
Bellrock—Anonymous Proximity Beacons From

Personal Devices

Augustin Zidek

Computer Laboratory

University of Cambridge

Cambridge, UK

augustin@zidek.eu

Shyam Tailor

Computer Laboratory

University of Cambridge

Cambridge, UK

shyamatailor@gmail.com

Robert Harle

Computer Laboratory

University of Cambridge

Cambridge, UK

Robert.Harle@cl.cam.ac.uk

Abstract—Proximity beacons provide simple, low-cost location
data. However, beacon deployments remain rare. In this paper
we introduce Bellrock, a framework that repurposes static
personal devices (phones, laptops, etc.) as proximity beacons
without revealing the location of the device owners, and provides
conventional beacons with access control. This is done by using
mutable pseudo-anonymous identifiers that can be unmasked by
a cloud service.

We develop Bellrock as a general framework, describing the
repurposing scheme and the anonymisation techniques, before
applying it to Bluetooth Low Energy beacons. We implement and
demonstrate the scalability of the de-anonymisation server, which
uses a series of heuristics. We implement a Bellrock client on
Android and demonstrate negligible impact on battery lifetime.
We evaluate Bellrock using extensive real-world office worker
movements. We find that Bellrock was able to provide proximity
locations for 8,542 of the 21,796 failed locations that would have
occurred without it. We further find that office workers were in
range of one or more of their co-workers over 90% of the time,
indicating Bellrock can provide relative proximity information
even in the absence of a conventional beacon deployment. Overall,
we find that Bellrock is both feasible and practical, providing
a beacon deployment where there was none, or supplementing
existing deployments.

Index Terms—Bluetooth Low Energy, Proximity Beacons, Lo-
cation Tracking, iBeacons

I. INTRODUCTION

Following decades of research effort, ubiquitous indoor lo-

cation on a par with outdoor (GNSS) location remains elusive.

A recent trend has been towards proximity or microlocation,

whereby spaces are labelled in such a way that mobile devices

can detect their proximity. Many variants on this approach

exist, including RFID tags, IR beacons, visible light beacons,

and radio beacons (particularly those based on Bluetooth). The

core idea is to have some spatially-bounded signal associated

with static1 devices (beacons) distributed at known locations

in the environment. Observing a specific beacon signal implies

co-location with it. Most schemes assume beacons emit Uni-

versally Unique IDentifiers (UUIDs) that act as a key into a

local or cloud database to find further details such as beacon

1In some circumstances this model is inverted and the beacon is mobile
while the listener is fixed. This is particularly common for delivery logistics
applications, where packages are tracked by attaching beacons and a network
of listeners then monitors location. The conceptual difference is minimal and
the discussion presented here applies equally to the inverted system.

location. Beacon-based proximity is a simple and robust way

to provide location awareness.

However, there are a number of issues that have prevented

even modest deployment outside of dedicated testbeds. These

include:

• Deployment and Maintenance. Finer grained location

means beacons with lower spatial range, which in turn

requires a higher density of beacons. Deploying and

maintaining a dense set of beacons is not an attractive

proposition and there are questions over who should own

the devices if it is a public service.

• Ease of Spoofing. Beaconing is typically one way: the

UUID is broadcast to all in range who are listening.

Spoofing a beacon by replaying the beacon message is

then trivial. Such spoofing would mean a device may be

fooled into incorrectly positioning themselves, potentially

triggering an unwanted action (for example, using a

beacon as a trigger to unlock a door would be unwise).

• Lack of Access Control. A beacon message cannot be

restricted to a subset of local listeners. Whilst access to

the database of beacon information might be restricted,

anyone can create their own database of beacons and infer

location. Commercially this is a challenge: a company

that pays and maintains beacons in a public area cannot

prevent the beacons being mapped and used to power a

rival service.

In this paper we introduce Bellrock2, which considers

ecosystems of beacons formed from:

• Dedicated beacons. These are conventional beacon de-

vices, dedicated to beaconing; are statically deployed to

known locations; and are designed to be small, long-

lasting and inexpensive. They require centralised de-

ployment and maintenance. Bellrock adds access control

and spoof protection to traditional deployments of these

devices.

• Personal beacons. These are beacons that are created

by temporarily repurposing a personal device such as

a smartwatch, laptop or smartphone. They are dynamic,

potentially moving at any time. Personal devices offer

2Bell Rock Lighthouse is the oldest surviving sea-washed lighthouse,
designed to provide location to ships on the coast of Scotland.



more processing, connectivity and battery power than

traditional dedicated beacons. Maintenance is distributed

across device owners.

Bellrock is the combination of a scheme for repurposing

personal mobile devices such as smartphones and laptops to

be personal beacons and an anonymisation scheme to retain

the location privacy of their owners and provide a degree of

access control to dedicated beacons.

Bellrock beacons (either dedicated or personal) broadcast

Anonymous IDs (AIDs) over small ranges. They are free to

change their AID at any time, subject to some generation rules.

If a personal beacon has both WAN connectivity and a position

fix, it forwards these to a third party server. A device seeking

localisation information listens to the broadcasts and forwards

a list of observed AIDs to the server over a WAN connection.

The server implements access control before returning location

information, if appropriate and available.

We describe the Bellrock framework and implement it using

Bluetooth Low Energy beacons. We assess the practicalities

and security of the system and evaluate it using two large

datasets of personnel movements within office settings. The

remainder of the paper is structured as follows: Section II

describes the repurposing scheme; Section III the anonymity

techniques; Section IV discusses implementation using a cloud

server and Bluetooth Low Energy signals; Section V evaluates

components of the implementation and uses the movement

datasets to explore how the scheme would work in practice;

Section VI discusses related work; and Section VII concludes.

II. BELLROCK REPURPOSING SCHEME

The primary concern when personal devices broadcast an

identifier is that an arbitrary third party can used it to track the

device (and hence owner). Bellrock addresses this by asserting

that personal devices will beacon only when they are stationary

(e.g. charging, on a desk, in a pocket while sat down, etc.).

Moving devices simply do not beacon. Furthermore a device

will adopt a new Anonymous ID (AID) when it next becomes

stationary to prevent pseudonym linkage. We discuss AID

generation in Section III-1.

When beaconing, personal beacons differ from dedicated

beacons in one important respect: they do not have a prede-

fined absolute location. We can represent a period of time in

the Bellrock system as a directional (possibly disconnected)

connectivity graph with beacons as vertices, and edges (A,

B) representing an observation by A of B—see Figure 1. A

subset of these vertices are anchors, with known location. This

includes all dedicated beacons (D1, D2, D3 in Figure 1) and

any personal beacon with an out-of-band location (e.g. a GNSS

fix, a WiFi position, recognition of a predefined situation such

as attachment to a charging cradle, etc.).

Proximity-based location of a device can be determined

by the shortest path from the device’s vertex to an anchor.

The longer the path, the greater the location uncertainty.

We use the term ‘n-hop location’ to indicate the path has

length n—conventional proximity-based systems produce 1-

hop locations. In Figure 1 device M1 has a 1-hop location; M2

a 3-hop location and M3 a 2-hop location. Clearly the greater

the value of n, the less confined the device is geographically.

If the graph is dominated by unanchored personal beacons,

Bellrock can still provide relative proximity information (i.e.

“A is co-located with B”, rather than “A is in room R5”). This

enables a subset of location-aware applications, including:

localised messaging, where we want to message everyone in

an area (e.g. train platform); place recognition, since many

places—workplaces in particular—are characterised by the

people using them; interaction monitoring, where we might

want to monitor infection outbreaks, analyse space usage or

just log our interactions; and virtual leashes, where we need

to monitor the continued proximity of personal items such as

wallets, keys and children.

A final consideration of repurposing is that of beacon

collisions. Beacon technologies are unlikely to implement

channel sensing, meaning two overlapping beacons may in-

terfere. In situations such as conference halls and theatres

there could be hundreds of Bellrock devices in range of

each other, increasing the probability of collision and lost

data. It is therefore important that the beaconing procedure

incorporates temporal randomness and beacons remain very

short relative to the communication rate of the beacon channel.

These requirements apply to beaconing in general, so standard

technologies typically implement them, as we will show.

III. BELLROCK ANONYMITY, SECURITY AND PRIVACY

The repurposing scheme must be complemented by an

anonymity scheme, or devices will compromise the location

privacy of their owners.

1) AID Generation: Generating pseudo-anonymous identi-

fiers has been studied previously in the passive RFID domain–

comprehensive surveys are available in [1], [2]. Many schemes

have been proposed, with a variety of trade-offs and secu-

rity properties [3]. The schemes range from rotating among

pre-assigned pseudonyms [4] to detailed cryptographic sys-

tems [3]. In principle, many of the general RFID anonymi-

sation schemes can be applied to Bellrock. We advocate a

combination of three schemes as follows:

Random AIDs (R-AIDs). Unlike RFID tags, personal bea-

cons may have WAN access, allowing them to negotiate a

random AID with a server. This has similarities with RFID

schemes that assign and re-assign identifiers from a master

reader [4]. It is secure, but the Bellrock AID cannot be changed

offline when WAN access is impossible (static beacons) or

unavailable (no signal).

Synchronised AIDs (S-AIDs). Google’s Eddystone BLE bea-

con system (developed concurrently with Bellrock) proposes

an Ephemeral ID (EID) based on encrypting the current time.

The server pre-computes the IDs for all beacons in each epoch

and performs a simple lookup for each beacon reported in

the epoch [5]. This scheme requires the beacon to have a

synchronised global clock of sufficient accuracy (a reasonable

assumption for personal but not static beacons).
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Fig. 1. Example Bellrock scenario. (a) Devices D1, D2 and D3 are conventional anchored beacons (“dedicated beacons”). S1, S2, S3 and S4 are stationary
personal devices acting as personal beacons. M1, M2 and M3 are moving devices that do not beacon. (b) the resultant connectivity graph.

Encrypted AIDs (E-AIDs) Every device, i, has its own

unique encryption key,3 Ki, and generates an AID using

encryption: EncK(Concat(UUIDi,n)), where n is a nonce. The

server has a list of {UUIDi,Ki) pairs and brute-forces the

decryption until the decrypted result is prefixed with UUIDi.

This allows the device to change its AID at will and without

WAN connectivity. It has its roots in the Randomised Hash-

Locking scheme for RFID tags [6].

Bellrock uses symmetric encryption for E-AIDs since it is

significantly faster to decrypt at the server end. We use AES

with a block size equivalent to the chosen AID length (i.e.

there is only one block) to allow the use of ECB mode and

avoid the need to send initialisation vectors.

• Heuristic 1: Cached Results. Many people spend the ma-

jority of their day in a small number of places surrounded

by the same devices and people—for example homes or

workplaces). Therefore the same AIDs will be repeatedly

observed, often in subsequent scans. To exploit this we:

(i) Cache recent AID→UUID results

(ii) Move UUIDs recently observed by the querying device

to the top of the search list. Thus a device established

as nearby in previous scans but which changes its AID

will still be found quickly.

(iii) Prioritise UUIDs known to be in the same region

(within a few hops) of the querying device.

• Heuristic 2: Friend Priority. If the cached results do

not unmask all the reported AIDs from a device, we

then search for the friend and acquaintance devices as

a priority. This incorporates the observation that the

majority of people we encounter in a typical day are from

a small set.

• Heuristic 3: Spatial Grouping. Any out-of-band infor-

mation on location is used to prioritise certain UUIDs.

In particular, the serving cell of a smartphone can be

matched to those of other devices, suggesting nearby

smartphones to prioritise in the search. Databases of

3This is more secure than using a single global encryption key, which makes
decryption easy (no key search required) but will inevitably be compromised
when the key is extracted and published. An alternative would be the use of
asymmetric cryptography, with each beacon having the server’s public key.
However, this would significantly increase the AID length and the processing
cost on the beacon. Google’s Eddystone system, which provides a similar
beacon anonymisation scheme to Bellrock and explicitly avoids a public key
based system for similar reasons.

cell towers and their locations are readily available (e.g.

OpenCellID [7]).

To summarise, Bellrock uses a combination of R-AID, S-

AID and E-AID schemes as appropriate. For personal beacons

the choice between using S-AID and E-AID will be subtle.

In a system of N registered beacons with K AIDs to de-

anonymise in an epoch, the S-AID scheme performs N AID

generations and k lookups. The E-AID approach will be max-

imally bounded by kN decryptions. However, the heuristics

described above should significantly reduce the effective N

and k. The overall decoding process is:

(i) Check the cache for recent results;

(ii) If no match found, Search the list of R-AIDs for a match;

(iii) If no match found, search the list of S-AIDs generated

for the current epoch,

(iv) If no match found, apply the E-AID de-anonymisation

process.

2) Adding Access Control with Friends and Acquaintances:

When a server has de-anonymised a beacon, it cannot simply

report back unmasked UUIDs (or the anonymisation would

be redundant). Instead it implements a whitelist of device

pairs between which it can share different levels of identity

information. The whitelist distinguishes between friend and

acquaintance devices.

If device B is listed as an acquaintance of D, then D is

permitted to track B. This means that the server will return a

consistent but time-limited pseudonym for B to D. However,

it will not reveal the true identity of the device or owner. So,

for example, a user might be willing to allow a building to

track them for safety purposes, but would not wish to divulge

who they actually are. The friend relationship is used to signal

devices to whom the true identity of the device/owner can be

revealed. An acquaintance or friend status can be withdrawn

at any time by editing the whitelist on the server and changing

the device AID.

If two devices are neither friends nor acquaintances, the

server can still return anchored location information if it is

available. For example it can report a 3-hop location without

identifying the intermediate beacons or allowing them to be

tracked.

IV. APPLYING BELLROCK TO BLUETOOTH BEACONS

So far we have presented Bellrock as a generic proxim-

ity beacon framework. In this section we demonstrate its



implementation on the current beacon platform of choice,

Bluetooth Low Energy. Bluetooth Low Energy (BLE) is a

radio communications protocol designed to maximise battery

lifetimes while supporting short Internet-of-Things-like inter-

actions between devices. It was introduced in the Bluetooth 4.0

standard [8] and operates in the 2.4 GHz ISM band at 2400–

2483.5 MHz. Forty channels are used with centre frequencies

at 2402+ 2k MHz for k ∈ {0,1, . . . ,39}. BLE has the notion

of advertisements, which are short packets of data periodically

broadcast at a configurable rate.

For microlocation, dedicated small, inexpensive BLE bea-

cons with long battery lifetimes are fixed within the space of

interest. They periodically emit advertisements containing a

unique ID over a short range (a few metres). Mobile devices

scan for the IDs and use a database to look up the beacon

locations and so infer their own context. BLE is a standard

inclusion in every ‘smart’ device today, making it the de-facto

choice for location beaconing.

A. Bellrock over BLE

Bellrock uses the BLE advertisement subsystem to broad-

cast AIDs. BLE advertisement packets are very short to

prevent the radio subsystem from heating up, allowing simpler

componentry. In the most widely-available implementations

of BLE (Bluetooth 4.x), the limit is just 31 bytes. The more

recent 5.0 standard offers extended advertisements which the-

oretically provide an extra 256 bytes. However this extended

data is provided on on of 37 “secondary” radio channels and

not on the same channel as the 31-byte part. This provides

backwards compatibility, but adds complexity to e Bluetooth

5 listener. It is expected that small, long-lifetime devices like

beacons will not use extended advertisements. The current

penetration of Bluetooth 4.x radios means any system must

retain compatibility with Bluetooth 4.x. Given this we imple-

mented Bellrock for Bluetooth 4.1. The packet format we used

required 30 bytes including the 4 byte overhead imposed on

the advertisement structure (see the Generic Attribute Profile

(GATT) specification [8])4:

Len Type GAP AID

1 2 3 4 5 20

Note that the short packets forced the implementation to

use 128-bit AES5. This is still sufficiently secure for this

application (especially where the keys are changed on a regular

basis).

B. Android Client Implementation

We have implemented a Bellrock client for Android smart-

phones. The client exploits the optimised activity recognition

algorithms built into Android to decide when a device should

act as a beacon. For a smartphone or tablet, we used the

Android STILL state to indicate beaconing should begin.

4We assumed the use of a registered manufacturer’s short ID to avoid having
to specify a 16-byte full ID.

5We used 64-bit UUIDs and therefore 64-bit nonces.

Communication with the server is via a secure HTTPS

link using any available WAN connection. Each device can

authenticate itself by providing its UUID and current encryp-

tion key. Periodically each device sends its list of recently

observed AIDs (and timestamps) along with a list of serving

cell towers to the server. If the Android location service has

a more accurate fix, it also supplies this information.

In implementing Bellrock we found that support for broad-

casting BLE advertisements (so-called BLE peripheral mode)

is currently patchy. Android as a platform did not support it

until version 5.0 (released in 2014). Furthermore, support for

the feature in later versions of Android can be disabled by the

device manufacturer6. Such devices can still act as listeners,

able to use the Bellrock framework but not contribute to it.

In terms of beacon collisions: a BLE advertisement lasts

up to 0.376 ms (376 bits at 1 Mbps), and incorporates a

random jitter of 0–10 ms on each period to ensure two

colliding beacons do not continue in lockstep. In a very dense

environment of hundreds of Bellrock devices, then, collisions

are expected but the majority of beacons will be transmitted.

In principle, Bellrock only requires a few successful beacons

to be sent each period, provided a different set of beacons is

successful in each subsequent periods.

C. Server Implementation

The server process is dominated by the AID decoding

task. Our implementation was written in Java 8 and took

advantage of AES-NI (Intel CPU instructions for fast AES

operations) [9]. Additionally, since initialising a Cipher

object in Java has a large overhead, the server maintained

a pre-initialised Cipher object for each user in memory.

The OpenCellID database was downloaded, pre-processed and

incorporated locally in the server to avoid constant network

lookups.

V. EVALUATION

A full-scale deployment with thousands or millions of users

was not feasible for this work. Instead we focus on evaluating

three aspects: 1) the feasibility of the anonymisation scheme

at the server; 2) the impact on mobile device lifetimes; and 3)

the utility of personal beacons within a proximity deployment.

A. Server Feasibility

The worst case server situation is all devices using the

E-AID scheme. We tested the Bellrock server as described

in Section IV-C on modest hardware: a 2011 Intel Core i5-

2410M mobile CPU running at 2.3 GHz running a Java

Virtual machine allocated 3 GB of memory. This was able

to perform approximately 5,600,000 AES decryptions per

second. The practicality of this number depends on the number

of decryptions needed to decode a single AID, which we

expect to scale linearly with the number of users in the system.

Figure 2 illustrates the results of the time taken to decrypt

1,000 AIDs chosen at random from a set of N users, where

6In our experience BLE peripheral mode was supported by the majority of
current Android smartphones, as well as Apple’s iOS.



Fig. 2. Time to decrypt 1,000 AIDs with number of users ranging from
100 to 10,000. The AIDs were sampled randomly from all users and no
heuristics were applied.

N varied from 100 to 50,000. The linear trend is evident. The

time costs are tolerable for a few thousand users but prohibitive

when we reach tens of thousands. A global deployment could

see many millions of users and this is clearly untenable.

To scale to a reasonable number of users requires that the

heuristics keep the search space small (up to a few thousand).

The serving cell spatial heuristic is particularly effective here.

Based on the numbers presented in [10], which considered the

deployments of two large national cellular service providers,

base stations are deployed such that each serves around 1,000-

2,000 users7 A search for a new AID should then only involve

searching a list of a few thousand. Without any other heuristics

in place, it would therefore be necessary to make around 1,000

decryptions per AID on average. This suggests our test server

would be expected to decode around 5,000 AIDs per second.

This is a pessimistic estimate given that the test server used

modest hardware, did not consider distributed computing (the

process is inherently parallelisable) and ignored the other de-

anonymisation heuristics. In fact the AID→UUID caching is

likely to be the key factor. Beacon transmission ranges are of

the order of metres and people density is relatively low. As

we show shortly, we only expect someone to be in range of a

small number of others (fewer than ten). There are corner cases

where this is not so (commuter trains, lecture theatres, etc.) but

such circumstances are in the minority on the whole and we

can tolerate lengthier decryptions for those rare cases. Overall,

then, the server de-anonymisation is a realistic proposition on

today’s hardware.

B. Android Validation

The Android implementation was tested on a number of

consumer Android devices with Android versions of 5.0 or

greater. We verified that the built-in activity recognition was

sufficient to recognise static periods with high confidence; and

that BLE beaconing only occurred during those periods.

To assess Bellrock’s battery impact we used Android’s

BatteryStats tools [11] applied to a Google Nexus9 device

running stock Android 7.1.1 with a test app installed. We

ran a series of three-hour tests with WiFi disabled. This

duration spanned the various sleep states Android has (power

consumption is reduced in stages, with a deep sleep after an

7This estimate is derived by dividing the subscriber numbers in [10] by the
base station numbers.

Test Description Draw (mAh)

Control No apps running 7.7/6.0/6.0

Control + wake-
lock

Test app just holds a partial wakelock 38.3/31.4/27.9

BLE Beaconing Beaconing every 100 ms, no wakelock 26.4/6.0/6.0

BLE Beaconing
+ wakelock

Beaconing every 100 ms with partial
wakelock

45.5/33.2/34.4

BLE Scanning +
wakelock

Scanning continuously next to device
beaconing at 10 Hz

70.3/65/65

E-AID
Generation +
wakelock

Generating E-AIDs continuously every
10 ms

47.8/42/43.7

TABLE I
ANDROID ENERGY CONSUMPTION TESTS.

hour). We whitelisted the app to prevent Android from altering

its behaviour to save power.

The tests and results are described in Table I: the mean

consumption values for each hour are given. The second

and third hour results represent the consumption with the

system in full ‘doze’ mode. We observe that the cost of BLE

beaconing (which was at full power and 10 Hz) was small in

the first hour (around 20 mAh or less than 1% of a typical

3,000 mAh smartphone battery) and negligible thereafter (we

verified that the beacons were still sent using a nearby listener).

This is expected: BLE was designed for exactly this type of

scenario and the Bluetooth subsystem can beacon without CPU

involvement. So the steady state cost is little more than the

cost of powering the Bluetooth chip.

For the AID generation test over 350,000 were generated in

an hour for a total cost of around 45 mAh. As we demonstrate

shortly, we expect a device to use only tens of AIDs per

hour, making this cost equally negligible. Scanning was a more

costly process (60–70 mAh per hour), but we only expect a

device to scan intermittently so the real-world cost is unlikely

to be of significance to the average user. Overall, then, we

consider Bellrock to have minimal impact on a phone’s battery

lifetime.

C. Evaluation Data

To explore the utility of personal beacons we used two

established datasets recording in-situ movement data within

office environments. Bellrock is well suited to this environ-

ment: employees are often stationary, bring various personal

devices with them, and we might expect them to be in range

of at least one other most of the time. The datasets were:

• SpaceLab BLE Data. This dataset was collected over four

weeks in an architectural company (SpaceLab Ltd.) with

a building spanning two floors. The data are derived from

25 employees who wore a custom watch-like device that

acted as a BLE beacon whilst continuously scanning for

other BLE devices. Full details of the experimental setup

are given in [12].

• AT&T Research Movement Data. This dataset was col-

lected at the former AT&T Research Laboratories in

Cambridge, UK and contains in-situ measurements of 57

employees. They were tracked to within a few centimetres

using an ultrasonic location system installed throughout



the three-floor laboratory [13]. The logs span 139 days

over a two year period in the early 2000s, with a total

of 22,667,607 location results. Note this dataset does not

contain any beacon data, Bluetooth or otherwise.

1) Data Preprocessing: Both datasets underwent cleaning

before usage. The SpaceLab data contained the output of a

walk detection algorithm on the device. For any period where

steps were observed for a device, we discarded all observations

of it since the Bellrock scheme would not have let it beacon.

The data included observations of a set of dedicated beacons.

Any device that did not observe a dedicated beacon for one

minute was assumed to have left the building.

The AT&T data did not contain any beaconing data so we

synthesised the output of a beacon as a simple radius. Any

two people within 7.5 m of each other were assumed to be

able to observe each other. Movement in the AT&T was easily

inferred from the high accuracy positions. For each device, a

day was defined as starting with the first recorded walk and

finishing with the last.

2) Beaconing Statistics: Figure 3 shows the distributions of

the total time each device would have beaconed for in each day

for both datasets—this is equivalent to the time the owner was

active but not walking. The numbers represent a real working

environment and do not compensate for the number of hours

worked. The two distributions are very similar. The median

beaconing times were 28,418 s (SpaceLab) and 26,925 s

(AT&T)—a high proportion of a typical working day. This

is to be expected of an office environment, where employees

spend much of the time in a sedentary state. This is promising

for Bellrock, which depends on high proportion of personal

devices beaconing at any given time.

3) AID Lifetimes: Although the total time spent beacon-

ing is a significant proportion of a day, it is composed of

many small periods of continuous beaconing punctuated by

movement activity: a meeting, going to lunch, or a trip to

the kitchen or bathroom. Figure 4 shows the distribution of

these beacon periods across all devices and all days in the

datasets (note the logarithmic scales). Once again the shapes

of the two distributions are more similar than different8. The

beaconing periods are typically anywhere from a few seconds

to a few minutes. The shorter times are associated with small

movements at a desk or short pauses when walking. The

SpaceLab distribution hints at a more active set of employees,

but this is more likely due to the SpaceLab measurement

device being worn on the wrist and the activity recognition

producing false positives due to arm movements. The long

tails on these distributions are significant: in the AT&T data,

over 23.8% of AIDs would have lived longer than 10 minutes

In the Bellrock scheme, each of these periods is associated

with a distinct AID so Figure 4 is equivalently a view of the

AID lifetime distribution. A given device therefore changes its

AID multiple times during a typical day—Figure 5 shows the

8The large peak in the AT&T data at 5 s and the lack of data less than 5 s
is an artefact of the Bellrock simulation, which had devices beacon every 5 s.
Thus this spike should arguably be distributed over the range 0–5 s.

distributions for the two datasets. Here we notice a significant

difference in shape, with the AT&T simulation producing

fewer AID changes per hours (median 4.0 vs 21.3). We

attribute this to the higher false positive mobility of the Space-

Lab participants due to measurement on the wrist, although

differences in mobility pattern may also have contributed. We

note that the typical number of AID changes per hour means

that each AID will span many observation periods and that

the server will find the AID in its cache more often than not.

D. Positioning Results

1) Mixed Dedicated/Personal Beacon Deployment: We use

the SpaceLab dataset to demonstrate the value of Bellrock.

In addition to the wearable beacons, this dataset contained 17

dedicated beacons, deployed to give approximately complete

coverage of the building. In such systems there are inevitably

location blackspots, where dedicated beacons cannot be reli-

ably observed (i.e. no 1-hop location). We searched each 5 s

period of each day for such situations.

In these cases we constructed a directional graph as per

Section II, with a small modification. We established a single

‘anchor’ vertex and assigned all dedicated beacons to that

vertex. We then found the shortest path from the device with

no 1-hop location to the anchor node. Figure 6(a) illustrates the

results. Of 21,796 positions that would have failed, Bellrock

was able to recover a position for 8,701 (40.3%). Of these

8,542 (98.2%) were 2-hop locations, so the location error

would still have been well bounded.

The 17 dedicated beacons within the SpaceLab data were

deployed in an attempt to give near-complete coverage. To

further demonstrate the value of Bellrock for location we

reprocessed the data 29 times, each time deleting one or more

dedicated beacons. Due to the large search space we sampled

the beacons at random when the number of beacons to be

removed was two or greater. Figure 6(b) illustrates the results,

where white segments indicate failed locations that Bellrock

could not assist with; blue segments where Bellrock was able

to recover a 2-hop location, etc. There are two clear trends:

the first is that Bellrock was able to recover around half of

the positions in every case, the vast majority of which were

2-hop locations. Combining all of the test results together,

of 982282 failed 1-hop locations, Bellrock recovered 507255

(51.6%) as 2-hop, 11848 (1.2%) as 3-hop and 262 (0.02%) as

4-hop locations. The second trend is that the total number of

failures increases as the number of beacons removed increases.

This is to be expected—fewer beacons give less coverage in

general.

We conclude from these results that personal beacons can

significantly increase robustness within a dedicated beacon

deployment.

2) Scope for Personal Beacon-Only Deployments: The ma-

jority of spaces today have no dedicated beacon deployment

for Bellrock to enhance. It is interesting to understand the

extent to which Bellrock could provide useful location data

in such circumstances. Clearly the answer is dependent on

many factors including the number of users in an area, their



(a) SpaceLab data (b) AT&T data

Fig. 3. Histogram of the total time spent beaconing by each device for each day

(a) SpaceLab data (b) AT&T data

Fig. 4. Histogram of the beacon period durations across all devices and days. (Note the logarithmic x-axes).

(a) SpaceLab data (b) AT&T data

Fig. 5. Histogram of the number of AID changes per hour, taken across all devices on all days.

mobility patterns, the environment layout, the beacon range,

etc. Nonetheless, we can use our datasets to assess sample

office environments. Arguably such an environment is the best

case: lots of personal devices in close proximity with owners

who are predominantly sedentary.

Without dedicated beacons Bellrock relies on being able to

hear at least one other personal beacon, and preferably more.

Figure 7 gives a histogram of the number of beacons that

could be heard over 5 s intervals in the two datasets. The

key observation from is that, despite the different sources, the

distributions in Figure 7 are very similar, with both showing

peaks around 5 neighbours. Most importantly the proportion

of time spent out of range of any other beacon was less than

10% (AT&T data) or 6% (SpaceLab data). Thus Bellrock

could have provided proximity information (albeit most likely

relative) over 90% of the time.

E. Security and Privacy Evaluation

As with many systems, there are a few pathological con-

ditions under which Bellrock is vulnerable. To explore these,

we first make the following assumptions: the Bellrock server is

secure, i.e. adversaries have no access to its databases, binaries



(a) All beacons

(b) Beacons removed

Fig. 6. SpaceLab proximity location results

(a) SpaceLab data (b) AT&T data

Fig. 7. The distribution of number of neighbours

or server memory; Bellrock client-server communications are

secure; and there is access to a source of random numbers

with high entropy. All of these assumptions are achievable

using standard architectures.

Spoofing. Bellrock can reduce the risk of spoofing by

regularly changing the AID. For the E-AID scheme, a counter

would need to be incorporated in the AID generation and the

server would need to reject any device with a counter lower

than the highest observed.

Denial of Service (DoS). Bellrock is vulnerable to various

Denial-of-Service (DoS) attacks. Most beaconing technologies

will be susceptible to jamming of the beaconing channel.

However, this is typically highly localised and unlikely to

benefit the attacker. More likely is an attack on the server

by overloading its capacity. This could be achieved by, say,

reporting artificial beacon messages containing random AIDs.

Bellrock addresses this by requiring all devices to have a

UUID and encryption key issued by the server, even if they

never beacon. When reporting sightings, device use this pair

to identify themselves. The server can then blacklist devices

that repeatedly submit unresolvable AIDs.

Brute Force Key Search. An attacker could perform a brute-

force decryption to find the key of a device. They would need

to observe multiple AIDs from the same device and brute-

force the decryption, looking for outputs where the first eight

bytes (the UUID) matched. This is, however, very costly—

generously assuming the attacker can use a large network of

machines to try 1012 keys per second9, it would still take about
2128

1012 ≈ 1029 s which is approximately 108 times the age of the

universe assuming AES with 128-bit keys. Even if the attack

succeeded, the attacker has only found the key for one device

and cannot decode any others. Furthermore, regularly changing

device keys when they communicate with the server minimises

the impact of such an attack.

Low Node Density. When there are few devices operating

in an area, Bellrock cannot prevent AID-linkage and hence

tracking. As an example, consider a lone user in a building.

Regardless of the AID being broadcast, they can be trivially

tracked since they are the only beacon present. A related

problem arises when significant spaces are owned by a single

person (e.g. a single-occupancy office). In these cases the

system is vulnerable: however, there are many other ways to

track individuals in this situation, such as WiFi tracking.

Power Matching. If a beacon changes its AID without a

period of movement, the change may be observable from a

static listener. This listener would see one AID disappear,

only for another to appear with very similar characteristics

(RSSI values, etc). For this reason it may be sensible to vary

the transmit power alongside the AID in such a way that the

server knows the current transmit power but a listener does not.

Similarly, a randomised pause between AID changes would be

advisable.

VI. RELATED WORK

Bluetooth Beacons. Beacons based on Bluetooth Low

9Our benchmarks had one machine decrypting 106 keys per second.



Energy are a popular way to provide proximity location due

the wide availability of the technology. Apple pioneered the

use of BLE beacons through their iBeacon product [14],

[15], [16] and other manufacturers have followed with other

variants [17], [18]. All are layered on the core BLE protocol,

making them more similar than different. their use for location

services has triggered privacy concerns ([19], [20], [21]),

motivating anonymous beaconing.

Anonymous Beaconing. As outlined in Section III-1,

anonymous beaconing has been studied extensively in the

RFID domain [1], [2]. In principle any anonymisation scheme

can be used by Bellrock.

Anonymous BLE beacons are also commercially available,

although details are scant. All of the schemes involve a trusted

third party as per Bellrock. Estimote’s Secure UUID [22]

system assigns each beacon a unique key at manufacture,

used to generate a visible ID to broadcast. An observer of

the Visible ID forwards it to a cloud server to obtain the

real ID, but further details are not published. In parallel

with this work, Google have released the Eddystone BLE

beacon platform [18], [5], which offers beacons an ephemeral

ID (EID) that changes every few minutes. The EID can be

resolved to a unique ID using a trusted third party. Although

developed independently, the Eddystone EID is equivalent to

the Bellrock S-AID scheme, involving the third party pre-

computing new EIDs at the start of each epoch and then

performing lookups.

Note that the focus for BLE to date has been on anonymis-

ing a manual deployment of static beacons for managed

environments such as retail stores. Bellrock aims to provide

location services both to enhance and to knit together these

small, dedicated deployments.

Crowdsourcing. Bellrock’s repurposing scheme is close

in nature to “crowd-GPS” systems such at Tile [23] or

TrackR [24]. These use tags (usually BLE-based) attached to

important devices such as keys. Smartphones act as observers,

running a client-side app that searches for tags whenever the

phone knows its coarse location. and reporting a tag sighting

to a central server. The owner of a lost tag can query the

server to find the last known sighting. Commercial systems

currently have very weak privacy guards, prompting the semi-

decentralised Techu system [25]. In Techu, observers report

a triple of {timestamp, observed tag ID, pseudonym} to an

untrusted server. The pseudonym is a handle that can be used

to connect to the device. To find a tag, a device retrieves this

pseudonym from the server and uses it to contact the observing

device. It then proves ownership of the tag and is told the

location that the device observed it.

The design decisions for Techu reflect its usage model:

irregular, infrequent requests for a coarse (perhaps building-

level) location of a tag. By contrast, Bellrock is associated

with regular requests for more accurate location information.

Both systems have a single point of failure in the form of

a central server, but a compromised Techu server will not

reveal any private information, unlike the Bellrock server. A

Techu-based Bellrock system would have personal devices

both beaconing and continuously listening, reporting back their

observations to the server. A device seeking its location would

provide its observations to the server and receive back a list

of communication IDs. It would then need to contact the

devices to ask if they had a location fix. Unfortunately this

is not practical, partly because of the significantly increased

power drain associated with constant listening; partly because

it assumes a WAN is always present; and partly because static

beacons will not have the power or communications hardware

to participate.

Location for Ad-hoc and IoT Networks. The localisation

of nodes from connectivity graphs has been studied within the

context of Ad-hoc wireless networks. Here, nodes distributed

arbitrarily in space must localise themselves, either relatively

or absolutely [26], [27], [28], [29]. Typically the techniques

require some form of accurate distance or angle sensor, but in

principle could extend Bellrock significantly.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have described the Bellrock framework,

designed to give conventional dedicated (non-personal) bea-

cons access control and allow the use of personal device

as anonymous proximity beacons to improve (or provide)

beacon coverage. This is achieved by permitting beaconing

only when the device is stationary and ensuring the content of

the beacon is a mutable pseudo-anonymous ID that can be de-

anonymised using a cloud-based service. We have described

the implementation of the framework using Bluetooth Low

Energy (BLE) advertisements on Android, finding minimal

battery impact for users.

We have evaluated Bellrock using two extensive datasets of

office personnel movements, one of which collected BLE ad-

vertisements between wrist-worn beacons/listeners and static

dedicated beacons. For that dataset we found that Bellrock

was able to provide locations for 8,542 of the 21,796 failed

locations that would have occurred in the system. When the

dedicated beacon density was reduced, Bellrock performed

similarly, providing locations for over 50% of the failed

locations. Our analysis found that office workers were out of

range of their colleagues for only 10% of the time, indicating

Bellrock can provide relative proximity-based locations 90%

of the time, even without a dedicated beacon deployment.

In future work we intend to explore the extent to which the

spatial geometry of the beacon network can be recovered, ap-

plying localisation techniques from wireless ad-hoc networks.

We also intend to explore the use of more advanced positioning

methods such as radio fingerprinting [30]. Finally, we hope to

investigate ways to beacon while moving without adversely

impacting privacy.
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