
ar
X

iv
:1

51
1.

03
40

5v
1

 [s
ta

t.M
L]

 1
1

N
ov

 2
01

5

Training Deep Gaussian Processes using Stochastic
Expectation Propagation and Probabilistic

Backpropagation

Thang D. Bui
University of Cambridge
tdb40@cam.ac.uk

Jośe Miguel Hernández-Lobato
Harvard University

jmhl@seas.harvard.edu

Yingzhen Li
University of Cambridge
yl494@cam.ac.uk

Daniel Hernández-Lobato
Universidad Autónoma de Madrid
daniel.hernandez@uam.es

Richard E. Turner
University of Cambridge
ret26@cam.ac.uk

Abstract

Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisations of
Gaussian processes (GPs) and are formally equivalent to neural networks with
multiple, infinitely wide hidden layers. DGPs are probabilistic and non-parametric
and as such are arguably more flexible, have a greater capacity to generalise, and
provide better calibrated uncertainty estimates than alternative deep models. The
focus of this paper is scalable approximate Bayesian learning of these networks.
The paper develops a novel and efficient extension of probabilistic backpropa-
gation, a state-of-the-art method for training Bayesian neural networks, that can
be used to train DGPs. The new method leverages a recently proposed method
for scaling Expectation Propagation, called stochastic Expectation Propagation.
The method is able to automatically discover useful input warping, expansion or
compression, and it is therefore is a flexible form of Bayesian kernel design. We
demonstrate the success of the new method for supervised learning on several real-
world datasets, showing that it typically outperforms GP regression and is never
much worse.

1 Introduction

Gaussian Processes (GPs) are powerful nonparametric distributions over continuous functions which
can be used for both supervised and unsupervised learning problems [1]. In this article, we study
a multi-layer hierarchical generalisation of GPs or deep Gaussian Processes (DGPs) for supervised
learning tasks. A GP is equivalent to an infinitely wide neural network with single hidden layer and
similarly a DGP is a multi-layer neural network with multiple infinitely wide hidden layers [2]. The
mapping between layers in this type of network is parameterised by a GP, and as a result DGPs are
arguably more flexible, have a greater capacity to generalise, and are able to provide better calibrated
predictive uncertainty estimates than standard multi-layer models [3].

More formally, suppose we have a training set comprisingN D-dimensional input vectors{xn}Nn=1

and corresponding real valued scalar observations{yn}Nn=1
. The probabilistic representation of a

DGP comprising ofL layers can be written as follows,

p(fl|θl) = GP(fl;0,Kl), l = 1, · · · , L (1)

p(hl|fl,hl−1, σ
2
l) =

∏

n

N (hl,n; fl(hl−1,n), σ
2
l), h1,n = xn (2)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/153444318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1511.03405v1

p(y|fL,XL−1, σ
2
L) =

∏

n

N (yL,n; fL(hL−1,n), σ
2
L) (3)

Here hidden layers are denotedhl,n and the mapping function between the layers,fl, is drawn from
a GP. A Gaussian (regression) likelihood is used in this work, a different likelihood can easily be
accommodated.1

The DGP collapses back to a standard GP whenL = 1 (when there are no hidden layers) or when
only one of the functions is non-linear. The addition of non-linear hidden layers can potentially
overcome practical limitations ofshallowGPs. First, modelling real-world complex datasets often
requires rich, hand-designed covariance functions. DGPs can perform input warping or dimension-
ality compression or expansion, and hence automatically learn to construct a kernel that works well
for the data at hand. Second, the functional mapping from inputs to outputs specified by a DGP is
non-Gaussian which is a more general and flexible modelling choice. Third, DGPs can repair dam-
age done by sparse approximations to the representational power of each GP layer. For example,
inducing point based approximation methods for GPs trade model complexity for a lower compu-
tational complexity ofO(LNM2) whereL is the number of layers,N is the number of datapoints
andM is the the number of inducing points. This complexity scalesquadratically inM whereas the
dependence on the number of layersL is only linear. Therefore, it can be cheaper to increase the
representation power of the model by adding extra layers rather than adding more inducing points.

The focus of this paper is Bayesian learning of DGPs, which involves inferring the posterior over the
mappings between layers and hyperparameter tuning using the marginal likelihood. Unfortunately,
exact Bayesian learning in this model is analytically intractable and as such approximate inference is
needed. Recent work in this frontier largely focussed on variational free-energy approaches [4]. We
introduce an alternative approximation scheme based on three approximations. First, in order to side
step the cubic computational cost of GPs we leverage a well-known inducing point sparse approx-
imation [5, 6]. Second, expectation propagation is used to approximate the analytically intractable
posterior over the inducing points. Here we utilise stochastic expectation propagation (SEP) that
prevents the memory overhead from increasing with the number of datapoints [7]. Third, the SEP
moment computation is itself analytically intractable andrequires one final approximation. For this
we use the probabilistic backpropagation approximation [8]. The proposed enables the advantages
of the DGP model to be realised through a computationally efficient, scalable and easy to implement
algorithm.

2 The Fully Independent Training Conditional approximation

The computational complexity of full GP models scales cubically with the number of training in-
stances, making it intractable in practice. Sparse approximation techniques are therefore often re-
sorted to. They can be coarsely put into two classes: ones that explicitly sparsify and create a
parametric representation that approximates the originalmodel, and ones that retain the original
nonparametric properties and perform sparse approximation to the exact posterior. The method we
describe and use here, Fully Independent Training Conditional (FITC), falls into the first category.
The FITC approximation is formed by considering a small set of function valuesu in the infinite
dimensional vectorf and assuming conditional independence between the remaining values given
the setu [5,6]. This set is often called inducing points or pseudo datapoints and their input locations
can be chosen by optimising the approximate marginal likelihood so that the approximate model is
closer to the original model. The resulting model can be written as follows,

p(ul|θl) = N (ul;0,Kzl−1,zl−1
), l = 1, · · · , L (4)

p(hl|ul,hl−1, σ
2

l) =
∏

n

N (hl,n;Cn,lul,Rn,l), (5)

p(y|uL,HL−1, σ
2

L) =
∏

n

N (yn;Cn,LuL,Rn,L). (6)

where Cn,l = Khl−1,n,zl−1
K−1

zl−1,zl−1
and Rn,l = Khl−1,n,hl−1,n

−

Khl−1,n,zl−1
K−1

zl−1,zl−1
Kzl−1,hl−1,n

+ σ2

l . The FITC approximation creates a parametric

1Hidden variables in the intermediate layers can and will generally have multiple dimensions but we have
omitted this here to lighten the notation.

2

model, but one which is cleverly structured so that the induced non-stationary noise captures the
uncertainty introduced from the sparsification.

3 Stochastic expectation propagation for deep, sparse Gaussian processes

Having specified a probabilistic model for data using a deep sparse Gaussian processes we now
consider inference for the inducing outputsu and learning of the inducing inputs{zl}Ll=1

and
hyperparameters{θ}Ll=1

. The posterior distribution over the inducing points can bewritten as
p(u|X,y) ∝ p(u)

∏
n p(yn|u,Xn). This quantity can then be used for prediction of output given a

test input,p(y∗|x∗,X,y) =
∫
dup(u|X,y)p(y∗|u,x∗). However, the posterior ofu is not analyti-

cally tractable when there is more than one GP layer in the model. As such, approximate inference
is needed; here we use Stochastic Expectation Propagation (SEP), a recently proposed modification
to Expectation Propagation (EP) [7].

In SEP, the posteriorp(u|X,y) is approximated byq(u) ∝ p(u)g(u)N , where the factorg(u) could
be thought of as anaveragedata factor that captures the average effect of a likelihoodterm on the
posterior. The form chosen, though seems limited as first, inpractice performs almost as well as EP
in which there is a factorgn(u) per datapoint, while significant reducing EP’s memory footprint [7].
Specifically for our model, the memory complexity of EP isO(NM2) as we need to store the mean
and covariance matrix for each data factor; in contrast, such requirement for SEP is onlyO(M2)
regardless of the number of training points.

The SEP procedure involves looping through the dataset multiple times and performing the fol-
lowing steps: 1. removeg(u) from the approximate posterior to form the cavity distribution, 2.
incorporate a likelihood term into the cavity to form the tilted distribution, 3. moment match the
approximate posterior to this distribution, and in addition to EP, 4. perform a small update to the
averagefactorg(u). We choose a Gaussian form for bothq(u) andg(u), and as a result steps 1 and
4 are analytically tractable. We will discuss how to deal with the intermediate steps given a training
datapoint(x, y) in the next section.

4 Probabilistic backpropagation for deep, sparse Gaussianprocesses

The moment matching step in SEP is analytically intractableas it involves propagating a Gaussian
distribution through a DGP and computing the moments of the resulting complex distribution. How-
ever, for certain choices of covariance functions{Kl}Ll=1

, it is possible to use an efficient and accu-
rate approximation which propagates a Gaussian through thefirst layer of the network and projects
this non-Gaussian distribution back to a moment matched Gaussian before propagating through the
next layer and repeating the same steps. This scheme is a central part of the probabilistic backprop-
agation algorithm that has been applied to standard neural networks [8].

In more detail, letq\1(u) = N (u;m\1,V\1) be the cavity distribution, the difficult steps above are
equivalent to the following updates to the mean and covariance of the approximate posterior:

m = m
\1 +V

\1 d logZ

dm\1
, V = V

\1 −V
\1

[

d logZ

dm\1

(

d logZ

dm\1

)

⊺

− 2
d logZ

dV\1

]

V
\1
, (7)

whereZ =
∫
dup(y|x,u)q\1(u) [9]. The inference scheme therefore reduces to evaluating the

normalising constantZ and its gradient. By reintroducing the hidden variables in the middle layers,
we perform Gaussian approximation toZ in a sequential fashion, taking a two GP layers case as an
example:

Z =

∫

dup(y|x,u)q\1(u) =

∫

dh1du2p(y|h1,u2)q
\1(u2)

∫

du1p(h1|x,u1)q
\1(u1) (8)

We can exactly marginalise out the inducing points for each GP layer leading toZ =∫
dh1du2q(y|h1)q(h1) whereq(h1) = N (h1;m1, v1), q(y|h1) = N (y|h1;m2|h1

, v2|h1
) and

m1 = Kx,z1K
−1
z1,z1

m
\1
1 , v1 = σ

2
1 +Kx,x −Kx,z1K

−1
z1,z1

Kz1,x +Kx,z1K
−1
z1,z1

V
\1
1 K

−1
z1,z1

Kz1,x

m2|h1
= Kh1,z2K

−1
z2,z2

m
\1
2 , v2|h1

= σ
2
2 +Kh1,h1

−Kh1,z2K
−1
z2,z2

Kz2,h1
+Kh1,z2K

−1
z2,z2

V
\1
1 K

−1
z2,z2

Kz2,h1

Following [10], we can approximate the difficult integral inthe equation above by a GaussianZ ≈
N (y|m2, v2) where the mean and variance take the following form,

m2 = Eq(h1)[m2|h1
] = Eq(h1)[Kh1,z2]K

−1
z2,z2

m
\1
2 (9)

3

v2 = Eq(h1)[v2|h1
] + varq(h1)[m2|h1

] (10)

= σ
2
2 +Eq(h1)[Kh1,h1

] + tr
(

BEq(h1)[Kz2,h1
Kh1,z2]

)

−m
2
2 (11)

whereB = K−1
z2,z2

(V
\1
2 +m

\1
2 m

\1,T
2)K−1

z2,z2
−K−1

z2,z2
. The equations above require the expectations

of the kernel matrix under a Gaussian distribution over the inputs, which are analytically tractable
for widely used kernels such as exponentiated quadratic, linear or a more general class of spectral
mixture kernels [11]. Importantly, the computation graph of the approximation tologZ and its
gradient can be easily programmed using symbolic packages such as Theano [12].

5 Stochastic optimisation of hyperparameters and inducingpoint locations

We complete the main text by discussing the optimisation of model hyperparameters and inducing
point locations. Given the approximation to the posterior obtained by using SEP as described above,
one can also obtain the approximate marginal likelihood andits gradients. As a result, parameter
training now involves iterating between running SEP and updating the hypeparameters based on
these gradients. However, this procedure can only made efficient and scalable by following two
observations discussed in [13], which include 1. we do not need to wait for (S)EP to converge before
making an update to the parameters, and 2. the gradients involve a sum across the whole training
set, enabling fast optimisation using stochastic gradients computed on minibatches of datapoints.

6 Experimental results

We test our approximation method on several DGP architectures for a regression task on several real-
world datasets. We obtain 20 random splits of each dataset, 90% for training and 10% for testing
and report the average results and their standard deviations in table 1. The prediction errors are
evaluated using two metrics: root mean squared error (RMSE)and mean log loss (MLL). We use an
exponentiated quadratic kernel with ARD lengthscales. Thelengthscales and inducing points of the
first GP layer are sensibly initialised based on the median distance between datapoints in the input
space and the k-means cluster centers respectively. We use long lengthscales and initial inducing
points between[−1, 1] for the higher layers to force them to start up with an identity mapping.
For all results reported here, we use Adam [14] with minibatch size of 50 datapoints and run the
optimiser for 4000 iterations. The learning rate is selected by optimising the predictive errors on
a small subset of training points using Bayesian optimisation [15]. We experiment with two one-
hidden-layer DGP networks with hidden variables of one and two dimensions, 50 inducing points per
layer and denote them as [DGP, 1, 50]2 and [DGP, 2, 50] respectively. We compare them against
sparse GP regression with the same number of inducing points[GP, 50]. The results in the table
below show that overall DGP with two dimensional hidden variables perform as well or better than
sparse GP, and almost always better than the architecture with one dimensional hidden variables.
Taking the Boston Housing dataset as an example, the mean test log likelihood using [DGP, 2, 50] is
-2.12, which is, to the best of our knowledge, better than state-of-the-art results which were obtained
using Bayesian neural networks with probabilistic backpropagation: -2.57 [8], dropout: -2.46 [16]
or SGLD: -2.31 [17].

RMSE MLL
Dataset N D GP, 50 DGP, 1, 50 DGP, 2, 50 GP, 50 DGP, 1, 50 DGP, 2, 50

boston 506 13 3.09± 0.63 2.85± 0.65 2.47± 0.49 −2.26± 0.31 −2.30± 0.53 −2.12± 0.37
concrete 1030 8 5.24± 0.55 5.91± 1.65 5.21± 0.90 −2.97± 0.10 −3.07± 0.14 −2.70± 0.35
energy 1 768 8 0.50± 0.10 0.77± 0.59 0.48± 0.05 −0.26± 0.13 −0.39± 0.37 −0.20± 0.14
energy 2 768 8 1.60± 0.15 1.78± 0.43 1.37± 0.23 −1.05± 0.28 −1.14± 0.32 −0.76± 0.15
kin8nm 8192 8 0.04± 0.00 0.07± 0.04 0.02± 0.00 2.02± 0.06 1.71± 0.35 2.48± 0.03
naval 1 11934 16 0.02± 0.01 0.00± 0.00 0.00± 0.00 2.64± 1.14 5.14± 0.37 5.02± 0.59
naval 2 11934 16 0.01± 0.00 0.00± 0.00 0.00± 0.00 3.52± 0.02 4.67± 0.68 5.24± 0.48
power 9568 4 3.19± 0.18 3.35± 0.20 2.95± 0.30 −2.53± 0.03 −2.61± 0.05 −2.38± 0.13
red wine 1588 11 0.48± 0.06 0.62± 0.05 0.54± 0.11 −0.06± 0.15 −0.10± 0.64 0.29± 0.65
white wine 4898 11 0.37± 0.04 0.49± 0.09 0.34± 0.07 0.01± 0.11 −0.17± 0.36 0.66± 0.31
creep 2066 31 95.87± 18.03 74.86± 13.66 70.58± 15.55 −5.85± 0.35 −5.45± 0.20 −5.28± 0.29

Table 1: Predictive errors using DGPs and GPs for regressionon several UCI datasets
2This is the same as Bayesian warped GPs, that is the one dimensional output of the first layer is warped

through a GP to form the prediction/output.

4

In addition, we also vary the number of inducing points per layer for the above networks and trace
out the speed-accuracy frontier. Preliminary results indicates that DGPs is very efficient using our
inference technique and with a small number of inducing points, can obtain a predictive performance
that would require many more inducing points in a shallower architecture.

7 Conclusion

We have proposed a novel approximation scheme for deep Gaussian processes for supervised learn-
ing. Our method extends probabilistic backpropagation forBayesian neural networks, combines it
with an inducing point based sparse GP approximation and a recently proposed method for scalable
approximate Bayesian inference, Stochastic Expectation Propagation. We systematically evaluate
our approach on several regression datasets and the initialexperimental results demonstrate the va-
lidity of our method and the effectiveness of DGPs compared to GPs. Our method is fast, easy to
implement and promisingly, gives state-of-the-art performance in various regression tasks.

Current work includes performing experiments on large scale datasets, comparing our method to
the variational approach presented in [4], extension to classification and unsupervised learning, and
understanding the effect of the network architectures on prediction quality.

Acknowledgements

TB thanks Google for funding his European Doctoral Fellowship. JMHL acknowledges support
from the Rafael del Pino Foundation. DHL and JMHL acknowledge support from Plan Nacional
I+D+i, Grant TIN2013-42351-P, and from CAM, Grant S2013/ICE-2845 CASI-CAM-CM. YL
thanks the Schlumberger Foundation for her Faculty for the Future PhD fellowship. RET thanks
EPSRC grants EP/G050821/1 and EP/L000776/1.

References

[1] C. E. Rasmussen and C. K. I. Williams,Gaussian Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press, 2005.

[2] A. C. Damianou and N. D. Lawrence, “Deep Gaussian processes,” in 16th International Conference on
Artificial Intelligence and Statistics, pp. 207–215, 2013.

[3] A. Damianou,Deep Gaussian processes and variational propagation of uncertainty. PhD thesis, Univer-
sity of Sheffield, 2015.

[4] J. Hensman and N. D. Lawrence, “Nested variational compression in deep Gaussian processes,”arXiv
preprint arXiv:1412.1370, 2014.

[5] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using pseudo-inputs,” inAdvances in Neural
Information Processing Systems 19, pp. 1257–1264, 2006.

[6] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate Gaussian process
regression,”The Journal of Machine Learning Research, vol. 6, pp. 1939–1959, 2005.

[7] Y. Li, J. M. Hernandez-Lobato, and R. E. Turner, “Stochastic expectation propagation,” inAdvances in
Neural Information Processing Systems 29, 2015.

[8] J. M. Hernández-Lobato and R. P. Adams, “Probabilisticbackpropagation for scalable learning of
Bayesian neural networks,” in32nd International Conference on Machine Learning, 2015.

[9] T. P. Minka, A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts
Institute of Technology, 2001.

[10] A. Girard, C. E. Rasmussen, J. Quiñonero-Candela, andR. Murray-Smith, “Gaussian process priors with
uncertain inputs — application to multiple-step ahead timeseries forecasting,” inAdvances in Neural
Information Processing Systems 15, pp. 529–536, 2003.

[11] A. Wilson and R. Adams, “Gaussian process kernels for pattern discovery and extrapolation,” in30th
International Conference on Machine Learning, pp. 1067–1075, 2013.

[12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, and Y. Ben-
gio, “Theano: new features and speed improvements.” Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop, 2012.

[13] D. Hernández-Lobato and J. M. Hernández-Lobato, “Scalable Gaussian process classification via expec-
tation propagation,”arXiv preprint arXiv:1507.04513, 2015.

5

[14] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in 3rd International Conference
on Learning Representations, 2015.

[15] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of machine learning algo-
rithms,” in Advances in Neural Information Processing Systems 25, pp. 2951–2959, 2012.

[16] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing model uncertainty in
deep learning,”arXiv preprint arXiv:1506.02142, 2015.

[17] A. Korattikara, V. Rathod, K. Murphy, and M. Welling, “Bayesian dark knowledge,” inAdvances in
Neural Information Processing Systems 29, 2015.

6

	1 Introduction
	2 The Fully Independent Training Conditional approximation
	3 Stochastic expectation propagation for deep, sparse Gaussian processes
	4 Probabilistic backpropagation for deep, sparse Gaussian processes
	5 Stochastic optimisation of hyperparameters and inducing point locations
	6 Experimental results
	7 Conclusion

