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Abstract

Deep Gaussian processes (DGPs) are multi-layer hieratapneralisations of
Gaussian processes (GPs) and are formally equivalent t@lneetworks with
multiple, infinitely wide hidden layers. DGPs are probagtiti and non-parametric
and as such are arguably more flexible, have a greater capagéneralise, and
provide better calibrated uncertainty estimates thamradtere deep models. The
focus of this paper is scalable approximate Bayesian legrof these networks.
The paper develops a novel and efficient extension of préibabibackpropa-
gation, a state-of-the-art method for training Bayesianrakenetworks, that can
be used to train DGPs. The new method leverages a recentypsed method
for scaling Expectation Propagation, called stochastipe€tation Propagation.
The method is able to automatically discover useful inputpivey, expansion or
compression, and it is therefore is a flexible form of Bayesiarnel design. We
demonstrate the success of the new method for supervigailgan several real-
world datasets, showing that it typically outperforms Ggression and is never
much worse.

1 Introduction

Gaussian Processes (GPs) are powerful nonparametribdigins over continuous functions which
can be used for both supervised and unsupervised learnitidgpns [1]. In this article, we study

a multi-layer hierarchical generalisation of GPs or deep<s@mn Processes (DGPs) for supervised
learning tasks. A GP is equivalent to an infinitely wide néaework with single hidden layer and
similarly a DGP is a multi-layer neural network with muléghfinitely wide hidden layer$ [2]. The
mapping between layers in this type of network is paramsdrby a GP, and as a result DGPs are
arguably more flexible, have a greater capacity to genetalisd are able to provide better calibrated
predictive uncertainty estimates than standard muledayodels([3].

More formally, suppose we have a training set compriging-dimensional input vectorgx,, }_,

and corresponding real valued scalar observationg’_,. The probabilistic representation of a
DGP comprising of. layers can be written as follows,
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Here hidden layers are denotkgd, and the mapping function between the lay¢jsis drawn from
a GP. A Gaussian (regression) likelihood is used in this wardifferent likelihood can easily be
accommodateld.

The DGP collapses back to a standard GP whena 1 (when there are no hidden layers) or when
only one of the functions is non-linear. The addition of rimear hidden layers can potentially
overcome practical limitations athallowGPs. First, modelling real-world complex datasets often
requires rich, hand-designed covariance functions. D@Rgerform input warping or dimension-
ality compression or expansion, and hence automaticallyl® construct a kernel that works well
for the data at hand. Second, the functional mapping froratgyfo outputs specified by a DGP is
non-Gaussian which is a more general and flexible modellirice. Third, DGPs can repair dam-
age done by sparse approximations to the representationalrpf each GP layer. For example,
inducing point based approximation methods for GPs tradéeincomplexity for a lower compu-
tational complexity of0(L N M?) whereL is the number of layersy is the number of datapoints
andM is the the number of inducing points. This complexity scglesdratically in\/ whereas the
dependence on the number of layérss only linear. Therefore, it can be cheaper to increase the
representation power of the model by adding extra layeherahan adding more inducing points.

The focus of this paper is Bayesian learning of DGPs, whigblires inferring the posterior over the
mappings between layers and hyperparameter tuning usengainginal likelihood. Unfortunately,
exact Bayesian learning in this model is analytically intedle and as such approximate inference is
needed. Recent work in this frontier largely focussed oratianal free-energy approachés [4]. We
introduce an alternative approximation scheme based er tipproximations. First, in order to side
step the cubic computational cost of GPs we leverage a wellvk inducing point sparse approx-
imation [5/6]. Second, expectation propagation is usegfr@imate the analytically intractable
posterior over the inducing points. Here we utilise stotihaxpectation propagation (SEP) that
prevents the memory overhead from increasing with the numbaatapoints([7]. Third, the SEP
moment computation is itself analytically intractable aaduires one final approximation. For this
we use the probabilistic backpropagation approximafignT8e proposed enables the advantages
of the DGP model to be realised through a computationallgiefit, scalable and easy to implement
algorithm.

2 The Fully Independent Training Conditional approximation

The computational complexity of full GP models scales calbjowith the number of training in-
stances, making it intractable in practice. Sparse appratidon techniques are therefore often re-
sorted to. They can be coarsely put into two classes: onéedpicitly sparsify and create a
parametric representation that approximates the origimadel, and ones that retain the original
nonparametric properties and perform sparse approximatdithe exact posterior. The method we
describe and use here, Fully Independent Training Comditi(-ITC), falls into the first category.
The FITC approximation is formed by considering a small $dtinction valuesu in the infinite
dimensional vectoyf and assuming conditional independence between the remgaialues given
the setu [5l/6]. This set is often called inducing points or pseudagaints and their input locations
can be chosen by optimising the approximate marginal likeld so that the approximate model is
closer to the original model. The resulting model can betemits follows,

p(ul|9l):N(ul;()’KZlfl-,Zlf])’ l=1,---,L (4)
p(hyu, by, 07) = [N (hin: Cowr, Rny), ()
p(ylur, Hp 1,07) = HN(yn, Cnrur, Ry 1) (6)
where le = Khzf1,n,zzf1Kz_ll,l,zl,1 and Rn,l = Khl*l,'ruhlfl,n
Kni—1nz K", 2 Kz_ih_,, + of. The FITC approximation creates a parametric

Hidden variables in the intermediate layers can and willegalty have multiple dimensions but we have
omitted this here to lighten the notation.



model, but one which is cleverly structured so that the iedlugon-stationary noise captures the
uncertainty introduced from the sparsification.

3 Stochastic expectation propagation for deep, sparse Gasian processes

Having specified a probabilistic model for data using a dgsgrse Gaussian processes we now
consider inference for the inducing outputsand learning of the inducing input&; }~ , and
hyperparameter$d}X ,. The posterior distribution over the inducing points canviséiten as
p(u|X,y) « p(u) [[,, p(yn|u, X,,). This quantity can then be used for prediction of output giae
test inputp(y*|x*, X,y) = [ dup(u|X,y)p(y*|u,x*). However, the posterior af is not analyti-
cally tractable when there is more than one GP layer in theetn@d such, approximate inference
is needed; here we use Stochastic Expectation Propag&fd?) ( a recently proposed modification
to Expectation Propagation (EP) [7].

In SEP, the posterigr(u|X, y) is approximated by(u) oc p(u)g(u)”, where the factog(u) could

be thought of as aaveragedata factor that captures the average effect of a likelitean on the
posterior. The form chosen, though seems limited as firgirdotice performs almost as well as EP
in which there is a factag,, (u) per datapoint, while significant reducing EP’s memory foioit{[7].
Specifically for our model, the memory complexity of ERI$N M?) as we need to store the mean
and covariance matrix for each data factor; in contrasth saquirement for SEP is onkp(M?)
regardless of the number of training points.

The SEP procedure involves looping through the datasetipteulimes and performing the fol-
lowing steps: 1. remove(u) from the approximate posterior to form the cavity distribat 2.
incorporate a likelihood term into the cavity to form thaed distribution, 3. moment match the
approximate posterior to this distribution, and in additio EP, 4. perform a small update to the
averagefactorg(u). We choose a Gaussian form for bgtlu) andg(u), and as a result steps 1 and
4 are analytically tractable. We will discuss how to deahvite intermediate steps given a training
datapoint(x, y) in the next section.

4 Probabilistic backpropagation for deep, sparse Gaussiaprocesses

The moment matching step in SEP is analytically intractalslé involves propagating a Gaussian
distribution through a DGP and computing the moments oféisalting complex distribution. How-
ever, for certain choices of covariance functidi€, }-_,, it is possible to use an efficient and accu-
rate approximation which propagates a Gaussian throudfirshéayer of the network and projects
this non-Gaussian distribution back to a moment matched§amn before propagating through the
next layer and repeating the same steps. This scheme isralqeant of the probabilistic backprop-
agation algorithm that has been applied to standard neetabnks [8].

In more detail, let)\' (u) = M (u; m\', V\!) be the cavity distribution, the difficult steps above are
equivalent to the following updates to the mean and coveearfithe approximate posterior:

m—m\l—l—V\llegZ dlog Z (dlogZ)T dlog Z
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whereZ = [ dup(ylx, u)g\'(u) [9]. The inference scheme therefore reduces to evaluatieg t
normalising constan and its gradient. By reintroducing the hidden variables@rhiddle layers,

we perform Gaussian approximationZoin a sequential fashion, taking a two GP layers case as an
example:

2= [ duplybewa" (w) = [ dhsduap(ylin, ua)g (wa) [ dwpulxu)e ) @

We can exactly marginalise out the inducing points for eadh l@yer leading toZ =

J dhiduaq(ylh)g(hy) whereq(hy) = N (hi;my, v1), q(ylh1) = N (y|ha; mayp, , va)n, ) @nd
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Following [10], we can approximate the difficult integraltime equation above by a Gaussi@rs
N (y|ma,v2) where the mean and variance take the following form,

ma = Eqny)[majn, ] = Ef](hl)[KhleZ]K71 mél 9)

z2,22



v2 = BEq(ny) [V2)n, | + Vargay ) [majn, ] (10)
= 05 + Eqn)[EKnyny ] + t1 (BEg(ny) Kagny Kiy 25]) — M3 (11)

whereB = K. ',, (V)" + my'my" K.}, — K;},,. The equations above require the expectations
of the kernel matrix under a Gaussian distribution over timits, which are analytically tractable
for widely used kernels such as exponentiated quadratieatior a more general class of spectral
mixture kernels[[11]. Importantly, the computation graghttee approximation tdog Z and its

gradient can be easily programmed using symbolic packagbsas Theanad [12].

5 Stochastic optimisation of hyperparameters and inducingpoint locations

We complete the main text by discussing the optimisation ofleh hyperparameters and inducing
point locations. Given the approximation to the posterlitamed by using SEP as described above,
one can also obtain the approximate marginal likelihoodigdradients. As a result, parameter
training now involves iterating between running SEP andatipd the hypeparameters based on
these gradients. However, this procedure can only madeegtfiand scalable by following two
observations discussed in [13], which include 1. we do netlrte wait for (S)EP to converge before
making an update to the parameters, and 2. the gradientsénacsum across the whole training
set, enabling fast optimisation using stochastic gradieamputed on minibatches of datapoints.

6 Experimental results

We test our approximation method on several DGP architesfior a regression task on several real-
world datasets. We obtain 20 random splits of each data8s, fer training and 10% for testing
and report the average results and their standard desaitiorable[ 1. The prediction errors are
evaluated using two metrics: root mean squared error (RM8#&)mean log loss (MLL). We use an
exponentiated quadratic kernel with ARD lengthscales. [€hgthscales and inducing points of the
first GP layer are sensibly initialised based on the mediatadce between datapoints in the input
space and the k-means cluster centers respectively. Wengddngthscales and initial inducing
points betweerj—1, 1] for the higher layers to force them to start up with an idgmitapping.
For all results reported here, we use Adam| [14] with minibatize of 50 datapoints and run the
optimiser for 4000 iterations. The learning rate is sekgdig optimising the predictive errors on
a small subset of training points using Bayesian optimesafi5]. We experiment with two one-
hidden-layer DGP networks with hidden variables of one amddimensions, 50 inducing points per
layer and denote them as [DGP, 1, Bajnd [DGP, 2, 50] respectively. We compare them against
sparse GP regression with the same number of inducing pl@ms50]. The results in the table
below show that overall DGP with two dimensional hidden aalés perform as well or better than
sparse GP, and almost always better than the architecttineowe dimensional hidden variables.
Taking the Boston Housing dataset as an example, the mdadogdikelihood using [DGP, 2, 50] is
-2.12, whichis, to the best of our knowledge, better thatesté-the-art results which were obtained
using Bayesian neural networks with probabilistic backgation: -2.571[8], dropout: -2.46 [116]
or SGLD: -2.31[[17].

RMSE MLL
Dataset N D GP, 50 DGP, 1, 50 DGP, 2, 50 GP, 50 DGP, 1,50 DGP, 2, 50
boston 506 13  3.040.63  2.85+065 247+049 -226+031 -230+053 -2.12+0.37
concrete 1030 8 524055 5914165 521+090 -2.97+0.10 -3.07+0.14 -270+0.35
energy 1 768 8 058010 0.77+£0.59 0484005 -0.26+0.13 -0.39+0.37 -0.20+ 0.14
energy 2 768 8 168015  1.78£043 1374023 -105+028 -114-032 -0.76+0.15
kingnm 8192 8  0.04:0.00  0.07+0.04 002+£000 2024006  171+035 2.48+40.03
naval 1 11934 16 002001 0004000 000+ 0.00  2.64+1.14 5144037 502+ 0.59
naval 2 11934 16  0.0%000 000+ 000 0.00+0.00 3.52+0.02  4.67+068 524+ 048
power 9568 4 319018  3.35£0.20 2954030 -253+0.03 -2.61£0.05 -2.38+0.13
red wine 1588 11 0484006 0.62+0.05  054£011 -0.06+0.15 -0.10+0.64  0.294 0.65
whitewine 4898 11 03004 0494009 034+007 001£011 -017£036 066+ 0.31
creep 2066 31 95.8% 18.03 74.86k 13.66 70.58+ 1555 -5.85-+0.35 -5.45+0.20 -5.28+0.29

Table 1: Predictive errors using DGPs and GPs for regressiaeveral UCI datasets

2This is the same as Bayesian warped GPs, that is the one démehsutput of the first layer is warped
through a GP to form the prediction/output.




In addition, we also vary the number of inducing points pgetdor the above networks and trace
out the speed-accuracy frontier. Preliminary resultsdatdis that DGPs is very efficient using our
inference technique and with a small number of inducing{goan obtain a predictive performance
that would require many more inducing points in a shallowehiecture.

7 Conclusion

We have proposed a novel approximation scheme for deep @aysscesses for supervised learn-
ing. Our method extends probabilistic backpropagatiorBi@yesian neural networks, combines it

with an inducing point based sparse GP approximation andemtly proposed method for scalable

approximate Bayesian inference, Stochastic Expectatiopd@ation. We systematically evaluate
our approach on several regression datasets and the @éifialimental results demonstrate the va-
lidity of our method and the effectiveness of DGPs compaoe@®s. Our method is fast, easy to

implement and promisingly, gives state-of-the-art parfance in various regression tasks.

Current work includes performing experiments on largeescitasets, comparing our method to
the variational approach presentedih [4], extension tesifi@ation and unsupervised learning, and
understanding the effect of the network architectures ediption quality.
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