
Convolutional Gaussian Processes

Mark van der Wilk
Department of Engineering

University of Cambridge, UK
mv310@cam.ac.uk

Carl Edward Rasmussen
Department of Engineering

University of Cambridge, UK
cer54@cam.ac.uk

James Hensman
prowler.io

Cambridge, UK
james@prowler.io

Abstract

We present a practical way of introducing convolutional structure into Gaussian
processes, making them more suited to high-dimensional inputs like images. The
main contribution of our work is the construction of an inter-domain inducing point
approximation that is well-tailored to the convolutional kernel. This allows us to
gain the generalisation benefit of a convolutional kernel, together with fast but
accurate posterior inference. We investigate several variations of the convolutional
kernel, and apply it to MNIST and CIFAR-10, where we obtain significant improve-
ments over existing Gaussian process models. We also show how the marginal
likelihood can be used to find an optimal weighting between convolutional and
RBF kernels to further improve performance. This illustration of the usefulness
of the marginal likelihood may help automate discovering architectures in larger
models.

1 Introduction

Gaussian processes (GPs) [1] can be used as a flexible prior over functions, which makes them an
elegant building block in Bayesian nonparametric models. In recent work, there has been much
progress in addressing the computational issues preventing GPs from scaling to large problems
[2, 3, 4, 5]. However, orthogonal to being able to algorithmically handle large quantities of data is the
question of how to build GP models that generalise well. The properties of a GP prior, and hence its
ability to generalise in a specific problem, are fully encoded by its covariance function (or kernel).
Most common kernel functions rely on rather rudimentary and local metrics for generalisation, like
the Euclidean distance. This has been widely criticised, notably by Bengio [6], who argued that deep
architectures allow for more non-local generalisation. While deep architectures have seen enormous
success in recent years, it is an interesting research question to investigate what kind of non-local
generalisation structures can be encoded in shallow structures like kernels, while preserving the
elegant properties of GPs.

Convolutional structures have non-local influence and have successfully been applied in neural
networks to improve generalisation for image data [see e.g. 7, 8]. In this work, we investigate
how Gaussian processes can be equipped with convolutional structures, together with accurate
approximations that make them applicable in practice. A previous approach by Wilson et al. [9]
transforms the inputs to a kernel using a convolutional neural network. This produces a valid kernel
since applying a deterministic transformation to kernel inputs results in a valid kernel [see e.g. 1, 10],
with the (many) parameters of the transformation becoming kernel hyperparameters. We stress that
our approach is different in that the process itself is convolved, which does not require the introduction
of additional parameters. Although our method does have inducing points that play a similar role
to the filters in a convolutional neural network (convnet), these are variational parameters and are
therefore more protected from over-fitting.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/153444313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Background

Interest in Gaussian processes in the machine learning community started with the realisation that
a shallow but infinitely wide neural network with Gaussian weights was a Gaussian process [11] –
a nonparametric model with analytically tractable posteriors and marginal likelihoods. This gives
two main desirable properties. Firstly, the posterior gives uncertainty estimates, which, combined
with having an infinite number of basis functions, results in sensibly large uncertainties far from
the data (see Quiñonero-Candela and Rasmussen [12, fig. 5] for a useful illustration). Secondly,
the marginal likelihood can be used to select kernel hyperparameters. The main drawback is an
O
(
N3
)

computational cost for N observations. Because of this, much attention over recent years
has been devoted to scaling GP inference to large datasets through sparse approximations [2, 13, 14],
minibatch-based optimisation [3], exploiting structure in the covariance matrix [e.g. 15] and Fourier
methods [16, 17].

In this work, we adopt the variational framework for approximation in GP models, because it
can simultaneously give a computational speed-up to O

(
NM2

)
(with M � N) through sparse

approximations [2] and approximate posteriors due to non-Gaussian likelihoods [18]. The variational
choice is both elegant and practical: it can be shown that the variational objective minimises the
KL divergence across the entire latent process [4, 19], which guarantees that the exact model will
be approximated given enough resources. Other methods, such as EP/FITC [14, 20, 21, 22], can
be seen as approximate models that do not share this property, leading to behaviour that would not
be expected from the model that is to be approximated [23]. It is worth noting however, that our
method for convolutional GPs is not specific to the variational framework, and can be used without
modification with other objective functions, such as variations on EP.

2.1 Gaussian variational approximation

We adopt the popular choice of combining a sparse GP approximation with a Gaussian assumption,
using a variational objective as introduced in [24]. We choose our model to be

f(·) | θ ∼ GP (0, k(·, ·)) , (1)

yi | f,xi
iid∼ p(yi | f(xi)) , (2)

where p(yi | f(xi)) is some non-Gaussian likelihood, for example a Bernoulli distribution through a
probit link function for classification. The kernel parameters θ are to be estimated by approximate
maximum likelihood, and we drop them from the notation hereon. Following Titsias [2], we choose
the approximate posterior to be a GP with its marginal distribution specified at M “inducing inputs”
Z = {zm}Mm=1. Denoting the value of the GP at those points as u = {f(zm)}Mm=1, the approximate
posterior process is constructed from the specified marginal and the prior conditional1:

u ∼ N
(
m, S

)
, (3)

f(·) |u ∼ GP
(
ku(·)>K−1uuu, k(·, ·)− ku(·)>K−1uuku(·)

)
. (4)

The vector-valued function ku(·) gives the covariance between u and the remainder of f , and is
constructed from the kernel: ku(·) = [k(zm, ·)]Mm=1. The matrix Kuu is the prior covariance of u.
The variational parameters m, S and Z are then optimised with respect to the evidence lower bound
(ELBO):

ELBO =
∑
i

Eq(f(xi)) [log p(yi | f(xi))]− KL[q(u)||p(u)] . (5)

Here, q(u) is the density of u associated with equation (3), and p(u) is the prior density from (1).
Expectations are taken with respect to the marginals of the posterior approximation, given by

q(f(xi)) = N
(
µi, σ

2
i

)
, (6)

µi = ku(xi)
>K−1uum , (7)

σ2
i = k(xi,xi) +KfuK

−1
uu(S−Kuu)K

−1
uuKuf . (8)

1The construction of the approximate posterior can alternatively be seen as a GP posterior to a regression
problem, where the q(u) indirectly specifies the likelihood. Variational inference will then adjust the inputs and
likelihood of this regression problem to make the approximation close to the true posterior in KL divergence.

2

The matrices Kuu and Kfu are obtained by evaluating the kernel as k(zm, zm′) and k(xn, zm)
respectively. The KL divergence term of the ELBO is analytically tractable, whilst the expectation
term can be computed using one-dimensional quadrature. The form of the ELBO means that
stochastic optimisation using minibatches is applicable. A full discussion of the methodology is
given by Matthews [19]. We optimise the ELBO instead of the marginal likelihood to find the
hyperparameters.

2.2 Inter-domain variational GPs

Inter-domain Gaussian processes [25] work by replacing the variables u, which we have above
assumed to be observations of the function at the inducing inputs Z, with more complicated variables
made by some linear operator on the function. Using linear operators ensures that the inducing
variables u are still jointly Gaussian with the other points on the GP. Implementing inter-domain
inducing variables can therefore be a drop-in replacement to inducing points, requiring only that the
appropriate (cross-)covariances Kfu and Kuu are used.

The key advantage of the inter-domain approach is that the approximate posterior mean’s (7) effective
basis functions ku(·) can be manipulated by the linear operator which constructs u. This can make
the approximation more flexible, or give other computational benefits. For example, Hensman et al.
[17] used the Fourier transform to construct u such that the Kuu matrix becomes easier to invert.

Inter-domain inducing variables are usually constructed using a weighted integral of the GP:

um =

∫
φ(x; zm)f(x) dx , (9)

where the weighting function φ depends on some parameters zm. The covariance between the
inducing variable um and a point on the function is then

cov(um, f(xn)) = k(zm,xn) =

∫
φ(x; zm)k(x,xn) dx , (10)

and the covariance between two inducing variables is

cov(um, um′) = k(zm, zm′) =

∫∫
φ(x; zm)φ(x′; zm′)k(x,x′) dx dx′ . (11)

Using inter-domain inducing variables in the variational framework is straightforward if the above
integrals are tractable. The results are substituted for the kernel evaluations in equations (7) and (8).

Our proposed method will be an inter-domain approximation in the sense that the inducing input
space is different from the input space of the kernel. However, instead of relying on an integral
transformation of the GP, we construct the inducing variables u alongside the new kernel such that
the effective basis functions contain a convolution operation.

2.3 Additive GPs

We would like to draw attention to previously studied additive models [26, 27], in order to highlight
the similarity with the convolutional kernels we will introduce later. Additive models construct a
prior GP as a sum of functions over subsets of the input dimensions, resulting in a kernel with the
same additive structure. For example, summing over each input dimension i, we get

f(x) =
∑
i

fi(x[i]) =⇒ k(x,x′) =
∑
i

ki(x[i],x
′[i]) . (12)

This kernel exhibits some non-local generalisation, as the relative function values along one dimension
will be the same regardless of the input along other dimensions. In practice, this specific additive
model is rather too restrictive to fit data well, since it assumes that all variables affect the response
y independently. At the other extreme, the popular squared exponential kernel allows interactions
between all dimensions, but this turns out to be not restrictive enough: for high-dimensional problems
we need to impose some restriction on the form of the function.

In this work, we build an additive kernel inspired by the convolution operator found in convnets.
The same function is applied to patches from the input, which allows adjacent pixels to interact, but
imposes an additive structure otherwise.

3

3 Convolutional Gaussian Processes

We begin by constructing the exact convolutional Gaussian process model, highlighting its connections
to existing neural network models, and challenges in performing inference.

Convolutional kernel construction Our aim is to construct a GP prior on functions on images of
size D =W ×H to real valued responses: f : RD → R. We start with a patch-response function,
g : RE → R, mapping from patches of size E. We use a stride of 1 to extract all patches, so for
patches of size E = w × h, we get a total of P = (W − w + 1) × (H − h + 1) patches. We can
start by simply making the overall function f the sum of all patch responses. If g(·) is given a GP
prior, a GP prior will also be induced on f(·):

g ∼ GP (0, kg(z, z
′)) , f(x) =

∑
p

g
(
x[p]
)
, (13)

=⇒ f ∼ GP

0,

P∑
p=1

P∑
p′=1

kg

(
x[p],x′[p

′]
) , (14)

where x[p] indicates the pth patch of the image x. This construction is reminiscent of the additive
models discussed earlier, since a function is applied to subsets of the input. However, in this case, the
same function g(·) is applied to all input subsets. This allows all patches in the image to inform the
value of the patch-response function, regardless of their location.

Comparison to convnets This approach is similar in spirit to convnets. Both methods start with a
function that is applied to each patch. In the construction above, we introduce a single patch-response
function g(·) that is non-linear and nonparametric. Convnets, on the other hand, rely on many linear
filters, followed by a non-linearity. The flexibility of a single convolutional layer is controlled by the
number of filters, while depth is important in order to allow for enough non-linearity. In our case,
adding more non-linear filters to the construction of f(·) does not increase the capacity to learn. The
patch responses of the multiple filters would be summed, resulting in simply a summed kernel for the
prior over g.

Computational issues Similar kernels have been proposed in various forms [28, 29], but have
never been applied directly in GPs, probably due to the prohibitive costs. Direct implementation
of a GP using kf would be infeasible not only due to the usual cubic cost w.r.t. the number of data
points, but also due to it requiring P 2 evaluations of kg per element of Kff . For MNIST with patches
of size 5, P 2 ≈ 3.3 · 105, resulting in the kernel evaluations becoming a significant bottleneck.
Sparse inducing point methods require M2 +NM kernel evaluations of kf . As an illustration, the
Kuu matrix for 750 inducing points (which we use in our experiments) would require ∼ 700 GB of
memory for backpropagation. Luckily, this can largely be avoided.

4 Inducing patch approximations

In the next few sections, we will introduce several variants of the convolutional Gaussian process,
and illustrate their properties using toy and real datasets. Our main contribution is showing that
convolutional structure can be embedded in kernels, and that they can be used within the framework
of nonparametric Gaussian process approximations. We do so by constructing the kernel in tandem
with a suitable domain in which to place the inducing variables. Implementation2 requires minimal
changes to existing implementations of sparse variational GP inference, and can leverage GPU
implementations of convolution operations (see appendix). In the appendix we also describe how the
same inference method can be applied to kernels with general invariances.

4.1 Translation invariant convolutional GP

Here we introduce the simplest version of our method. We start with the construction from section
3, with an RBF kernel for kg. In order to obtain a tractable method, we want to approximate the

2Ours can be found on https://github.com/markvdw/convgp, together with code for replicating the
experiments, and trained models. It is based on GPflow [30], allowing utilisation of GPUs.

4

https://github.com/markvdw/convgp

(a) Rectangles dataset. (b) MNIST 0-vs-1 dataset.

Figure 1: The optimised inducing patches for the translation invariant kernel. The inducing patches
are sorted by the value of their corresponding inducing output, illustrating the evidence each patch
has in favour of a class.

true posterior using a small set of inducing points. The main idea is to place these inducing points
in the input space of patches, rather than images. This corresponds to using inter-domain inducing
points. In order to use this approximation we simply need to find the appropriate inter-domain (cross-)
covariances Kuu and Kfu, which are easily found from the construction of the convolutional kernel
in equation 14:

kfu(x, z) = Eg [f(x)g(z)] = Eg

[∑
p

g(x[p])g(z)

]
=
∑
p

kg

(
x[p], z

)
, (15)

kuu(z, z
′) = Eg [g(z)g(z

′)] = kg(z, z
′) . (16)

This improves on the computation from the standard inducing point method, since only covariances
between the image patches and inducing patches are needed, allowing Kfu to be calculated with
NMP instead of NMP 2 kernel evaluations. Since Kuu now only requires the covariances between
inducing patches, its cost is M2 instead of M2P 2 evaluations. However, evaluating diag [Kff] does
still require NP 2 evaluations, although N can be small when using minibatch optimisation. This
brings the cost of computing the kernel matrices down significantly compared to the O

(
NM2

)
cost

of the calculation of the ELBO.

In order to highlight the capabilities of the new kernel, we now consider two toy tasks: classifying
rectangles and distinguishing zeros from ones in MNIST.

Toy demo: rectangles The rectangles dataset is an artificial dataset containing 1200 images of size
28×28. Each image contains the outline of a randomly generated rectangle, and is labelled according
to whether the rectangle has larger width or length. Despite its simplicity, the dataset is tricky for
standard kernel-based methods, including Gaussian processes, because of the high dimensionality of
the input, and the strong dependence of the label on multiple pixel locations.

To tackle the rectangles dataset with the convolutional GP, we used a patch size of 3 × 3 and 16
inducing points initialised with uniform random noise. We optimised using Adam [31] (0.01 learning
rate & 100 data points per minibatch) and obtained 1.4% error and a negative log predictive probability
(nlpp) of 0.055 on the test set. For comparison, an RBF kernel with 1200 optimally placed inducing
points, optimised with BFGS, gave 5.0% error and an nlpp of 0.258. Our model is both better in terms
of performance, and uses fewer inducing points. The model works because it is able to recognise
and count vertical and horizontal bars in the patches. The locations of the inducing points quickly
recognise the horizontal and vertical lines in the images – see Figure 1a.

Illustration: Zeros vs ones MNIST We perform a similar experiment for classifying MNIST 0
and 1 digits. This time, we initialise using patches from the training data and use 50 inducing features,
shown in figure 1b. Features in the top left are in favour of classifying a zero, and tend to be diagonal
or bent lines, while features for ones tend to be blank space or vertical lines. We get 0.3% error.

5

Full MNIST Next, we turn to the full multi-class MNIST dataset. Our setup follows Hensman
et al. [5], with 10 independent latent GPs using the same convolutional kernel, and constraining q(u)
to a Gaussian (see section 2). It seems that this translation invariant kernel is too restrictive for this
task, since the error rate converges at around 2.1%, compared to 1.9% for the RBF kernel.

4.2 Weighted convolutional kernels

We saw in the previous section that although the translation invariant kernel excelled at the rectangles
task, it under-performed compared to the RBF on MNIST. Full translation invariance is too strong
a constraint, which makes intuitive sense for image classification, as the same feature in different
locations of the image can imply different classes. This can be remedied without leaving the family
of Gaussian processes by relaxing the constraint of requiring each patch to give the same contribution,
regardless of its position in the image. We do so by introducing a weight for each patch. Denoting
again the underlying patch-based GP as g, the image-based GP f is given by

f(x) =
∑
p

wpg(x
[p]) . (17)

The weights {wp}Pp=1 adjust the relative importance of the response for each location in the image.
Only kf and kfu differ from the invariant case, and can be found to be:

kf (x,x) =
∑
pq

wpwqkg(x
[p],xq) , (18)

kfu(x, z) =
∑
p

wpkg(x
[p], z) . (19)

The patch weights w ∈ RP are now kernel hyperparameters, and we optimise them with respect
the the ELBO in the same fashion as the underlying parameters of the kernel kg. This introduces P
hyperparameters into the kernel – slightly less than the number of input pixels, which is how many
hyperparameters an automatic relevance determination kernel would have.

Toy demo: rectangles The errors in the previous section were caused by rectangles along the edge
of the image, which contained bars which only contribute once to the classification score. Bars in the
centre contribute to multiple patches. The weighting allows some up-weighting of patches along the
edge. This results in near-perfect classification, with no classification errors and an nlpp of 0.005.

Full MNIST The weighting causes a significant reduction in error over the translation invariant
and RBF kernels (table 1 & figure 2). The weighted convolutional kernel obtains 1.22% error – a
significant improvement over 1.9% for the RBF kernel [5]. Krauth et al. [32] report 1.55% error
using an RBF kernel, but using a leave-one-out objective for finding the hyperparameters.

4.3 Does convolution capture everything?

As discussed earlier, the additive nature of the convolutional kernel places constraints on the possible
functions in the prior. While these constraints have been shown to be useful for classifying MNIST,
we lose the guarantee (that e.g. the RBF provides) of being able to model any continuous function
arbitrarily well in the large-data limit. This is because convolutional kernels are not universal [33, 34]
in the image input space, despite being nonparametric. This places convolutional kernels in a middle
ground between parametric and universal kernels (see the appendix for a discussion). A kernel
that is universal and has some amount of convolutional structure can be obtained by summing an
RBF component: k(x,x′) = krbf(x,x

′) + kconv(x,x
′). Equivalently, the GP is constructed by the

sum f(x) = fconv(x) + frbf(x). This allows the universal RBF to model any residuals that the
convolutional structure cannot explain. We use the marginal likelihood estimate to automatically
weigh how much of the process should be explained by each of the components, in the same way as
is done in other additive models [27, 35].

Inference in such a model is straightforward under the usual inducing point framework – it only
requires evaluating the sum of kernels. The case considered here is more complicated since we want
the inducing inputs for the RBF to lie in the space of images, while we want to use inducing patches

6

for the convolutional kernel. This forces us to use a slightly different form for the approximating GP,
representing the inducing inputs and outputs separately, as[

uconv
urbf

]
∼ N

([
µconv
µrbf

]
,S

)
, (20)

f(·) |u = fconv(·) |uconv + frbf(·) |urbf . (21)

The variational lower bound changes only through the equations (7) and (8), which must now contain
contributions of the two component Gaussian processes. If covariances in the posterior between fconv
and frbf are to be allowed, S must be a full-rank 2M × 2M matrix. A mean-field approximation can
be chosen as well, in which case S can be M ×M block-diagonal, saving some parameters. Note
that regardless of which approach is chosen, the largest matrix to be inverted is still M ×M , as uconv
and urbf are independent in the prior (see the appendix for more details).

Full MNIST By adding an RBF component, we indeed get an extra reduction in error and nlpp
from 1.22% to 1.17% and 0.048 to 0.039 respectively (table 1 & figure 2). The variances for the
convolutional and RBF kernels are 14.3 and 0.011 respectively, showing that the convolutional kernel
explains most of the variance in the data.

0 5 10
1

1.5

2

2.5

3

Time (hrs)

Te
st

er
ro

r(
%

)

0 5 10

0.04

0.06

0.08

0.1

0.12

Time (hrs)

Te
st

nl
pp

Figure 2: Test error (left) and negative log predictive probability (nlpp, right) for MNIST, using RBF
(blue), translation invariant convolutional (orange), weighted convolutional (green) and weighted
convolutional + RBF (red) kernels.

Kernel M Error (%) NLPP
Invariant 750 2.08% 0.077

RBF 750 1.90% 0.068
Weighted 750 1.22% 0.048

Weighted + RBF 750 1.17% 0.039

Table 1: Final results for MNIST.

4.4 Convolutional kernels for colour images

Our final variants of the convolutional kernel handle images with multiple colour channels. The
addition of colour presents an interesting modelling challenge, as the input dimensionality increases
significantly, with a large amount of redundant information. As a baseline, the weighted convolutional
kernel from section 4.2 can be used by taking all patches from each colour channel together, resulting
in C times more patches, where C is the number of colour channels. This kernel can only account for
linear interactions between colour channels through the weights, and is also constrained to give the
same patch response regardless of the colour channel. A step up in flexibility would be to define g(·)
to take a w × h× C patch with all C colour channels. This trades off increasing the dimensionality
of the patch-response function input with allowing it to learn non-linear interactions between the
colour channels. We call this the colour-patch variant. A middle ground that does not increase the
dimensionality as much, is to use a different patch-response function gc(·) for each colour channel.

7

We will refer to this as the multi-channel convolutional kernel. We construct the overall function f as

f(x) =

P∑
p=1

C∑
c=1

wpcgc

(
x[pc]

)
. (22)

For this variant, inference becomes similar to section 4.3, although for a different reason. While
all gc(·)s can use the same inducing patch inputs, we need access to each gc(x[pc]) separately in
order to fully specify f(x). This causes us to require separate inducing outputs for each gc. In our
approximation, we share the inducing inputs, while, as was done in section 4.3, representing the
inducing outputs separately. The equations for f(·)|u are changed only through the matrices Kfu

and Kuu being N ×MC and MC ×MC respectively. Given that the gc(·) are independent in the
prior, and the inducing inputs are constrained to be the same, Kuu is a block-diagonal repetition of
kg (zm, zm′). All the elements of Kfu are given by

kfgc(x, z) = E{gc}Cc=1

[∑
p

wpcgc

(
x[pc]

)
gc(z)

]
=
∑
p

wpckg(x
[pc], z) . (23)

As in section 4.3, we have the choice to represent a full CM×CM covariance matrix for all inducing
variables u, or go for a mean-field approximation requiring only C M ×M matrices. Again, both
versions require no expensive matrix operations larger than M ×M (see appendix).

Finally, a simplification can be made in order to avoid representing C patch-response functions. If
the weighting of each of the colour channels is constant w.r.t. the patch location (i.e. wpc = wpwc),
the model is equivalent to using a patch-response function with an additive kernel:

f(x) =
∑
p

wp

∑
c

wcgc(x
[pc]) =

∑
p

wpg̃(x
[pc]) , (24)

g̃(·) ∼ GP

(
0,
∑
c

wckc(·, ·)

)
. (25)

CIFAR-10 We conclude the experiments by an investigation of CIFAR-10 [36], where 32 × 32
sized RGB images are to be classified. We use a similar setup to the previous MNIST experiments,
by using 5× 5 patches. Again, all latent functions share the same kernel for the prior, including the
patch weights. We compare an RBF kernel to 4 variants of the convolutional kernel: the baseline
“weighted”, the colour-patch, the colour-patch variant with additive structure (equation 24), and the
multi-channel with mean-field inference. All models use 1000 inducing inputs and are trained using
Adam. Due to memory constraints on the GPU, a minibatch size of 40 had to be used for the weighted,
additive and multi-channel models.

Test errors and nlpps during training are shown in figure 3. Any convolutional structure significantly
improves classification performance, with colour interactions seeming particularly important, as the
best performing model is the multi-channel GP. The final error rate of the multi-channel kernel was
35.4%, compared to 48.6% for the RBF kernel. While we acknowledge that this is far from state
of the art using deep nets, it is a significant improvement over existing Gaussian process models,
including the 44.95% error reported by Krauth et al. [32], where an RBF kernel was used together
with their leave-one-out objective for the hyperparameters. This improvement is orthogonal to the
use of a new kernel.

5 Conclusion

We introduced a method for efficiently using convolutional structure in Gaussian processes, akin to
how it has been used in neural nets. Our main contribution is showing how placing the inducing
inputs in the space of patches gives rise to a natural inter-domain approximation that fits in sparse GP
approximation frameworks. We discuss several variations of convolutional kernels and show how they
can be used to push the performance of Gaussian process models on image datasets. Additionally, we
show how the marginal likelihood can be used to assess to what extent a dataset can be explained
with only convolutional structure. We show that convolutional structure is not sufficient, and that
performance can be improved by adding a small amount of “fully connected” (RBF). The ability to
do this, and automatically tune the hyperparameters is a real strength of Gaussian processes. It would
be great if this ability could be incorporated in larger or deeper models as well.

8

0 10 20 30 40

40

50

60

Time (hrs)

Te
st

er
ro

r(
%

)

0 10 20 30 40

1.8

2.0

2.2

2.4

2.6

Time (hrs)

Te
st

nl
pp

Figure 3: Test error (left) and nlpp (right) for CIFAR-10, using RBF (blue), baseline weighted
convolutional (orange), full-colour weighted convolutional (green), additive (red), and multi-channel
(purple).

Acknowledgements

CER gratefully acknowledges support from EPSRC grant EP/J012300. MvdW is generously sup-
ported by a Qualcomm Innovation Fellowship.

References
[1] Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learning. MIT

Press, 2006.
[2] Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Proceedings

of the 12th International Conference on Artificial Intelligence and Statistics, pages 567–574, 2009.
[3] James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Proceedings of

the 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages 282–290, 2013.
[4] Alexander G. de G. Matthews, James Hensman, Richard E. Turner, and Zoubin Ghahramani. On sparse

variational methods and the Kullback-Leibler divergence between stochastic processes. In Proceedings of
the 19th International Conference on Artificial Intelligence and Statistics, pages 231–238, 2016.

[5] James Hensman, Alexander G. de G. Matthews, Maurizio Filippone, and Zoubin Ghahramani. MCMC for
variationally sparse Gaussian processes. In Advances in Neural Information Processing Systems 28, pages
1639–1647, 2015.

[6] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):
1–127, January 2009. ISSN 1935-8237.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems 25, pages 1097–1105, 2012.

[9] Andrew G. Wilson, Zhiting Hu, Ruslan R. Salakhutdinov, and Eric P. Xing. Stochastic variational deep
kernel learning. In Advances in Neural Information Processing Systems, pages 2586–2594, 2016.

[10] Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth. Manifold gaussian
processes for regression. In 2016 International Joint Conference on Neural Networks (IJCNN), pages
3338–3345, 2016.

[11] Radford M. Neal. Bayesian learning for neural networks, volume 118. Springer, 1996.
[12] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian

process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.
[13] Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection to speed up

sparse Gaussian process regression. In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, 2003.

[14] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems 18, pages 1257–1264, 2005.

[15] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured Gaussian processes
(KISS-GP). In Proceedings of the 32nd International Conference on Machine Learning (ICML), pages
1775–1784, 2015.

[16] Miguel Lázaro-Gredilla, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, and Aníbal R Figueiras-
Vidal. Sparse spectrum Gaussian process regression. Journal of Machine Learning Research, 11:1865–1881,
2010.

9

[17] James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features for gaussian processes.
arXiv preprint arXiv:1611.06740, 2016.

[18] Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural
Computation, 21(3):786–792, 2009.

[19] Alexander G. de G. Matthews. Scalable Gaussian Process Inference Using Variational Methods. PhD
thesis, University of Cambridge, Cambridge, UK, 2016. available at http://mlg.eng.cam.ac.uk/
matthews/thesis.pdf.

[20] Daniel Hernández-Lobato and José Miguel Hernández-Lobato. Scalable gaussian process classification via
expectation propagation. In Artificial Intelligence and Statistics, pages 168–176, 2016.

[21] Thang D. Bui, Josiah Yan, and Richard E. Turner. A unifying framework for sparse gaussian process
approximation using power expectation propagation. arXiv preprint arXiv:1605.07066, May 2016.

[22] Carlos Villacampa-Calvo and Daniel Hernández-Lobato. Scalable multi-class Gaussian process classifi-
cation using expectation propagation. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 3550–3559, 2017.

[23] Matthias Stephan Bauer, Mark van der Wilk, and Carl Edward Rasmussen. Understanding probabilistic
sparse gaussian process approximations. In Advances in neural information processing systems, 2016.

[24] James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. Scalable variational Gaussian
process classification. In Proceedings of the 18th International Conference on Artificial Intelligence and
Statistics, pages 351–360, 2015.

[25] Anibal Figueiras-Vidal and Miguel Lázaro-Gredilla. Inter-domain Gaussian processes for sparse inference
using inducing features. In Advances in Neural Information Processing Systems 22, pages 1087–1095.
Curran Associates, Inc., 2009.

[26] Nicolas Durrande, David Ginsbourger, and Olivier Roustant. Additive covariance kernels for high-
dimensional Gaussian process modeling. In Annales de la Faculté de Sciences de Toulouse, volume 21,
pages p–481, 2012.

[27] David K. Duvenaud, Hannes Nickisch, and Carl E. Rasmussen. Additive Gaussian processes. In Advances
in neural information processing systems, pages 226–234, 2011.

[28] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel networks.
Advances in Neural Information Processing Systems 27, pages 2627–2635, 2014.

[29] Gaurav Pandey and Ambedkar Dukkipati. Learning by stretching deep networks. In Tony Jebara and
Eric P. Xing, editors, Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1719–1727. JMLR Workshop and Conference Proceedings, 2014.

[30] Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas,
Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process library using
TensorFlow. Journal of Machine Learning Research, 18(40):1–6, 2017.

[31] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Karl Krauth, Edwin V. Bonilla, Kurt Cutajar, and Maurizio Filippone. AutoGP: Exploring the capabilities
and limitations of Gaussian process models, 2016.

[33] Ingo Steinwart. On the Influence of the Kernel on the Consistency of Support Vector Machines. Journal of
Machine Learning Research, 2:67–93, 2001.

[34] Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert R. G. Lanckriet. Universality, characteristic kernels
and rkhs embedding of measures. Journal of Machine Learning Research, 12:2389–2410, July 2011.

[35] David K. Duvenaud, James R. Lloyd, Roger B. Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani.
Structure discovery in nonparametric regression through compositional kernel search. In ICML (3), pages
1166–1174, 2013.

[36] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. URL http://www.cs.toronto.edu/~kriz/cifar.
html.

10

http://mlg.eng.cam.ac.uk/matthews/thesis.pdf
http://mlg.eng.cam.ac.uk/matthews/thesis.pdf
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

