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In this issue of Blood, Zhao et al. use a humanized mouse model to investigate the mechanisms driving daily 

oscillations in circulating human and murine leukocytes. In the same mice, they find human and murine 

circulating leukocytes displaying inverted oscillations, reproducing the trafficking pattern previously 

observed in both species. A novel network regulating circadian leukocyte trafficking is proposed. It involves 

interspecies differences of stress-kinase regulation of reactive oxygen species (ROS), hypoxia-inducible 

factor-1-alpha (HIF-1α) and clock gene-dependent regulation of the CXCL12 receptor CXCR4. This study 

underscores the crosstalk of the genetic clock with metabolism and ROS in the regulation of leukocyte 

migration and reveals new mechanistic players. 

Circadian rhythms allow for the organism’s adjustment to basic day/night changes, such as activity/sleep or 

feeding cycles. These are governed at the organismal level by the pacemaker in the brain, the 

suprachiasmatic nucleus, which receives light input through the retinohypothalamic tract and synchronizes 

peripheral organs via the autonomic nervous system and the hypothalamic-pituitary-adrenal axis on a daily 

basis. At the cellular level, peripheral oscillators exist in many cell types and regulate metabolism, 

proliferation and function. Different clocks interact with each other to ensure robust responses. Core clock 

genes, such as BMAL1/ARNTL1, regulate the transcription of multiple genes, including other clock genes 

that drive transcription-translation loops over 24h (reviewed in
1,2

). 

Oscillations previously found both in the number and the activity of hematopoietic progenitors and 

leukocytes might have important implications for regeneration and response to infections3-5. For instance, 

oscillations of Bmal1 expression in inflammatory monocytes regulate chemokine genes and immune 

response
6
. Inverted oscillations in circulating leukocytes have been previously reported in (nocturnal) mice 

and (diurnal) humans3-5. In both species leukocytes are preferentially released from the bone marrow into 

circulation during the resting period. However, the mechanisms explaining interspecies differences in 

leukocyte trafficking have remained elusive. 

In this issue of Blood, Zhao et al. create hematopoietic chimeric mice to study the trafficking of human and 

murine leukocytes7. The model consists of neonatal NOD-SCID IL-2Rγ-deficient (NSG) mice sublethally 

irradiated and intrahepatically transplanted with CD34+ human fetal liver cells. 8-12 week-old mice carrying 

30-50% human CD45+ cells are then selected for circadian studies. 

Strikingly, the same chimeric mice show inverted trafficking patterns for human and murine leukocytes, 

reproducing the interspecies differences. Previous studies in mice and humans3,4 have shown oscillations of 

the CXCL12-CXCR4 signalling pathway, a key regulator of leukocyte migration. In C57BL/6 mice, previous 

studies have shown oscillations in bone marrow Cxcl12 expression3,8. Zhao et al. do not find obvious Cxcl12 

mRNA oscillations in NSG mice. However, since the number of experimental mice studied was lower, the 

sampling less frequent and performed at other time points, it remains unclear whether there are 
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differences due to the strain/immunodeficiency and/or the transplant setting, or not. A similar 

consideration applies to BMAL1 mRNA expression, which does not seem to oscillate in mouse or human 

leukocytes in the chimeric mice
7
, but has been previously shown to oscillate in leukocyte subsets

6
. 

Regardless of this, the sharp difference of mouse/human leukocyte trafficking in the same environment 

argues for key cell-autonomous mechanisms. Consistent with previous studies4,8, they find oscillations in 

CXCR4 expression in antiphase with circulating leukocytes. Blockade of Cxcl12 (which is murine-derived in 

the humanized model) blunts oscillations of both murine and human leukocytes. Blockade of the human 

receptor has similar consequences on the human leukocytes, pointing towards a major role of CXCR4. To 

understand how the murine and human receptors are differentially regulated during circadian cycles, the 

authors profile clock gene expression in leukocytes. Intriguingly, in the humanized model the peripheral 

oscillator appears to be present in mouse leukocytes, but not in human leukocytes. This interesting 

difference points towards species-specific regulation of CXCR4 (and possibly other adhesion receptors) in 

relation to the genetic clock, leaving a fertile area for future studies. 

The authors find that CXCR4 oscillations are abolished in BMAL1-deficient leukocytes, consistent with 

previous findings in mice4. Therefore, they hypothesize that a clock network-independent BMAL1 function 

regulates CXCR4. Since HIF-1α expression follows circadian oscillations, regulates CXCR4 and binds BMAL1, 

the authors measure HIF-1α expression and find direct correlations with CXCR4 expression. Since HIF-1α is 

regulated by ROS, they measure ROS levels in human and murine leukocytes and find inverted expression 

patterns during circadian cycles. Treatment with the ROS inhibitor N-acetylcysteine abrogated oscillations 

in HIF-1α, CXCR4 and circulating leukocytes. They then hypothesize that the p38MAPK/MK2 pathway might 

generate opposite ROS levels in murine and human leukocytes. Indeed, the authors show different p38 

phosphorylation levels at distinct circadian time points and elegantly demonstrate that MK2 inhibition 

abolishes circadian oscillations of ROS and the downstream pathways. Notably, MK2 inhibition increases 

ROS in murine leukocytes, whereas it has the opposite effect on the human cells, pointing towards a key 

pathway responsible for the interspecies difference. 

Finally, the authors examine the possible connection of this pathway with the central pacemaker using a 

jet-lag experimental setting. Shifting the light cycles does not only abrogate oscillations of leukocytes, but 

also of p38/MK2 phosphorylation, suggesting that the suprachiasmatic nucleus might be able to regulate 

stress kinases in leukocytes (Figure 1). 

In summary, the detailed study by Zhao et al. expands previous findings on the regulation of the CXLC12-

CXCR4 axis by the genetic clock
3-5

 to interactions with stress kinases and ROS. Other studies have found 

clock gene-independent ROS-related mechanisms that maintain circadian cycles. For instance, ROS-

regulating enzymes, such as peroxiredoxins, are ancient clocks that have been conserved throughout 

evolution9. In Arabidopsis, the redox rhythm interacts with the genetic clock to adjust the plant’s response 

to environmental stimuli and pathogens10. Studies along these lines will help determine the fine crosstalk 

between metabolic and genetic clocks. This knowledge will likely impact on the successfulness of 

“chronotherapy” approaches. 

Figure 1. Model proposed in the study by Zhao et al. Physiological activation of p38MAPK/MK2 during 

circadian cycles causes differential ROS levels, HIF1α-BMAL1-dependent CXCR4 regulation, explaining 

opposite trafficking patterns of mouse and human leukocytes in chimeric immunodeficient mice. WBC, 

white blood cell. NSG, NOD-SCID IL-2Rγ-deficient mouse. P, phosphorylation. 
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