into two different types: constructing a mature blood vessel wall and artery-vein 

differentiation 59. Once recruited to endothelial tubes, Notch ligands in endothelial cells can induce 

Notch activation in mural cells, which promotes integrin adhesion to endothelial basement 

membrane and initiates maturation and differentiation60. Besides, the Notch activation in vascular 

SMCs can further lead to the increased expression of Notch ligand, Jagged1 which allows for lateral 

induction of Notch signaling by homotypic vascular SMC-SMC interactions through multiple layers of 

smooth muscle to promote SMC differentiation61. Furthermore, Notch can also be closely tied to the 



many possible phenotypic endpoints of vascular SMCs 59. For example, Notch signaling in vascular 

SMCs can promote contractile differentiation and also there are contrasting data supporting that 

Notch can promote or inhibit vascular SMC proliferation in vitro and in vivo62. A key factor that may 

explain opposing responses could be the embryonic lineage of the SMC. Recent studies have shown 

that SMC of different embryonic origins respond differently to notch3 depending on developmental 

stage63. In the zebrafish model Notch3 enhances brain vascular integrity by regulating pericyte 

numbers 64. 

Several reports, support a role of Notch signaling for vascular SMC and/or pericyte survival, 

proliferation, differentiation and even migration65–67. Further evidence proposes the role of Notch-

PDGFBB interactions in pericyte differentiation with Dll4 and PDGF-BB that can convert skeletal 

myoblasts to pericytes 68. These data indicate that Notch is required for mural cell recruitment to the 

blood vessel wall in response to PDGF-BB signal. 

Overall, both endothelial cells and mural cells express several Notch receptors and ligands indicating 

that this signaling pathway is crucial in both angiogenesis and vascular maturation. Hemodynamic 

and environmental conditions have been shown to modulate this pathway as well, altering the 

response of endothelial cell and SMC physiology. Mutant analyses of Notch receptors and its ligands 

in human, mice and zebrafish also support different functions of this pathway among species. 

Overall, our understanding on how Notch pathway regulates the association of mural cells and 

endothelial cells is still very limited and far from being completely decoded. 

 

4. Developmental heterogeneity and disease  

The presence of different embryonic origins for distinct mural cell populations or vascular beds 

raises a crucially important question: does embryonic origin impact regional susceptibility or 

development of disease? In this section we review clinical studies that suggest that embryonic origin 

may have a role in regulating disease development and then examine experimental data from 

animal models that supports this hypothesis.  

Studies by deBakey in cardiac patients and the Pathobiological Determinants of Atherosclerosis in 

Youth (PDAY) study suggest a regional heterogeneity in disease development. deBakey and Glaeser 
69 reviewed 5,568 patients who initially had documented occlusive atherosclerotic disease in a single 

region and required surgery and had repeat angiography to measure progression. These patients 

were divided into 4 arterial disease categories: coronary, aortic branches, abdominal viscera and 

terminal abdominal aorta and branches. After 25 years follow up, different arterial beds showed 

different responses to common risk factors. The patients in this study were selected as already 

having established occlusive disease. The PDAY study on the other hand examined unselected young 

people who had died of noncardiac reasons and compared atherosclerotic disease in different 

regions70,71. The investigators found that systemic risk factors had differential effects on disease 

development in different vascular regions. For example males had more fatty streaks in the right 

coronary artery than women but women showed increased early disease in the aorta. Smoking 

predisposed to increased fatty streaks only in the abdominal aorta while glycated haemoglobin 

levels predicted early disease in the right coronary artery only. Together the findings from the 



deBakey and PDAY studies suggest that different vascular regions have different susceptibilities to 

common systemic risk factors.  

It should be noted that these findings do not inform us as to the cause of the differing 

susceptibilities to disease. One possible mechanism, as posited in this review article, is the distinct 

embryonic origins of the SMC leading to differences in responses to disease mediators between 

different vascular regions. Other causes could include differences in vessel wall structure. For 

example, Sims found an increased number of discontinuities in the internal elastic laminae of 

coronary arteries versus internal mammary arteries. The greater elastic lamina discontinuities were 

associated with increased cellular content in the coronary intima, which may predispose  the 

coronary artery to develop atherosclerosis compared to the internal mammary72. It is of course 

possible that these differences in elastic tissue structure are also developmentally mediated. 

Another vascular disease that has characteristic distribution is aortic aneurysm and dissection. These 

are categorised typically as abdominal or thoracic aortic aneurysms (Figure 2). Abdominal aneurysms 

are associated with many of the same risk factors as for atherosclerosis, while thoracic aneurysms 

have an association with genetic syndromes (e.g. Marfan syndrome) and frequently present in the 

aortic root and ascending aorta. In particular, there is increasing evidence for a possible role of 

different SMC lineages in the development of thoracic aortic aneurysms. 

Since the majority of elastin is deposited in fetal and early neonatal life, it seems differences in 

vessel wall mechanical properties are developmentally programmed and again raise the possibility of 

embryonic lineage having a role. The aortic media is composed of extracellular matrix and SMC. 

Elastic fibres and collagen make up at least 50% of dry weight73. Elastic fibres give rise to aortic 

elasticity while collagens provide overall stiffness and strength. These mechanical parameters vary 

along the course of the vascular tree (examples of local variability). Of note the aorta provides 65% 

of all arterial compliance and the majority of this is in the ascending aorta and arch74 while the 

ascending aorta has the highest elastin content75,76. Moreover, while these variable local mechanical 

properties may be advantageous for pump function and blood distribution, they may predispose to 

aortic disease especially at transition zones between different SMC lineages.   

A key requirement for development of aortic aneurysm and dissection is medial weakness and 

predisposing factors include hypertension, genetic connective tissue disorders, pregnancy, 

atherosclerosis and arterial inflammation. If embryonic origins predispose different regions of the 

aortic wall to produce differing amounts of structural proteins or distinct cellular behaviour, then the 

outcome may be regional differences in strength and disease development. In this context, the entry 

intimal tear in dissecting thoracic aneurysms is usually found in the ascending aorta (29%) or at the 

sino-tubular junction (29%) in type A dissections77, an area where SMC of different embryonic origins 

are juxtaposed. 

The interaction between SMC populations of different embryonic origins has been proposed to be 

detrimental in some genetic aortopathies. Increased TGF-β signalling has been invoked as a driver of 

aortic aneurysms in Marfan syndrome78. It is then paradoxical that in Loeys-Dietz syndrome, a 

related aortopathy syndrome, that the mutations in TGFbRI or TGFBRII are loss of function 

mutations. Although in vitro studies show reduced signalling through these mutant receptors, there 

is evidence of increased Smad2 phosphorylation in late stage aneurysms and the observations have 

been reconciled by proposing compensatory increases in TGF-β release/activation by one SMC 



lineage that leads to excess signalling in adjacent SMC from a different lineage79,80. While the precise 

nature of TGF-β in aneurysm development is now subject to considerable debate81–84, the concept of 

adjacent populations of SMC from different lineages leading to the development of a maladaptive 

extracellular milieu for one or both of the populations which predisposes to disease is an interesting 

idea that needs further experimental validation. Certainly distinct regions of SMC are juxtaposed in 

the aortic root and at the aortic isthmus, both regions that are highly susceptible to an intimal tear77.  

In addition to clinical observations, a number of animal studies have suggested that regional 

embryonic heterogeneity may predispose to disease. Aortic arch SMC derived from the neural crest, 

were shown to have a greater propensity to calcify compared to the mesodermal derived 

descending aorta, using either aortic explants under high phosphate conditions or in vivo in a MGP 

null mouse model85. The authors concluded that the aorta was developmentally regionalised and 

this heterogeneity had an effect on pathological calcification.  Similarly, Pruett et al86 identified that 

Hox genes identified positional identities in the vasculature and that transgenic overexpression of 

Hoxc11 resulted in region-specific remodelling of the arterial tree87. Meanwhile Andres and 

colleagues identified regional differences in Hox family member gene expression and NFkB activity 

that anti-correlated in the aortas of atherosclerosis susceptible mice88. They further demonstrated a 

reciprocal inhibitory action between NFkB and HoxA9, thus identifying a possible regulatory 

mechanism that defined an atherosclerosis susceptible aortic arch with high NFkB activity and low 

HoxA9 expression, while conversely the atherosclerosis-resistant descending thoracic aorta had low 

NFKB activity and high expression of HoxA9. The most intriguing finding in this study however was 

that similar differences in Hox family member gene expression patterns including HoxA9 were 

detected between SMC generated in vitro from neuroectoderm (analogous to the aortic arch) versus 

paraxial mesoderm (analogous to the descending aorta). This finding suggests that at least some of 

the differences in gene expression that define regional vascular susceptibility to disease are 

programmed during development, since there were no confounding factors such as flow or vessel 

structure in the in vitro studies.  

Despite our focus on embryonic origin, it should be remembered that a major determinant of the 

site specific nature of vascular disease development is regional differences in hemodymamic forces. 

In particular for the development of atherosclerosis, low shear stress89 and turbulent flow are 

thought to be important drivers of disease location. Accordingly mouse models of atherosclerosis 

show increased disease at branch points and along the lesser curvature of the aorta. Indeed there is 

considerable evidence of differential hemodynamic profiles predisposing different endothelial 

populations to display distinct responses to systemic risk factors3. Thus we propose that the effect of 

embryonic origins is to provide a basal regional susceptibility to disease that then responds to highly 

variable local hemodynamic cues. 

 

5. New models to study SMC and pericyte developmental heterogeneity 

5.1 Human pluripotent stem cells  

Generation of mural cells from embryonic stem cells and induced pluripotent stem cells, together 

termed pluripotent stem cells (PSC), offers the opportunity to recapitulate many of the 

developmental steps that take place in the embryo. In particular, the availability of human PSCs 



enables the study of SMC and pericyte development and disease in a human context. A number of 

groups have developed protocols to generate mural cells from PSCs and these have been reviewed 

recently by Dash et al90 and Sinha et al91. These approaches initially depended on spontaneous 

differentiation in embryoid bodies, which results in a heterogenous mixture of different types of 

SMCs and/or pericytes. Further developments in in vitro methods included the use of stromal feeder 

cells, or specific matrix coatings such as collagen IV, or a combination of growth factors along with 

serum to induce SMCs. Although these systems were efficient in producingmural cells, the 

limitations included the lack of chemically defined systems and difficulties in relating the in vitro 

stages to known developmental events in the embryo. In addition the phenotypic characterisation of 

the resultant smooth muscle-like cells and their precise developmental stage and functionality were 

not always fully defined.  

Indeed, given that the primary distinction between SMC and pericytes is related to endothelial cell 

contact and sharing of the endothelial basement membrane, it can be difficult to distinguish 

between these cells in conditions where morphological criteria are lacking such as in vitro. Thus the 

majority of in vitro protocols use molecular markers to identify the cells, although as most of these 

are shared between SMC and pericytes, then the precise identity of in vitro generated mural cells 

can be indeterminate92. In many protocols, cells were shown to express mature SMC specific 

markers such as MYH11 and SMTN93,94, suggesting the generation of bona fide SMCs although such 

marker expression can be limited and variable or poorly characterised95, and may reflect a degree of 

plasticity of PSC-derived mural cells in vitro. Alternatively, mural cells that did not express MYH11 or 

SMTN have been labelled either as general mural cells92 or as pericytes96, although given the 

overlapping nature of pericyte markers the latter may also represent immature SMCs.  

One of the biggest limitations was that the embryonic origin of mural cells in these in vitro systems 

was relatively neglected.  To address this limitation, we described the use of a chemically defined 

system that used human PSCs to first generate neuroectoderm, lateral plate mesoderm and paraxial 

mesoderm, the 3 embryonic tissues that give rise to the majority of vascular SMCs97. We then 

generated lineage specific SMCs from these intermediate embryonic tissues that displayed all the 

markers and functionality of contractile SMCs but differed in behaviour in the same way as already 

described for SMCs from different aortic or vascular regions98. For example, during development 

MKL2 is required specifically by neural crest derived SMCs, while these same SMC in the adult 

proliferate in response to TGF-β while mesoderm-derived SMCs do not. The lineage specific hPSC-

derived SMC platform was able to reproduce these differences in the need for MKL2 during 

development or in the response to TGF-β in neuroectoderm-derived SMCs compared to those from 

mesoderm. This system was further refined by the generation of epicardium, the precursor for 

coronary SMCs, from the lateral plate mesoderm99. Epicardial cells expressed multiple epicardial 

markers and when injected in ovo, were able to localise to their subepicardial niche in a chick model. 

Taken together, these findings supported the validity of an in vitro lineage specific system. 

In addition to validating known differences between different SMC populations, a key requirement 

for such an in vitro model is to make novel predictions that can be tested in vivo or in primary SMC 

cultures. Our in vitro model was firstly able to predict the differential proteolytic responses of 

different regions of SMC from different regions of the rat aorta when treated with IL-1β97. Indeed we 

hypothesise that this differential degradation of underlying extracellular matrix in different aortic 

regions may predispose to increased wall stress and intimal tear at sites where there is a 



juxtaposition of two different SMC lineages. Secondly, further in vitro studies revealed a key role for 

Notch3 in SMC development specifically from the neuroectoderm lineage63. While this finding 

predicts abnormalities in neural crest derived SMC in vivo, the Notch3 null mouse had not been 

shown to have any vascular abnormalities during fetal development100. However, a more detailed 

analysis unearthed a mild phenotype with reduced maturation of carotid SMC in Notch3 null 

embryos at E13.5 compared to wild type controls63. Finally, gene expression studies from this in vitro 

model also predict a diversity of functions between SMCs of distinct embryonic origins. For example, 

the increase in genes related to calcification in neuroectoderm-derived SMC97 is consistent with the 

high frequency of calcification in the ascending aorta and aortic arch101. Further differences in gene 

expression and corresponding functional differences in vitro between the different lineages, such as 

SMC migration or inflammatory activation, also warrant investigation as to their in vivo relevance. 

Together these findings reinforce the validity of this lineage specific approach and highlight the need 

to consider embryonic origins when considering SMC biology. 

One of the most exciting uses of human PSC-derived SMC systems is in modelling human vascular 

diseases in vitro using patient-derived induced PSCs. Since it is generally difficult to obtain human 

vascular tissues, and tissues obtained at the time of surgery usually represent end-stage disease, 

then an in vitro system enables an unprecedented analysis of early mechanisms that may be driving 

the disease and be amenable to therapy. Initial studies on SMCs examined genetic diseases such as 

Hutchinson-Gilford Progeria syndrome102,103 and Williams-Beuren syndrome104. These resulted in key 

insights into the cellular and molecular pathologies that develop in these conditions and the in vitro 

platform then offers a system to screen for and test new therapies. However, limitations such as the 

precise type of SMC generated, an inability to account for the localised nature of some of these 

conditions and a lack of rigorous isogenic control lines remained105. 

We recently addressed some of these limitations using the lineage specific system of SMC 

generation to model the aortic abnormalities in Marfan syndrome. SMCs derived from iPSCs 

generated from two patients with severe aortic disease recapitulated multiple phenotypical 

abnormalities seen in the Marfan aorta including increased matrix metalloproteinase activity, 

disruption and loss of extracellular microfibrils, reduction in SMC contraction and proliferation and 

increased SMC death106. We identified increased TGF-β signalling through both canonical Smad 

pathway and the non-canonical ERK1/2 and p38. These structural, biochemical and functional 

abnormalities were reversed on CRISPR/Cas9-mediated correction, verifying that the disease 

phenotypes seen were indeed caused by the single nucleotide mutation. Importantly, treatment 

with losaratan – an angiotensin receptor blocker that was highly promising in mouse studies, but 

disappointing in recent clinical trials – was only able to rescue the extracellular matrix and 

proliferative phenotypes, while cell death was regulated independently by p38 and KLF4. Cyclic 

stretch exacerbated the disease phenotype through a β1-integrin mediated pathway, thus validating 

a mechanosensory component of the disease mechanism. Intriguingly, the phenotypic abnormalities 

were most severe in neural crest-derived SMCs, suggesting a developmental explanation for the 

location of the aortic aneurysms in Marfan syndrome in the aortic root, ascending aorta and arch. In 

fact the earliest onset of the aneurysm in this condition is in the aortic root, a region with extensive 

overlap between secondary heart field and neural crest-derived SMCs. These observations support 

the hypothesis that juxtaposition of SMCs of different embryonic origins may potentially be 

detrimental to vascular health, and reinforce the importance of using lineage specific SMC systems 

for disease models. 



These iPSC-based strategies could also be used with other genetically mediated aortic syndromes, 

such as Loeys-Dietz or vascular Ehlers-Danlos syndromes. Given the principal location of Loeys-Dietz 

aneurysms in the aortic root and ascending aorta, it is likely that as for Marfan syndrome, there will 

be differences in disease susceptibility in SMC of different embryonic origins. Indeed, the ‘Loeys-

Dietz paradox’ of loss of TGF-β function mutations leading to increased TGF-β signalling is postulated 

to involve maladaptive compensatory responses in juxtaposed SMC populations79,80. This hypothesis 

could be tested in vitro using lineage specific SMC from patient-derived iPSCs. Conversely, the 

aneurysmal distribution in vascular Ehlers-Danlos is more widespread and so it would be predicted 

that all SMC lineages would display a disease phenotype equally. A lineage based disease modelling 

approach also has value beyond single gene disorders. In the aortopathy associated with bicuspid 

aortic valve107, there were differences in contractility and maturation of SMCs from neural crest vs 

paraxial mesoderm, including reduced canonical TGF-β signalling and increased mTOR activity in  

neural crest-derived SMC. These findings shed light on the underlying abnormalities in this relatively 

common condition and again suggested a developmental explanation for the distribution of the 

disease.  

Although many diseases have been studied using mouse or other animal models, these are not 

always representative of human physiology or disease. In particular, animal models cannot replicate 

the genetic context of patient derived cells that may be essential for disease development. For 

example, genetic variants that affect noncoding regions of the genome frequently have no 

corresponding mouse sequences. This is clearly illustrated by the findings of the recent genome wide 

association studies. These have so far identified at least 58 variants that are associated with 

cardiovascular disease. However, the majority of these variants are located in noncoding regions, 

which are poorly homologous in mice, and the genes involved in the pathology are unknown108. 

Using hiPSC with and without the risk haplotypes may enable these variants to be investigated in a 

human vascular context.  

Recently the ability to efficiently carry out site specific single nucleotide changes using CRISPR/Cas 

(clustered regularly interspaced short palindromic repeats-CRISPR associated) methods109 offers a 

powerful tool to validate causal variants110. This approach is based on a bacterial defence system 

adapted for use in mammalian cells111,112. Bacteria respond to infecting viruses by incorporating 

foreign DNA into the bacterial genome as clusters of short repeats which can be used to provide 

adaptive immunity. On reinfection, these clusters are transcribed and act as guides for Cas proteins 

that will target and interfere with the identified invading DNA. Using the same approach, mutations 

may also be introduced into wild type PSCs to create disease models obviating the need for patient 

samples. It should be noted however that one advantage of patient derived iPSCs is that the extent 

of clinical disease is usually clear; with ‘patient-free’ in vitro engineered disease models it would not 

be clear in advance whether the genetic background would be permissive for disease development. 

Other translational fields where SMC lineage may be relevant include vascular regeneration and new 

drug testing. hPSC-derived SMC are being used to regenerate or tissue-engineer both large vessels 

and the microvasculature113–115. To date no studies have compared the use of different lineage 

specific SMC, although given their distinct biological properties it is likely that there will be distinct 

functional responses depending on the mural cell origin resulting in different vessel properties. As a 

first attempt at this question, Bargehr and colleagues found that SMC derived from hPSCs supported 

network formation by endothelial cells in vitro and that the extent of support varied according to the 



embryonic origin of the SMC116. Differential expression of a range of angiogenic factors such as 

midkine, mediated the differential supportive properties of distinct SMC lineages. While the 

developmental significance of these findings is unclear, the results have implications for 

regenerative medicine strategies where vascular regeneration is planned. In terms of drug testing, 

lineage specific neuroectoderm-derived SMC have recently been used in an endothelial cell co-

culture system that includes physiological or pathological shear stress when testing compounds117. 

While this study was the first to compare hiPSC-derived SMC and endothelial cells with primary cells 

and validated the use of these in vitro generated cells for drug testing, further studies comparing the 

responses of multiple different lineages would be revealing.  

Although PSC based strategies for generating lineage specific SMCs offer great promise for 

understanding regional variations in disease development, the underlying mechanisms and testing 

new drugs, there are a number of limitations that need to be borne in mind when using this 

approach. The most important consideration is to what extent the in vitro findings reflect in vivo 

events. It is inevitably difficult to replicate the multiplicity of other non-SMC that may interact with 

SMC in the vessel wall, although endothelial cell co-cultures are a first step in this direction117. 

Furthermore effects of vessel wall structure, blood flow and cyclic stretch should be borne in mind 

and can be modelled in vitro to some extent106,117,118. Indeed tissue engineered vessels offer the 

opportunity to study several of these factors in an integrated manner, although they suffer from 

usually being low throughput and time-intensive113. Another consideration is the extent to which 

embryonic differences are maintained in the adult vasculature. Pfalzgraf and colleagues have 

described a loss of the transcriptional and phenotypic differences seen in embryonic aortas when re-

examined in adult mice119. These findings are somewhat controversial due to possible cellular 

heterogeneity in the adult tissues used for transcriptional analyses and the use of immortalised SMC 

lines, and need further validation. Nevertheless, they raise the interesting idea of phenotypic 

convergence in adult vessels, although since embryonic genes are frequently re-expressed in 

disease, then differences mediated by embryonic origin may still have a role in regulating adult 

disease.  

 

5.2 Zebrafish as model system to study mural cell origin in vertebrates  

The zebrafish (Danio Rerio) has emerged in recent years as an excellent vertebrate model organism 

to study a wide variety of biological processes. Some of the advantages of the zebrafish model 

system include high fecundity, external fertilization, rapid development and optical clarity. Last, but 

not least, zebrafish has low-cost maintenance compared to other vertebrate model systems. The 

importance of zebrafish for cardiovascular research relies on some unique characteristics such as the 

early development of a functional cardiovascular system (beating heart, aorta, cardinal vein, and 

blood) that is already formed by 24 hours post fertilization (hpf). Since the zebrafish embryo is 

relatively small and aquatic, oxygen can diffuse passively through tissues and thus embryos can live 

up to three days without a functional cardiovascular system120,121. This allows genetic manipulation 

of cardiovascular development for longer than would be possible in mammals, where the absence of 

a functional cardiovascular system is fatal during its early development.  

A major advantage of the zebrafish system is the combination of optical clarity and simple 

transgenics, which has resulted in a powerful model system for analysing the molecular basis of 



development. Until 5 days post fertilization (dpf), zebrafish embryos are nearly transparent, allowing 

in vivo visualization (even at single cell resolution) of the heart, blood vessels, as well as other 

tissues, without instrumentation or manipulation other than the use of a stereomicroscope. 

Furthermore, the generation of tissue-specific transgenic lines is relatively easy. Such a method 

usually uses a native tissue-specific promoter to drive expression of a fluorescent reporter protein, 

such as green fluorescent protein or mCherry. Coupled with impressive optical clarity, these 

transgenic lines allow observation of in vivo cellular behaviour in a way impossible in other models. 

Transparent zebrafish embryos are also well suited for in vivo time-lapse imaging. The fast 

acquisition speed of a spinning disk and 2-photon confocal microscopy reduces the recording time 

significantly when millimeter-sized embryos need to be imaged at high resolution and at short time 

intervals. Light Sheet Fluorescence Microscopy could also be very useful in zebrafish122. These 

attributes, including the possibility of carrying out gain- and loss-of-function studies, have led to the 

emergence of the zebrafish as an excellent embryological model that provides a unique opportunity 

to uncover novel insights into the molecular genetics of endothelial and mural cell development123.  

It should be noted that in early zebrafish development, due to the lack of specific reagents for 

characterization of vascular basement membrane as well as the lack of selective markers for 

mesenchymal cells associated with blood vessels, it is difficult to label cells definitively as pericytes 

or SMCs so we use the more general term: mural cell. 

In the beginning we showed that zebrafish embryos develop mural cells that share many of the 

morphological, molecular and functional characteristics of mammalian mural cells 124. This Initial 

investigation has been essential to other investigations using the zebrafish model to study the 

biology of vascular mural cells64,125,126. Early zebrafish mural cells expressed characteristic 

SMC/pericyte markers such as PDGFR-, ACTA2 and Transgelin. Other well-known mammalian 

pericyte markers such as NG2, RGS5 and CD146 has never been tested in zebrafish due to the lack of 

species-specific reagents. Dorsal aorta mural cells appeared to originate from the lateral plate 

mesoderm on the ventral side of the dorsal aorta, suggesting evolutionary conservation of 

embryonic origin and function124,125. Subsequently, specific transgenic fish were generated and used 

to trace the live development of mural cells in embryonic and larval stages. Acta2, pdgfr and tagln-

based transgenic animals are currently available to follow vascular SMC and pericyte recruitment 

from early stages of development to adulthood125–128.  

Recently, by using live imaging of mural cells and by lineage tracing in vivo Ando and colleagues 

illustrate the developmental origins and biology by which mural cells develop and cover endothelial 

cells in zebrafish embryos125. They show that in cranial vessels and in the aortic arches mural cells 

were derived from neural crest cells, while vessels in the hind brain were of mesoderm origin. In the 

trunk vasculature, mural cells derived from mesoderm covered the ventral side of the dorsal aorta 

(DA), but not the posterior cardinal vein124,125. Furthermore, live imaging clarified that mesoderm-

derived mural cells are induced and recruited at the ventral portion of the dorsal aorta and then 

migrate from the dorsal aorta around intersegmental vessels (ISVs) preferentially covering arterial 

rather than venous ISVs. These findings suggest that arterial endothelial cells promote greater mural 

cell recruitment and maturation compared to their venous counterparts125,128.  

During cardiovascular development mural cells appear shortly after the onset of circulation of blood 

flow129. As consequence, mural cell coverage and mechanical signalling promote accumulation of 

extracellular matrix and vessel’s wall maturation2. Recently, the role of flow-dependent forces and 



primary cilia in vascular mural cell coverage of developing vessels in zebrafish embryos has also been 

investigated128. By using advanced genetic tools it has been shown that mural cells are recruited by 

arterial-fated vessels and that this process is strictly dependent on selective hemodynamic-

dependent arterial Notch signalling. This flow-dependent Notch activation and the associated 

endothelial genetic program are driven by endothelial primary cilia as determined by tissue-specific 

CRISPR gene targeting. Ultimately, zebrafish foxc1b was identified as a cilia-dependent Notch 

specific target that is required in endothelial cells to drive mural cell coverage in a flow-dependent 

manner128. These data offer a novel hemodynamic-dependent mechanism driving vascular 

myogenesis in developing vasculature that may provide a new and better understanding of 

endothelial and mural cell interaction in health and in disease. 

Most studies in zebrafish that have examined vascular disease have focused on endothelial 

patterning and blood components130. However, the SMC developmental homology between 

zebrafish and mammals and the potential advantages of high-resolution imaging and tissue-specific 

genetic approaches raise the prospect of using the zebrafish to study the genetics of vascular SMC-

related human diseases. It has been shown that in zebrafish mural cells surrounding brain central 

arteries are Notch3 dependent for proliferation and integrity64. Zebrafish Notch3 mutants display 

both cerebral hemorrhages and pericyte loss supporting a mechanism whereby in zebrafish Notch3 

promotes mural cell integrity and models CADASIL human disease.  

Challenges to such an approach in zebrafish may include the relative sparsity of mural cells in the 

zebrafish vasculature, the low pressure arterial environment and the lack of optical clarity in adult 

fish. Nevertheless, the zebrafish model has been used to provide insights into thoracic aortic 

aneurysm development. Rare variants in MAT2A and FOXE3 have been identified that were 

associated with familial thoracic aneurysms131,132. Knockdown of the orthologous gene in zebrafish 

led to abnormalities in aortic arch development, which were rescued by the wild type human MAT2A 

or FOXE3 to a greater extent than by the mutant versions. It wasn’t clear in these studies whether 

the defect was solely in endothelial cell patterning or whether there were primary defects in the 

developing arch mural cells. However, FOXE3 was investigated further in a mouse model which 

showed reduced medial SMC numbers, density and SMC marker expression in the ascending aorta 

and arch along with an increased propensity to SMC death and rupture in response to transverse 

aortic constriction. More detailed studies of the role of mural cells in zebrafish models of aortic 

aneurysms would clarify the utility of the zebrafish system for SMC disease modelling. 

There are some limitations with the zebrafish system as mentioned above with a relative sparsity of 

mural cell density and loss of optical clarity in adults. In addition, mammalian antibodies frequently 

do not cross react with fish antigens and require either the development of fish-specific antibodies 

or the use of in situ hybridisation or transgenic reporter techniques. Finally, genome duplication 

events after evolutionary divergence of zebrafish and land-based invertebrates results in either a 

lack or duplication of orthologous human genes133. Accordingly, the absence of conditional knock-

out and knock-in technology still represents a weakness of this model system.  Despite these issues, 

the many advantages of the zebrafish system render it a powerful and exciting new model for 

studying the role of mural cell lineage on vascular development and disease. 

 

6. Summary and Conclusions 



A key question in vascular biology is how the diversity of origin of mural cells influences vessel 

properties, in particular the regional propensity to vascular diseases. There is now increasing 

evidence that the mechanisms regulating development and function of distinct vascular regions 

depends on their embryological origins. Moreover, pathological responses appear to be influenced 

by the origin of the SMC or pericytes involved. The challenge to the field is to identify in detail the 

effects of mural cell lineage as distinct from other undeniably important factors such as prevailing 

haemodynamics and vessel wall structure. To facilitate these studies, we have highlighted 2 new 

models. First, human PSCs enable the generation of lineage specific SMC in vitro, providing 

opportunities for comprehensive in vitro analyses of development and disease on a human genetic 

background. Secondly, the zebrafish model combines the power of an in vivo system with 

unmatched access to live imaging of the developing vasculature. These and other model systems 

offer the prospect of new understanding of disease mechanisms and new therapies for a range of 

vascular diseases. 
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Figure legends 

Figure: 1. Schematic representation of vascular mural cell origin during development.  

Fate mapping studies identify a highly mosaic distribution of mural cells with different 

developmental origins for vascular smooth muscle and pericytes. Neural crest cells contribute to 

mural cells of the aortic root, ascending aorta, arch and branches as well as pulmonary trunk (not 

shown). Lateral plate mesoderm (LPM) gives rise to secondary heart field and the base of the aortic 

root, as well as to the proepicardium. The proepicardium is a developmentally complex structure 

that also has origins from the septum transversum (ST), a rostral mesodermal structure that folds to 

lie between the developing heart and liver. During early cardiac development, the proepicardium 

forms the epicardium, a mesothelial structure around the developing heart, which contributes to the 

coronary arteries and to coronary pericytes. Paraxial mesoderm (PM) gives rise to the somites, which 

contribute to the descending aorta and its distal branches.  

 

Figure 2: Thoracic and abdominal aortic aneurysms.  

Aortic aneurysms, caused by weakness and dilatation of the vessel wall, are commonly seen in the 

aortic root and ascending aorta or in the abdominal aorta. Thoracic aneurysms are prone to 

dissection; classified as type A for those that involve the ascending aorta and arch and type B when 

only the descending aorta is involved. The sites of dissection (arrows) occur frequently at the 

sinotubular junction or at the aortic isthmus, regions where there is juxtaposition of SMC of different 

embryonic origins. 
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