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Abstract

Recently, a number of quantum theory (QT)-based information retrieval (IR)

models have been proposed for modeling session search task that users issue

queries continuously in order to describe their evolving information needs (IN).

However, the standard formalism of QT cannot provide a complete description

for users’ current IN in a sense that it does not take the ‘future’ information into

consideration. Therefore, to seek a more proper and complete representation

for users’ IN, we construct a representation of quasi-current IN inspired by

an emerging Two-State Vector Formalism (TSVF). With the enlightenment of

the completeness of TSVF, a “two-state vector” derived from the ‘future’ (the

current query) and the ‘history’ (the previous query) is employed to describe

users’ quasi-current IN in a more complete way. Extensive experiments are

conducted on the session tracks of TREC 2013 & 2014, and show that our

model outperforms a series of compared IR models.

Keywords: Information Retrieval, Two-State Vector Formalism, Quantum

Theory, Session Search

1. Introduction

Recently, quantum theory (QT), as an important formalism for modeling

Information Retrieval (IR) tasks, has attracted increasing attention. van Rijs-
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bergen, in his seminal book [1], proposed for the first time to employ QT as

a unified theoretical formalism for modeling IR tasks. The book showed that5

major IR models (e.g., logical, probabilistic and vector) can be subsumed by a

single mathematical formalism in Hilbert vector space (which can be a complex

space). In that book, some notions in IR are translated into analogous notions

in QT, such as mapping a document into a state vector, regarding each docu-

ment as a superposition of words, and replacing the cosine correlation between10

query and documents with inner product. Beyond that, QT can help address

some problems for IR tasks [2, 3, 4].

Following the pioneering work, a series of Quantum Theory-based IR (QIR)

models were developed and motivated by quantum probability framework. A

representative was Quantum Language Model (QLM) [5], which was presented15

to model term dependencies in IR and gained good performance for ad-hoc re-

trieval tasks. However, QLM was solely targeted on single ad-hoc queries and

limited its further application on the dynamic search tasks, e.g., session search.

To solve that issue, Li et al. [6] developed an adaptive contextual QLM which u-

tilized a density matrix transformation framework to capture the dynamic infor-20

mation (historical queries and clicked documents) within users’ search sessions.

Then a session-based QLM [7] was also put forward to divide those interaction

information into positive and negative feedback to model the evolution of users’

information needs (IN). Later, with the inspiration of “quantum interference”,

the interactive information in a session was used to construct a new superposed25

state of a document in the IN space [8]. All these models mainly focused on uti-

lizing some concepts or phenomena of QT to describe users’ IN. However, they

ignore an important fact that the dynamic evolution of users’ IN in a session

search is supposed be a Markovian-like process from the perspective of QT.

Under the standard formalism of QT, the evolution of a quantum system30

is a Markovian-like process [9] in the sense that the current quantum state of a

system can be completely described by the result of the last measurement. In

this paper, a user’s IN is analogous to the quantum state, and a series of issued

queries are considered as a series of measurement results. Hence, if we use the

standard formalism of QT to model the evolution of a user’s IN, it should also35

be a Markovian-like process, in which the current quantum state is determined

by the last query (also called the current query in this paper), and is irrelevant

with the earlier queries. Note that the above observation could only make sense
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in a QT framework. We do not suppose that it is universally valid.

However, it is still argued that the standard QT cannot completely charac-40

terize a quantum state in a sense that it does not take the information from the

‘future’ into consideration [10]. In short, the current query might be a proper

description for the state of users’ current IN, but it is not complete. Note that

the ‘complete quantum description’ corresponds to the completeness under A-

haronov, Bergmann, and Lebowitz (ABL) principle mentioned in [9]. To seek45

a proper representation for users’ IN, we construct a quasi-current IN, which

contains more complete information than the real current IN, inspired by an

emerging Two-State Vector Formalism (TSVF).

Different from the standard formalism of QT, TSVF equips a time-symmetric

formulation for QT, which the current system is described by a two-state vector50

that contains a backward-evolving vector (named post-selected vector) defined

by the results of measurement performed on this system in future and a forward-

evolving vector (named pre-selected vector). Some evidences have pointed out

that such a formalism can provide more complete information than standard QT

[11, 12, 13]. For example, the result of a measurement of σx, σy, σz performed55

on a spin- 1
2 particle at a given time cannot be inferred under the standard QT

prescriptions due to the three non-commuting measurements. However, those

results can be ascertained with probability 1 under TSVF framework [14]. Cur-

rently, TSVF is mainly applied to make interpretations for some unusual quan-

tum phenomena [15, 16], such as, Three-boxes paradox and Cheshire Cat. In60

this article, we apply TSVF to IR tasks for the first time and further investigate

how much necessary information we should use to represent the quasi-current

IN for QIR models.

According to TSVF, it is incomplete to model users’ current IN only by

the current query (the query that is not retrieved by search engine yet). To65

construct a more complete description, our quasi-current IN should be modeled

by the historical IN and the future IN. We choose the previous query to represent

the historical IN since the earlier queries and interactions in search session are

actually deviated from the real IN in accordance with the quantum philosophy.

Taking session 2 in 2013 Session Track as an example, the current query “where70

to buy scooters” tells us that users’ current information needs are finding a

place to buy scooters. And the previous query “scooter stores” expresses similar

meanings. However, the third last query is “scooter price” which is obviously
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another subtopic about scooter. If the current query and the previous query

are combined together to represent users’ current IN, the weight of these key75

words will be increased during retrieving the relevant documents. If the third

last query is added, some documents containing the word ‘price’ will be also

retrieved and further disturb user searching for right answers. Therefore, the

current query and the previous query combined together can provide a more

proper and complete description for users’ current IN. Note that the amount of80

information in our work is not a statistical or information-theoretical concept,

but rather an empirical consideration about a description of the past and future

information needs of the user. To this end, we formalized a new target function

for original QLM [5] inspired by TSVF and obtained a reliable representation

for current information needs as density matrices by maximizing the formalized85

target function. Due to the maximum likelihood estimation methods in QLM

cannot ensure global convergence, we replace the original training algorithm

with DilutedRρR [17]. Extensive experiments are conducted on the session

tracks of TREC 2013 and TREC 2014, which show that our model outperforms

a series of compared IR models.90

2. Related Work

van Rijsbergen (2004) provided a mathematical framework based on quan-

tum theory (QT) for the foundations of IR [1]. Using this framework, a doc-

ument could be represented as a vector in Hilbert space, and the document’s

relevance could be described by a Hermitian operator. Except that all the usual95

QT notions, such as superposition state and observation, had their IR-theoretic

analogues, the standard QT can be applied to address problems in IR, such as

pseudo-relevance feedback and relevance feedback.

Succeedingly, a series of quantum-based IR (QIR) models were proposed

under the mathematical framework of QT, and especially motivated by some100

quantum phenomena, such as “quantum interference” (QI) and “photon po-

larization” [4, 18, 19, 20, 21]. Zuccon and Azzopardi [4] proposed a Quantum

Probability Ranking Principle (QPRP) that implicitly captured dependencies

between documents through QI. Such a quantum effect was also used for model-

ing interactions between latent topics [19]. In order to perform query expansion,105

a Quantum Entropy Minimization (QEM) model was proposed for learning se-

mantic representations for words and phrases [22]. Later, Zhang [8] expanded
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QT to session search by constructing a new superposition state of each docu-

ment in the information needs space and incorporating QI in query expansion.

Except for QI, other quantum notions were applied to address IR problems. In110

order to alleviate the query-drift problem caused by expanded query, Zhang [18]

derived a novel fusion approach inspired by photon polarization. Then, Zhao

[3] developed a re-ranking approach explored by another important QT concep-

t, namely “quantum measurement”. Besides, Piwowarski et al.[2] presented to

capture different aspects of information needs using tensor space, and achieved115

acceptable performance in an ad-hoc retrieval task.

Although those QIR models mentioned above have achieved good results

and made heuristic utilization of the quantum concepts, they did not give a

clear interpretation about quantum probability. A Quantum Language Model

(QLM) [5] was proposed to model term dependencies in IR and gained good120

performance for ad-hoc retrieval. Subsequently, a series of variants [6, 7, 23]

are proposed based on the QLM in order to make an expansion in wider IR

scenarios. For example, an adaptive contextual QLM model was developed [6]

to model users’ dynamic IN in the context of users interaction. Our model is also

proposed based on QLM and employed for session search task, but it is developed125

from a totally different perspective. In contrast with [6] which utilizes as much

session information as possible to enhance the retrieval performance, we focus

on finding necessary information to represent users’ current IN from existing

session data inspired by Two-State Vector Formalism (TSVF). In addition, we

choose another different maximum likelihood estimation (MLE) method which130

can ensure the global convergence and obtain a Hermitian density matrix [17],

see more detail in Section 4.1 and 4.2.

3. TSVF and Its Analogy to IR

In this section, we will first introduce the basic knowledge of quantum

theory. Then, the difference between the standard formalism of QT and TSVF135

will be presented. Finally, we will describe the adoption of TSVF framework in

session search task.

3.1. Preliminary of Quantum Theory

In QT, the quantum probability space is naturally encapsulated in an in-

finite Hilbert space, noted as Hn, which is an abstract vector space processing140
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the structure of the inner product. A finite dimensional space is sufficient for

the work reported in this paper, thus, we limit our researches to a finite real

space, denoted as Rn. With the Dirac’s notation, a quantum state u⃗ ∈ Rn and

its transpose u⃗T are respectively expressed as a ket |u⟩ and a bra ⟨u|. Suppos-

ing |e1⟩, |e2⟩, · · · , |en⟩ forms an orthogonal basis for Rn, then each unit vector145

|v⟩ can be uniquely written as the superposition of |ei⟩: |v⟩ =
∑

i vi|ei⟩, where
∑

i v2
i = 1. The inner product of u⃗ and v⃗ is represented as ⟨u|v⟩. For a unit

vector |u⟩, the projector is denoted as |u⟩⟨u| ∈ Rn×n. |u⟩⟨u| can also represent

a density matrix of a pure state. A real density matrix ρ is symmetric, ρ = ρT ,

positive semi-definite, ρ ≥ 0, and of trace 1, trρ = 1. The set of n × n real150

density matrices would be noted Sn.

A quantum probability measure µ is the generalization of a classical proba-

bility measure. It satisfies two conditions: (i) for each projector |v⟩⟨v|, µ(|v⟩⟨v|) ∈
[0, 1] and (ii) for any orthogonal basis {|ui⟩} for Rn, we have

∑n
i=1 µ(|ui⟩⟨ui|) =

1. The Gleason’s Theorem [24] has proven the existence of a mapping function155

µρ(|v⟩⟨v|) = tr(ρ|v⟩⟨v|) for any vector v⃗.

3.2. Two-State Vector Formalism

In the standard formalism of QT, a quantum system is described by a single

forward-evolving vector

|Ψ⟩ (1)

which is also named a pre-selected system, as shown in Figure1- (a). The non-160

degenerate operator A measuring on a given vector |Ψ⟩ yields an eigenvalue ak

with the probability:

Pr(ak|Ψ) = |⟨ak|Ψ⟩|2 (2)

Under the standard formalism, the maximal information contained in such

a pre-selected system at present is constrained by the measurement results in

the past. However, one single vector cannot completely characterize the current165

quantum state [25], since the ‘future’ information is not taken into consideration

[14]. Accordingly, Aharonov, Bergman, and Lebowitz (ABL)[10] proposed a

framework named Two-State Vector Formalism (TSVF), which postulated that

a more complete description of a quantum system should be given by a two-state

vector:170

⟨Ψpost||Ψpre⟩ (3)
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Future

Current

Past

a) b)

pre pre

post

Figure 1: Description of quantum systems: (a) a pre-selected system under the standard

formalism, (b) a pre- and post-selected system under Two-State Vector Formalism. Note that

Ψpre is a ket |Ψpre⟩, and Ψpost is a bra ⟨Ψpost|

where |Ψpre⟩ is a pre-selected state evolving from past to now (i.e. forward-

evolving) and ⟨Ψpost| is a post-selected state evolving from the future to now

(i.e. backward-evolving), respectively shown in Figure 1- (b). ABL also proves

that an intermediate measurement of the non-degenerate operator B yields an

eigenvalue bk with the probability[12]:

Pr(bk|Ψpre, Ψpost) =
|⟨Ψpost|bk⟩|2|⟨bk|Ψpre⟩|2∑
j |⟨Ψpost|bj⟩|2|⟨bj |Ψpre⟩|2

(4a)

=
|⟨Ψpost|bk⟩⟨bk|Ψpre⟩|2∑
j |⟨Ψpost|bj⟩⟨bj |Ψpre⟩|2

(4b)

=
|⟨Ψpost|PB=bk

|Ψpre⟩|2∑
j |⟨Ψpost|PB=bj |Ψpre⟩|2

(4c)

where PB=bk
= |bk⟩⟨bk| is the projector of state bk and Eq(4c) is named ABL

rule. Note that if summing over a complete set of the post-selected states, the

ABL rule will be transformed into the regular probability formalism as Eq(2).

The left hand of the Eq(4) is a conditional probability which has an expansion

as following:175

Pr(bk|Ψpre, Ψpost) =
Pr(bk,Ψpost|Ψpre)

Pr(Ψpost|Ψpre)
, (5)
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which is expanded by Eq(4) according to Bayesian Theory. And the denomi-

nator of Eq(4c) is a normalization factor. So, Eq(5) can be approximated as

following:

Pr(bk|Ψpre, Ψpost) ∝Pr(bk,Ψpost|Ψpre) (6a)

=|⟨Ψpost|bk⟩|2|⟨bk|Ψpre⟩|2 (6b)

=Pr(Ψpost|bk)Pr(bk|Ψpre) (6c)

From the Eq(6c), the joint probability of the intermediate event can be approx-

imately equaled to the product of the probability of the pre-selected state and

the probability of the post-selected state. This equation also makes an inspi-

ration for us that when estimating the probability distribution of a retrieved

document in session search; both users’ ‘history’ information needs and ‘future’180

information needs should be considered. In the next section, we will make a dis-

cussion about how to represent users’ ‘history’ and ‘future’ information needs

under the framework of TSVF.

From a simple example, we may clarify the different description of quantum

system between standard QT and TSVF. Let us consider a familiar cognition185

scenario where Alice is required to make an appraisement for Bob. Intuitively,

Bob may obtain more accurate and pertinent appraisement if Alice has known

Bob deeply than that when they just met. A possible reason is that the maximal

information they can exploit in the Einsten-Podolsky-Rosen sense is limited

when they just met. While, when they met after months (can be regarded as190

the ‘future’ compared with the start), the maximal information they can exploit

will be enlarged significantly, thus led to a deeper mutual understanding.

3.3. Analogy to TSVF in IR

In this section, enlightened with the Two-State Vector Formalism (TSVF),

the quasi-current IN is constructed, and the really necessary information is also195

filtered for modeling session search task. This paper uses a quantum system as

an analogy of users’ IN. Under the standard formalism of QT, users’ IN should

be a forward-evolving system, as shown in Figure2- (a). And it is currently

and mainly inferred by users’ interaction information in search engine, such as

existing queries, clicked documents and skipped documents, etc. However, there200

is another property of QT that the evolution of quantum system is a Markov-

like process that the maximal information contained in the current quantum
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Future

Current

Past

a) )

q
future

q
past

q
past

Figure 2: Description of quantum-based IR system: (a) existing quantum-based IR models

(b) a quantum-based IR model inspired by TSVF. Note that qpast is a ket |qpast⟩, and qfuture

is a bra ⟨qfuture|

state is determined by the results of the last measurement. According to this,

users’ current IN should be extracted from the current query, and the histori-

cal interaction data should have no influence on the current IN. Besides, such205

a representation is not complete by limiting the current state on the last his-

torical measurement results, and the information from future is not taken into

consideration. To seek a more complete description, we need to find necessary

information both from future and past to approach to describe users’ current

IN.210

In this paper, the quasi-current IN is assumed to be derived from the nearest

future query and the last historical query. Our idea is in accordance with the

Figure2- (b), which the future IN corresponds to the vector qfuture and the

historical IN corresponds to the vector qpast. The nearest future query is actually

the current query that has not been retrieved by search engine yet. It is the most215

relevant information with respect to users’ really current information needs, and

represents the prediction of really relevant information as well. What’s more, the

real future information is implicit and cannot be captured directly. Therefore,

it is reasonable to treat the current query as the nearest future query. The last

historical query is the query before the current query, also named the previous220
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query. Intuitively, it is the closest historical query for representing the current

IN. During a session search, with the change of users’ IN, modified queries are

getting closer to the real relevant information, and the initial query deviates

much more from current IN in the meantime. Especially for a multi-query task,

the initial query is greater far away from users’ real IN than the current query.225

Thus, if those earlier information was applied for IR tasks, they may disturb the

search engine to capture the real IN. To avoid redundant interactive information

and utilize it properly, the previous query is used to replace all the historical

interaction data.

We take an example from Session Track data to show the reason why the230

TSVF framework is adopted in session-based IR settings. And we will make

a further analysis based on Quantum Language Model (QLM) which uses the

density matrices to represent the probability distribution of the documents. The

participant in TREC 2013 Session 3 writes three queries described as follow:

• query 1:“heart attack causes”235

• query 2:“heart attack causes nhs”

• query 3:“heart attack causes site:nhs.uk”

According to TSVF, query 2 and query 3 will be sent to search engine to rep-

resent users’ current IN. It is apparently reasonable that both queries describe

similar IN and share the same key words “heart attack causes nhs”. When esti-240

mating the density matrix of users’ current IN (two queries), the probability of

these key words will be increased. And the score of estimated documents con-

taining the same key words will be increased as well. If query 1 is added to rep-

resent users’ IN, the probability of “heart attack causes” will be increased. The

evaluated documents mainly containing “heart attack causes” will be ranked at245

the top of returned list. However, it is actually derived from users’ real IN that

they want to find a website relevant with “heart attack causes”. Therefore,

compared with just utilizing current query or all of historical queries,

a two-state vector (extracted from the current query and the previous

query in our tasks) provides a more complete and proper description250

for the quasi-current information needs.
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4. A Quantum IR Model inspired by TSVF

In order to realize our idea, we stem from the computational framework

proposed by a recent Quantum Language Model (QLM) approach for IR [5].

As an extension for classical unigram Language Model, QLM can be used to255

capture richer information than single terms from text excerpts. Document or

query is represented by a density matrix, a well-known mathematical object in

physics. The quantum relative entropy is applied to score the similarity between

evaluated documents and a given query. Our contribution here is to show that

our quasi-current IN extracted from both the current query and the previous260

query is effective for session search task. From now on, we will introduce our

quantum-based IR model inspired by TSVF (QMT).

4.1. Representation

In line with the original QLM approach, each single term or compound

dependency in the vocabulary is expressed as a projector Πk. For the query Q,265

supposing the set |ewj ⟩ forms an orthogonal basis. The projector for a single

word wj is below:

m(wj) = |ewj ⟩⟨ewj |, wj ∈ Q. (7)

And the projector for a compound dependency k (with two or more words for

each dependency) is below:

m(k) = m({w1, ..., wk}) = |k⟩⟨k|, |k⟩ =
K∑

i=1

δi|ewi
⟩ (8)

where the coefficients δi ∈ R must be chosen such that
∑

i δ2
i = 1, and can270

be assigned to the uniform (δi =
√

1/n) or the normalized inverse document

frequency (idf) weight. In the original QLM, the current IN is described by a

single query. According to our analysis above, our proposed quasi-current IN

should be described by two queries, the nearest future query (the current query)

Qfuture, and the last historical query (the previous query) Qpast. In our model275

(QMT), the single words, bi-grams and tri-grams are considered as possible

compound dependencies that are extracted from those two queries. The past

projector set is denoted as Ppast = {Πi}Mpast

i=1 and the future projector set is

denoted as Pfuture = {Πj}Mfuture

j=1 , where M is the number of projectors. Then,

for each occurrence of single terms and compound dependencies in unordered280

fixed windows (with length L) of a document, those projectors are added to the

11



sequence of projectors for the document. We choose to parameterize # as the

unordered window operator in Indri (#uwL), an open source search engine.

The Algorithm 1 shows the process of building the sequence of the future and

past projector sets for a document d.

Algorithm 1 builds the sequence Pfuture and Ppast for a document d given

Qfuture and Qpast

Require: Qfuture, Qpast

1: Pfuture ⇐ ϕ, Ppast ⇐ ϕ;

2: // extract projectors from Qfuture

3: for each k ∈ P(Qfuture) do

4: //k is a single term or a compound dependency

5: for i = 1; i ≤ #(k, d); i + + do

6: // add the projector to the sequence

7: Pfuture ⇐ Pfuture

⊕
m(k);

8: end for

9: end for

10: // extract projectors from Qpast

11: for each k ∈ P(Qpast) do

12: //k is a single term or a compound dependency

13: for i = 1; i ≤ #(k, d); i + + do

14: // add the projector to the sequence

15: Ppast ⇐ Ppast

⊕
m(k);

16: end for

17: end for

18: return Pfuture,Ppast

285

After obtaining the sequence of projectors from the evaluated document,

we define the target function for training the density matrix ρ. In the original

QLM, given a sequence of projectors Pd = {Πi : i = 1, ..., M} for a document

d, the estimation of density matrix ρd can be transformed to the following

maximization problem, in which the objective function is the logarithm of the290

likelihood:

max
ρd

log
M∏

i=1

tr(ρdΠi) (9)

where each Πi is a quantum elementary event representing a single term or

12



compound dependency, and M is the number of quantum events (projectors).

Distinct with QLM, we propose a more general framework for session search

task. According to the analysis above, a more complete description for the295

current information needs should be composed both by its past (the previous

query) and future (the current query). The Eq(6c) provides a mathematical

framework for estimating the probability distribution (density matrix) of the

retrieved documents. Therefore, the current likelihood function of the estimated

document should be the product of the likelihood of the future IN and the300

likelihood of the past IN. The target function in our model is formalized as

follow:

Lcurrent(ρd) = LPpast(ρd)LPfuture
(ρd) ≡ F (ρd). (10)

The estimated ρd can be obtained by approximately solving the following max-

imization problem:

ρd = arg max(
Mpast∑

i=1

log tr(ρdΠi) +
Mfuture∑

j=1

log tr(ρdΠj)). (11)

Note that Mpast cannot be merged with Mfuture because Ppast and Pfuture are305

extracted from the previous query and the current query, respectively.

4.2. Learning

The target function Eq(11) of our model is similar to the objective function

Eq(9) in original QLM. Thus, the RρR algorithm [26] can be used to solve the

optimization problem. The RρR algorithm works in most of cases, but it has310

no theoretical guarantee of convergence, regardless the dataset and the initial

point[17]. So, in this paper, we decide to use another algorithm [17] proposed

under a line search procedure with Armijo condition, namely “Diluted RρR”.

Besides globally convergent, the algorithm is computationally practicable as

well. During the optimization process, the search direction is a combination of315

two ascent directions controlled by the step size t. In the paper [17], it has shown

that an inexact line search method to determine t is enough for finding a value to

guarantee the global convergence. The initial density matrix ρ̃d(0) = diag(θML),

where θML is a classical maximum likelihood language model of a document or

a query. The search direction is given by:320

Dk =
(

2
q(tk)

D
k

+
tktr(∇F (ρ̃d(k))ρ̃d(k)∇F (ρ̃d(k)))

q(tk)
D̃k

)
(12)
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where ∇F (ρ̃d(k)), q(tk), D
k
, D̃k are listed as follow:

∇F (ρ̃d(k)) =
∑

i

fi

tr(ρ̃d(k)Πi)
Πi, fi =

Mi

M
. (13)

Note that Mi is the number of Πi, M is the total of all the quantum events

(projectors).

D
k

=
∇F (ρ̃d(k))ρ̃d(k) + ρ̃d(k)∇F (ρ̃d(k))

2
− ρ̃d(k) (14)

D̃k =
∇F (ρ̃d(k))ρ̃d(k)∇F (ρ̃d(k))

tr(∇F (ρ̃d(k))ρ̃d(k)∇F (ρ̃d(k)))
− ρ̃d(k) (15)

325

q(tk) = 1 + 2tk + t2ktr(∇F (ρ̃d(k))ρ̃d(k)∇F (ρ̃d(k))) (16)

The the step size tk is updated according to the condition described as follow:

F (ρ̃d(k) + tkDk) ≤ F (ρ̃d(k)) + γtktr(∇F (ρ̃d(k))Dk) (17)

If Eq(17) is satisfied, it is shown to be not convergent at global optimum. Then

a new step size tk less than 1 is chosen, and is provided for Eq(12) to get a new

search direction D. If the condition Eq(17) is broken, the density matrix will

be updated as follow:330

ρ̃d(k + 1) = ρ̃d(k) + tkDk (18)

In this paper, we set the number of iterations to 100, γ to 10−4. The initial

value of t is set to 1, and every time it updates with multiplying by 0.7.

4.3. Smoothing

After training a density matrix, the Dirichlet smoothing method is applied

to smooth the density matrices. If ρ̃d is a document QLM obtained by MLE,335

its smoothed version is obtained by interpolation with the MLE collection QLM

ρ̃c:

ρd = (1− αd)ρ̃d + αdρ̃c (19)

where αd ∈ [0, 1] controls the amount of smoothing, and αd = µ
µ+M is a well-

known form of the parameter for Dirichlet smoothing. µ is set to 5000, and M

is the number of quantum events happened in the collection.340
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Table 1: Statistics for TREC 2013 and 2014 Datasets (TREC 2014’s official ground truth only

contains the first 100 sessions).

Items TREC 2013 TREC 2014

#Sessions 87 100

#Queries 442 453

#Avg.session length 5.08 4.53

4.4. Scoring

After obtaining ρQ and ρd, the negative Von Neumann (VN) divergence is

used as the scoring function to rank the documents:

−△V N (ρQ||ρd) = −tr(ρQ(log(ρQ)− log(ρd)))
rank===== tr(ρQlog(ρd))

(20)

In accordance with the analysis in [5], the VN divergence can offer a way to

analyze how much the query is relevant to the document.345

5. EMPIRICAL EVALUATION

5.1. Data Set

Our experiments are conducted on TREC Session tracks 2013 and 2014.

Table 1 lists the statistic information about these two datasets. Session track

2014 actually owns 1024 sessions. Since the official assessors only assessed the350

first 100 sessions, we only take tests on this subset. For each session, there are

a current query used for retrieval task, and several historical queries, search

results, clicked documents, and dwell time. The corpus used in our experiments

is the Clueweb12 Category B collection (CatB) which contains more than 50

million English webpages collected from the Internet. The collection is indexed355

with Indri 5.6, meanwhile, all words are stemmed by the Porter stemmer and

stop words are removed according to the standard stop words list. In order to

simulate real web search scenario and illustrate the robustness of our proposed

model, no spam filtering is adopted for all the runs reported in this paper.

5.2. Descriptions for Tested Models360

To verify the effectiveness of our proposed model, both typical IR models

and Quantum-based IR (QIR) models are used to make comparisons. The tested

models are described as following:
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Table 2: Parameter settings

IR Models Parameters for TREC 2013 Parameters for TREC 2014

Unigram - -

QCM αqcm = 2.2, βqcm = 1.8, ϵqcm = 0.07, δqcm = 0.4, γqcm = 0.92

RM-HS fbTerm = 50, λ = 0.7

QLM L = 16, β = 0.2 L = 8, β = 0.8

QQE L = 32, β = 0.2 L = 8, β = 0.8

SQLM L = 16, β = 0.2 L = 4, β = 0.5

QMT L = 6, β = 0.2 L = 1, β = 0.1

1. Unigram, a classical unigram Language Model as our baseline model.

2. QCM, a Query Change Model [27], which utilizes query change and pre-365

viously retrieved documents to enhance session search.

3. RM-HS, a query expansion approach, in which pseudo feedback documents

are replaced by historical queries and clicked snippets[8].

4. QLM, a Quantum Language Model [5], which adopts the quantum prob-

abilistic framework to model term dependencies for text excerpts.370

5. QQE, a quantum-based IR model with quantum entanglement (QE) [23],

which proves the statistic connection between QE and Unconditional Pure

Dependence, and is proposed based on QLM.

6. SQLM, a session-based QLM [7], which uses the transformation between

density matrices to model the evolution of users’ information needs.375

7. QMT, the proposed QIR Model in this paper inspired by TSVF.

Note that, Unigram, QLM and QQE use the last query. QCM, RM-HS and

SQLM exploit all the queries and document information in the session. Accord-

ing to analysis above, our proposed model (QMT) utilizes the last two queries

(current and previous query).380

For all the IR models, the Dirichlet smoothing parameter µ is set to 5000.

And these models are evaluated under the same ground truth and the same

evaluation metrics. The top ranked 1000 documents retrieved with the unigram

Language Model are used to re-rank for all tested models. Since the top ten

retrieved documents are the most concerned results for users, we employ the385

nDCG@10 (Discount Cumulative Gain) and MAP@10 (Mean average precision)

to evaluate those tested models. NDCG@k is the official evaluation metric
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[28, 29] and can evaluate the relevance degree of documents. MAP@k can

reflect the precision of top k retrieved results and is also another important

metric for session search task [29]. Further, nDCG@1 and nDCG@5 are also390

used to prove the effectiveness of our model. Note that, the final score of all

QLM-based models are combined with first round results by a linear parameter

β, β ∈ (0, 1) with the increment 0.1:

rScore(d) = (1− β)× oScore(d) + β × qScore(d) (21)

where d is a document, oScore is the original score of d, and qScore is the

score obtained by QIR models for d. We use uniform superposition weights (i.e.395

δi =
√

1/n) for quantum event in QLM, and test different fixed-window sizes

(i.e. different L ∈ {1, 2, 4, 6, 8, 16, 32}). More detailed parameter settings with

optimal performance are listed in Table 2. αqcm, βqcm, ϵqcm, δqcm, γqcm are the

original optimal parameters in QCM. We only report the metric nDCG@10 of

RM-HS in this paper due to the following reasons: first, it follows the same400

experimental environment with our experiments, thus, we do not realize this

model; second, the original paper [8] about RM-HS only mentioned the metric

NDCG@10, and other metrics values in this paper are not computed. fbTerm

in RM-HS is the number of pseudo feedback terms, and λ is the weight of

expanded query terms.405

5.3. Results and Discussion

In this section, we report and analyze the performance for all the tested

models on Session Track 2013 and 2014. The evaluation results for all models

evaluated with nDCG@1, nDCG@5, nDCG@10 and MAP @10 are reported in

Table 3 and Table 4. From the tables, we can find that all QLM-based IR models410

(i.e. QLM, QQE, SQLM, QMT) enhance the retrieval effectiveness and stability

in comparison with the classical IR models (i.e. Unigram, QCM, RM-HS) across

two data sets with respect to all the evaluation metrics. The good performance

can be attributed to the reason that QLM can model term dependencies and

capture richer information than single terms from text excerpts. Then, we415

further make comparison among QLM-based IR models and find that SQLM

using interaction information of session does not outperform QLM which only

use single current query. It shows that not all the interaction data is necessary

for modeling session search.
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Table 3: Performance on TREC 2013. Significance test has been conducted for all expansion

models compared with Unigram with paired t−test. Symbol α means p < 0.01, β means

p < 0.05, and boldface means the best performance.

IR Models
TREC 2013

nDCG@1 nDCG@5 nDCG@10 MAP@10

Unigram 0.0565 (0.00) 0.0558 (0.00) 0.0605 (0.00) 0.0072 (0.00)

QCM 0.0672 (18.99β) 0.0597 (7.01) 0.0613 (1.45) 0.0110 (53.63α)

RM-HS - - 0.0600 (-0.82) -

QLM 0.0849 (50.39α) 0.0673 (20.52α) 0.0670 (10.77β) 0.0090 (24.65α)

QQE 0.0795 (40.70α) 0.0635 (13.86β) 0.0634 (4.81) 0.0078 (8.10)

SQLM 0.0664 (17.64β) 0.0558 (0.00) 0.0605 (0.06) 0.0072 (0.04)

QMT 0.1337 (136.63α) 0.0982 (75.98α) 0.0888 (46.77α) 0.0123 (70.83α)

Table 4: Performance on TREC 2014. Significance test has been conducted for all expansion

models compared with Unigram with paired t−test. Symbol α means p < 0.01, β means

p < 0.05, and boldface means the best performance.

IR Models
TREC 2014

nDCG@1 nDCG@5 nDCG@10 MAP@10

Unigram 0.1427 (0.00) 0.1396 (0.00) 0.1422 (0.00) 0.0215 (0.00)

QCM 0.0961 (-32.64) 0.1229 (-11.96) 0.1302 (-8.40) 0.0174 (-19.16)

RM-HS - - 0.1393 (-0.29) -

QLM 0.1536 (7.68) 0.1422 (1.81) 0.1427 (0.38) 0.0215 (0.34)

QQE 0.1641 (15.02β) 0.1429 (2.33) 0.1428 (0.48) 0.0216 (0.78)

SQLM 0.1507 (5.61) 0.1422 (1.86) 0.1444 (1.58) 0.0215 (0.35)

QMT 0.1650 (15.62α) 0.1529 (9.52β) 0.1489 (4.71β) 0.0194 (-9.76)
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Our model, only using current query and the previous query, can most-420

ly achieve the best performance over either classical IR models or QLM-based

IR models. Especially for the evaluation metric nDCG, which can evaluate

the ranking of relevant documents, our proposed QMT achieves significantly

improvement over other tested model. Despite our model does not make im-

provement on TREC 2014 with respect to MAP@10, it still can push relevant425

contents to the front of search results other than just retrieve them. Beyond

that, session length (the number of interactions in a session) is also a key factor

that can influence the performance of the different models on different data sets.

The longer the session length, the richer the interaction information involved in

that session. And the retrieval area of two adjacent queries will become similar430

as well. From Table 1, the average session length of TREC 2013 is longer than

TREC 2014, which means that the last two queries of the former pool more

similar retrieval information than that of the latter. The distinction between

the previous query and the current query in TREC 2014 may bring more noise

information than TREC 2013 during a search, and further lower the precision435

of retrieved results.

6. Conclusions and Future Work

In this paper, we present an innovative analogy between an emerging Two-

State Vector Formalism (TSVF) theory and a dynamic IR task. From the

analogy, we construct a quasi-current IN and find that a “two-state vector” (two440

nearest queries in our tasks) can provide necessary information for modeling

session search task. Moreover, based on analysis from quantum theory, the

previous query can replace all the interaction information in the session of search

engine, and the current query can be regarded as the nearest future information.

Inspired by the TSVF, we propose a novel quantum information retrieval model445

(QMT) which can simulate users’ TSVF-like cognition process in web search.

Extensive experiments have been conducted on the session tracks of TREC 2013

and 2014, which show that QMT outperforms a series of compared IR models.

In the future, we can further improve our model by investigating more

effective means (e.g., pseudo-relevance feedback, EEG and eye tracker) to es-450

timate the future information and extract precisely history information from

user behaviors (click, skip and dwell). Moreover, TSVF may also motivate the
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development of other research problems, such as the time-sensitive prediction

tasks and context-sensitive intention understanding problem.
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