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A B S T R A C T

A hybrid wind instrument generates self-sustained sounds via a real-time in-

teraction between a computed excitation model (such as the physical model of

human lips interacting with a mouthpiece) and a real acoustic resonator. At-

tempts to produce a hybrid instrument have so far fallen short, in terms of both

the accuracy and the variation in the sound produced. The principal reason for

the failings of previous hybrid instruments is the actuator which, controlled

by the excitation model, introduces a fluctuating component into the air flow

injected into the resonator.

In the present thesis, the possibility of using a loudspeaker to supply the cal-

culated excitation signal is evaluated; the loudspeaker is placed at the entrance

of the resonator (a clarinet-like tube), along with a microphone. This work fo-

cusses particularly on two possibilities: using the instrument as a new musical

instrument and using it as a tool to carry out wind instrument research.

First, a theoretical study facilitates the modelling of the loudspeaker-resonator

system and the design of a feedback and feedforward filter to successfully com-

pensate for the presence of the loudspeaker.

The prototype is then evaluated using physical models of a single-reed, a

lip-reed and a bow-string interaction and using a purely mathematical “poly-

nomial” excitation model. For the design of excitation models, the usefulness

of dimensionless and reduced parameter forms is outlined, and a sound pre-

diction theory is presented, enabling the pre-estimation of both amplitude and

spectral related features of the self-sustained sounds.

The resulting self-sustained sounds are evaluated by a mapping of their

sound descriptors to the input parameters of the excitation models, both for

sustained and attack sounds. For all excitation models, the sounds produced

by the hybrid instrument are shown to match those predicted by simulation.
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However, the hybrid instrument is more easily destabilised for certain extreme

parameter states.
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Part I

B A C K G R O U N D

The first part of this dissertation provides an appropriate background

to the reader so that they can familiarise themselves with the topic

with a global introduction (in chapter 1) and with required acoustic

theories to understand the functioning of self-sustained wind instru-

ments (in chapter 2).





1I N T R O D U C T I O N

1.1 the concept in brief

The principal concept laid out in this thesis concerns a class of electronically

augmented acoustic instruments, referred to as “hybrid instruments”. In hy-

brid instruments, a crucial sound production component of the original instru-

ment is replaced by an electronic equivalent. In the first instance, the physical

functioning of an embouchure of a wind instrument (e.g. a clarinet mouthpiece,

including the player’s mouth) is simulated by a computer, which is then put

in interaction with a real acoustic resonator (a clarinet-like tube). The interac-

tion is facilitated with a loudspeaker and a microphone, both positioned at the

entrance of the resonator.

At this point, it may be helpful to gain an intuitive understanding of the

concept by watching a video of one of the outcomes of this work, where the

hybrid wind instrument can be seen in action with a clarinet resonator: http:

//dx.doi.org/10.21954/ou.rd.3848115.

Figure 1 illustrates the concept of the hybrid instrument principle. The pres-

sure p(t) at the resonator entrance is measured with a microphone, which sup-

Air flow signal

Pressure signal

Resonator: clarinet-type tube

Microphone

LoudspeakerExcitation    model

Single-
reed

mouth-
piece

Figure 1: The hybrid wind instrument set-up: a computed mouthpiece in interaction
with a physical resonator by means of a loudspeaker.
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plies the signal to the embouchure model. The embouchure model then enables

the calculation of the associated flow rate signal q(t), which in turn is sent to

the loudspeaker that realises a real (fluctuating) flow at the entrance of the tube.

A simple way to understand the hybrid principle is to consider it as a feed-

back loop generating a feedback squeak. Given that the loudspeaker and mi-

crophone are positioned at the entrance of a resonator, the squeak will be auto-

matically tuned according to the length of the resonator. Hence, the pitch can

be determined by fingering the resonator, just as with a traditional wind instru-

ment. However, instead of simply amplifying the microphone signal, the sig-

nal is modulated using the embouchure physical model. Rather than a simple

squeak, the resulting timbre is more like that of a clarinet.

More generally, it is possible to implement any “excitation model” on the

computer; the model could be based on the physics of real components or it

could be a purely theoretical design. As far as the acoustic resonator is con-

cerned, the bore of any wind instrument with a near-to-closed entrance condi-

tion can be used.

As a loudspeaker is incapable of producing a mean (DC) air flow, it could

be questioned as to how it can be used to simulate a wind instrument’s air

flow signal. However, the mean flow component is known to be of secondary

importance for proper self-sustained functioning, to the extent that it can ac-

tually be removed. This paradox is, for instance, revealed by an experiment

where a membrane is introduced between the mouthpiece and the resonator of

a brass instrument; when the mean flow is diverted through a small hole in the

mouthpiece, the instrument can still be played normally, the fluctuating air in

the resonator is enough to self-sustain the oscillation.

An important aspect to note is that the entire hybrid operation has to occur

in “real-time”. This imposes tight requirements on the computing system, as

the process sequence must be much faster than the oscillations produced by

the hybrid instrument, and the input-to output latency must be much shorter
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than the oscillation’s period, which is generally not the case for general purpose

computing systems.

Compared with fully simulated or fully physical wind instruments, the hy-

brid approach differs in its sound generation possibilities and its accessibility,

so that one can imagine several applications in different contexts; for instance:

as a new musical instrument, as a wind instrument research tool, as an educa-

tional aid for musicians or as an aid for instrument makers.

1.2 motivation

The diversity of the possible applications can be considered in terms of differ-

ent research perspectives from which several related research questions arise.

(These research questions are presented in subsection 1.4.3, after a literature

review and a description of the limitations of the hybrid instrument.)

In the first instance, two branches are considered — the “musical” and “re-

search tool” perspectives — each have clear possibilities with respect to our

early prototypes. In addition to these possible uses, other perspectives can be

imagined for the hybrid instrument. For example, if using a hybrid instrument

as an educational aid for musicians, it would be useful to perform additional

research on a suitable mouth controller that takes into account the learning

strategies of the student. Alternatively, the player’s mouth could be left out so

that the the fingering techniques can be independently mastered. Meanwhile,

if used as an instrument maker’s aid, as well as a similar mouth controller, an

electronic mouthpiece would be required. This mouthpiece would need to be so

precise that the mouthpiece parameters quantitatively correspond to physical

parameters of a real mouthpiece. Finally, in contrast to a real embouchure, the

hybrid instrument does not introduce (humid) air into the instrument. There-

fore it has a clear potential usage in the testing and playing of historical instru-

ments that are no longer allowed to be played by human musicians.
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1.2.1 Musical perspective

the influence of the excitation model on the sound From the

musical perspective, it is important to consider what influence the excitation

source has on the characteristics of the sound produced by an instrument. This

requires a minimum understanding of the functioning of the instrument. In

general, the excitation source can be understood as a component that acts non-

linearly with regard to the amplitude. The resonator behaves in a mainly linear

manner, but introduces an important time delay. It is the coupled interaction

between these components that makes self-sustained sounds possible.

Slawson (1985) makes an interesting distinction between two types of func-

tioning, depending on the strength of this coupling. When the coupling between

the nonlinear and linear element is weak, the resonator’s response is not strong

enough to achieve a self-sustained state, so that either no sound or a sound cre-

ated by the independent excitation source is produced. In the strongly coupled

case, the resonator and excitation source supply energy to each other, resulting

in a looped system where the characteristic time period of the resonator will

mainly determine the pitch of the self-sustained sound that appears. This is

the typical functioning of most wind instruments, but bowed strings and other

self-sustaining acoustic mechanisms also belong to this category.

In this study, the strongly coupled scenario is the main focus of interest, as it

allows the pitch to be controlled by fingering. Both the resonator and the excita-

tion source have an influence on the features of the sound produced. The latter

particularly influences the timbre, but its exact role is not straightforward and

also depends on the resonator type and the note that is being played. However,

it is known that the excitation allows for parameter modulations that are valid

for the whole note range of the instrument (by varying the mouth pressure for

example, a roughly similar change in timbre can be expected, independent of

the played note).
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The influence of several features in the excitation-sound relation are dis-

cussed in the literature. Early works demonstrated the characteristics in the

vibration signals as a function of the nonlinear element (McIntyre et al., 1983)

and mentioned the role of the dynamic aspects of this element on the sound’s

spectrum (Thompson, 1979). Next, attempts were made to quantify this rela-

tion by defining so called “timbre spaces" (Deutsch, 1999), where the hard to

quantify notion of timbre is spread over a number of dimensions by using

a set of “sound descriptors". More recent studies demonstrated the effect on

the timbre (spaces) of specific excitation types such as single and double reeds

(Giordano and McAdams, 2010), the clarinet (Almeida et al., 2013; Barthet et al.,

2011) and the saxophone (Guillemain et al., 2010). In particular, the case of the

clarinet has been thoroughly investigated. A clarinet-specific, close to ortho-

gonal, three dimensional timbre space was found (Barthet et al., 2011) and the

role of the player’s vocal tract and tongue was evidenced (Wolfe and Tarno-

polsky, 2003). Although the fingering ultimately determines the played note,

it is known and it has been theoretically shown that it is still possible to vary

the pitch by up to several tones by changing embouchure properties (Almeida

et al., 2013). Meanwhile, the sound level and the phenomenon of multiphon-

ics are known to be partly governed by the excitation source (Backus, 1977). A

specific class of multiphonics, known as “subharmonic behaviour" or “period

doubling", has been identified as appearing to be a simple mathematical solu-

tion of a theoretical wind instrument approach (Maganza et al., 1986; Gibiat

and Castellengo, 2000). For instance, some special playing techniques on the vi-

olin and singing techniques lead to a physical realisation of “period doubling”;

however, it remains a rare phenomenon in practice (Taillard et al., 2010).

This opens up the possibility of programming a nonlinear element, in a man-

ner that doesn’t represent a real physical situation, so that subharmonics (and

most likely other types of sound features) become easily achievable and control-

lable. It has also been shown that purely theoretical nonlinear functions can res-
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ult in sound oscillations when put into interaction with a resonator (Maganza,

1985).

Throughout this dissertation both physical and non-physical models are con-

sidered. It should be understood that a non-physical model is not based on an

existing physical system, but only on a mathematical formulation that, in this

context of the hybrid instrument, is designed to allow for similar operations

as a physical model, i.e. to enable the production of self-sustained oscillations.

This distinction is worth considering with regard to the musical perspective.

It is known that our perception is particularly strong at identifying the phys-

ical (based) origin of a sound source (see e.g. (De Poli and Rocchesso, 1998)

for an example of where this property is exploited for multimedia purposes).

Since physical sound sources have always surrounded us, our perception is

shaped towards this identification, creating the potential for a fully immersive

experience with these sound sources. Hence, it may be supposed that phys-

ical sound sources offer a broad playing ground for musical expression. On

the other hand, sound synthesis not based on physical processes is directly in-

spired by perception, which is an approach that also offers appealing musical

expression possibilities to players and composers. Hence, it is estimated that

the hybrid integration of a non-physical model in a physical system may well

imply new interesting “hybrid” musical potential.

To conclude, it can be expected that specially designed excitation sources,

together with a suitable mapping of the input parameters, could allow (more)

independent control over the sound features.

why not simulate the resonator as well? As there are reasonably

good resonator models available, the importance of a hybrid instrument might

be called into question, given that an entirely simulated physical model might

offer the same musical potential.

One argument favouring hybrid over simulated instrument designs is that

(real-time computable) resonator models still don’t capture the full physical
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reality. Human perception is extraordinarily well trained in tracking physical

variations of the sound source, which can lie in extremely detailed aspects, such

as transient sounds for example. Therefore, any small non-physical irregularity

in the simulation can be perceived as less natural compared with the behaviour

of real acoustical components. While those non-physicalities could be musically

relevant (as explained in the previous paragraph), the point here is that the

original physical situation is also valuable and is difficult to simulate.

In addition, the presence of artefacts resulting from the transducers (i.e. the

microphone and the loudspeaker) used in the hybrid wind instrument could

also have particular qualities that add an identifiable and musically appreciable

touch to the instrument.

Furthermore, it is well known that when the sound originates from the in-

strument itself, the player experiences a greater feeling of “immersion” with

their performance, compared with the case where the sound originates from an

external loudspeaker.

Finally, while a simulated resonator offers much wider control possibilities, it

can be preferable to embrace the constraints that come with classical fingering

possibilities, as these limitations can provide musical inspiration. When play-

ing an instrument, the maximum expressive instrument control is limited by

the capabilities of the player. As a consequence, a greater amount of control

possibilities has to be reduced by the player or the designer beforehand, which

is a separate task that is usually not welcomed by musicians (Cook, 2001). This

is, for example, one reason why the enormous amount of design and control

possibilities that electronic systems offer also result in a lack of standardised

instruments.

In an interview with Michel Waisvisz, developer and virtuoso of several live

systems and late former director of the Studio for Electro-Instrumental Music

(STEIM, Amsterdam, The Netherlands), Waisviszs formulates his vision for the

future of electronic instruments as follows (Krefeld and Waisvisz, 1990):
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“Apart from frequent sentimental revivals of ancient acoustic instruments, I

think electronics will integrate fully with acoustical instruments and vice versa.

I’m hoping to witness the time when we will be able to manipulate matter

electronically. Then one will be able to combine all the qualities of electronic

control with the superior timbral qualities of acoustically generated sound. It

basically would redeem us from the use of loudspeakers.”

Considering the work that has been done so far, and the potential of this

current research, we might possibly be not so far away from a fully merged

electro-acoustic wind instrument design.

Finally it should be noted that with the proposed hybrid instruments, the

aim is not to come up with “better" alternatives to existing instruments. In-

stead, an alternative approach is sought, with a different accessibility to sound

generation.

1.2.2 Perspective as a tool for wind instrument research

in the extension of blowing machines As the mouthpiece and its

parameters are programmed, the hybrid device provides similar and extended

capabilities to the nowadays commonly used mechanical “blowing machines”

or “artificial mouths” for wind instruments (see e.g. (McGinnis and Gallagher,

1941; Wilson and Beavers, 1974; Ferrand and Vergez, 2010)). Such artificial ex-

citation enables a repeatable and more controlled sound production, so that

more objective research can be performed, for example to verify physical wind

instrument hypotheses and to compare different instruments.

The successful implementation of a hybrid instrument would enable the same

research applications as blowing machines, but with the additional precise

knowledge and control over the mouthpiece parameters. Furthermore, a hy-

brid system also has the advantage that both the pressure and flow rate signals

are known.
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precision Given that the transducers that are employed in a hybrid in-

strument will inevitably introduce small errors in the signals, it is difficult to

determine what precision hybrid results will have. However, additional parallel

measurements on the actuator can be performed and transducer models can be

taken into account, which can enable a precision estimation. Also, even a hybrid

set-up that is not precisely equivalent to a real instrument can be useful. For

example, such a set-up would still allow investigation of phenomena that can

be shown to be independent of the transducer artefacts (see next paragraph).

Finally, it may be expected that future technological improvements will result

in more precise transducers and/or possibilities for the design of filters that

compensate for all of their artefacts.

possible applications As mentioned before, hybrid instruments would

be useful for studies where different resonators are compared through the self-

sustained sound they produce, which is the focus of works such as (Sharp

et al., 2003; Kowal et al., 2014). In addition, specific wind instrument theories

can be verified, especially with respect to resonator characteristics that are not

yet experimentally confirmed. For instance, it would be interesting to test the

hypothesis that the mean flow component that propagates through a wind in-

strument essentially has negligible influence on the produced sound (Rienstra

and Hirschberg, 2013). This could be done by injecting a constant air flow near

the entrance of the resonator. (To minimise the acoustic effect of the parasitic

presence of this additional air channel, a capillary tube could be used.) Further-

more, nonlinear effects of the resonator (Campbell, 1999), the effect of lateral

valve holes (Dalmont et al., 2002) and the nature of attack transients (including

those occurring in complex resonator geometries and due to fingering trans-

itions) (Dalmont et al., 2005; Almeida et al., 2010) can be studied experimentally.

In addition, mouthpiece models (McIntyre et al., 1983; Facchinetti et al., 2003;

Avanzini and Van Walstijn, 2004) can also be studied by evaluating the sound

obtained with the same resonator.
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1.3 state of the art

Among the earliest man made musical instruments were rattles, stampers and

various drums, dating back to prehistoric times (Blades, 1992). The oldest dis-

covered instrument was a flute, found in Slovenia in 1995 and estimated to be

about 50,000 years old (Slovenian Academy of Sciences, 1997). The flute was

constructed from a carved bone and at least four tone holes could be noticed.

Other than that discovery, only evidence of relatively much younger wind in-

struments has been found, dating from over twenty thousand years ago. These

wind instruments were constructed from hollow cane or dried up fruit shells

and, similar to today’s flutes, could be sounded by blowing an opening in a

certain way.

With the introduction of musical acoustic research starting with Pythagoras

in the 6th century BC, little by little the underlying operational principles of

musical instruments were revealed. Much later this resulted in the identification

of generalised models of these traditional musical instruments. Such a basic

model is briefly introduced in section 1.3.1.

With the advent of electronics in the late nineteenth century, electronic mu-

sical instruments quickly made their introduction. Initially the focus was on

the electronic components providing a complementary new sound generation

mechanism, leading to instruments such as the Telharmonium, the Theremin

and electronic organs. It was mainly during the digital synthesis revolution,

starting in the 1980s, that the idea of simulating acoustic instruments came

about. Section 1.3.2 focusses on a particular simulation technique known as

“physical modelling”.

From the moment that real-time simulation of physical models became feas-

ible, attempts have been made to merge physical and electronic components,

through the use of electro-acoustic “transducers”. A literature review on these

new “hybrid” instrument classes is presented in section 1.3.4, starting with stud-

ies of the hybrid principle as applied to wind instruments. These are described
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in depth, discussing their motivations and results, and providing personal crit-

ical opinions. The discussion concludes with reviews on hybrid string instru-

ments (section 1.3.5) and “active control” of musical instruments (section 1.3.6).

The latter concerns the interaction of an electronic controller with an acoustic

resonator.

Specific information related to the technical limitations highlighted by the

literature will be addressed in section 1.4 and information about the electronic

systems (both those described in the literature and the system used in this

study) can be found in appendix B.

1.3.1 Models of acoustic musical instruments

There is a vast amount of literature on the acoustical functioning of musical

instruments (see for example (Fletcher and Rossing, 2012; Chaigne and Ker-

gomard, 2013)). A key publication by McIntyre, Schumacher and Woodhouse

in 1983 (McIntyre et al., 1983) beautifully summarises how oscillations in (self-

sustaining) musical instruments emerge and how they can be described by a

common block diagram, consisting of a nonlinear element (the excitation) and

a linear element (the resonator), which are in physical interaction. Figure 2

shows a block diagram of this type, representing the modular composition of

an arbitrary acoustic musical instrument. The double-headed arrows indicate

those blocks that are in bi-directional interaction, thus designating interactive

components. The physical feedback from the instrument to the control block

is marked by an open arrow, this type of interaction is referred to as “haptic”

feedback (see e.g. (Berdahl et al., 2009)).

Such an acoustic instrument consists of some means of providing a physical

excitation (e.g. an embouchure for wind instruments, a finger plucking a string,

a stick hitting a membrane, a bow-string interaction,...) and a resonator (e.g. an

air-column, a string, a membrane,...), both of which are controlled by human

gestures (e.g. by blowing, bowing, plucking, fingering,...). It should be noted
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Sound producing unit

Excitation Resonator

Control

Radiated 
sound

Figure 2: Block diagram representing the physically relevant components of an acoustic
musical instrument with their interactions. Arrows indicate the direction(s) of
physical interchange.

that certain (continuous) excitation types, such as those for winds or bowed

strings, lead to “self-sustained sounds”; i.e. they can sound continuously until

the energy of the excitation is stopped. Meanwhile other excitations, such as

plucked strings or hit membranes, result in a directly decayed sound.

This block diagram is a somewhat simplified representation of real instru-

ments. For instance, it is not clear where a piano soundboard would sit within

the diagram (it could be interpreted as a part of the “resonator” block). Also,

for some sounding principles the excitation and oscillation-driving resonator

are actually the same physical element (for instance vocal chords, freely buzz-

ing lips or an accordion reed).

1.3.2 Electronic musical synthesis

The knowledge of these models of acoustic instruments has informed an elec-

tronic synthesis technique that implements the governing mathematical equa-

tions. This synthesis technique is known as physical modelling, and nowadays

forms a discipline in its own right. Apart from implementing physical models

for the imitation of real musical instruments, the theoretical nature of this ap-

proach also enables new musical possibilities via the synthesis of virtual phys-

ical situations. Therefore De Poli and Rocchesso speak about “Physically-based

Sound Modelling” (De Poli and Rocchesso, 1998), which is a convenient notion

to capture the whole range of possibilities.
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The first physical model implementation was carried out by Hiller and Ruiz

in 1971, who used finite difference approximations of the wave equation (Hiller

and Ruiz, 1971). However, it took another decade before the computational ef-

ficiency of the physical model’s algorithm and of the computers themselves

became ready for real-time synthesis applications, thereby allowing a direct

interaction with a musician. In 1983, Karplus and Strong proposed a very com-

putationally efficient algorithm to simulate a plucked string by approximating

the string by a delay with filtered feedback. This technique is widely used

and referred to as the “Karplus-Strong” algorithm (Karplus and Strong, 1983).

Subsequently, the algorithm was refined and generalised (implementing other

musical instruments) into the highly efficient technique of digital waveguide

synthesis by Julius O. Smith III (Smith III, 2006) and others. Together with the

increase in Digital Signal Processing power in the late 1980s, commercial imple-

mentations became feasible. Yamaha signed a contract with Stanford University

(where Smith is based) in 1989 to jointly develop digital waveguide synthesis,

and as such most patents related to the technology are owned by Stanford or

Yamaha. A hardware example is the Yamaha VL1, the first physical modelling

synthesiser.

Alongside physically-based sound modelling, there are a vast number of al-

ternative electronic methods of synthesising sounds (for an overview, see for

example (Russ, 2004)). These can often be computationally more efficient and

easier to implement, but the character of the sound (and the control over it) is

typically less “physical” in nature (see section 1.2.1 for the related discussion re-

garding the musical perspectives around physicality). As the hybrid instrument

concept is based on the physical modelling approach, a detailed development

on these alternative synthesis techniques is beyond the scope of this disserta-

tion.

In order to trigger and manipulate sounds from electronic musical instru-

ments, either programmed directives are given (which can be understood as

an “electronic score”), or physical “controllers” can be used. The latter allows
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for the transformation of gestures into electronic signals. Simple buttons and

knobs fall in this category, and the electronic piano keyboard is probably the

most well known example. The situation where a synthesised physical model

is piloted via a controller is represented by the block diagram in figure 3. The

Sound producing unit

Excitation Resonator

Control

Radiated 
sound

Physical
Electronic
Transducer / Controller

Figure 3: Block diagram with the components of a synthesised physical model of a
musical instrument piloted via a controller. Arrows indicate the direction(s)
of (electro-) physical interchange.

dashed blocks represent electronic components and the dash-dotted arrows im-

ply the presence of transducers or controllers. At the present time, there is an

increased interest in more advanced controllers to allow for optimal transfer of

the player’s expressions. Many more controllers can be imagined, and there are

still many that haven’t reached the market yet (Cook, 2004). Of relevance to this

study, one could consider the Yamaha WX-series (Onozawa and Fujita, 2006)

and AKAI EWI-series wind instrument controllers for example, and similarly,

“The pipe”, by Scavone (Scavone, 2003), all of which capture both fingering and

mouth gestures.

1.3.3 Sound transformations

Another possibility provided by electronics is the transformation of an incom-

ing sound signal, typically originating from a microphone or from other acous-

tic sensors, such as the pickups of an electric guitar. Such operations are gen-

erally named “sound effects”. Filters, flangers, distortions and numerous elec-

tronic transformation units fall in this category. Figure 4 depicts a block dia-

gram of a musical instrument that is transformed by a sound effect.
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Figure 4: Block diagram with the components of a musical instrument transformed by
an effect. Arrows indicate the direction(s) of (electro-) physical interchange.

Effects are electronic contributions that are not in bi-directional interaction

with the physical component; hence, the influence on the sound tends to be

manifested as an independent layer on top of the original sound rather than

being part of the sounding mechanism itself. Note that, as the block diagram

suggests, the effect itself can also be manipulated while performing, by means

of controllers.

1.3.4 Electronic excitation of acoustic resonators

From the moment real-time electronic synthesis of physical models became pos-

sible, there have been experiments to design hybrid musical instruments, con-

sisting of a combination of physical and electronic components. Various goals

were targeted, principally corresponding to the motivations for the present

study. To allow for the electro-acoustic interchange, “transducers” (sensors and

actuators, such as a microphone and a loudspeaker) are used. The hybrid prin-

ciple that is studied in this thesis concerns the situation where the excitation

block is electronic and the resonator is an acoustic wind resonator. The corres-

ponding block diagram is presented in figure 5 (although this diagram is not

limited to wind instruments).

Only a handful of studies have been reported on this hybrid wind instrument

principle.

In the context of the “chaos and period-doubling bifurcations” phenomenon,

which was an extensively investigated topic in the early 1980s, a first basic hy-
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Figure 5: Block diagram with the components of a hybrid musical instrument consist-
ing of an electronic excitation and a physical resonator. Arrows indicate the
direction(s) of (electro-) physical interchange.

brid instrument experiment was performed by Kitano in 1983 (Kitano et al.,

1983). The period-doubling theory describes how it is possible to obtain chaotic

behaviour out of a deterministic system with feedback. This scenario applies in

many different physical systems and Kitano briefly demonstrated its validity

on a simple acoustic system. His set-up didn’t include a resonator; instead a

physical delay was implemented, by placing a microphone at a certain distance

from a loudspeaker. The microphone signal was applied to a nonlinear static

function that determined the signal sent back to the loudspeaker. This function

was chosen such that the resulting looped operation resulted in an oscillation

(with the delay as the period), based on the “iterative maps” theory that de-

scribes the dynamical path when iteratively evaluating the nonlinear function

on its own outcome (see for example (Collet and Eckmann, 1980)). It was shown

that, depending on the parameters of the system, a range of typical oscillatory

behaviours could be obtained where the so-called “bifurcation diagram” indic-

ated when the oscillation consecutively doubles in period. Signals with periods

of length two, four and eight were observed to eventually turn into chaos.

It is remarkable that such an apposite behaviour was observed, given that

the loudspeaker’s characteristics were ignored in that study. Indeed, the loud-

speaker’s dynamics have an important effect on its response and it will be

shown later that a careful loudspeaker choice and the application of compens-

ation techniques leads to superior performances. Kitano’s study (which is only

reported in a “Physical review letter”) also doesn’t provide an acoustical or

mechanical interpretation of the results. While Kitano didn’t consider a poten-

tial musical interest, he did mention that several oscillatory behaviours were
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obtained. Apart from the expected period doublings, oscillations with (much)

smaller periods, oscillations modulated with long period (of about 10 ms) and

intermittent chaotic oscillations were also observed, potentially opening up an

enriched musical sound palette.

Other research that informs the set-up developed in the current work, was

performed by Maganza in 1985, and is documented in his PhD thesis (Maganza,

1985) and a subsequent paper (Maganza et al., 1986). Building on the work of

Kitano (whose work he first repeated and confirmed), Maganza replaced the

loudspeaker-microphone delay by a loudspeaker and microphone that were

placed at the entrance of an acoustic resonator (first a simple pipe, then a real

clarinet resonator). This system can also be interpreted as a delay, not between

the simple microphone and loudspeaker input and output signals, but between

the separate up- and downwards propagating pressure waves that can be de-

rived from them. First, Maganza used several polynomial nonlinear excitation

functions that were known to result in self-sustained oscillations with bifurcat-

ing behaviour. He then empirically confirmed some period-doubling scenarios

(again up to three bifurcations). Finally, he implemented a clarinet embouchure

model (an early model, proposed by Schumacher (Schumacher, 1979)) for the

nonlinear function; and, as such, demonstrated a hybrid self-sustained func-

tioning of the clarinet. Like Kitano, Maganza wanted to contribute to the un-

derstanding of the bifurcation phenomenon from an acoustic point of view.

However, he also summarised a number of motivations that are similar to those

of the present work:

• To improve our understanding of the functioning of the clarinet’s excita-

tion mechanism (the acoustic functioning of the embouchure).

• Given that the artificial excitation of the instrument represents a stable

sound source, to study radiation of sound from the instrument (there is

also reference to other “research tool” type motivations, similar to those

mentioned in section 1.2).
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• To improve sound synthesis by deduction.

• To act as an instrument maker’s aid, e.g. deducing desired reed and

mouthpiece features.

• To become a new — hybrid — instrument, whose body remains the cla-

rinet’s but whose excitation — being both electronic and mechanical —

would allow increased possibilities to musicians and composers.

There are several points to be considered regarding Maganza’s work. Generally,

many components are kept as “black boxes” (i.e. theoretical systems without

any knowledge of their internal working) and an empirical methodology is fol-

lowed. Like Kitano, Maganza assumes that the loudspeaker outputs a pressure

signal that is equivalent to the supplied electric signal. Not only is this not the

case for a standalone speaker, when it is mounted on an acoustic resonator,

the strong pressures generated in front of the membrane will impose a non-

negligible coupling between those components. Finally, upon interpretation of

the empirical results, Maganza acknowledges that there are some “parasitic

delays” which might result from the electronic system or the loudspeaker. In

the present thesis, these issues are taken into account and compensated for

(see chapter 3). While the loudspeaker’s characteristics are not provided by

Maganza (it is only said that a “Beyer” headphone loudspeaker with a 200 Ω

impedance was used), some assumptions can be made from the description of

the set-up. For example, by comparing the loudspeaker and resonator size, it

is most likely that the loudspeaker’s resonant frequency lay above the played

note’s fundamental frequency. From the study in chapter 3 in this dissertation,

it is clear that this results in significant phase and gain deviations; however, the

implications are not further considered in this introduction. Another inconsist-

ency in Maganza’s work is related to the interpretation and the use of physical

quantities; this is further discussed in subsection 1.4.1.

Despite these shortcomings, Maganza’s preliminary investigation showed

that the hybrid self-sustained operation and bifurcation conditions are surpris-
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ingly consistent with theory, which suggests that there is a certain robustness

for dynamic perturbation of the system.

A little later, in 1994, as part of his doctoral thesis on the study of the oscil-

lation threshold in nonlinear systems, Grand built a set-up that used an elec-

trodynamic shaker to regulate a valve between a pipe entrance and an external

pressurised chamber (equivalent to the mouth pressure) (Grand, 1994; Grand

et al., 1997). Grand also used Schumacher’s single-reed mouthpiece model and

also placed a microphone at the pipe entrance. His aim was to experimentally

explore the influence of the mouthpiece parameters and to study how separ-

ate resonator modes affect the playing frequency and the bifurcation behaviour.

Again, some basic coherent phenomena were demonstrated even though the

valve’s response (in particular its dynamics) wasn’t taken into consideration. In

Grand’s study, the shaker’s resonant frequency most likely fell below the note’s

fundamental frequency (there is no mention of these characteristics). Interest-

ingly if the electrical signal sent to the shaker were inverted in phase, the whole

set-up would become equivalent to an instrument driven by a lip-valve model

(see 4.3 for details on this model). On the other hand, if the phase weren’t in-

verted, the condition for oscillation would be false. This suggests that Grand

might have unknowingly applied a phase inversion (for example by switching

an electrical polarity).

More recently, in 2010, in a very brief study on attack transients in wind

instruments, Almeida adopted the same physical implementation as Maganza

(Almeida et al., 2010). To avoid complex computing systems or electronic cir-

cuits, the excitation was modelled by a simple linear gain feedback. This was

considered to sufficiently approximate the mouthpiece model during the first

oscillations of a note onset (given that the typical nonlinearity doesn’t come into

play for such low amplitude oscillations). However, while the physical implic-

ations of the presence of the loudspeaker in the system were studied in depth,

no actions were taken to account for its side-effects and only minor usefulness

was reported. The author further draws an interesting conclusion: “Some com-
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plications were identified in this study, in particular the fact that the oscillation

frequencies are affected by the characteristics of the loudspeaker. A complete

emulation of the musical instrument will require, other than the shaping of a

nonlinear relation between the input and output pressures, a circuit to balance

the effect of the microphone / loudspeaker configuration.” This consideration

is further developed in section 3.2.3.

Finally, in 2012, with the aim of creating a device that can serve for wind-

instrument research as well as considering musical potential, Vergez and the

current author explored a hybrid prototype that resembled the one of Grand,

but with an electronic control valve for the actuator and with a very high input

pressure compared to the mouth pressure (Buys and Vergez, 2012). With this

set-up, the control and the function of the valve are not analogous to the reed

movement. Instead the valve movement is proportional to the air flow rate sig-

nal that enters the pipe, which allows the mouth pressure value to be electron-

ically simulated. By choosing a pipe that is long enough, a playing frequency

that lies far below the resonance frequencies of the valve could be achieved. In

this way the response of the valve was roughly flat in amplitude and phase for

the first resonant modes of the pipe and no additional correcting filters were

needed. As such, specific (limited) parameter ranges of the embouchure model

resulted in self-sustained oscillations and comparison with entirely numerical

simulations of the set-up demonstrated that the hybrid instrument behaved co-

herently to some extent. For instance, a correct pitch was obtained, and for an

increasing mouth pressure parameter a typical sound level evolution was es-

tablished. However, the valve wasn’t designed for rapid precise oscillations; in

particular its friction characteristics imposed substantial limitations on the sys-

tem. The result was a restricted amplitude and timbre range and a significant

hysteresis factor.
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1.3.5 Hybrid string instruments

Just like wind instruments, bowed strings can be described by an interaction

between a linear resonator (the string) and a nonlinear excitation source (the

bow-string interaction). Therefore, in a similar manner, hybrid versions of string

instruments can be designed.

In the late nineteenth century, in 1893, a patent was filed by Eisenmann for an

electronically enhanced piano (“elektronisches Klavier”) where microphones

and electromagnets were added to an acoustic piano in order to sustain the

string vibrations (Eisenmann, 1893). This principle was adopted much later

on the electric guitar, with tools like the Ebow (1978, (Heet, 1978)) and the

Sustainiac (1999, (Osborne and Hoover, 1999)); however, here the strings were

both measured and excited by the electromagnets.

From 1986, in order to study the stability of the bowed string motion, Wein-

reich and Caussé (Weinreich and Caussé, 1986, 1991) and later Müller (Müller

and Lauterborn, 1996), worked on a similar system but with a more precise

and theoretically known excitation control. This was achieved by optical string

displacement sensing and an electromagnetic actuation principle. A simplified

bow-string excitation model was implemented on the electronic system, which

allowed for self-sustained sounds to appear. Their devices have proven useful

to attest some basic properties of the bowed string model.

On string instruments, more work has been done on the inverse hybrid prin-

ciple. That is, putting a physical excitation in interaction with an electronic res-

onator simulation. This synthesis approach is represented by the block diagram

in figure 6.

Guérard and Boutillon investigated such an inverse hybrid principle by bow-

ing a “virtual string” (Boutillon and Guérard, 1995; Guerard and Boutillon,

1996; Guérard, 1998): a co-located force sensor and electrodynamic shaker that

are interconnected with a simplified string model programmed on a DSP inter-

face. Some characteristics of the physical elements were taken into account to
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Figure 6: Block diagram with the components of a hybrid musical instrument consist-
ing of an physical excitation and an electronic resonator. Arrows indicate the
direction(s) of (electro-) physical interchange.

achieve an operation comparable to a real bowed string and the typical Helm-

holtz movement was observed.

Although the main purpose of their work was verification of the theoretical

string model, Guérard and Boutillon also briefly discussed musical perspectives

with the motivation of achieving a more realistic gestural bowing control of

partly synthesised sounds.

1.3.6 Active control applied on musical instruments

Another electro-acoustic principle employs “active control” to provide linear

electro-acoustic feedback to the resonator, allowing alternative tonal control

possibilities. The functioning of this principle is represented by the block dia-

gram in figure 7.

Sound producing unit

Resonator’

Excitation Resonator

Active 
Controller

Control

Radiated 
sound

Physical

Electronic
Transducer / Controller

Figure 7: Block diagram with the components of a actively controlled musical instru-
ment. Arrows indicate the direction(s) of (electro-) physical interchange.

Active control can be thought of as an electro-acoustic “parasite” on a physic-

ally vibrating system; and, as opposed to the hybrid concept, the system is still
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capable of performing its initial function when the active control is switched

off. In contrast to hybrid instruments, active control on musical instruments

has been more extensively investigated. While the actual principle of sound

control is substantially different from the hybrid approach, both concepts share

similarities in their physical implementation and their technical requirements,

which enables these research areas to mutually benefit from each other. The

following literature review is mainly focused on wind instrument applications,

which also often use a microphone-loudspeaker pair to facilitate the electro-

acoustic interaction. Note that, just like any electronic component, the “active

controller” can be manipulated while playing, for instance by using controllers.

As a matter of fact, for most active control applications it is even required that

the active controller is aware of what note is being played in order to apply

appropriate operations to that state of the resonator.

The active control principle was first studied for the purpose of removing

undesired sounds. As such, it is commonly referred to as “active noise control”

(ANC); which explains why it has been investigated in much more depth. In

1936, Lueg initially proposed a feedforward system to reject pure tones in ducts

by measuring the pressure with a microphone and re-inserting a signal with the

opposite phase (Lueg, 1936). Such a system works as long as the pressure waves

can be assumed planar. Their frequency should be sufficiently low so that the

transversal waves in the duct can be neglected.

It was not until 1953 that the first applications appeared: a similar system

allowed reduction of the sound level in a small volume (Olson and May, 1953).

Unlike Lueg’s, this device was effective in open spaces. However, it was only

capable of absorbing the acoustic wave locally, close to the microphone.

After that, many others explored the technology (see for example (Nelson

and Elliott, 1991)); and, by using an extra sensor to measure and minimise

the error signal, an improved broadband feedforward ANC was found (Elliott

and Nelson, 1985). Various filters were designed to guarantee stability and also
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a related improved feedback control was possible, which solely required the

error microphone (Elliott and Nelson, 1985).

In 1995, with the motivation of producing instruments with new timbres

for musical expression, Besnainou started to experiment with applications on

musical resonators (Besnainou, 1995). Later, he applied this technique on pro-

totypes equipped with piezoelectric transducers using an analogue circuit to

perform the control (Besnainou, 1999).

Meanwhile, in 1996, Chen and Weinreich published a paper where a “feed-

back enabled adjustable Helmholtz resonator” was employed (Chen and Wein-

reich, 1996). Using a “microphone - phase/gain active controller - loudspeaker

system”, the resonant frequency of the resonator could be changed while it was

synchronously driven by a brass excitation type (i.e. buzzing lips). This enabled

an experimental study of whether the brass player’s lips behave either as in- or

outward striking (i.e. to observe the phase relation between the mouthpiece

pressure and the lip movement at the played note’s fundamental frequency).

However, the simplicity of the approach was neither intended nor appropriate

for further developed studies or musical purposes.

Two years later, Pickett pursued his Master thesis on an active control im-

plementation applied to the trumpet (Pickett and Saunders, 1998). The main

purpose was to reduce the sound level as an alternative to a physical mute, but

also timbre modification was an aim. His set-up included a microphone and a

loudspeaker (a compression driver with a capillary tube), closely mounted to

the instrument’s embouchure.

In the same period, Guérard pursued his doctoral thesis on a hybrid concept

that was presented as the inverse principle of the set-up proposed in the current

work (Guérard and Boutillon, 1998; Guérard, 1998). A (flute-type) mouthpiece

was maintained and a target resonator response was simulated using an array

of five microphones in a pipe and a loudspeaker at the end of the pipe. First, an

analogue circuit enabled separation of the upward and downward travelling

acoustic pressure waves in the pipe using the five microphone signals. Then,
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the loudspeaker was used to absorb the downstream pressure waves and to

produce an upstream pressure wave, synthesised according to the imaginary

resonator model. In other words, the set-up involved the coupling of an acoustic

wave-separation system to the wind instrument’s model and so-called ARMA

filters were used to simulate acoustic resonances (with the AR-part) and anti-

resonances (with the MA-part). It was possible to play an entire octave on this

instrument. While Guérard didn’t describe his method as an active control ap-

plication in the first place, it can be seen as a form of it, as it concerns a linear

feedback loop applied to a pipe which represents a real resonator.

Given that the system identification is performed on the complete system,

between the electrical input from the microphone to the electrical output to the

loudspeaker, the responses of the transducers (most importantly of the loud-

speaker) are inherently included whilst the system performs its resonator simu-

lation. This is a significant improvement in comparison with the previously dis-

cussed hybrid instruments (with simulated excitation), where the transducers

were not considered. Also in contrast to those instruments, Guérard’s study

much more explicitly expressed the musical interests: “to explore existent and

non-existent virtual resonators for the purpose of artistic expression”. However,

his chapter on “hybrid synthesis of the flute” concludes by stating that the in-

strument hasn’t proved to be of great quality. The author then laid the focus on

its use as a reflectometry and echo-cancellation instrument.

In 2009, using a co-located sensor/actuator pair, Berdahl managed to modify

the damping and the amplitude of an electric guitar string (Berdahl, 2009).

Two years later, Boutin submitted his doctoral thesis, directed by Besnainou,

where he explored how the resonant properties of a xylophone bar and the

violin bridge’s twisting mode could be changed using a proportional-integral-

derivative (PID) controller (Boutin, 2011).

An example where the control loop is interpreted more crudely, but which

has proven to be a practically advanced and musically applied implementation,

is the “Magnetic Resonator Piano” of McPherson (McPherson, 2010), which op-
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erates similarly to Eisenmann’s electronically enhanced piano or to the ebow,

but is much more technically enhanced. Given that the electronic component

primarily linearly interferes with the strings, it is categorised with the active

control approach here. However, this example demonstrates that this categor-

isation can become blurry, as the electronics can be driven more strongly so

that it becomes an excitation component, which would suggest categorising the

instrument as a hybrid instrument. In the same regard, the feedback generated

from a guitar amplifier back to the guitar strings may considered to be a form

of (arbitrary) active control or hybrid instrumentation.

A specific branch of active control, known as “modal control”, employs a

modal representation of the structure that is being controlled (see for example

(Preumont, 2011) for an overview on the general principle). This is a form of

feedback control that allows operation with a minimum of sensor/actuator

pairs. When control in a limited frequency band is targeted, a single sensor

and actuator can be sufficient. First a modal identification of the physical sys-

tem is performed (this includes the transducers so that their response is con-

sidered). Then, independent features of each mode (the frequency, amplitude

and quality-factor) can be controlled, which is valid as long as the physical

limitations of all components are respected. Furthermore, it should be noted

that the required dynamic range is related to the positions of the transducers

relative to the modal vibration shape (e.g. a loudspeaker positioned at a given

mode’s pressure minimum (a pressure node) would require high amplitudes to

influence that mode and as such, its control will be limited by the loudspeaker’s

power rating).

Using two piezoelectric transducers and applying modal control, Hanagud

and Griffin created so-called “smart materials” in the sound board of string in-

struments (Hanagud and Griffin, 1998). They managed to control the damping

factor of the first (low frequency) modes.

A multi-modal control concept has been recently investigated at IRCAM,

in the “IMAREV” project led by Mamou-Mani. Two PhD projects have been
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carried out; one on soundboards, by Benacchio (Benacchio et al., 2015, 2016;

Benacchio, 2015), and one on wind instruments, by Meurisse (Meurisse et al.,

2014; Meurisse, 2014; Meurisse et al., 2016). Also aiming for musical sound

transformations, they managed to develop applications that have been used by

IRCAM-based composers.

Another recent example of an actively controlled string instrument is the

work carried out by Donovan, who investigated the control of the string itself

(Donovan and McPherson, 2015).

1.3.7 Terminology

In order to avoid confusions with earlier writings it is convenient to introduce

some of the terminology used by the authors of the most related topics. The

term “hybrid” was, for example, used by Boutillon and Guérard, who spoke

about “hybrid synthesis” (Boutillon and Guérard, 1995; Guérard and Boutil-

lon, 1998). Maganza, working on an early version of the same concept as that

developed in the current thesis, didn’t name his device but rather used expres-

sions such as “nonlinear excitations of an acoustical duct” for instance. How-

ever, in the conclusion of Maganza’s PhD dissertation, the expression “hybrid

instrument” was also used to describe musical perspectives (Maganza, 1985).

This explanatory approach was also employed by Weinreich and Grand (Wein-

reich and Caussé, 1986; Grand, 1994). In earlier works by the present author

and Vergez, the term “hybrid” was used to refer to the same concept as used

in the current dissertation (Buys and Vergez, 2012). However, Mamou-Mani,

Meurisse and Benacchio also used the expression “hybrid instrument” to de-

scribe a greater class of instruments, including their musical active control ap-

plications, which they further specified as “modal active control” applications

(Meurisse, 2014; Benacchio, 2015). Benacchio interchangeably used the term

“smart instruments” (Benacchio et al., 2015), which he most likely adopted
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from Hanagud’s work on “smart structures” (designating actively controlled

soundboards) (Hanagud and Griffin, 1998).

The term “hybrid” is also used for non-interactive electro-acoustic examples,

e.g. the conventional use of “hybrid guitar”, which refers to a traditional gui-

tar equipped with an electric pickup system. In contrast, Michon and Smith’s

hybrid guitar is an advanced guitar controller, piloting a computed physical

model (Michon and Smith, 2014). Another understanding of “hybrid” was pro-

posed by Yamaha, who own a patent on a “hybrid wind instrument”, which is

a traditional acoustic wind instrument that can also be used as a controller for

electronic sound generation (Onozawa and Fujita, 2006).

Meanwhile, in a wide variety of literature, the term “augmented” is used for

the more general concept of modified versions of a traditional musical instru-

ment. In this view, hybrid and actively controlled instruments could be seen as

sub-categories of “electronically augmented” instruments.

Another general and ambiguously used expression is “electro-acoustic”, which

is mostly used for non-interactive combinations of electronic and acoustic sys-

tems, but given the appropriate wording, Almeida preferred to use this term

for his (early) similarly loudspeaker-driven wind instrument (Almeida et al.,

2010).

Recently, the Belgian composer, performer and instrument maker Godfried-

Willem Raes, as part of his wide collection of automated musical robots, built a

loudspeaker driven pipe organ which he named <hybr> (referring to “hybrid”)

(Raes, 2015). The organ is also electro-acoustic in nature, but there is no feed-

back mechanism involved. Rather, for each pipe, a pre-tuned signal is sent to

the associated loudspeaker.

1.4 limitations and requirements

In contrast to electronic synthesis and effects, hybrid and actively controlled

musical instruments both imply an electronic bi-directional interaction with
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an acoustic component, within the sound frequency domain. Those properties

contribute to respectively an adaptable, dynamic and physical character (see

the related paragraph discussing physical and non-physical systems in section

1.2.1). While this is a trump card for musical expression possibilities with those

electro-acoustic applications, in turn, their functionality is limited by several

conditions. An important question to be asked is: what functionality limitations

does a given hybrid instrument set-up imply?

In line with good research practice, another question, which takes an opposite

view should also be considered: what is required in terms of “set-up architec-

ture”, calculation methods, technologies and component specifications with re-

gard to the desired aims of a hybrid wind instrument? This question describes

the requirements for the instrument design, which informs practical design

strategies. The requirements should derive from more fundamental questions,

i.e. the research questions. These research questions, in turn, formalise the mo-

tivations of the research project.

It is interesting to consider this distinction between limitations and require-

ments. The limitations view is bottom-up in nature, i.e. by asking “what is (not)

possible with a given device?” The requirements point of view is top-down

in nature, i.e. by asking “how can a tool be designed that can realise a target

application?”. While the former question allows estimation of the practical po-

tential of a concept, the latter question enables verification of the realisability

of ideas.

For the case of the current research project, given that the hybrid instrument

concept is already chosen, the limitations approach is more appropriate in the

first instance. However, there are further layers of development where the re-

quirements point of view returns, for example when asking more specific ques-

tions such as “how can a certain timbre be obtained?”. This dual questioning

is a constant throughout the research study, but it is important not to lose the

focus on the underlying research questions and motivations.
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The next two subsections will address the limitations of the hybrid instru-

ment set-up studied in this thesis and some references are made to the earlier

cited literature. Then, the following subsection stipulates appropriately related

research questions, which in turn result in the definition of requirements, which

represent the direct goals of this work.

1.4.1 Limitations imposed by the synthesis approach

First some limitations that are imposed by the synthesis concept are considered.

The synthesis component used for the proposed hybrid instrument consists of a

computed excitation, with a pressure measurement at the input and a flow rate

signal at the output, which should generate sounds when coupled to a reson-

ator. This concept already imposes important limitations on the operational pos-

sibilities of the hybrid instrument. Indeed, a freely designed excitation model in

feedback-interaction with a resonator does not allow for the simulation of any

imagined sound. In addition, the numerical implementation of such models

also introduces limitations. These two limitation categories will be discussed in

more detail in the next paragraphs.

Another limitation, that typically applies to the general case of many syn-

thesised musical applications, is the lack of haptic feedback, which plays an im-

portant role with respect to the player’s “immersion” with their performance.

New efforts have been made over the past few decades to equip electronic in-

struments with haptic actuators (see e.g. (Berdahl et al., 2009)), which could be

useful in later stages of the hybrid instrument’s development.

musical limitations imposed by excitation models and by phys-

ically-based modelling While some musical possibilities of excitation

models have already been discussed in the motivation in subsection 1.2.1, it is

appropriate now to consider their limitations.
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The design of excitation models with the purpose of favouring musical pos-

sibilities, and the related case of “physically-based modelling” (introduced by

De Poli and Rocchesso (1998), as noted earlier) is relatively poorly developed

in the literature, which forms a first limitation in this regard. Regarding the

real-instrument-based case of physical modelling, a broad range of algorithms

for simulating musical instruments exists (developed by for example the recent

NESS project and by various other groups such as IRCAM, McGill, CCRMA

SARC). However, a detailed physical understanding of many musical instru-

ment aspects important to obtaining a realistic and natural sound is still miss-

ing.

Alternatively, new excitation models could be designed, however this is far

more complicated than any other sound synthesis technique. In that quest,

it should be minded that the functionality of both physically-based and non-

physically based (as explained in section1.2.1) excitation models is limited by

particular oscillation conditions. Moreover, even within these oscillation con-

ditions the relation between the excitation model and the produced sound is

not straightforward. These design limitations are due to the instant and bi-

directional interaction between the excitation model and the resonator, which

will be further considered in chapter 2.

Another limitation exists for the particular case of musical active control ap-

plications. As mentioned earlier, the active controller should be “aware” of the

exact state of the resonator to be able to coherently interfere with it. The con-

trol of a manipulatable resonator imposes musical limitations, given that res-

onator transition information is usually not available “on the fly” (i.e. while

playing). Therefore, in order to track the resonator’s status, it may be necessary

to either introduce a pitch tracking mechanism or to capture the musician’s

actions. However, since such measurements usually disregard subtle physical

variations that can be substantial to the oscillatory behaviour, these methods

may be prone to undesirable sound glitches.
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numerical considerations Even when an excitation model (or simil-

arly, a physically-based model) is known, its numerical implementation on the

computing system introduces new limitations. This can be inferred from Avan-

zini’s PhD dissertation for instance, which is tellingly entitled: “Computational

issues in physically-based sound models” (Avanzini, 2001).

Many of the implementations presented in the state of the art section disreg-

ard an important issue, which is related to the instantaneous influence of the

entering air flow on the pressure at the resonator entrance. While the real phys-

ical functioning is an instantaneous bi-directional interaction between physical

Kirchhoff variables (the pressure and flow rate in the case of wind instruments),

a computing system can only function sequentially. Or, in mathematical terms,

the Kirchhoff variables are often related by an implicit equation (an expression

that depends on itself), while a computing system can only calculate explicit ex-

pressions. The issue is further detailed in section 4.1, where a number of work-

arounds are reviewed. It should be mentioned that this issue only arises when

there is an inherently instantaneous (or “stiff”) relationship between the Kirch-

hoff variables, which is the case for most physical excitation models. Hence, the

issue is of particular concern for the chosen hybrid set-up.

In his first experiments, Maganza ignored the implicit equation issue (cal-

culating the equations as if they were explicit). This still resulted in oscillat-

ory states, but with a poorer relation to the real physical model. In a second

experimental part, he partly compensated for the issue by transforming the

Kirchhoff variables to wave variables, using a digital wave-table implementa-

tion (Maganza, 1985), but the wave variables were not correctly derived.

Conversely, since the resonator can be usually considered as a linear dynamic

system, the issue does not apply to active control applications and the simula-

tion of resonators (e.g. for the inverse hybrid principle, such as the one invest-

igated by Guérard and Boutillon (Boutillon and Guérard, 1995; Guerard and

Boutillon, 1996; Guérard, 1998)).
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1.4.2 Limitations imposed by physical components specific to the hybrid instrument

The effects of physical components in a feedback system such as the proposed

hybrid instrument can be various and are not always straightforward to predict.

These components (i.e. transducers, amplifiers and the computing system) do

not necessarily have a flat magnitude and zero phase response and their lin-

ear dynamic range is also limited by noise and saturation. While each of these

deviations can often be compensated for with corresponding “inverse” filters

(provided the inverse system is causal, the component’s model is implicitly

known and/or the required measurements are performed), the compensation

will never be complete in practice, as it can only work over a limited amplitude

and/or frequency range. Hence, it is important to consider such deviations.

The next two paragraphs separately discuss these nonlinear and time-related

deviations, but it should be mentioned that (the combination of) both devi-

ations can lead to the appearance of undesired instabilities during the playing

performance of the instrument.

Another effect of physical components, which particularly applies to trans-

ducers, is that even their passive presence interferes with the surrounding

acoustics, which is generally not desired. The active control literature often

stresses the importance of actuator and sensor placement and dynamics. For in-

stance Preumont states: “If the dynamics of the actuators and sensors may signi-

ficantly affect the behaviour of the system, they must be included in the model

before the controller design” (Preumont, 2011). For this interference, additional

compensation filters can be introduced, but their effect is also conditioned by

the limitations of the transducers; moreover, they can lead to instabilities.

A generalised rule of thumb (derived from conclusions by Berdahl (2009),

Boutin (2011) and Meurisse (2014) for instance) is that the greater the differ-

ence between the desired situation and the passive state, the greater the risk of

instabilities occurring and the more the limitations of the transducers become

apparent. In other words, while in theory many targeted operations would be
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possible, it is the performance and presence of the physical components which

limits those possibilities.

For the hybrid instrument studied in this thesis, it is the loudspeaker that

introduces the most significant deviations. An example of a theoretically ex-

treme case could be a hybrid instrument that is programmed to simulate an

acoustically open pipe at the loudspeaker’s position. However, given that the

passive role of a loudspeaker-terminated pipe approaches a rigidly closed pipe,

this application would probably require a loudspeaker performance with an

unrealistically high amplitude and precision.

linearity deviations Linearity or amplitude deviations occur when

the dynamic range of a component is exceeded.

For example, the realistic performance of Weinreich and Caussé’s “electronic-

ally bowed string” was limited to relatively small force amplitudes (Weinreich

and Caussé, 1986, 1991). Indeed, the maximum achievable electromagnetic force

of the solenoid coil (e.g. due to string heating (Weinreich and Caussé, 1991))

lies below the static friction forces that can occur during the “sticking phase”

of a bow-string interaction when playing mezzo-piano on a violin for instance.

Louder sounds could be obtained, but these would have unrealistically slow

transients and restricted brightness.

As a first precaution, Guérard (who developed inverse hybrid instruments

combining real physical excitations with a partly simulated resonator) limited

the amplitude range by focussing on bowed string and flute instruments, which

both can operate at low dynamic levels (taking into account the mentioned

small amplitude condition as used by Weinreich and Caussé). However, the

transducer linearity is still of particular concern, given that simulation of vari-

ous resonator lengths requires quite different situations from the electronically

passive case. In addition, Guérard’s wind resonator simulation is realised by a

small pipe that is terminated by a loudspeaker. This complicates the evaluation

of excitation types that inject a constant air flow in the resonator, such as reed
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excitations. To enable such excitation models, a small vent hole could be intro-

duced, as in the experimental setup in (Van Walstijn and Sanctis, 2014), but this

may also introduce acoustic effects that are difficult to compensate for.

Due to similar dynamic range limitations, Picket could only attenuate low

amplitude excitations with his actively controlled trumpet (Pickett and Saun-

ders, 1998) (i.e. real mouth-driven excitations were too strong, but softer excit-

ation signals could be produced by an additional loudspeaker mounted on the

embouchure). This is indeed what can be expected, given that the compression

driver used had a low acoustic power compared with the typical acoustic pres-

sures inside the instrument (in particular at relatively low frequencies and with

the resistive effect of the capillary tube used).

On the matter of transducer placement, it is claimed in both the noise control

and musical active control related literature that systems with collocated actu-

ator and sensor display very interesting properties (see e.g. (Preumont, 2011;

Berdahl, 2009)). This is related to the appearance of vibration modes in the con-

trolled body, which can amplify or attenuate certain frequencies depending on

the location. Hence, this eventually also relates to the dynamic constraints of

the transducers. The influence of resonance modes is for instance evidenced

by Meurisse’s modal active control application for wind instrument resonators.

Given the strong acoustic field, Meurisse placed both the microphone and loud-

speaker near the open end of the resonator, i.e. near a pressure node (Meurisse,

2014). While this choice is favourable with respect to the loudspeaker’s dy-

namic possibilities, it also reduces the possibilities of electronically modifying

the resonator’s response.

These shortcomings only apply to a small extent in the case of the hybrid

wind instrument studied in this thesis. This is so, given that on one hand both

the loudspeaker and microphone are located at the resonator entrance, where

a rigid acoustic termination is required and all pressure anti-nodes take place;

while on the other hand, the excitation is simulated, so that the mean air flow

signal can be removed. However, it should be mentioned that this set-up only
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enables the simulation of excitation types that are compatible with a closed-

entrance resonator. Again, theoretically speaking an open-entrance could be

simulated with the loudspeaker, but this probably requires unrealistic loud-

speaker performance.

dynamics and time-related deviations Another physical compon-

ents feature relates to the presence of dynamics and time-related deviations.

Examples are the friction and inertia in the transducers and delays caused by

a realistic computing system. Those deviations can also be understood as a

non-flat frequency response, i.e. a certain filtering effect.

While the linearity deviations can be simply avoided by using small amp-

litudes, the dynamics and time-related deviations can only be corrected by us-

ing appropriate inverse filters. To the author’s knowledge, there have been no

studies of electronically excited wind instruments that compensate for these

deviations. Therefore this aspect is given careful attention in this thesis, by

selecting a suitable loudspeaker (further described in 3.3.2) and computing sys-

tem (see appendix B), and then taking the necessary compensation measures

(worked out in subsection 3.2.3 for the loudspeaker and in chapter 6 for the

computing system).

The advantage of active control applications with respect to this issue is that

it is usually applied on linear components (e.g. the resonator). This allows for

a direct integration of the transducer’s response in the control system.

The virtual string set-up by Guérard and Boutillon also has this advantage

(Guerard and Boutillon, 1996; Guérard, 1998). One way to understand this is by

imagining that the delay caused by the actuator response (an electrodynamic

shaker) and its correction filter can be interpreted as a part of the string re-

sponse that consists of delayed pulses coming back from the string ends.

This solution is not applicable to the case of electronic excitation of acoustic

resonators, which therefore imposes more important limitations to the sound

possibilities.
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1.4.3 From research questions to requirements

Now that the motivation, state of the art and limitations have been discussed, it

is possible to consider what long term research questions are appropriate and,

in turn, what requirements this imposes on the design of the hybrid instrument.

The research questions formalise the underlying motivations, they define the

work to be done and set priorities. Hence, they represent the fundaments of the

research project, which will be the starting point for putting the research into

operation. They represent a base of reference at any point during the research

project.

The questions are formulated by considering the study in terms of the un-

derlying theory and possible methods; thus potentially providing clear, well-

defined answers and filling an important gap in knowledge.

The first research focus is on the musical perspectives of the hybrid instru-

ment, which first requires some consideration of today’s new music scene. Over

the last few decades, there has been a clear increasing interest in the musical

exploration of timbre. This can be seen as emerging within all contemporary

music scenes: one is the classical music scene (generally referred to as contem-

porary classical music, see e.g. (Paddison and Deliège, 2010)) another is in the

avant-garde jazz scene (usually referred to as free-jazz, with “free improvisa-

tion” as an often occurring element, see e.g. (Jenkins, 2004)). While both of

these scenes comprise electronic and/or computed music approaches, these ap-

proaches appear in many other musical scenes and they can also be interpreted

as a scene in its own right (see e.g. (Wishart, 1996)). In all of these scenes, tra-

ditional and new musical instruments are used in alternative ways to come up

with novel sonorities, extending the musical sound palette. Hence, these mu-

sical directions are referred to in what follows when speaking about “musical

expression”, allowing the first research question to be formulated as:
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Research question 1. What factors in the design of loudspeaker-driven hybrid wind

instruments with computed excitation models influence the perceptible sound palette

with respect to favouring musical expression?

It should be noted that this question draws on the subjective notion of mu-

sical preference, which indicates that eventually an evaluation with human par-

ticipants will be required. This was not envisaged to be within the scope of this

thesis, given that the entire thesis period was needed for the development and

quantitative evaluation.

With regard to the perspective of using the hybrid instrument as a tool to

carry out subsequent wind instrument research, as mentioned in the motiv-

ation section earlier on, the hybrid instrument can be used in a similar way

to blowing machines for wind instruments. The foremost advantages of using

a blowing machine over a human player are: more controlled and objective

measurements as the embouchure parameters can be regulated independently,

easier measurement of embouchure parameters and good repeatability (Fer-

rand and Vergez, 2010). It is notable that the advantages regarding all of these

aspects are even greater when using a hybrid wind instrument. Indeed, the em-

bouchure parameters are programmable quantities and the equipment is barely

influenced by e.g. set-up, mounting manipulations, general ageing or the inev-

itable blowing pressure perturbations in the case of blowing machines (Ferrand

and Vergez, 2010). Nevertheless, it should be said that for many applications

a blowing machine would be a better choice, given that that set-up is closer

to a real blown instrument and hence the approximation error associated with

simulated excitation models is avoided. Another concern may be the physical

limitations of hybrid wind instruments, e.g. the dynamic level may not be high

enough to investigate nonlinear sound propagation in resonators. Furthermore,

the fact that a hybrid wind instrument only introduces the fluctuating compon-

ent of the air vibration, and that the flow is introduced by a membrane instead

of through a narrow air channel as in the case of a reed-instrument, certainly

results in a different detailed fluid-dynamic behaviour.
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Some possible scenarios that would particularly benefit from evaluation with

a hybrid wind instrument can be summarised. For instance, wind instrument

theories on self-sustained oscillations could be verified (e.g. as in (Wilson and

Beavers, 1974) with a blowing machine), but with an even more quantified ap-

proach than is possible with a blowing machine. Also, it would be straightfor-

ward to reproduce certain rapid pressure changes (e.g. caused by fast tonguing)

recorded in the mouth of actual musicians, which would be a challenging task

with blowing machines (Ferrand and Vergez, 2010). Using a hybrid instrument

may also make it easier to keep track of the flow velocity signal; it can be easily

recorded with a hybrid instrument, but is hard to measure in a physical set-

up. The comparison of real and hybrid instruments could also be particularly

useful to study self-sustained operations in resonators, and notably during fin-

gering transitions, as these are difficult to simulate; which was a motivation for

the construction of Almeida’s hybrid wind instrument (Almeida et al., 2010).

Furthermore, just like blowing machines, the hybrid instrument can be useful

to play historical musical instruments that are no longer permitted to be played

by human players, with the advantage of even lower intrusiveness given the

absence of the mean air flow and the possibility of playing at very low amp-

litudes.

With these perspectives in mind, it is important that the hybrid instrument’s

operation is objective and well-calibrated, leading to the following research

question:

Research question 2. What factors in the design of hybrid instruments with com-

puted excitation models lead to a precisely quantified excitation of resonators and allow

for an optimal evaluation of existing physical theories on wind instruments?

As mentioned earlier, more possibilities can be imagined, such as in an edu-

cational context, as an instrument maker’s aid, to make historical instruments

sound,... However, these purposes all depend on the positive outcome of the

two stipulated research questions.
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These two questions alone still define long-term goals of the hybrid instru-

ment. For the current thesis, a number of provisional requirements are stipu-

lated, which guided the research project in the direction of both research ques-

tions and support the initial development steps that are taken in this work.

Requirement 1. Diversity (in terms of the perceptible variety of the sound).

In musical instrument and musical controller design, a large control band-

width is often aimed for. While, for instance, Cook advertises that this fea-

ture is not necessarily in favour of musical expression, due to the inspiration-

decreasing effect of the excess in control freedom (Cook, 2001), it should be

realised that Cook’s rule applies to an instrument in the state made available to

a performer. A musical system with a wide variety of sounds can still be limited

to a specific application and this bandwidth therefore represents a measure of

possible sub-implementations. In other words, the hybrid instrument shouldn’t

necessarily be seen as a single instrument, but rather as a platform for musical

instrument implementations.

Requirement 2. Precision, in terms of:

• the sound control (regardless of parameter mapping strategies).

• the accuracy of the sound (control) in relation to predictions and simulations.

While an important factor with regard to the former feature is (quantisation)

noise, the latter feature is of particular importance from the research tool per-

spective, which has the aim of obtaining a situation that is close to an “ideal

hybrid instrument”, i.e. without the earlier stated limitations of the physical

components. However, given that the ideal hybrid instrument’s properties are

the closest to the original acoustic instrument, it is also favourable from the

musical perspective. The predictability is also desirable to enable guidance in

the design of sub-implementations.

Requirement 3. Repeatability, i.e. repeated progressions of the excitation model’s in-

put parameters should result in repeated sound features (if hysteresis effects are avoided

before the repetition).
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Note that hysteresis is not necessarily a problem in this regard, it could even

represent a desirable feature (see e.g. (Mudd et al., 2015)).

Requirement 4. Musically relevant atypical behaviour, typical to the hybrid operation.

While in the first instance, a hybrid operation close to that of an ideal hy-

brid instrument is aimed for (as stipulated by the accuracy requirement), the

sounds obtained with the simulations is very close to those of an ideal hybrid

instrument. From the musical perspective, as pointed out earlier, in the musical

motivation in subsection 1.2.1, it would be interesting if the hybrid instrument’s

character were distinct from both the original acoustic instrument and the sim-

ulated sounds. Therefore, the atypical behaviour is at odds with the accuracy

requirement. It should be understood that in this work, the primary focus is

on the accuracy requirement, but in parallel, an eye is kept open to music-

ally interesting atypical behaviour. Indeed, such atypical behaviour is actually

likely to occur, given that the real hybrid wind instrument contains (uncom-

pensated) physical elements that are not found in an acoustic instrument, and

which are also complicated to simulate. Particular electronic or mechanical sat-

uration effects could be thought of for instance, and also future adaptations can

be envisaged in this direction.

1.4.4 Conclusions

In the first instance, the choice of the electro-acoustic synthesis approach and of

which components to use determines the musical and research tool possibilit-

ies and to what extent a stable and accurate operation is guaranteed. Therefore,

the limitations imposed by the physical components should be carefully con-

sidered. Considering the current state of the art, there are many aspects that

require a thorough investigation in order to obtain a functional hybrid set-up.

An important focus for the current thesis is the choice of suitable compon-

ents and the design of appropriate loudspeaker-compensating filters. However,

in order to achieve a wide range of possibilities, the functionality obtained



44 introduction

without transducer-compensating filters should not diverge too much from the

intended operation (as explained in the introduction of subsection 1.4.2). Mean-

while, it should be borne in mind that some limitations or deviations could also

introduce desirable musical values.

Secondly, in order to answer fundamental research questions that relate to

the possibilities of the hybrid instrument, a number of initial requirements for

a desired operation can help in directing the first development and early eval-

uations steps to be taken in this work. The chosen requirements are focussed

on broad and precise control possibilities to obtain a large perceptible sound

range, resulting in a platform with a wide variety of musical possibilities.

Finally, from a research expertise point of view, the interdisciplinary character

of the work can be identified as a challenge for the researcher, which could be

interpreted as a so far unmentioned, “limitation”. The following disciplines are

mainly involved: informatics, electronic and mechanical engineering, musical

acoustics, signal processing, and music. This forms a limitation in the sense

that a single person carrying out all tasks cannot be an expert in all disciplines,

which therefore slows down the design process.

It can be concluded that there are good reasons to continue the research and

development of this intriguing hybrid concept.

1.5 outline and contributions of the dissertation

1.5.1 Outline of the dissertation

Figure 8 shows a schematic diagram summarising the entire thesis, with indic-

ation of each of the chapters in the dissertation.

The yellow box in the diagram refers to chapter 2, where the basic function-

ing of wind instruments (with a cylindrical resonator) is laid out. The green

box refers to the development of the loudspeaker-tube system and the associ-

ated filters, which is discussed in chapter 3. The blue part of the diagram refers
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Figure 8: Schematic diagram of all work carried out in this thesis, with indication of
the chapters and some key notions.

to chapter 4 where the excitation models are introduced. Next, the combina-

tion of the loudspeaker-tube system, the computing system and the excitation

models, indicated by the purple box, leads to the evaluation of the hybrid func-

tionality, discussed in chapter 5. The red box combines a number of further

developments on the hybrid instrument, discussed in chapter 6. In that chapter,

a stability issue is addressed and compensated for, a brief evaluation with a

real clarinet resonator is discussed and some control and effect possibilities are

presented. The white box refers to chapter 7, where conclusions and discussions

are provided on the wider outcomes of the work.

Finally, there are two appendixes, which are referred to by the two grey boxes.

Appendix A contains details regarding the measurement equipment and pro-

cedures and the regression techniques, which are informed by physical mod-

els obtained in earlier chapters. Appendix B provides details of the employed
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real-time computing systems and presents a few examples of source code and

programs developed for the hybrid instrument.

1.5.2 Main contribution to the relevant fields

Many of the theoretical frameworks and practical approaches discussed in this

dissertation draw on existing work in various fields. Whereas references to the

relevant literature are made in the text, it is appropriate to summarise the main

contributions here.

Most of the introductory theory presented in chapter 2 is pre-existing wind

instruments acoustics theory. However, mainly original contributions are made

in section 2.3.2, particularly on the mean power approach to estimate the influ-

ence of frequency dependent acoustic losses on the sound.

The principal contribution of this thesis is captured in chapter 3. Whereas the

general concept to combine an acoustic resonator with a theoretically simulated

excitation by means of a loudspeaker was already introduced by for instance

Maganza (Maganza, 1985), the chapter quickly builds further on newly intro-

duced more specific implementation strategies such as the design choices and

the idea of employing loudspeaker compensation filters. That being said, the

theoretical models used for all components, including the filters and their di-

gital implementation, and the use of equivalent circuit analysis of the mechano-

acoustic components are adopted from existing sources, as indicated accord-

ingly. Furthermore in this chapter, while there are evidently previous stud-

ies that reported on mathematical descriptions of coupled single-degree-of-

freedom systems, the employed original representation for the loudspeaker-

coupled tube, e.g. by defining a “coupling frequency”, turns out to be particu-

larly useful for the comparison of the coupled and uncoupled systems. Also the

criteria in section 3.3.2, for the choice of a suitable loudspeaker are originally

proposed here. And finally, most of the noted shortcomings and compensation
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measures discussed in section 3.4 have not been reported before (apart from for

a few aspects, for which a reference is provided).

Most of the excitation models and numerical calculation methods discussed

in chapter 4 are adopted from well established literature, but a few noteworthy

contributions have been made to allow for a coherent representation and use in

the context of the present thesis. Notably the theory to predict the influence on

the sound (presented in chapter 2) is an original contribution that is applied to

each excitation model. The employed lip-reed model (discussed in section 4.3)

draws on a combination of established theories, but the non-dimensionalised

representation and also the discrete and explicit development has not been ex-

plicitly reported before to the author’s knowledge. Furthermore, the use of a

quasistatic interpretation of this dynamical excitation model is new and the

usefulness attested in the reported results in this thesis support the value of

this introduced concept. Meanwhile, the small signal approximation for the lip-

reed’s analysis is adopted from the literature, but the graphical representation,

shown in figure 45, to directly identify oscillation features is a newly proposed

approach. Similar originality conclusions apply to the bow-string interaction

model (section 4.4). The similarity to the single-reed excitation model has been

mentioned before, and the hyperbolic model is well-known, but the dimension-

less and reduced parameter form, originally proposed in this thesis, reveals a

much clearer insight of the similarities and differences of those models and it

further allows for a simplified evaluation. Finally, Maganza already broached

the idea of employing a polynomial formula for the production of self-sustained

oscillations by putting it into interaction with a resonator, but the generic third

order formula employed here, and its useful sound-influence focussed repres-

entation is novel, as is its analytically discrete and explicit development.

All evaluation methods described in chapter 5 draw on existing theory. How-

ever, the interpretation of the results via comparison with the earlier mentioned

sound feature estimations for each excitation model is a newly proposed tech-
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nique (apart from the amplitude). Evidently, the final results and the associated

discussion and conclusions reported in section 5.5 provide original findings.

Chapter 6 contains additional new development propositions and outcomes.

Just like chapter 3, most of the precise ideas and the implementations are ori-

ginal but the employed methods are adopted from basic mathematical and

other existing theories.

In chapter 7, the overall contributions with regard to the hybrid instrument’s

performance are discussed and compared with the literature. Also the perspect-

ives and recommendations discussed in section 7.2, are mainly original ideas,

but some perspectives also refer to earlier writings.

Finally, the appendix is mostly based on existing theory and previously built

systems, but the particular measurement set-up and method used to character-

ise the entire loudspeaker-tube system is a new approach.

1.6 summary

This introductory chapter outlined the background of the hybrid wind instru-

ment concept discussed in this thesis.

To provide a basic understanding, the first section briefly explained the concept,

which can be understood by imagining the interaction between a computed

(clarinet) embouchure with an acoustic resonator (e.g. a clarinet-like tube), by

means of a loudspeaker and a microphone.

In a next section, two motivations of primary interest for the realisation of

the hybrid instrument were discussed. The first motivation focussed on musical

possibilities, using the hybrid instrument as a new musical instrument. The

second motivation was with regard to its usage as a research tool, where the

hybrid instrument could be used to carry out wind instrument research.

A subsequent section provided a detailed overview of the state of the art,

explaining similar and related fields with reference to the existing literature.

Models of acoustic musical instruments were introduced, along with concepts
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in electronic musical synthesis (with a focus on synthesis by physically-based

modelling). Next, electronic excitation of acoustic resonators was discussed

(which is the category of the hybrid instrument discussed in this thesis). Fur-

thermore, the related concepts of hybrid string instruments and active control

applied in musical instruments were briefly reviewed. Finally, attention was

given to the terminology, reviewing the use of the term “hybrid” in the literat-

ure, while also referring to related terms.

A further section was focussed on limitations and requirements. The limita-

tions of hybrid and related musical instruments were discussed, focussing on

limitations imposed by the synthesis approach (such as musical limitations im-

posed by physically-based modelling and numerical considerations) and limita-

tions imposed by physical components specific to the hybrid instrument (intro-

ducing linearity and time related deviations). Then, the musical and “research

tool” oriented research questions were formulated and a number of require-

ments were derived from them to provide a focus for the current work. Some

general reflections were provided as a conclusion. The limitations informed

the importance of choosing suitable components and designing appropriate

loudspeaker-compensating filters and the main requirements were found to be

focussed on broad and precise control possibilities to obtain a large perceptible

sound range.

Finally, in the last section, the outline of the dissertation was presented, along

with a schematic representation of the content.





2O N T H E O P E R AT I O N O F W I N D I N S T R U M E N T S W I T H A
C L A R I N E T- T Y P E R E S O N AT O R

This chapter provides the reader with the basic acoustic theory that is required

to understand the development and evaluation of the hybrid wind instrument,

which will follow in the succeeding chapters. First the clarinet is discussed, as

the acoustic operation of this instrument can be reduced to a relatively simple

theory in the time domain. The clarinet theory includes excitation of the reson-

ator via a single-reed model. Then, some alternative possibilities for exciting an

acoustic resonator are presented. Further, some theories are laid out that allow

pre-estimation of a few perceptually important sound features, as a function

of an excitation model and its parameters. Finally, a frequency domain descrip-

tion of acoustic resonators is presented, which will be useful later when imple-

menting an entirely computed simulation of the instrument. Throughout this

chapter, various theorems are expressed. They will be applied to the individual

excitation models, discussed in chapter 4.

2.1 basic functioning of the clarinet

In this section, the fundamental operation of the clarinet will be laid out as an

example of the functioning of wind instruments in general (some differences

will be discussed in the following sections). The detailed understanding of the

clarinet involves both frequency dependent behaviour and amplitude nonlin-

earities. While frequency dependency is best studied in the frequency domain,

the nonlinear behaviour is much better understood in the time domain. Since

these domains are difficult to combine (simple operations in the time domain

51
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can be very complicated in the frequency domain and vice versa), a thorough

understanding of the clarinet acoustics can become fairly elaborate.

Nevertheless, given that the frequency dependency in wind instruments can

be reduced to a simple delay component (which is obviously straightforward

to express in the time domain), it is possible to describe the emergence of os-

cillations solely in the time domain. While characteristics such as the timbre

are poorly represented after this simplification, the oscillation conditions and

amplitudes remain in good accordance with the case of a real clarinet (see for

example (McIntyre et al., 1983; Atig et al., 2004)).

In addition to providing a global understanding, this theory will be used in

section 2.3, where the physical properties of the instrument are linked to a few

more of its sound features.

Figure 9 shows a schematic diagram of a clarinet including a player’s mouth.

Two components can be distinguished, the embouchure and the resonator, which

each have a distinct functioning. Their combination is the key to the typical

“self-sustained” sounds produced by wind instruments, i.e. the oscillation is

maintained by the interaction. These components and the pressure and flow

rate signals (respectively in red and blue in the diagram) are discussed in the

next section.

q

p

Embouchure

q(p)

Resonator

p(q)

pm
p
-

p
+

Figure 9: Schematic diagram showing a clarinet’s basic acoustic functioning, distin-
guishing the embouchure (the mouthpiece and the player’s mouth) and the
resonator.
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2.1.1 Acoustics of separate clarinet components

the resonator When speaking about “the resonator”, what is being re-

ferred to is: the section of the bore from the mouthpiece to the first open key

(which is somewhat of a simplification of a real clarinet bore). In order to give

a simple explanation of the functioning of the instrument, a number of assump-

tions will be made in this section. (For later use, a more pertinent - frequency

domain - model of the resonator is discussed in section 2.4.)

First, the atmospheric pressure can be interpreted as a global offset pressure

relative to all other involved pressures, so that it can be ignored (or theoretically

it can be set equal to zero). Second, as the wavelengths of the oscillations that

will appear are greater than the diameter of the inner section of the bore, it is

reasonable to assume that the waves are planar in form and the pressure waves

can be described in a one dimensional space, i.e. on the axis along the length

of the resonator (see e.g. (Bernoulli, 1764)).

Another mostly valid assumption is the resonator’s “linearity” with respect

to the amplitude. This property can be understood by imagining that the reson-

ator entrance is closed by hitting it with a hand. A short response can be heard,

and by hitting harder or softer the same response will appear, but its amplitude

will be in linear relation to the impact of the hit.

Finally, it is assumed that at all frequencies the wave velocity is constant and

the same amount of acoustic losses is experienced, i.e. the dispersion and the

frequency dependent component of the acoustic losses (further referred to as

the “frequency dependent losses”) inside the resonator and at its ends is ig-

nored so that the propagation can be characterised with a real constant λ . 1,

the acoustic transmission factor. In other words, a pressure burst travelling from

the bore entrance will maintain it’s “burst shape”, it will only be slightly re-

duced in amplitude when it arrives at the end. Then, the open end will return

a pressure wave that is inverted in amplitude. It should be noted that in prac-

tice the dispersion and frequency dependent losses are not insignificant, but
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neglecting them results in a mathematical simplicity which still has properties

that are surprisingly coherent with the real functioning of the instrument. (In

fact, it is even possible to demonstrate the basic functioning principles when

the frequency independent component of the acoustic losses (further referred

to as the “frequency independent losses”) is neglected too.)

As depicted in figure 9, the pressure at the entrance of the resonator (at

the mouthpiece side) can be subdivided into forward and backward travelling

pressure waves, respectively p+and p−:

p(t) = p+(t) + p−(t). (1)

This pressure is further referred to as either the “mouthpiece pressure” or the

pressure at the resonator entrance.

The embouchure introduces an air flow q(t) which instantaneously produces

a forward travelling pressure contribution q(t)Zc, where Zc is the “characteristic

impedance” of the resonator, which is a real constant, inversely proportional to

the internal cross-sectional area of the resonator (see section 2.4 for a detailed

explanation).

Given that the mouthpiece side of the resonator can be assumed perfectly re-

flecting, the incoming pressure p−(t) is reflected back with the same amplitude

and sign; hence, the up-going pressure wave can be rewritten as the sum of the

flow-related pressure and p−(t):

p+(t) = q(t)Zc + p−(t), (2)

so that q(t) can be expressed as:

q(t) =
p+(t)− p−(t)

Zc
. (3)

At the same time, the forward travelling pressure can be related to the backward

travelling pressure, as the latter will be reflected back (with an inverted sign)
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after having travelled down and up the length of the resonator l at the speed of

sound c, which gives:

p−(t) = −λp+(t− 2l/c), (4)

where typically λ ≈ 0.9 (Taillard et al., 2010). It expresses the amplitude of a

pressure pulse with an initial unity gain, after it has travelled down the reson-

ator, from the embouchure towards the bell, and back up. Based on this defin-

ition, λ, then represents the frequency independent losses. For a cylindrical

open tube, with no radiation at the open end, where losses only occur inside

the bore: λ = exp(−2αl), with α, the absorption coefficient. Of course this is an

approximation: real losses are frequency dependent and radiation occurs from

the open end. However, as the frequency dependence of the losses is a relat-

ively small correction in musical instruments, this is sufficient for our initial

purposes.

Altogether, by combining equations (1), (2) and (4) , it can be shown that

the resulting overall pressure can be expressed as a function of the flow rate

introduced by the mouth and the delayed forward travelling pressure:

p(t) = q(t)Zc − 2λp+(t− 2l/c). (5)

The last term can be replaced by using equation (2) again, so expressing

it in terms of the previous set of incoming pressure waves. This replacement

can be repeated again and again until the initial moment is reached where the

incoming pressure wave is zero, i.e. just before the oscillation is initiated by the

mouth of a player. As this term only depends on the past, it is also referred to as

the historical pressure: ph(t) = 2p−(t) = −2λp+(t− 2l/c) (initially introduced

by McIntyre et al. (1983)), so that:

p(t) = q(t)Zc + ph(t). (6)
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In the next steps, for simplicity and universality, a normalised (or “dimen-

sionless”) form is introduced. This involves the replacement of the variables by

new variables that are normalised using characteristic values (with dimensions

that correspond to the old variables) of the instrument’s model. The dimen-

sionless pressure and flow rate are defined as: p̄= p
PM

and q̄= qZc
PM

, where PM is

a characteristic pressure that will be explained later. All other pressures and

flow rate signals are made dimensionless with these characteristic values. Also

for simplicity, in what follows, the time notation is left out for variables with

argument t. Hence, equation (6) becomes:

p̄ = q̄ + p̄h, (7)

with p̄h = ph
PM

. Furthermore, using equation (4), equations (1) and (3) can be

rewritten as:





p̄ = p̄+ + p̄− = p̄+ − λ p̄+(t− 2l/c)

q̄ = p̄+ − p̄− = p̄+ + λ p̄+(t− 2l/c)

. (8)

Or, alternatively:





p̄−(t) = −λ p̄+(t− 2l/c) = p̄(t)−q̄(t)
2

p̄+(t) = p̄(t)+q̄(t)
2

, (9)

which introduces a coordinate system ( p̄−, p̄+) that is rotated by 45◦ from

the original ( p̄, q̄) coordinate system. This will be further developed and used

in section 2.1.2.

In order to generate oscillations with the resonator, it has to be acoustically

excited. One way to do this, is to introduce an energy burst. Just like the pluck-

ing of a string, a duct-type resonator can be hit on the open entrance to produce

a tone. However, in contrast to a typical string resonator, the acoustic losses in

a wind instrument are much higher so that the produced tone is very short,
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which explains why this type of excitation is rarely applied in a musical con-

text. A more appropriate type of excitation is a continuous interaction, where

energy is introduced in (nonlinear) relation to the pressure signal in the res-

onator, as such resulting in “self-sustained oscillations”. For wind instruments

this excitation is performed by the embouchure; that is, the ensemble of the

musician’s mouth and the reed mechanism.

the embouchure In contrast to the resonator, the combination of the

mouth and mouthpiece, from now on referred to as “the embouchure” (or more

generally for any musical instrument: the excitation mechanism), does not op-

erate linearly with respect to the amplitude. Detailed physical models of the

clarinet embouchure and other excitation mechanisms will be discussed in sec-

tion 4.2. Here it is sufficient to note that the excitation model can be represented

by a characteristic function that expresses the air flow as a function of the pres-

sure difference across the reed. Hence, for a constant mouth pressure pm, this

becomes a function of the mouthpiece pressure only: q(p). This, together with

equation (6) for the resonator, forms a set of equations whose solution describes

the oscillatory physical interaction between embouchure and resonator.

The reed of the clarinet mouthpiece is “inward striking” (a concept intro-

duced by Fletcher (Fletcher, 1979b)), which means that it tends to close the air

channel when the pressure in the mouth is greater than the pressure inside the

instrument. This property enables self-sustained oscillations to appear when

the reed’s resonance frequency lies far above the frequency of the played note

(see e.g. (Chaigne and Kergomard, 2013)). Hence, it is a reasonable approx-

imation to ignore the inertia of the reed, freeing the characteristic function of

time-dependent terms, and thus making it “quasistatic”.

A characteristic occurrence for this model is the moment where the reed

starts hitting the lay (the curved cut-off surface onto which the reed is fixed)

of the mouthpiece. This occurs at the so-called “beating pressure” pM, which

is therefore chosen as the characteristic value used to define the dimensionless
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Figure 10: Characteristic nonlinear curve of the static single-reed model for a dimen-
sionless mouth pressure of γ = 0.5 and an embouchure parameter ζ = 0.4.

characteristic function q̄( p̄) = q( p
pM

) Zc
pM

. The dimensionless mouth pressure is

denoted γ = pm
PM

, so that for a dimensionless pressure difference across the

reed of γ − p̄ ≥ 1, the reed hits the lay. In addition, several properties of the

embouchure are lumped together and represented by the parameter ζ; which

is inversely proportional to the reed opening at rest (Kergomard, 1995). This

parameter will be explained in more detail in chapter 4. Figure 10 depicts this

characteristic function for γ = 0.5. As can be seen, with increasing γ the non-

linear curve is shifted along the p̄ axis and ζ proportionally defines the height

of the curve.

For this case, when p̄ ≤ −0.5, the dimensionless pressure difference across

the reed is greater than unity, the reed is beating and no flow will occur. For

a dimensionless mouthpiece pressure of p̄ = 0.5, the pressure difference is 0,

which again results in no air flow. It is between these states that a nonlinearly

variable flow amplitude occurs.

2.1.2 Self-sustained oscillations

oscillation and stability conditions An intuitive understanding

of self-sustained oscillations can be gained by thinking of the excitation in terms

of a parent pushing a child on a swing (the resonator). The parent can either

make a negative or positive energy contribution: when the child approaches

(i.e. when the pressure burst wave is reflected back up the resonator and ap-
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proaches the mouthpiece), a positive contribution would be to pull and push

respectively with the child’s arrival and departure (or: a positive pressure burst

is supplemented with some extra pressure from the mouth). The supplied en-

ergy will then enable a continuous oscillation, as it compensates for the lost

energy in the swing (/resonator).

Returning to the presented theory on the clarinet, the energy supplied by

the embouchure is represented by the slope of the nonlinear function (i.e. its

derivative) and thus varies with p̄. If this slope or “local amplification factor” is

positively increasing, it represents a “negative resistance” (Schelleng, 1973) to

the resonator. Therefore, if the slope at p̄ ≈ 0 is greater than the acoustic losses,

an oscillation can occur, which is expressed in a first theorem:

Theorem 1. Condition of oscillation: Instability. An oscillation can appear from the

moment that the characteristic function furnishes sufficiently positive energy around

p̄ ≈ 0, i.e. when the derivative at that point is greater than 1− λ.

This understanding also explains the importance of the nonlinear character of

the excitation. If the added energy were only linearly related to the amplitude of

the swing, the oscillation would either die out or (theoretically) wouldn’t stop

growing. Therefore an amplitude-dependent (i.e. nonlinear) relation is required:

for small pressure amplitudes the contribution should be greater than the losses,

but at higher amplitudes the derivative should become less than the losses so

that the oscillation will stop growing and settle at a certain amplitude.

iterative maps theory The simplifying assumptions with respect to

the resonator and the quasistatic property of the excitation provide a conveni-

ent way of studying the self-sustained oscillations. First, the original nonlinear

curve in the ( p̄, q̄) coordinate system, as represented in figure 10, can be plot-

ted in the ( p̄−, p̄+) system; which results in a 45◦ rotation, as can be under-

stood from equation (9). By then introducing the index n for the time instance

t = n(2l/c), and noting that p+n−1 = p−n
−λ , the characteristic curve of the em-

bouchure model can be represented in the new Cartesian coordinate system
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( p̄+n−1, p̄+n ); which mirrors and slightly stretches the nonlinear curve towards

the p̄+n axis, as can be seen in figure 11. Indeed, while the diagonals of the

( p̄−, p̄+) system were the ( p̄, q̄) axes (shown as dashed axes), the rescaling of

the horizontal axis results in a shift of the ( p̄, q̄) axes, away from the new diag-

onals. The new diagonals (shown as solid axes) will be later referred to as the

( ¯̃p, ¯̃q) system. This representation in the (− p̄−n /λ, p̄+n ) system can be interpreted

as an alternative, “hypothetical” oscillating system that operates with a hypo-

thetical internal pressure ¯̃p(t) and flow rate ¯̃q(t), and comprises a hypothetical

excitation ¯̃q( ¯̃p) and resonator ¯̃p( ¯̃q). In other words, the hypothetical resonator

has the same characteristics as the original resonator, but with no frequency

independent losses. These losses are, so to speak, “transferred” from the reson-

ator model to the excitation model. It should be noted that the equation of the

nonlinear curve in the ( ¯̃p, ¯̃q) system becomes implicit and greatly complicates

the mathematical study of the oscillations; this coordinate system is therefore

purely of interest in terms of facilitating easy graphical interpretations of the

oscillatory operation, as will be shown shortly.

As demonstrated by McIntyre et al. (1983), the representation in the ( p̄+n−1, p̄+n )

coordinate system and later by Taillard et al. (2010) in the ( ¯̃p+n−1, ¯̃p+n ) system,

allows reconstruction of the emergence of self-sustained oscillations from the

initial moment when the resonator is in a static state (the pressure being at at-

mospheric pressure throughout), and the excitation is set such that it satisfies

the oscillation condition, which results in an “iterative map”.

Initially, the resonator entrance is at atmospheric pressure so that p̄+0−1 = 0.

By setting this as the abscissa in the coordinate system, the nonlinear function

indicates the subsequent downstream pressure value as the ordinate: p̄+0 (which

will be the result of a first puff of air entering through the mouthpiece); and in

its turn, this will be the next abscissa for p̄+n−1. Hence, this lookup procedure

can be repeated for consecutive values of n, i.e. for every time jump of 2l/c,

which can be represented by an iterative progression on the nonlinear curve, as
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Figure 11: The single-reed curve in the ( p̄+n−1, p̄+n ) coordinate system, for γ = 0.5 and
ζ = 0.4. The ( p̄, q̄) coordinate system is indicated as well, these axes slightly
diverge from the 45◦ diagonals (the ( ¯̃p, ¯̃q) system) due to the fact that λ / 1.
This allows for the representation of an iterated map (in dashed), illustrating
the emergence of a self-sustained operation. Note that after a few steps the
iteration remains inside an “iteration square”.

shown in figure 11. This can also be represented as a temporal progression of

the mouthpiece pressure, as shown in figure 12.

n0 1 2 3 4 5 6 7 8

Figure 12: Dimensionless mouthpiece pressure progression over time from an initial
static state to the steady state regime, for γ = 0.5 and ζ = 0.4.

Given that the oscillation repeats every two time jumps, the period of oscilla-

tion is 2n = 4l/c.

Such a “two-step” oscillation with block-shaped pressure waves is also ob-

served for the case of an idealised bowed-string operation, referred to as the

“Helmholz motion”; which was thoroughly studied by Raman (Raman, 1918),
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who also took into account the frequency independent losses in his model. It

has since been shown that the discussed simplified wind instrument theory op-

erates in an analogous manner to the string instrument model (McIntyre et al.,

1983; Ollivier et al., 2004).

After a few iterations, the pressure p̄ will alternatively jump between exactly

opposite values, i.e. a stable amplitude is reached, which will be further referred

to as “the steady state regime”. On the nonlinear curve, the iteration stagnates

between two opposite points, forming a maximum “iteration square” (see e.g.

(Taillard et al., 2010)). An important property of this steady state oscillation is

that it always represents a perfectly harmonic signal, i.e. the frequency compon-

ents are perfect multiples of a fundamental frequency. This is a consequence of

the coupling of the excitation model and the resonator. While a real resonator

(with frequency dependent losses) usually stimulates an inharmonic relation,

which induces a difference in phase among the frequency components after

an oscillation period, the excitation model removes this phase difference again

when the steady state regime is reached. Therefore, the temporal wave signals

in this regime are perfectly repeating cycles.

When not in a steady state regime, the oscillation is in the so-called “tran-

sient” regime, where it changes each cycle. This happens when the excitation

model undergoes any changes such as an increase in mouth or lip pressure,

and continues until the excitation-resonator combination has reached oscillat-

ory “agreement” i.e. the steady state regime. It is worth noting that the initial

transient at the onset of the sound, as seen in figure 11, is called the “attack” of

the sound.

It should be mentioned that in theory some nonlinear curves can result in

two or more alternating squares, which is known as period doubling (introdu-

cing sub-harmonics). This has been theoretically studied for single-reed instru-

ments (e.g. (Taillard et al., 2010)) and also in previous hybrid instrument set-ups

(Maganza et al., 1986). However, the phenomenon rarely occurs in practice and

only the single square regime is considered for now.
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2.2 other excitation models

It is possible to excite a clarinet with other types of embouchures, which opens

up the possibility of generating different sounds. While other designs of single-

reed embouchures can be thought of, embouchures that follow a completely

different excitation principle can also be introduced. This is particularly inter-

esting for the hybrid wind instrument, in terms of creating new timbres, as the

computer allows any type of excitation to be freely programmed. A number of

excitation models are discussed in detail in chapter 4, but it is worth mentioning

here how excitation models can be different from the single reed model. This

is also of relevance for section 2.3, which discusses the influence of an arbitrary

excitation model on the produced sound.

2.2.1 Quasistatic excitation

Any excitation model whose functioning can be approximately described by

leaving out any time derivatives is quasistatic in nature. This property implies

that the model can be represented by a static curve; its shape does not depend

on the input’s history. As shown, the property greatly simplifies the under-

standing of self-sustained oscillations.

As well as the discussed single reed model, the double reed falls in this cat-

egory. In addition, models that are not explicitly based on pressures and flow

rates can be considered, for instance models for the “bow-string interaction”,

which is the excitation for bowed string instruments. The presented theory and

the derived theorems can be simply extended by replacing the nonlinear curve

of the single reed by the curve of any quasistatic excitation model. However, cer-

tain quasistatic excitation types can also be categorised as dynamic excitations,

as will be explained.
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2.2.2 Dynamic excitation

In this thesis, the focus lies on quasistatic excitations, and the next section is

initially based on this assumption. However a dynamic model (the lip-reed

model) is also employed (in section 4.3) and, in that section, an adapted theory

is proposed to approximately suit this dynamic case.

An excitation can be considered dynamic if there is any time dependency

involved in the excitation’s interaction with the resonator, so that the nonlinear

q(p) curve is composed of varying paths.

There are a few possible ways that such excitations can emerge.

One is due to the presence of time derivatives, for example to model friction

or inertia; this is necessary when modelling brass-playing lips (the “lip reed”)

for instance. The complexity of such systems is reflected in the literature; a good

overview is given by Campbell (2004). To explain the self-sustained operation,

the derived theorems are mostly valid, but they impose different conditions. For

the lip-reed model for instance, the lip resonance frequency should be around

or below the frequency of the played note, so as to enable the occurrence of a

“negative resistance”, which is required for the initial instability, as stipulated

in theorem 1.

An interesting feature of excitation models that are themselves vibrating sys-

tems, is that they can also contribute to maintaining the self-sustained oscilla-

tion, therefore becoming more independent from the resonator. This allows this

component to have a greater influence on the signals, i.e. on how the instrument

will sound.

Another type of dynamic excitation is one where the characteristic function

is a multivalued function in the ( p̄+n−1, p̄+n ) coordinate system (and not neces-

sarily in the ( p̄, q̄) system). This can be understood as a state where a change

in pressure would lead to a bigger change in pressure induced by the entering

air flow, or: ∂p < Zc∂q(p) ⇒ ∂q(p)
∂p > 1

Zc
(partial derivatives are used as the

condition should not take into account the implicit dependency of p by q). This
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causes the oscillation to stick to the branch of the curve that it was following,

and jump to the other branch when a certain threshold is exceeded. This hys-

teresis effect only occurs when there is a multivalued zone within the domain

of the oscillation (i.e. for |p| ≤ pa, where pa is the amplitude of the oscillation)

and repeats for each oscillation cycle. The following theorem summarises the

condition for the appearance of hysteresis for the dimensionless case:

Theorem 2. Condition of hysteretic excitation. An excitation model with dimensionless

implicit equation q̄( p̄) is hysteretic when its explicit equation is multivalued in the

domain where the oscillation occurs, i.e. when ∃ p̄ ∈ [− p̄a, p̄a]| ∂q̄( p̄)
∂ p̄ > 1.

This phenomenon occurs, for example, for the bow-string interaction model

when high bowing forces are applied (see 4.4). In this way, it is demonstrated

that a quasistatic model can also be dynamic in its operation.

2.3 how the excitation influences the sound

In this section, the issue of how the interaction of the excitation model and the

resonator determines the sound produced is discussed. This study is interesting

with regard to discovering the sound potential of a given excitation model. Also,

understanding the excitation-sound relationship enables pre-estimation of the

sound features, ideally providing a tool for selecting excitation models and/or

parameters to deliver a desired sound output. Hence, this theory provides some

general guidelines in the “quest” for musically interesting excitation models

(note however that this quest can also be undertaken in different ways).

Many sound features are generally difficult to accurately predict, either due

to the complexity of the excitation model and/or the requirement of a more

complex resonator model. This also explains why these sound features are gen-

erally not precisely and independently controllable by the player. That is, while

some sound features can be directly related to a single factor of the character-

istic nonlinear equation, it is usually not the case that this factor is also related
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to a property of the physical model that is independently controllable; mostly

the physical properties relate to several sound features at the same time. Nev-

ertheless, it may be possible to find a new (reduced) dimensionless parameter

set for an excitation model (such as for the presented single-reed model) with

a more direct connection to the sound features, a point which will also be clari-

fied in the next subsections.

The first subsection discusses amplitude-related features of the oscillation, re-

vealed by the simplified model of the resonator with only frequency independ-

ent losses and no dispersion considered. Then the second subsection extends

the resonator model to include frequency dependent losses, revealing certain

spectral features of the oscillation. It should be mentioned that this subdivision

of the acoustic losses is purely of practical use and has no physical meaning.

2.3.1 Amplitude-related features

Amplitude of oscillation

From the iterative maps theory - more precisely, from the iteration square - a

new theorem can be derived that will enable direct estimation of the amplitude

of the oscillation in the steady state regime by solely considering the excitation

model’s characteristic curve:

Theorem 3. Amplitude of oscillation. The dimensionless amplitude of the oscillation

in the steady state regime, ¯̃pa, is determined by the intersection of the dimensionless

nonlinear curve with its ¯̃q axis mirrored curve, i.e. the peaks are indicated by the non-

zero solutions of ¯̃q( ¯̃p) = ¯̃q(− ¯̃p). Hence, the domain occupied by the oscillation is

¯̃p ∈ [− ¯̃pa, ¯̃pa].

As discussed earlier, these solutions will not be mathematically derived here,

given the enormous complexity and the fact that the detail is not important

for our study (the solutions can be found in (Taillard et al., 2010)); instead, the

theorem is used here to graphically identify the solutions. In this way it can be
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easily understood that, for instance, the mouth pressure, shifting the nonlinear

curve along the p̄ axis, has an important influence on the amplitude of the

oscillation. Figure 13 shows the case for γ = 0.8. The outer intersections of the

dashed curves indicate the amplitude in the steady state regime. It can be seen

that the beating reed threshold is greatly exceeded for this case and the outer

intersections reveal a steady state amplitude of ¯̃pa . 0.8.
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Figure 13: Characteristic single-reed curves for γ = 0.8 and ζ = 0.2; in the ( p̄, q̄) and
( ¯̃p, ¯̃q) coordinate system, resp. in solid and dotted lines. The mirrored curve
is also plotted in the latter system, which reveals ˜̄pa, the amplitude of the
oscillation in the steady state regime.

It should be noted that the total, dimensional, amplitude is then obtained by

multiplying by the global scaling factor PM. While PM cannot be separately con-

trolled with a real embouchure, this is possible in the case of the dimensionless

model, so that the global amplitude can be controlled independently of any

other sound feature.

In contrast to PM, altering γ changes the shape of the characteristic excitation

curve, which therefore also influences other sound features.

Extinction of the oscillation

It is interesting to note that the representation in the ( ¯̃p, ¯̃q) coordinate system

reveals an important property of the clarinet: when the mouth pressure is in-

creasing, the amplitude will grow, but at the same time the injected flow signal



68 on the operation of wind instruments with a clarinet-type resonator

becomes a smaller fraction of the oscillation period so that the excitation be-

comes weaker and at a certain point, the oscillation extinguishes; this is when

the outer intersections of the nonlinear curve with its mirrored curve disappear.

Amplitude of excitation

The “excitation amplitude” ¯̃qa is defined as the peak-to-peak amplitude of the

flow rate signal ¯̃q or, in other words, the vertical reach of the part of the excita-

tion function that is used in the oscillation . Note that contrary to the pressure,

the presence of a mean flow component requires the use of a peak-to-peak flow

rate amplitude. While a given excitation model does not necessarily provide a

parameter that directly controls this amplitude, it is mathematically straightfor-

ward to control it with a global factor in the characteristic function, for which

the parameter name ζ is chosen, in convention with the literature on the single-

reed model (Kergomard, 1995).

The iterative maps theory directly demonstrates the influence of this amp-

litude on the onset of the oscillation. Whereas figure 11, the embouchure para-

meter was ζ = 0.4, for the nonlinear curve in figure 14, ζ = 0.2. Given that for

both cases γ = 0.5, the amplitude of oscillation is nearly equal and, as such, ζ

only controls the excitation amplitude. As can be seen, many more iterations

are needed (about 30) before the steady state regime is reached. This suggests

that ζ is inversely related to the attack time, which is also in agreement with

existing theories on the single-reed model (Kergomard, 1995), but this interpret-

ation generalises the idea for any quasistatic excitation model.

Another way to understand this is to interpret the resonator as a reservoir

of energy, which will be charged during the attack time. As such, when the

steady state is reached, the reservoir is full and the energy supplied by the

mouth equals the energy outputted by the resonator. In that regard, it can also

be understood that when the excitation is of higher amplitude, a shorter attack

time is needed to fill up the reservoir.
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Figure 14: Iterative map on the single-reed curve, for γ = 0.5 and ζ = 0.2. The num-
ber of iterations to reach the iteration square increases for a decreased em-
bouchure parameter.

The excitation amplitude also has an effect on the spectral richness, or the

“brightness” of the sound during the steady state regime. However, in order to

study spectral variations, the frequency dependent losses component and/or

the dispersion has to be taken into account; in their absence, only square waves

are obtained, which have a rich but constant spectrum. Taking into account

those effects complicates the study greatly; without it everything can be fairly

easily presented in the time domain. The impact of those losses and the dis-

persion would be more easily understood in the frequency domain, but this

domain is not suited for the study of the nonlinearities of the excitation. Here

a simplified — yet somewhat empirical — technique is proposed to study the

influence of the frequency dependent losses.

2.3.2 Effect of the frequency dependent losses

Many theories exist that discuss the relationship of the excitation with the

steady state spectrum of self-sustained sounds using frequency-domain-based

methods, first investigated by Worman, then by Benade (Worman, 1971; Ben-
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ade, 1988). Later, the numerical “harmonic balance method” (e.g. (Schumacher,

1978; Gilbert et al., 1989; Karkar et al., 2012)) and analytical “variable trunca-

tion method” (Kergomard et al., 2000) were introduced, which operate in the

frequency domain by seeking for pressure and flow rate spectra that both match

the excitation model (and its parameter status) and the resonator’s impedance

and thereby reveal the steady-state oscillation. However, the early theories are

too case specific for our purpose (only small oscillations, for the clarinet only,...)

and the harmonic balance and variable truncation methods tend to overshadow

the intuitive link between a given excitation model and the resulting spectrum.

Nevertheless, it will be shown that there is a method that approximately relates

the characteristic nonlinear curves to some characteristic sound features. This

will be achieved by deriving some generalised rules, relying on the case of

the quasistatic single-reed excitation; their detailed application to the specific

excitation models employed in this thesis is further investigated in chapter 4.

Remaining in the time domain, it is interesting to consider how a pressure

impulse would look after it has travelled down and back up the resonator. This

introduces the notion of “reflection function” (see e.g. (Chaigne and Kergomard,

2013)). A lossless cylindrical resonator with an open ending has the reflection

function r(t) = −δ(t − 2l/c), where δ is the Dirac delta function, with l the

resonator length and c the speed of sound. This will result in an inverted equal

amplitude impulse returning after a time 2l/c. The reflection function for a

dissipative resonator is shown in figure 15 (c). It is calculated using a theoretical

model (Polack, 1987), with geometrical parameters corresponding to the tube

resonator that is employed throughout this thesis.

As can be seen, it is close to a delayed, inverted impulse, but when examined

closely, the impulse appears smeared out in time, particularly in its decay.

The temporal procedure to calculate the backward travelling pressure re-

sponse for an arbitrary injected forward travelling pressure signal is by con-

volution of the forward travelling signal with this reflection function. Given

that it is not the intention to demonstrate the self-sustained oscillation mathem-
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Figure 15: Flow diagram of the clarinet’s operation, consisting of the nonlinear charac-
teristic curve in the (− p̄−n /λ, p̄+n ) system, for γ = 0.5 and ζ = 0.4 (up, left),
the downstream pressure signal p̄+(t) (up, right), the resonator’s theoret-
ical reflection function r(t) (down, right), and the upstream pressure signal
− p̄−(t)/λ (down, left).

atically here (which would be very complicated), the impact of this convolution

is simply interpreted as a “smearing out” effect, which can be observed when

comparing both down- and upstream pressure signals. Figure 15 is set up in

such a way that one cycle through the curves in a clockwise direction (e.g. from

(a) to (d)) represents half a period of an oscillation (i.e. one iteration). As earlier,

the single-reed model with parameters γ = 0.5 and ζ = 0.4 is used. The effect

of the frequency independent losses component (i.e dictated by the acoustic

transmission factor) is better understood by using the equivalent — hypothet-

ical — oscillating system, where λ is integrated into the excitation model. Thus,

by dividing the outcome of the convolution by −λ, the effect of the remaining

losses component and the dispersion can be separately studied. As such, the ho-
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rizontal axes of the two graphs on the left side of figure 15 are represented by

− p̄−n /λ; however, due to the extra losses and dispersion, this no longer exactly

corresponds to p̄+n−1. Therefore, the separate downstream (b) and upstream (d)

pressure signals are not simply identical, delayed signals. Their axes in figure

15 are scaled and orientated so as to correspond to the axes of the nonlinear

curve and of the reflection function. The displayed pressure signals are chosen

for an arbitrary time for one oscillation cycle during the steady state regime.

While the effect of the frequency dependent losses and the dispersion is

small, it can be generally seen by the fact that the pressure waves are not per-

fectly block-shaped anymore (i.e. high frequencies are reduced in amplitude).

When observing for example graph (d), the forward travelling pressure − p̄+n−1

(dashed line) convolved with the reflection function (and divided by −λ), res-

ults in the backward travelling pressure one iteration later − p̄−n /λ (solid line).

This reveals that the influence of the effect is a slight rounding of the wave

shape. Hence, the upstream pressure jump is no longer instantaneous (as it was

for the model with only frequency independent losses) so that the whole charac-

teristic curve is evaluated during the iteration. As such, when observing graph

(b), after evaluating the backward travelling pressure signal p̄−n /λ (dashed line)

with the nonlinear function (which applies instantaneously), it can be noted

that the corners are sharpened again in the downstream pressure p̄+n (solid

line). Hence, it can be concluded that an increase in the “amount of nonlin-

earity” will positively compensate for the rounding effect of the frequency

dependent losses and the dispersion and pull the equilibrium back towards

the block-shaped case, i.e. towards a richer, brighter sound spectrum and a

decreased attack time. Nevertheless, it is not straightforward to quantify this

compensation effect and to measure its impact on the spectral richness, but the

theory in the next subsection proposes a slightly more detailed approach by

distinguishing two components of the nonlinear curve.
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Excitation of odd and even harmonics

Given that a cylindrical resonator, open at one end and closed at the other,

only stimulates the odd harmonics (i.e. its impedance has antiresonances on

even multiples of the first resonant frequency), the pressure signal at the res-

onator entrance almost solely consists of these frequencies. Considering now

the case of the hypothetical resonator, the (hypothetical) absence of the fre-

quency independent losses component results in an accentuation of the reson-

ances and antiresonances, so that the hypothetical pressure ¯̃p(t) contains even

fewer even harmonics. By also neglecting the insignificant influence of the mean

flow (provided that Z(ω = 0) ≈ 0) (see section 2.4), it can first be assumed that

the spectrum of this pressure signal only contains odd harmonics, i.e. it is anti-

symmetrical in shape.

It is easy to verify that the evaluation of an odd function (whose graph is

known to have rotational symmetry with respect to the origin) on an anti-

symmetrical signal results in a new anti-symmetrical signal. Alternatively, the

application of an even function (a symmetrical graph) on that signal generates a

purely symmetrical signal. Furthermore, given that any function can be written

as the sum of an odd and an even function, the excitation curve can be written

as: ¯̃q( ¯̃p) = ¯̃qo( ¯̃p) + ¯̃qe( ¯̃p). In summary, the even and odd components of the

flow signal can be simply derived from the odd and even function definitions

applied on ¯̃q( ¯̃p):





¯̃qe( ¯̃p(t)) =
¯̃q( ¯̃p)+ ¯̃q(− ¯̃p)

2

¯̃qo( ¯̃p(t)) =
¯̃q( ¯̃p)− ¯̃q(− ¯̃p)

2

. (10)

This demonstrates that, after evaluation of the pressure with the nonlinear

function, the generated flow signal ¯̃q(t) can contain even harmonics, thus they

will also be present in the sound waves radiated from the open end of the

tube (albeit not so loud). Indeed, using a monopole radiation model (which is

a reasonable approximation of the reality), the radiated pressure wave can be
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estimated as pext ∝ d p̄+
dt ∝ d( p̄+q̄)

dt (see e.g. (Jacobsen, 2011)), showing that the

emitted sound is proportional to the derivative of both the pressure and the

flow rate. It is interesting to note that in the lossless resonator case, all signals

are square waves, which only contain odd harmonics. Thus, it is as a result of

the frequency dependent losses and the dispersion that a clarinet also outputs

even harmonics (this can also be thought of in terms of non-zero values of the

impedance at even harmonic frequencies (Barthet et al., 2005)).

The fact that a closed-open cylindrical tube only stimulates the odd har-

monics ensures that the odd component is actually maintaining the oscillation.

Therefore, the influence of ¯̃qo( ¯̃p) is essentially responsible for the spectral rich-

ness of the sound. While the even component also contributes to the spectral

richness, because of the absence of resonator feedback, its effect is much smal-

ler (note that, for example a purely even excitation curve cannot generate self-

sustained oscillations). Hence, instead of the “amount of nonlinearity” of the

entire curve (as hypothesised in the previous section), the “amount of nonlin-

earity” of the odd part is considered to be a more representative indicator of the

brightness and attack time of the sound. This amount of nonlinearity is related

to the vertical range of the part of the curve between the outer excursion points,

i.e. in the domain [− ¯̃pa, ¯̃pa].

An appropriate calculation should take into account the pressure wave, which

is still close to block shaped, and thus should evaluate the nonlinear curve

mainly close to − ¯̃pa and ¯̃pa. However, the pressure wave is unknown a priori,

and although the odd curve component will only generate odd harmonics, it

cannot easily be verified by how much each of the harmonics will be excited.

Mean power

In order to provide a solution to this interdependency of the pressure and

flow rate, an assumption is made, based on empirical observations of the self-

sustained pressure waves produced by the hybrid instrument and simulations.

These observations (see e.g. figure 15 (d) and figure 60 in chapter 5 for examples
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of pressure waves obtained with the evaluated excitation models and a selection

of arbitrary parameters) reveal that, for any quasistatic excitation of a closed-

open resonator, the pressure wave is noted to be approximately “trapezoidal”

in shape, with a variable “flank steepness”, as shown in figure 16.

Figure 16: Empirical “trapezoidal” model of the pressure wave shapes.

The flank steepness in this model is determined by the fraction σ
τ , where τ

is the period of the oscillation and σ is the time during which the pressure

is linearly increasing and decreasing. Note that a normalisation by ¯̃pa is per-

formed to reduce the number of parameters. As such, this model can be used

to calculate a corresponding flow rate signal for both the case of the excitation

model (by applying its characteristic nonlinear function) and the resonator (by

deconvolution of the resonator’s impulse response). By varying the excitation

parameters, the flow rate signals can be matched, which in turn enables the

estimation of σ
τ as a function of the excitation parameters. However, it is more

convenient to reduce this fitting operation to a comparison of the mean power

dissipated over one oscillation cycle in the steady state regime, as calculated

for the excitation model and the resonator. This quantity is typically deployed

for such purposes; for example, McIntryre et al. used the similar notion of

“mean rate of working” to demonstrate the self-sustained oscillation require-

ments (McIntyre et al., 1983). Moreover, it will be shown that the mean power

calculation for this particular wave form can be interestingly reduced, resulting

in a surprisingly intuitive excitation-sound relationship.

First of all, a few preliminary points are noted:
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• The calculations are carried out on the dimensionless parameters, but they

can be easily transformed to a dimensional case.

• The hypothetical excitation and resonator (i.e. the tilde-signals) are used,

so that the power is entirely related to the dispersion and not partly to

the frequency independent losses, which only affect the amplitude of the

oscillation.

• The linear expression for the flank that crosses the origin is:

∀ t ∈ [−σ, σ], ¯̃p/ ¯̃pa = 4t
σ .

• The proposed assumed pressure wave is anti-symmetric, implying that it

only contains odd harmonics.

The general expression to calculate the dimensionless mean power over one

oscillation cycle is (Chaigne and Kergomard, 2013):

¯̃Pm =
1
τ

∫ τ/2

−τ/2
¯̃q(t) ¯̃p(t) dt (11)

calculated for the case of the excitation model For the case

of the excitation model, ¯̃q(t) in equation (11) can be replaced by using its char-

acteristic equation ¯̃q( ˜̄p(t)).

¯̃Pme =
1
τ

∫ τ/2

−τ/2
¯̃q( ˜̄p(t)) ¯̃p(t) dt (12)

Given that ¯̃p(t) is anti-symmetric and ¯̃q( ¯̃pa) = ¯̃q(− ¯̃pa), the power generated

at these pressure extrema is opposite and cancels itself out, so that the mean

power integral can be reduced to the domain [−σ/4, σ/4] :

¯̃Pme =
2
τ

∫ σ/4

−σ/4
¯̃q( ¯̃p(t)) ¯̃p(t) dt (13)

By substituting the pressure signal with its assumed wave shape in this domain

¯̃p(t ∈ [− σ
4 , σ

4 ]) = ¯̃pa ˆ̃p(t) = ¯̃pa
4t
σ , so that d ˆ̃p

dt = 4
σ , and defining ˆ̃q = ¯̃q/ ¯̃pa, the

mean power expression can be calculated as:
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¯̃Pme =
ˆ̃P ¯̃p2

a =
σ

τ

¯̃p2
a

2

∫ 1

−1
ˆ̃q( ˆ̃p) ˆ̃p d ˆ̃p (14)

Hence, the value ˆ̃Pm/ σ
τ can be calculated by only relying on the excitation

model’s characteristic curve. This is done numerically and it can also be graph-

ically represented, as shown in figure 17.

Figure 17: Single reed excitation curves for γ = 0.8 and ζ = 0.2; in the normalised
( p̂, q̂) and ( ˆ̃p, ˆ̃q) coordinate systems; with indication of a gradient, which
graphically represents the mean power calculation by the excitation model.
The red dash-dotted curve is the even component of the nonlinear curve
and the solid curve is that component after subtraction of the mean flow;
providing an indication of a part of the even harmonics RMS calculation.

In this figure, the ˆ̃q( ˆ̃p) curve is filled with a gradient which demonstrates the

calculation of ˆ̃Pm/ σ
τ by subtracting the amount of blue (related to the negative

normalised power contribution during one cycle) from the amount of green

(related to the positive normalised power contribution).

calculated for the resonator model While the flow rate signal in

equation (11) could be simply replaced by a deconvolution of the pressure sig-

nal with a theoretical estimation of the resonator’s impulse response, there are

a few things that complicate this reasoning. The fundamental frequency of the

oscillation is also an unknown and as such, the pressure wave is not exactly

known a priori. This issue can be resolved by making the assumption that the

imaginary part of the impedance only introduces a constant delay, which can
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be interpreted as a length correction to the resonator. In other words, the dis-

persion of the resonator is neglected and thereby also the inharmonicity, which

is a reasonable approximation, especially given the fact that this feature is typic-

ally aimed for in the design of wind instruments. Hence, all harmonics exactly

fall on the entrance impedance peaks and the phase at the harmonic frequen-

cies can be considered zero. The fundamental frequency can be calculated from

the tube’s length (including the length correction) and the deconvolution can

be performed using a frequency domain expression of the maximum imped-

ance peaks of ¯̃Zt (the dimensionless entrance impedance of the hypothetical

resonator), which takes into account the acoustic radiation losses (Chaigne and

Kergomard, 2013):

| ¯̃Zt|max ≈
1

tanh
(

αL + 1
4 (kR)2

) , (15)

where α = 1.044 for air, k = ω
c is the wave number and L and R are the length

and internal radius of the cylindrical resonator. So that the deconvolution in the

frequency domain using the (circular) Fourier transform F ; and the succeeding

inverse transform to the time domain using F−1 is performed giving:

¯̃q(t) ≈ F−1

(
F ( ¯̃p(t))
| ¯̃Zt|max

)
. (16)

Finally, the dimensionless mean power for trapezoid pressure signals - as cal-

culated via the resonator - is found as:

¯̃Pmr(σ) =
ˆ̃Pmr(σ) ¯̃p2

a =
¯̃p2

a
τ

∫ τ/2

−τ/2
F−1

(
F ( ˆ̃p(σ, t))
| ¯̃Zt|max

)
ˆ̃p(σ, t) dt (17)

For geometrical parameters corresponding to the tube resonator used through-

out this thesis (see subsection 3.3.1), the numerical calculation of the normalised

mean power ˆ̃Pmr(σ) is obtained for σ
τ ∈ [0, 1], which is presented in figure 18.

As can be seen in that figure, a first order approximation of this curve can be

obtained by a linear regression, so that:
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Figure 18: Normalised mean cyclic power dissipated in a tube resonator for a
trapezoidal pressure wave, as a function of the trapezoid flank steepness
factor σ

τ . The solid curve shows the numerical calculation for a harmonic
resonator without frequency independent losses, whose maximum imped-
ance peaks are indicated by | ¯̃Zt|max. The dashed curve shows a numerical
linear regression.

ˆ̃Pmr(σ) ≈ k0 + k1
σ

τ
, (18)

introducing the regression constants k0 and k1, which can be found numeric-

ally (for the used resonator k0 = 0.0186 and k1 = −0.0156). This crude ap-

proximation is sufficient for the purpose of the approximate steepness estima-

tion (which has been confirmed by numerical comparison); very low steepness

factors have an increased error, but they are unlikely to occur in practice. The

first order expression enables the rearrangement of the power comparison equa-

tion so that the estimated steepness factor can be revealed, as will be shown in

the next section.

matching the power calculations Since the mean powers, calcu-

lated with the excitation model and with the resonator, are equal during the

steady state regime (i.e. ¯̃Pme =
¯̃Pmr), equations (14) and (18) can be combined:

σ

τ

1
2

∫ 1

−1
ˆ̃q( ˆ̃p) ˆ̃p d ˆ̃p ≈ k0 + k1

σ

τ
. (19)
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Hence, after rearrangement, the steepness factor of the trapezoidal wave shape

for a given excitation curve can be found as:

σ

τ
≈ k0

1
2

∫ 1
−1

ˆ̃q( ˆ̃p) ˆ̃p d ˆ̃p− k1
. (20)

Finally, it is possible to relate the steepness factor to the RMS of the normalised

pressure. Given that a pure normalised square wave (i.e. for σ
τ = 0) has an

RMS pressure value of 1, and a triangular normalised wave (i.e. for σ
τ = 1) has

ˆ̃pRMS = 1√
3
, the RMS value as a function of σ

τ can be found as:

ˆ̃pRMS = 1− σ

τ

√
3− 1√

3
. (21)

In conclusion, the following theorem can be formulated:

Theorem 4. Spectral richness vs. normalised power. To a good approximation, the

normalised RMS pressure of the resulting trapezoidal-shaped pressure wave, which

indicate the spectral richness, is linearly related to the normalised power calculation

over the domain of the excitation curve, which can be directly estimated via a graphical

method using a negative and positive gradient under the hypothetical excitation curve,

or it can be numerically obtained using that curve.

For the parameter values γ = 0.8 and ζ = 0.2, used in figure 17, the results

are σ
τ = 0.66 and ˆ̃pRMS = 0.72. This theory can also be applied to other excita-

tion models, which is further developed in chapter 4. For all excitation models,

the evaluation for a wide range of parameter values and a comparison with

experiments is discussed in chapter 5.

even harmonics contribution It can be noted that, due to the ab-

sence of even harmonics in the trapezoidal pressure signal, the power calcu-

lation only relies on the odd flow rate component. While the even harmonics

do not dissipate any power in the hypothetical instrument, ¯̃q does produce

even harmonics, which contribute to the radiated pressure. Therefore, the RMS

amplitude of these even harmonics can serve as a measure of this feature. This
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amplitude, for consistency also normalised by the pressure amplitude ¯̃pa, is

given by:

ˆ̃qeRMS =

√
1
τ

∫ τ/2

−τ/2
( ˆ̃qec(t))2 dt, (22)

where ˆ̃qec(t) =
(

¯̃qe(t)− < ¯̃q >
)

/ ¯̃pa and < ¯̃q > is the mean flow, which is not

audible and therefore it is excluded from the even harmonics RMS calculation.

The mean flow can be calculated by summing the weighted mean values of ¯̃qe

during the flank and during the time the pressure is at its extremum: < ¯̃q >=

σ
τ < ¯̃qe

(
]− ¯̃pa, ¯̃pa[

)
> +(1− σ

τ )
¯̃qe( ¯̃pa).

Unlike the mean power, the even RMS calculation at the pressure extrema

doesn’t cancel itself out, so that the formula cannot be reduced to the [− σ
4 , σ

4 ]

domain, which also applies to the mean flow calculation. However, as the pres-

sure signal is already known (after matching the mean powers), ¯̃qe can be dir-

ectly calculated using eq. (10). For example, for the parameter values used in

figure 17, the determined factor σ
τ = 0.66 enables calculation of the mean flow

and ˆ̃qec( ˆ̃p = [−1, 1]), which is plotted out in solid black in figure 17, while the

extrema ˆ̃qec( ˆ̃p = −1) = ˆ̃qec( ˆ̃p = 1) are indicated with black crosses.

Finally, the RMS of the even flow component can be calculated by:

ˆ̃qeRMS =

√√√√σ

τ

(
1
2

∫ 1

−1
( ˆ̃qec( ˆ̃p))2d ˆ̃p

)
+ (1− σ

τ
) ( ˆ̃qec(1))2, (23)

Thus, for the estimation using the graphical representation, the following

theorem can be used:

Theorem 5. Presence of even harmonics. The estimation of the even component’s RMS

pressure can be carried out in three steps:

1) The mean flow < ¯̃q > is found using the steepness factor σ
τ .

2) ˆ̃qec, the normalised even characteristic function component minus the mean flow

is drawn out.

3) The even RMS pressure is the square root of the weighted sum of the mean squares

of ˆ̃qec([−1, 1]) and the mean square of a constant flow ˆ̃qec(1) (the values found at each
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of the extremities of ˆ̃qec); the former is weighted by the fraction σ
τ , and the latter by the

fraction(1− σ
τ ).

For the parameter values used in the figure, the result is ˆ̃qeRMS = 0.0092.

This is a very low amplitude, due to the fact that the amount of symmetry of

the characteristic curve is particularly low for this excitation parameters. It is

shown in chapter 4 that much higher even harmonics RMS values are obtained

with other parameters and other excitation models.

Fundamental frequency

While constant excitation parameters result in a sound with a fixed playing fre-

quency, the resonator’s inharmonic modal distribution together with the vari-

ation of the mouthpiece pressure spectrum causes the oscillation frequency to

diverge (see for instance (Coyle et al., 2014)). Given that the greatest instabil-

ity is obtained at the resonant peaks, the higher harmonics tend to pull the

frequency in the direction of the nearby resonant peak. Therefore, a richer spec-

trum, containing stronger higher harmonics, will either cause a frequency up-

or down-shift for respectively a positive or negative inharmonic resonator.

On the other hand, dynamical excitation models also can influence the oscil-

lation frequency substantially. A rough idea of the order of divergence can be

obtained by noting the amount of phase lag introduced by the excitation’s dy-

namics around this frequency. Adding this to the phase of the resonator, a new

zero-crossing phase can be found, which reveals the fundamental frequency

near the oscillation threshold with this excitation.

It should be mentioned that, the change in fundamental frequency alters the

spectrum in turn, so that an equilibrium is sought during transient oscillation

states. However, such a refined timbre study exceeds the scope of this disserta-

tion.
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2.4 a modal cylindrical duct model

The previously discussed cylindrical resonator model is useful for explaining

the basic functioning of the clarinet in the time domain, however far more

precise models do exist. Although a theoretical resonator model is not strictly

necessary for the implementation of a real hybrid instrument, this discussion

is included to enable the impact of the coupling with the loudspeaker to be

analysed (in subsection 3.2.2) and enable comparison of the sounds produced

by a real hybrid instrument with “entirely simulated” sounds, i.e. where the

resonator is also simulated (see subsection 5.1.3).

Here, only resonators whose entrance can be acoustically approximated as

being “closed” (such as reed-instruments) and with a cylindrical bore and an

open far end are considered (however, for most other resonators similar simpli-

city and properties can be obtained). Moreover, it is assumed that the resonator

is a linear system; to a good approximation this is the case for the clarinet.

The analytically complete expression of the dimensionless bore impedance is

written in the frequency domain as (see e.g. (Chaigne and Kergomard, 2013)):

Z(ω)

Zc
= j tan

(
ωl
c
− jα(ω)l

)
, (24)

where s = jω = j2π f is the complex frequency (neglecting the real part), α(ω)

is a term that introduces all air propagation losses and Zc = ρc
St

is the charac-

teristic impedance, with ρ the density of air, c the speed of sound and St the

cross-sectional area of the duct.

It is worth noting that for ω = 0, this expression goes to a minimum, which

leads to the formulation of the following theorem, which will turn out to be of

particular importance to the hybrid instrument:
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Theorem 6. Insignificance of the mean flow. For a closed-open cylindrical resonator, it

may be assumed that Z(ω = 0) ≈ 01, which explains that, to a good approximation,

the influence of the mean flow on the self-sustained operation can be neglected.

Moreover, for a homogeneous tube of this type with relatively widely spaced

modes and with ends that approach the Neumann and Dirichlet conditions,

each impedance peak can be described as a second order transfer function with

real coefficients (Silva et al., 2008). The impedance can thus be written as a sum

of these transfer functions:

Zt(s)
Zc
≈

N

∑
n=1

ans
ω2

n +
ωn
Qn

s + s2 , (25)

where {an, ωn, Qn} are the real modal coefficients (the amplitude, resonance

frequency and quality factor of mode n). They can be deduced using a fitting

method applied on either a measured input impedance (see appendix A) or on

the analytical expression (24), assuming α(ω) to be a slowly varying function

of the frequency.

Hence, the pressure at the tube entrance can be decomposed into N com-

ponents as follows : p(t) = ∑N
n=1 pn(t), where each pn satisfies the following

equation:
d2 pn

dt2 +
ωn

Qn

dpn

dt
+ ω2

n pn(t) = Zc an
dq
dt

, (26)

with q(t) the temporal flow rate signal at the tube entrance.

This technique allows for a good approximation of a finite number of N

modes of the measured impedance. Sufficiently high frequencies can be taken

into account by choosing a great enough number of modes, and the calculation

cost is relatively low. In subsection 5.1.3 the practical implementation and the

choice for the number of modes is discussed further.

1 While this assumption is sufficiently valid for the current study, it should be said that the mean
flow can introduce effects like convection, refraction in shear, coupling with vorticity, scattering
by turbulence, and many others (Rienstra and Hirschberg, 2013).
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2.5 summary

This chapter provided a theoretical understanding of the functioning of a cla-

rinet and its excitation by arbitrary quasistatic models. It was shown that the

resonator can be interpreted as a simple “delay” and the excitation mechanism

as a nonlinear curve, which both relate up- and down-going pressure waves.

The frequency independent losses of the resonator could be interpreted as a fea-

ture of a “hypothetical excitation curve”. As such, a graphical “iterative map”

demonstrated how the oscillation is established.

Also some aspects of other excitation models (quasistatic and dynamic) were

briefly discussed.

Then, a theory relating the properties of a given nonlinear curve to the fea-

tures of the generated sound was presented. This theory represents a helpful

tool for the design of excitation models as a function of a desired sound out-

put, which can be of use for computed sound generation as well as hybrid

instruments where a theoretical excitation interacts with a real resonator.

It was shown that the amplitude of the oscillation can be determined by

identifying the outer intersections of the nonlinear excitation curve with its

¯̃q-axis mirrored curve. By focusing on the influence of excitation parameters,

the amplitude appeared to be mainly controlled by the mouth pressure, for

the case of the clarinet embouchure, while the “excitation amplitude” (mainly

controlled by the lip force for the case of the single-reed embouchure) appeared

to inversely relate to the the attack time.

For the study of spectral features, the remaining — frequency dependent —

losses were taken into account. Remaining in the time domain, it was explained

how those losses cause the excitation and the resonator to jointly converge

to steady-state pressure and flow rate signals that match to both components.

It was concluded that an increase in the “amount of nonlinearity” positively

compensates for the rounding effect of the frequency dependent losses, pulling



86 on the operation of wind instruments with a clarinet-type resonator

the equilibrium back towards a block-shaped pressure wave case, i.e. towards

a richer, brighter sound spectrum.

By then subdividing the excitation curve into an odd and even function, it

was shown that the odd part, in combination with an odd harmonic resonator,

is of importance to the oscillation condition and the brightness, while the even

part gives an indication of the amount of even harmonics in the sound.

By assuming the pressure to be trapezoidal in shape, with a σ
τ flank steep-

ness factor, the mean cyclic power during the steady state regime, as calculated

for the case of the excitation model and for the case of the resonator could be

matched. This resulted in an approximated expression, revealing a linear re-

lation between ˆ̃Pme/ σ
τ , the fraction of the mean power generated during the

pressure flank (which can be intuitively derived from a graphical presentation

using a gradient), and the steepness factor σ
τ . This factor turned out to be also

linearly related to the normalised RMS pressure amplitude, which is related to

the spectral richness.

The determined steepness factor then enabled the mean flow offset to be

found, which in turn allowed determination of ˆ̃qec, the mean-flow excluded

even component of the excitation curve, whose RMS amplitude can be estim-

ated from a graphical representation.

Finally, a frequency-domain model of a cylindrical resonator was presen-

ted, providing theoretical expressions reserved for implementations in later

chapters.



Part II

D E S I G N O F T H E H Y B R I D W I N D I N S T R U M E N T

This part of the dissertation presents the entire design process of

the hybrid wind instrument, consisting of a development chapter,

a chapter where several excitation models are presented, a chapter

where these models are evaluated with the hybrid instrument, a

chapter on some further developments, and a discussion chapter.





3D E V E L O P I N G T H E H Y B R I D W I N D I N S T R U M E N T

This chapter describes the development of the coupled loudspeaker-tube sys-

tem that forms the heart of the hybrid instrument; that is, the resonator, the mi-

crophone, the loudspeaker and a set of filters (implemented by the computing

system) to account for the loudspeaker. The computing system also executes the

excitation models, with more detail in the next chapter. The actual functionality

of the hybrid instrument is discussed in the evaluation in chapter 5.

As stipulated by the requirements determined in subsection 1.4.3, the first

aim is to obtain a situation close to an ideal hybrid instrument, i.e. where the

transducers do not introduce any side-effects. Therefore, the chapter starts by

describing the idealised hybrid instrument before then going on to address

some of the practical constraints associated with a real hybrid instrument. In

section 3.2, the theory underpinning the loudspeaker and resonator compon-

ents is studied and loudspeaker-compensating filters are derived. Next, in sec-

tion 3.3, the practical implementation of the hybrid wind instrument developed

during this study is discussed.

Another way to view this development is to see it as the design of an electro-

acoustic “transformer” between a computed excitation and an acoustic reson-

ator. If the instrument were able to function in an “ideal” way, the ratio of the

Fourier transform of the pressure signal measured by the computing system

and the Fourier transform of the calculated flow rate signal sent towards the

resonator, would exactly match the entrance impedance of the acoustic reson-

ator. It should be noted that these pressure and flow-rate signals are measured

synchronously, which implies that the “computed impedance” exists in real-

time. The coupled loudspeaker-tube system could be interpreted as a “hybrid

89
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resonator”, or a “hybrid impedance”. However, these expressions are some-

what ambiguous so won’t be used.

3.1 ideal and real hybrid wind instruments

3.1.1 Ideal hybrid wind instrument

In order to provide a better understanding of how a hybrid wind instrument

can be developed, first an idealised situation is described in which the actuator

is considered to be a rigid massless moving piston placed at the entrance of the

tube. The massless property ensures that the piston velocity is not affected by

inertia so that it moves proportionally with the electrical input signal. Mean-

while, the rigid property ensures that this occurs regardless of the surrounding

acoustic situation, i.e. the piston presents an infinite acoustic impedance to its

surroundings.

In the same regard, the microphone is assumed to be an ideal transducer, out-

putting an electrical signal that is directly proportional to the pressure, while

the acoustic situation is invariant to its presence.

Finally, the computing system is assumed to be a delay-less system, which

also provides perfect proportionality between the (input and output) voltages

and the corresponding theoretical pressure and flow rate signals that are calcu-

lated on it.

If such “ideal” components could be used, the resonator would preserve its

acoustic entrance impedance and the real pressure and flow rate at the reson-

ator entrance would exactly match the theoretical pressure and flow rate sig-

nals used by the embouchure model on the computer. Hence, the entire set-up

would operate as an “ideal hybrid wind instrument”.
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3.1.2 Real hybrid wind instrument

Moving on to study the use of real transducers and a real computer, there are

a number of important implications to be considered. In the remainder of this

section, these implications and the actions taken to resolve them are briefly

described. Section 3.2 then considers the issues in more detail before section 3.3

moves on to discuss the particular configuration of hybrid instrument that has

been designed for use in this study.

While a microphone operates almost like an ideal pressure sensor, a loud-

speaker is far more distinct from an ideal actuator. Its suspended membrane can

be described as a dynamic, mass-spring-damper system, excited by an electro-

dynamic voice-coil, which in its turn, is connected to a power amplifier. As such,

the loudspeaker is not massless, and its dynamics cause the input-to-output re-

sponse to be filtered. In order to correct for this and to create a flat frequency

response like the ideal piston, it is possible to place a preceding “inverse filter”

before the loudspeaker (this inverse filter is based on a theoretical model of the

loudspeaker).

In addition, the loudspeaker diaphragm is not infinitely stiff, and therefore

doesn’t present a rigid termination to the tube. In other words, the loudspeaker

is in an acousto-mechanically coupled interaction with the tube. Following

Newton’s third law, the action force on the loudspeaker diaphragm due to the

pressure in front of it can be compensated for by using a simple proportional

gain feedback controller, to instruct the voice coil to generate an opposite re-

action force. Altogether, this makes the membrane robust to external pressure

variations.

Figure 19 shows a block diagram explaining the functioning of a real hybrid

instrument in terms of transfer functions. This diagram is referred to through-

out this chapter (to help with the signposting, the bracketed numbers on the

diagram correspond to different subsections both within this chapter and the

thesis more generally).
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Figure 19: Block diagram of the hybrid instrument’s computed and physical parts.
The bracketed numbers correspond to different (sub)sections and chapters
within the thesis.

For consistency, all signals and systems are expressed in the frequency do-

main in this diagram (hence their notation in capital letters).

The “physical” part that makes up the lower half of the diagram contains

the transfer functions of the real physical components: the loudspeaker trans-

fer function HLS and the (loudspeaker-coupled) tube impedance Zt(me).1 The

“computed” part that comprises the upper half of the diagram contains two

filters to cancel the loudspeaker’s presence: a feedback controller C̃ and a feed-

forward controller, represented by an “inverse loudspeaker transfer function”

H̃−1
LS . The inclusion of a tilde sign for some of the transfer functions in the block

diagram indicates that they are “estimated”, having been derived from theory

using measured parameters. This also applies to some of the signals included

in the block diagram.

Stepping through the block diagram, the operation of the hybrid instrument

is as follows. A flow rate Q̃ (generated by the mouthpiece model) is sent to

the “inverse loudspeaker” transfer function. The output is then sent through a

1 In the notation employed in this dissertation, the subscript of the impedance Z can refer to the
acoustic tube (by t) and the mechanical and electrical loudspeaker components (by respectively
m and e). For coupled impedances, the leading symbol of the subscript indicates the type of
impedance, while the subscripts entered between brackets indicate the elements it is coupled to.
For instance, Zt(me) is an acoustic tube impedance for the case of a tube coupled to a loudspeaker,
taking into account both the loudspeaker’s mechanical and electrical components.
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digital-to-analogue converter (D/A) (see section B.2). This results in VQ, a com-

ponent of the total voltage signal that is provided to the loudspeaker. The latter,

in response, generates a flow rate Q which is applied to the tube-resonator. In

turn, the resonator reacts with a pressure P at its entrance. This pressure is cap-

tured by a microphone and acquired by the computer via an analogue-to-digital

converter (A/D). The feedback controller C̃ uses this signal to generate a feed-

back force signal F̃P, which results in an additional voltage VP being provided

to the loudspeaker. This component of the total voltage signal ensures that the

signal produced by the loudspeaker compensates for the acoustical coupling

with the tube (see 3.2.3).

It should be noted that the coupling is interpreted in terms of an altered

tube impedance, as this allows the impact on the original tube impedance to be

studied. However, this is not a physically realistic representation (in reality the

loudspeaker’s response is affected by the coupling); hence, the feedback flow

rate QP is only a theoretical concept.

As the feedback filter compensates for the coupling, when combined with

the coupled impedance Zt(me), an approximation of Zt is obtained. Meanwhile,

the feedforward filter H̃−1
LS corrects for the loudspeaker response HLS, so that

all together an uncoupled (or, “hybrid”) tube impedance Z̃t is obtained (repres-

ented by the large grey coloured frame in the block diagram). This impedance

can also be understood in terms of the ratio of the measured pressure P over

the calculated flow rate Q̃. It is then available for interaction with an excitation

model, such as the model of a wind instrument embouchure, so that hybrid

self-sustained sounds can be produced.

3.2 loudspeaker-resonator system and filters

This section provides detailed theoretical descriptions of the loudspeaker, the

interaction with the resonator in the form of a coupled system (as represen-

ted in figure 20, explained later) and the design of filters to compensate for
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Figure 20: Schematic of the assembled loudspeaker and tube models. The variables Re,
Bl, Cm, Rm and Mm refer to loudspeaker parameters. Sd and St refer to
respectively the loudspeaker diaphragm area and the tube cross-sectional
area.

the loudspeaker. The discussions are spread over three subsections, which also

relate to the components of the block diagram in figure 19.

In the theoretical development, the sound is assumed to propagate in the

form of plane waves, which is valid as long as the wavelength is much greater

than the cross-sectional diameter of the tube and loudspeaker (Hirschberg,

1995). Also, provided that the volume between the loudspeaker diaphragm and

the tube is small, the change in cross-sectional area between the loudspeaker

(with diaphragm area Sd) and the tube (with area St) is assumed to have neg-

ligible influence on both the “volume flow rate” Q and the pressure P, so that

they can be considered as equal in and between both places.

Throughout what follows, time domain signals are denoted in lower case.

Frequency domain signals, denoted in upper case, are expressed in the complex

s-plane (for continuous time) by using the Laplace Transform with imaginary

argument, with s = jω, ω = 2π f and f the frequency in Hz. Discrete spectra

are expressed in the z-plane by applying the Z-transform with z = esT, with

T the sample time. However, for simplicity the s and z function arguments are

not repeated after the introduction of a variable.
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3.2.1 The loudspeaker

Several existing loudspeaker driver designs and technologies have been con-

sidered, including piezoelectric, magnetostatic, magnetostrictive electrostatic,

ribbon, bending wave, distributed mode, and plasma arc loudspeakers. How-

ever, considering the purpose of the hybrid instrument, all of these technologies

fall short in comparison with traditional dynamic “moving cone” loudspeakers.

They either feature a nonlinear frequency or dynamic response, or they are not

suitable due to their physical dimensions or acousto-mechanical impedance of

the diaphragm. Therefore, in what follows, only the driver design of dynamic

loudspeakers is considered.

To be able to employ a dynamic loudspeaker as the “flow generating” device

in a hybrid instrument, it is important to have a detailed understanding of its

behaviour in terms of its input-to-output response. The classical small-signal

model that was initially proposed by Small is adopted (Small, 1972). To aid un-

derstanding, and as typically used in loudspeaker theory (Beranek, 1954) (and

also often in mechanics and acoustics (Pierce, 1989)), this model can be rep-

resented using the analogous electronic circuit theory to obtain an equivalent

circuit as depicted in figure 21. While the left part of this circuit corresponds to

a model of the real electric circuit of the loudspeaker, the right part is a circuit

that functions analogously to the mechanical components of the loudspeaker.

The voltages in this circuit (indicated as orange-coloured variables in the top

part of the diagram) represent either real electric voltages (V and Vm ) or mech-

anical forces (F and FP ). Similarly, the currents in the circuit (indicated by the

arrows in the bottom part of the diagram) are related to the real electric current

in the voice coil (I) or to the mechanical velocity of the loudspeaker membrane

(Ẋ).

The equivalent circuit includes an electrical part with Re, the DC resistance

of the voice coil, with voltage V(s) at the input (the voice coil inductance is not

taken into account here, as empirical findings showed that it is of negligible im-
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Figure 21: Equivalent electronic circuit representing the loudspeaker’s electronic part
(the impedance Ze on the left, consisting of a resistive component Re) and its
mechanical part (the impedance Zm on the right, consisting of inertia Mm,
resistive Rm and compliance Cm components).

portance in our study). It also includes a mechanical part which is modelled by

a 1-DOF mass-spring-damper system (with the Thiele/Small electromechanical

parameters Mm, Cm and Rm respectively the mass, inverse spring stiffness and

damping coefficient), and receives a force F(s) from the voice-coil. The electrical

and mechanical parts are coupled by the electro-mechanical functioning of the

voice coil so that the force generated by the current I(s) in the coil is F = Bl I

(with Bl, the voice-coil’s “force factor”) and the velocity Ẋ(s) of the coil results

in a feedback voltage Vm(s) = Bl Ẋ. The configuration for the electrical and

mechanical impedances chosen here, requires the coupling to be modelled by a

“transconductance transformer”, which transforms voltages into currents and

vice versa, in both directions multiplying by the force-factor Bl. It should be

noted that the amplifier can be considered as a close-to-ideal voltage source

and that its output impedance is virtually zero.

The uncoupled electrical and mechanical impedances can be obtained by ap-

plying Ohm’s law and Kirchhoff’s circuit laws to give:

Ze(s) =
V −Vm

I
= Re (27)

and:
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Zm(s) =
F
Ẋ

=
C−1

m + Rm s + Mm s2

s

=
Mm(ω2

LS +
ωLS
Qm

s + s2)

s
, (28)

with ωLS =
√

M−1
m C−1

m the speaker’s resonance frequency and Qm = 1
Rm

√
Mm
Cm

,

its Q- (quality) factor.

By defining a virtual force signal Fe(s) as the sum of the real mechanical

force with the force generated from the coupling with the electrical part: Fe =

F + Bl Vm/Ze = Bl V/Ze, a coupled mechanical impedance can be derived,

which takes into consideration the interaction between both parts (Small, 1972):

Zm(e)(s) =
Fe

Ẋ
= Zm +

(Bl)2

Ze
. (29)

It can be verified that, in terms of the loudspeaker parameter values, the coup-

ling only has a significant effect on the Q-factor of the system (Small, 1972).

Therefore, this equation can be simplified:

Zm̃(e)(s) =
Mm(ω2

LS +
ωLS
Qts

s + s2)

s
, (30)

with Qts =
√

Mm/Cm
Rts(Rm,Re)

the coupled or “total” quality factor and Rts the total

damping coefficient.

Using equations (27) to (30) and the transformer relationships, the complete

loudspeaker system can then be represented by an overall transfer function that

expresses the volume flow rate per input voltage:

HLS(s) =
Q(s)
V(s)

=
Bl
Ze

Sd

Zm̃(e)
, (31)

where Q(s) = Sd Ẋ is the volume flow rate generated by the loudspeaker.
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Figure 22: Block diagram of the loudspeaker’s transfer function HLS, consisting of the
electrical part Bl/Ze and the (electrical-coupled) mechanical part Sd/Zm̃(e).

The total loudspeaker transfer function HLS as represented in the block dia-

gram in figure 19 can thus be decomposed into Bl/Ze and Sd/Zm̃(e) (see figure

22).

3.2.2 Coupled loudspeaker and resonator

When mounting the loudspeaker on a tube, a coupled system is formed. This

coupled system comprises the resonances of both the loudspeaker and the tube,

but altered in frequency and amplitude, particularly where their respective res-

onance frequencies lie close to each other. In this subsection the modelling of

this coupling is investigated, contributing to the choice of suitable components

for a practical implementation of a hybrid instrument.

To model a loudspeaker that is coupled to a tube, the analogous loudspeaker

circuit of figure 21 can be simply combined with an analogous circuit for the

tube based on the modal decomposition of its entrance impedance (the latter is

detailed in section 2.4), which results in the circuit represented in figure 23.

Note that figure 23 uses the simplified representation of the loudspeaker

mechanics (see equation (30)), where the coupling with the electrical part is

fully integrated in the Rts damping coefficient i.e. in the Qts factor.

Following the analogy of voltage representing pressure, the coupling between

the loudspeaker and the tube is represented by a transformer, relating the force

FP(s) and velocity Ẋ(s) of the loudspeaker membrane respectively to the pres-

sure P(s) and the flow rate Q(s) at the instrument entrance by: FP = Sd P and

Ẋ Sd = Q.
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Figure 23: Equivalent electronic circuit representing the loudspeaker’s mechanical part

(including its coupling with the electronic part) coupled with the modal tube
impedance.

interpreting the coupling as an altered tube impedance A

convenient representation to enable the impact of the coupling on the loudspeaker-

tube’s resonance frequencies and amplitudes to be studied, is to interpret the

coupling as an altered tube impedance. The transformer in figure 23 makes the

left side of the figure appear as a parallel circuit of S2
d times lower impedance

to the right side of the figure. Hence, the loudspeaker-coupled tube impedance

can be calculated by:

Zt(me)(s) =


 1

Zt
+

S2
d

Zm̃(e)



−1

, (32)

which is represented in the global block diagram in figure 19.

If the tube modes are relatively widely spaced in frequency, the coupling

with the loudspeaker may be assumed independent for each mode n. This as-

sumption is only valid when the frequency separation between the coupled

and uncoupled modes is small. The new coupled resonance frequency ωn(me)

for mode n is found from the roots of the imaginary part of Zt(me). Considering

equations (32), (30) and (25) for a single mode, it can be shown that this results

in:

− (ω2
n + s2)(ω2

LS + s2) = ω2
cn s2, (33)
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with ωcn =
√

ZcS2
dan

Mm
, the “coupling frequency” (note that the variation between

the an is small). First this expression can be interpreted as a second order func-

tion of (s2). Then, the loudspeaker-coupled tube mode’s resonance frequency

jωn(me) is found as one of the solutions for s.

For the case where the loudspeaker resonance frequency is far below the tube

resonances (i.e. ωLS � ωn), the solution reduces to:

ωn(me) = ωn

√
1 +

ω2
cn

ω2
n

, (34)

which shows that the strongest coupling occurs for the first mode.

To study the change in amplitude, a similar development can be followed. At

s = j ωn(me), the magnitude of the coupled tube impedance can also be derived

from eq. (32):

| Zt(me) |= <
(

Zt(me)

)
=

1

<
(

1
Zt

)
+<

(
S2

d
Zm̃(e)

) . (35)

By dropping the zero order term of Zm̃(e) and applying basic complex theory,

a simplified expression can be found for Zt(me)(s = j ωn(me)) from which a

loudspeaker-coupled Q-factor can be derived:

1
Q̃n(me)

=
1

Qn

(
1 +

ω2
cnωLSQn

ω2
n(me)ωnQts

)
. (36)

Here, ωcn has a significantly stronger influence than for the amplitude.

Hence, given that the coupling frequency ωcn is proportional to the the dia-

phragm area Sd and inversely proportional to the square root of Mm, it can be

concluded that, for a real hybrid instrument, the choice of a small diaphragm

loudspeaker with a heavy membrane would ensure a low coupling with the

tube, which is a desirable initial situation. This is important, because, as will

be formulated in the next subsection, even though the coupling can be com-

pensated for by electronic means, the size of the deviations caused by approx-
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imation errors in the real system will be higher the more the initial coupled

system differs from the targeted “uncoupled” system.

In a similar manner, it can be shown that for the case where the loudspeaker

resonance frequency is close to or above the first tube resonance, there is a

high risk of a strong coupling with one of the resonator modes. Given that

the resonance frequencies of a wind instrument can be located at virtually any

frequency above the fundamental frequency of the lowest note, this situation

should be avoided.

interpreting the coupling as altered electric or mechanical

impedances Later, the coupled loudspeaker-tube model will be used to

obtain the loudspeaker parameters with measured data (see section A.4). In or-

der to derive useful expressions that are compatible with those measurements,

the coupling can also be interpreted as an altered electrical loudspeaker input

impedance, which can be obtained from the signals in the circuit in figure 21:

Ze(mt)(s) =
V
I
=

Ze V
V −Vm

=
Ze V

V − Bl Ẋ
. (37)

Similarly, considering both circuits in figures 21 and 23, the coupled mechanical

impedance can be written as:

Zm(et)(s) = Zm̃(e) + S2
d Zt = Zm̃(e) + Sd

P
Ẋ

=
Fe − FP

Ẋ
+ Sd

P
Ẋ

=
Fe

Ẋ
=

V Bl
Ze Ẋ

.
(38)

3.2.3 Compensating for the loudspeaker

In order for the functioning of a real hybrid instrument to approach that of the

idealised situation, the air flow Q acoustically reproduced by the loudspeaker

should be as close as possible to the flow rate signal Q̃ calculated by the mouth-

piece model. Therefore, two filters are required: one to flatten the loudspeaker



102 developing the hybrid wind instrument

response and another to compensate for the coupling with the tube. These fil-

ters are executed by a real-time computing system, whose analogue-to-digital

(A/D) and digital-to-analogue (D/A) converters are assumed to be free of any

aliasing and quantisation errors and whose response (including the latency) is

represented by Hcptr(z). It is further assumed that the responses of the chosen

microphone and amplifier (required to power the loudspeaker) are flat, so that

they don’t have to be taken into account in this study.

Correcting for the loudspeaker response

designing an inverse loudspeaker filter An uncoupled system

can be compensated for by placing its inverse transfer function as a feedfor-

ward filter, in front. This technique was for instance applied by Guérard to

compensate for both an actuator and a resonator (Guérard, 1998). If the loud-

speaker is not coupled with the tube, the feedforward filter to undo its response

is simply the inverse of the loudspeaker transfer function (31):

H−1
LS (s) =

Ze

Bl

Zm̃(e)

Sd
. (39)

While the inverse of the electronic part of the loudspeaker’s transfer function is

simply Ze
Bl =

Re
Bl , the mechanical part is not that easy to correct for and there are

several reasons to opt for a loudspeaker that has a resonance frequency much

lower than the tube resonance frequencies.

One reason is that the response around the loudspeaker’s resonance fre-

quency can be nonlinear in practice. Another reason, as demonstrated earlier

for the situation where the loudspeaker is coupled to the tube, is that a heavier

membrane minimises the coupling. Finally, this choice enables an inverse filter

to be used, which has the additional advantage of allowing the mean flow com-

ponent to be removed from the signal sent to the loudspeaker (as stipulated by

theorem 6 in chapter 2, the ignorance of this flow component still allows for a

coherent wind instrument simulation).
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Figure 24: Transfer functions of the loudspeaker HLS(s) (in dot-dashed brown), the
approximate inverse filter H−1

LS (in solid green), the combination of both (in
dashed black) and combined with the additional “lead-lag compensator”
HLL.

This inverse filter can be derived in two steps. First, by considering eq. (30),

at high frequencies the impedance approaches the inertia term, which is a pure

derivative:

Zm̃(e) ≈ Mm s, (if s� jωLS). (40)

Figure 24 shows the transfer functions of an arbitrary loudspeaker HLS(s) (in

dot-dashed brown), its approximate inverse filter H−1
LS (in solid green) given by

equation (39), and the combination of both (in dashed black). It can be seen that

the loudspeaker is compensated for at high frequencies, but near to the loud-

speaker resonance frequency, the influence of the damping and the stiffness

increases both the amplitude and phase. While these deviations may seem not

substantial, the phase response introduces an inharmonicity to the resonance

modes in this frequency region, which can significantly detune the lower notes

produced with the hybrid instrument.

The addition of a filter HLL, known as a “lead-lag compensator” (a filter to im-

prove an undesirable frequency response in a feedback system) can compensate

for this effect down to s = 2 jωLS, so that:

Zm̃(e) ≈ HLL Mm s, (if s ≥ 2 jωLS). (41)
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A desirable lead-lag filter response can be obtained using a biquadratic second

order transfer function with complex poles and zeros (Messner et al., 2007):

HLL =
s2 + ωLLn

QLL
s + ω2

LLn

s2 + ωLLd
QLL

s + ω2
LLd

, (42)

which provides the unique combination of zeros that decrease the amplitude

and phase responses towards ωLS, while the poles (situated at lower frequency)

reset the gain from increasing to constant in the sub-ωLS zone (and as such

the removal of the mean-flow component is maintained). The numerator and

denominator are modelled with resonance frequencies ωLLn and ωLLd and they

share a common quality factor QLL, which is a convenient parametrisation that

guarantees a converging curve regression to find optimal parameter values.

The transfer function of the combined system HLL.Mms.HLS is also shown in

figure 24 (in dotted red). It can be seen that mainly the phase response shows an

improved compensation for the loudspeaker for ω & ωLS, while the magnitude

remains reasonably close to 0 dB.

discretisation and implementation For numerical simulation, the

derivative term can be approximated by a discrete transfer function, using the

“Euler backward method” (also known as the causal first order “Finite Differ-

ence Approximation”):

Mm s ≈ Mm (z− 1)
T z

, (43)

with T, the sample time. While this discretisation introduces an extra delay

of half a sample, the scheme ensures a causal and stable implementation. The

more advanced bilinear discretisation results in an infinite gain at the Nyquist

frequency and, even though an additional pole, placed close to −∞ can sta-

bilise the filter, the gain at the Nyquist frequency remains high and can cause

instabilities when the excitation model is included. Therefore, the Euler back-

ward discretisation remains the best choice.
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Figure 25: Block diagram of the transfer functions of the feedback filter C̃ and the
feedforward filter H−1

LS , consisting of the approximated electrical part Z̃e/Bl,
the (electrical-coupled) mechanical part Z̃m̃(e)/Sd and the lead-lag filter H̃LL.

The Euler backward scheme also results in a well-approximated digital equi-

valent of the lead-lag filter, given that its poles and zeros are small:

H̃LL(z) = HLL(s→
z− 1
T z

). (44)

Hence, the feedforward filter’s transfer function, as represented in the block

diagram in figure 19, can be written as:

H̃−1
LS (z) = H̃LL

Mm (z− 1)
Sd T z

Re

Bl
, (45)

and its composition is depicted in figure 25.

Compensating for the loudspeaker-tube coupling

As mentioned earlier, the principle behind the feedback filter that compensates

for the coupling between the loudspeaker and tube is very simple: in order to

undo the force on the loudspeaker diaphragm due to the pressure in front of

it (FP = Sd P), it is necessary to generate an opposite force with the voice coil.

As P is directly measured by the microphone and the voice coil force can be

obtained by using Z̃e
Bl , the ideal feedback controller (without taking into account

the computing system’s response) is simply C̃ = −Sd.
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This proportional controller solution can also be found by applying basic

feedback control theory. The open-loop transfer function of the coupled loudspeaker-

tube system, including the real-time computer, can be expressed as:

Hc(z) =
P
F̃P

=
Ze

Bl
Hcptr(z) HLS(z) Zt(me)(z), (46)

where the Hcptr(z) term represents the response of the real-time computing

system, and the continuous time transfer function of the loudspeaker and the

coupled tube impedance are expressed in the z-plane (using the relation z =

esT).

The general expression of a closed loop response is:

Hc

1 + Hc C
(47)

where C(z) is the transfer function of a controller, placed between the output

and input of the open-loop.

Meanwhile, the transfer function of the desired uncoupled situation is defined

by the concatenation of the uncoupled transfer functions of the computer, the

loudspeaker, and the tube:

Hu(z) =
Ze

Bl
Hcptr(z) HLS(z) Zt(z), (48)

For the design of a controller that will guarantee a closed loop expression

that matches the uncoupled situation, equations (47) and (48) should be equal.

After re-arrangement of that equality (using equation (46)) and applying some

simplifications, the expression of the ideally required controller is found, which

only depends on the computing system’s transfer function and the loudspeaker

membrane area:

C(z) =
Hc − Hu

Hc Hu
= Hcptr(z)−1(−Sd). (49)
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However, this is a non-causal transfer function, as the computing system always

contains delay. A causal version can be found by dropping the inverse response

of Hcptr(z):

C̃(z) = −Sd. (50)

Provided that the loudspeaker resonance frequency (where the coupling with

the tube, and thus the filter’s effect, is strong) falls far below the Nyquist fre-

quency and that the computing system introduces minimal delay, the approx-

imation is sufficiently valid. Nevertheless, it is important to mention that any

approximation error can perturb the compensatory effect of the feedback filter,

leading to an unstable situation. Hence, the stability of the closed loop is to be

verified for a given loudspeaker-tube system.

The implementation of the control loop is depicted in the block diagrams in

figures 19 and 25.

3.3 practical design of a hybrid set-up

Sections 3.1 and 3.2 discussed a theoretical framework for a real hybrid in-

strument. In this section, the practical implementation of a prototype hybrid

instrument is described. This prototype has been built to enable the hybrid

wind principle to be studied in practice.

First, the different components of the prototype instrument are introduced,

including a discussion on the choice of loudspeaker. Then measurements de-

signed to characterise the system are presented.

3.3.1 The resonator and associated hardware

For the resonator of the prototype hybrid instrument, a cylindrical tube has

been chosen with dimensions (length 58 cm, inner diameter 14.2 mm) that ap-
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proximately match those of a soprano clarinet playing its lowest note. Its input

impedance is obtained in section A.4 and further discussed in subsection 3.3.3.

A Cambridge Audio type A1 power amplifier and a B&K microphone type

4187 are used (for technical details see section A.1). The microphone is moun-

ted at the entrance of the resonator, just in front of the loudspeaker diaphragm.

As reported in section A.1, the responses of the amplifier and the microphone

can be considered flat for the purpose of this study, the magnitude and phase

deviations being much smaller than those that can be expected from the loud-

speaker’s response.

Details on the computing system used for the current prototype are given

in subsection B.2.1. Its response is found to be reasonably flat and the total

input-to-output latency is 25 µs.

3.3.2 Choice of an optimal loudspeaker

There are various criteria when it comes to identifying a loudspeaker suitable

for use in a hybrid instrument.

Acoustic considerations

Considering the previously discussed theoretical models, H̃−1
LS tends towards

H−1
LS when ωLS is much lower than the tube resonance frequencies. However, it

should be noted that this scenario usually corresponds to a loudspeaker with

a larger diaphragm or, by adding mass to the diaphragm, a reduction of the

acoustic power, i.e. the sensitivity of the loudspeaker.

While the theory presented in section 3.2 implies that for any given loud-

speaker, the loudspeaker-tube coupling can be undone by the feedback loop,

there are reasons to opt for a weak physical coupling. If one considers an erro-

neous signal Perr that accompanies the pressure measurement, it will be mani-

fested as a false surplus flow rate Qerr ≈ Perr
S2

d
Mm s , which indicates that light

and especially large diaphragms are a likely source of instability in practice.
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Another reason for choosing Sd to be small, is that the inevitable additional

acoustic volume between the diaphragm and the tube entrance will be smaller.

In this way the total entrance impedance is closer to the independent tube

impedance and the “plane wave assumption” is valid to higher frequencies.

Dynamic range

That said, the dynamic range of the system is determined by the power rating of

the loudspeaker. More precisely, it is the RMS current through the loudspeaker

coil that roughly indicates its temperature and therefore its maximum rating

(Chapman, 1998) (the maximum diaphragm excursion also can be of import-

ance at low frequencies). As the flow rate related signal and the signal related

to the feedback filter produce electrical currents in the coil, they should both be

taken into account when estimating the electrical power. Whereas the former is

inversely related to Sd (specifically IQ̃ ≈ Q̃ Mm s
Sd Bl ), the latter is proportional to

Sd (specifically IP ≈ P Sd
Bl ) and does not depend on the frequency. For optimal

efficiency, these currents should be minimised by considering the loudspeaker

parameters. However, this is not a straightforward procedure, as the correlation

between the flow rate and pressure signals depends on the tube losses and the

applied excitation model. An approximation can be obtained by stating that

generally for a single-reed excitation | Q Zc |≈| ζ P | (see section 4.2), with

0.1 . ζ . 0.4 (Chaigne and Kergomard, 2013).

Choosing the loudspeaker

Given that there is no straightforward mathematical relationship between the

loudspeaker properties of interest (the membrane size and mass, the general

frequency response, the power rating and the sensitivity), it can be concluded

that there is no systematic means of finding the most suitable loudspeaker.

However, it is possible to obtain good indications for the choice by following

the theoretically determined guidelines.
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Interestingly, it seems that the most suitable configuration of loudspeaker is

not available as an off-the-shelf product, as its design is not appropriate for a

standard audio application. For instance, it would be desirable in our context

to have a small-diaphragm loudspeaker (usually only available as low-power

units) with a thick-wire voice-coil, to enable high power ratings. Although the

heavy coil would decrease the loudspeaker’s sensitivity, it would ensure that

the loudspeaker’s resonance frequency remains much lower than the tube res-

onance frequencies.

For the prototype hybrid wind instrument, therefore, the idea of adding mass

to a commercially available loudspeaker was explored. By applying the the-

oretical guidelines, a 1” Tang Band W1-1070SE loudspeaker was chosen. The

datasheet specifies a large frequency bandwidth and a resonance frequency of

fLS = 170 Hz that, by attaching a mass of 8.1 g to the membrane, was lowered

to half the value of the first tube resonance frequency.

This modified loudspeaker is hermetically mounted on the resonator by means

of an adaptor. While still allowing for the loudspeaker diaphragm’s full range

of movement, this adaptor is designed as small as possible in order to minimise

the additional volume, and thus its effect on the resonator impedance.

Coupling to the tube

When this loudspeaker is coupled to the tube, the coupling frequency is ωc1 =

2π×73.6 rad s−1, so that the first tube resonance ω1 = 2π×139.7 rad s−1 shifts to

ω1me = 2π×157.8 rad s−1 and the ratio of quality-factor shifting is Qn(me)
Qn

= 0.33.

(It is worth noting that the frequency shift would be much larger for a loud-

speaker with a greater S2
d

Mm
factor, coupled to the same tube. Also, for a loud-

speaker with a 2” diaphragm, the Qn(me)
Qn

ratio would become ten times smaller.

This illustrates and explains the choice of a loudspeaker with a 1” diaphragm.)
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Stability considerations when accounting for the coupling

In order to verify the stability of the closed-loop situation, with this loudspeaker

and tube, the Bode plot stability criterion can be applied. That criterion states

that, if at the phase crossover frequency (where the phase is equal to ±180◦), the

corresponding magnitude of the open loop (given by equation (46)), including

the controller (equation (50)), is less than 0 dB, then the feedback system is

stable.

Figure 26 shows the Bode diagram for the chosen loudspeaker and tube,

with indication of the magnitudes at the crossover frequencies, whose inverse

values represent the “gain margins”. As can be seen, there are two crossover fre-

quencies with associated negative magnitudes, corresponding to positive gain

margins of 2.1 dB and 33.3 dB, which confirms the stability of the system.

Note that the stability could be expected, as the controller is designed to

restore the uncoupled loudspeaker-tube system, which is a stable system. How-

ever, that is provided the loudspeaker model used in equation (46) is reliable. In

practice, the loudspeaker introduces deviations that are not taken into account

by the model, which explains that the gain margins should be reasonably high.

There is a positive open-loop magnitude zone near the first crossover fre-

quency, which could lead to an unstable system in the presence of non-modelled

deviations with a phase-upshifting effect in that frequency range; but most de-

viations introduce a decrease in phase. It should be mentioned that the use of a

larger diaphragm loudspeaker would increase the overall magnitude substan-

tially, leading to an increased stability vulnerability.

Maximum amplitude

Considering the power efficiency of this loudspeaker, with a close to sinusoidal

self-sustained operation (so with ζ ≈ 0.1) at 140 Hz, the amplitudes of the flow

rate related and feedback related coil currents are |IQ̃| = {1.13 10−2 × |P|}A
and |IP| = {2.39 10−2 × |P|}A. These are of the same order and thus result in

a good power efficiency (as other Sd values result in an increase of either IQ̃ or
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Figure 26: Bode plot of the open-loop system including the controller: HcC̃, with indic-
ation of the gain margins.

IP). Nevertheless, it should be borne in mind that additional harmonics and/or

playing of higher pitched notes would rapidly increase |IQ̃|, such that a greater

Sd would be more convenient in this regard.

Given that the selected loudspeaker allows for a maximum power input of

8 W, and has an average input impedance of about 6Ω, maximum currents up

to Imax ≈
√

8
6 = 1.15 A can be used. While Imax = |IQ̃ + IP|max, the correlation

between the currents depends on the applied excitation. In the most extreme

case, they would be positively correlated, so that Imax . (1.13+ 2.39) 10−2|P|max

and hence |P|max &
1.15

(1.13+2.39) 10−2 Pa=33 Pa. This is a fairly small amplitude, in

particular in comparison with real wind instrument amplitudes which typic-

ally lie between 1 kPa to 8 kPa (Fuks and Sundberg, 1996). However, empirical

findings with the hybrid instrument showed satisfactory and linear results for

pressure amplitudes up to 800 Pa. The much higher rating might be due to the

fact that IQ̃ and IP are less or even negatively correlated, or it could be that the

maximum power rating provided by the manufacturer is mainly determined

by a maximum membrane excursion, while IP does not contribute to any mem-
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Table 1: The estimated loudspeaker and lead-lag filter parameters.

Rs 6.32Ω Sd 6.95× 10−4 m2

Re 6.08Ω ωLS 2π×67.4 rad s−1

Bl 3.08 T m Mm 8.52× 10−3 kg

Qts 1.48 ωLLn 2π×82.9 rad s−1

QLL 1.73 ωLLd 2π×46.2 rad s−1

brane movement. Nevertheless, while the pressure range still lies below the

realistic range, it is possible to simulate a wind instrument whose operation is

“downscaled” in amplitude.

3.3.3 Loudspeaker and tube characteristics

Measurements and parameter identification

To obtain all parameters of the coupled loudspeaker-tube system at the heart

of the prototype hybrid instrument, a protocol involving two measurements

and four least square linear regressions was applied. The details can be found

in section A.4 and the resulting loudspeaker and lead-lag filter parameters are

presented in table 1.

Comparing measured and theoretical impedances

In order to establish how well the filters compensate for the loudspeaker, the

impedance Z̃∗t = P∗/Q̃∗ (the asterisks refer to measured quantities) can be

compared with the measured tube input impedance Z∗t = P∗/Q∗ (obtained in

section A.4). Ideally, these two impedances should match, but there are several

theoretical and practical approximations that may prevent them from doing

so. To study the impact of particular approximations, it is useful to consider

the transition between intermediate states of the impedance, where only a few

approximations at a time are taken into account.

The focus of the comparison can be narrowed further. As the intended applic-

ation of the hybrid wind instrument is the production of self-sustained sounds,
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the principal frequency components are harmonics that lie close to the positive

impedance peaks of the resonator’s input impedance. Moreover, given that only

the first few modes are of importance to maintain the self-sustained operation,

the amplitude and phase of only the first five modes are studied.

Following this approach, the measured tube impedance Z∗t is depicted in

figure 27 (in solid green) along with the loudspeaker-coupled tube impedance

Zt(me), as theoretically calculated using equation (32) (represented in dashed

red).

A modal calculation using the coupled tube parameters an(me) and Qn(me) in

equation (25) resulted in a close match (not plotted). It can be seen that the
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modes of Zt(me) lying near to the loudspeaker’s resonance are shifted upwards

in frequency in comparison with Z∗t . At higher frequencies, both the amplitude

and phase are in much closer agreement.

Figure 27 also shows an impedance measurement of the loudspeaker-coupled

tube: Z∗t(me) (in dotted blue), which was measured by applying the feedforward

filter but not the feedback filter. The curves are close to the analytically calcu-

lated equivalent Zt(me), which also emphasises that the lead-lag compensator

satisfactorily corrects the amplitude and phase response. The increasing phase

shift at higher frequencies is explained by the phase-lag problem, further dis-

cussed in subsection 3.4.1.

Furthermore, the addition of the feedback filter results in the impedance

measurement Z̃∗t , which is also depicted in figure 27 (in black dash-dotted).

The same deviations as were observed for the measured Z∗t(me) are still visible,

but the result is fairly close to the original measured tube impedance Z∗t . The

zero-crossings, which are an important indicator for potential self-sustained

playing frequencies, are reasonably close to the original resonance frequencies.

In contrast to the measurements reported until now, which were performed

with a sine-swept signal (further referred to as sine measurements), it is also

possible to obtain impedances and transfer functions from the self-sustained

signals that appear during hybrid operation (further referred to as self-sustained

measurements), however such measurements only cover the frequency range

that was present in the self-sustained signal.

When the tube’s input impedance is obtained from a self-sustained measure-

ment: Z̃∗t(ss) = Pss/Qss (the solid thick brown curve in figure 27), an important

phase lag is noted, which increases with frequency. This could be a result of

the synchronously phased harmonics, a signature of the air flow signal of a

self-sustained wind instrument (which arises due to “mode locking”), which

demands substantial physical effort from the actuator.
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Figure 28: Transfer function Q̃/Q, between the calculated air flow signal and the phys-
ical flow rate signal. The red dashed curve is obtained using a sinusoidal
swept signal and the transfer function around a series of harmonic frequen-
cies indicated with blue crosses is obtained from self-sustained oscillation
signals.

Transfer function for the uncompensated loudspeaker effects

Another way to study the uncompensated loudspeaker deviations is by ob-

serving Q/Q̃, the transfer function between the calculated air flow signal and

the physical flow rate signal obtained from the measured loudspeaker velocity.

If the feedforward and feedback filters were effectively compensating for the

loudspeaker, this transfer function would be flat and zero for both the mag-

nitude (in dB) and phase response.

Figure 28 shows two versions of this transfer function, derived from the sig-

nals that were obtained during the measurements of Z̃∗t and Z̃∗t(ss), i.e. obtained

from a sine measurement (in dashed red) and a self-sustained measurement (in-

dicated with blue crosses). Meanwhile, figure 29 shows the phase delay between

the calculated air flow signal and the physical flow rate signal, defined as− φ(ω)
ω ,

with φ(ω) the unwrapped phase response of the Q̃/Q transfer function (see e.g.

(Papoulis, 1977)). These figures confirm the accuracy of the magnitude response
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Figure 29: Phase delay between the calculated air flow signal and the physical flow rate
signal. The red dashed curve is obtained using a sinusoidal swept signal and
the transfer function around a series of harmonic frequencies indicated with
blue crosses is obtained from self-sustained oscillation signals.

and the decreasing phase lag found in figure 27, but the resonator-independent

representation of figures 28 and 29 give a clearer insight regarding the uncom-

pensated loudspeaker effect. The phase of both measured transfer functions

appears to decrease linearly with frequency in the manner of a constant delay

(i.e. the phase response appears to be linear with frequency), which can be veri-

fied in figure 29 where a constant phase delay is found for a broad frequency

range. However, as can be seen, there is no (mean) phase lag around 100 Hz in

either of the measurements, which means that the phase delay is zero around

the loudspeaker resonance frequency and then tends towards a constant value.

The phase delay of the transfer function obtained from self-sustained flow rate

signals is around 2.5 times higher than that obtained from the sine-swept meas-

urement case.

3.4 shortcomings and compensation measures

This section reports some of the known deviations in behaviour of the hybrid

instrument prototype from that of the ideal hybrid wind instrument. Certain

shortcomings are responsible for undesirable instabilities noted during the self-
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sustained evaluation of the hybrid instrument, which are further reported and

discussed in chapter 5.

3.4.1 Increasing phase-lag issue

As mentioned in subsection 3.3.3, the loudspeaker introduces a phase lag that

is not predicted by the loudspeaker model used in this study.

possible causes While there is no mention of a delay effects in the lit-

erature on loudspeaker modelling, this expression is more frequently used in

literature focussed on perception. For instance Blauert states: “Common loud-

speakers and earphones are not necessarily minimum-phase systems but show

additional all-pass characteristics. The additional group delays caused by these

characteristics are on the order of 400 µs.” (Blauert and Laws, 1978). For com-

parison, the group delay derived from the phase responses in figure 29 is ap-

proximately 125 µs for the sine measurement and 300 µs for the self-sustained

measurement.

When considering the time response of the loudspeaker including the com-

pensating filters, it was noted that steep impulses at the input were somewhat

smeared out in the membrane displacement response. Even when the theory

states that a steep transition in the input signal should be preserved in the

output, it is understandable that a real physical system cannot reproduce such

steep transitions in practice. Hence, it could be assumed that the loudspeaker

mechanics include nonlinearities such as hysteresis which introduce the phase

lag. The computing system’s latency also makes part of the total delay, but the

computing system of the current prototype only has a latency of 25 µs.

compensation This side-effect cannot be compensated for with an in-

verse filter, given that such a filter would be non-causal. Nevertheless, it should

be emphasised that self-sustained measurements with higher pitched oscilla-
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tions revealed that the phase at the fundamental frequency always coincides

with the phase obtained with the sine-swept measurement. This ensures that

higher notes can still be played, and have a reasonable pitch relation to the

acoustic instrument.

prevention It was hypothesised that a minor cause of the phase lag was

related to the (currently unconsidered) voice coil induction. However, prelim-

inary measurements, where this feature was measured and included in the

inverse loudspeaker filter, did not result in an improved phase response.

Another way to cope with elements that introduce a phase difference between

the loudspeaker’s voltage and current, is to use a “current-drive” amplifier; e.g.

Mills and Hawksford (1989) investigated the use of current-drive technology

with the aim of reducing thermal heat and electric nonlinearities in loudspeak-

ers.

Also taking into account the mechanical loudspeaker part, it may be worth

investigating more advanced (nonlinear) loudspeaker models and consequently

finding their inverse transfer function for the design of a more accurate inverse

filter (if causal).

Finally, it should be mentioned that it is possible to predict the pressure sig-

nal in front of the loudspeaker by using a second microphone located further

from the loudspeaker down the resonator. In subsection 6.1.2, an initial invest-

igation of this concept demonstrates the possibility of compensating for the

computing system’s latency. However, the technique could also be used to en-

able the implementation of non-causal filters, as the pressure prediction enables

the introduction of a time shift, which can make the filter causal.

3.4.2 Loudspeaker non-piston modes

Another loudspeaker issue appears at relatively high frequencies. As can be

noted from the measured transfer functions shown in figure 30 (determined
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Figure 30: Measured loudspeaker transfer functions, using a laser doppler vibrometer
measurement of a point on the loudspeaker membrane (in black) and two
points on the suspension (in red and green).

using a laser Doppler vibrometer measurement (see section A.1 for details on

that equipment) of a point on the loudspeaker membrane and two points on

the suspension), one of the suspension points shows a magnitude dip around

2 kHz, with a corresponding phase deviation. These measurements support the

hypothesis that the vibrational modes of the rubber suspension surrounding

the membrane come into play. It should be noted that the measurement of other

points on the membrane (measured up to 9 kHz) resulted in equal responses,

which indicates that the membrane itself (equipped with an additional glued

metal layer to add mass) is sufficiently rigid and is not influenced by “tilting

modes”, and that this component acts as an ideal piston. While the influence

of the suspension is reasonably small, its effect on the total radiated pressure

wave can be noticeable, as is also stressed by Sagers for instance, who proposed

a more extended loudspeaker model in this regard (Sagers et al., 2013).
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Figure 31: Four tube input impedance measurements (in blue) obtained with the loud-
speaker and microphone mounted on the tube. The pressure is obtained for
four different microphone positions at different angular positions in front
of the loudspeaker membrane. The red dashed curve represents the mean
impedance of the four measurements.

3.4.3 Loudspeaker front-cavity modes

The tube’s input impedance obtained from the loudspeaker membrane velocity

and the microphone measurements revealed notable deviations from a normal

tube impedance, starting from about 4 kHz. Empirical findings have indicated

that the deviations depend on the angular position of the microphone with

respect to an axis along the middle of the tube. This can be noted from the

impedance measurements shown in figure 31, carried out with four different

microphone positions (the solid blue curves).

possible causes It is a reasonable hypothesis that the dependence on mi-

crophone orientation is due to non-planar vibration modes in the loudspeaker

cavity. Indeed, the lowest transverse mode in a disc-shaped cavity (notated as
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(+,-)) corresponds to the first standing pressure wave over the cavity’s diameter

(of length D), with pressure anti-nodes at the extremities and a pressure node

in the middle. Hence, the resonance frequency of that mode is roughly found to

be c
2D = 340m/s

2(37.5 10−3m)
≈ 4.5 kHz , which corresponds to the onset of the observed

impedance deviations. The hypothesis is also supported by the fact that the im-

pedance derived from the mean response of the four pressure measurements

(shown in dashed red in figure 31) is much closer to a typical tube impedance.

compensation Just as with the phase lag issue it is most likely not pos-

sible to compensate for these deviations by means of additional filters. Altern-

atively, the idea of introducing a low-pass filter with its cut-off frequency be-

low the high frequency magnitude peaks may be appealing, but this inevitably

introduces a phase lag that is noticeable below the cut-off frequency. Indeed,

empirical evaluations showed that the introduction of a low-pass filter caused

unstable self-sustained hybrid behaviour at lower frequencies.

prevention As demonstrated in figure 31, using an average signal of sev-

eral microphones could be an effective workaround. In this scenario, it would

be preferable to use an odd number of microphones, to avoid higher transverse

modes in the cavity. However, this concept is cumbersome and the technical

means were not present.

Instead, for the case of the current prototype it was noted that one of the

microphone positions turned out to provide a fairly stable response; this is the

solution applied for the evaluations discussed in chapter 5.

Another technique to avoid the non-planar modes is to place the microphone

at the centre of the loudspeaker. The successful implementation of this idea is

described as a further development in section 6.1.2.

Finally, it should be mentioned that the idea of introducing a “phase plug” in

the loudspeaker cavity (as used in the design of “compression drivers”, i.e. the

driver of a horn loudspeaker, also with the purpose of avoiding cavity modes)
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sounds appealing but is probably not realisable, given that the loudspeaker

cavity is needed for the membrane displacement (which is much larger than in

the case of a compression driver).

3.4.4 Other shortcomings

As already mentioned in section 3.3.2, if realistic wind instrument sounds are

what is being aimed for, there is also a shortcoming in dynamic range, which is

further discussed in subsection 7.1.1. For this issue there are no compensation

measures, the only way to improve the situation is to consider other actuator

options. Some ideas are provided in section 7.2.1.

Finally, a particular issue was noted with the computing system. It turned out

that the timing of the data acquisition was not always precise, which introduced

so called “jitter” noise. Further details are given in subsection B.2.1.

3.5 summary

This chapter described the development of the hybrid wind instrument exclud-

ing its excitation, i.e. a real-time computing system connected to a loudspeaker

and a microphone, which are placed at the entrance of a clarinet-like “tube”

resonator.

First, the functioning of an ideal hybrid wind instrument was described, con-

sidering the loudspeaker to be a rigid piston, not influenced by the pressure

surrounding it. Then, the case of a realistic hybrid instrument was considered,

where the effect of real transducers and a real computer was taken into account.

To ensure that the operation was equivalent to that of the ideal hybrid instru-

ment, a feedforward and a feedback filter were introduced to compensate for

the loudspeaker.
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Next, a thorough theoretical investigation of the loudspeaker-resonator sys-

tem was carried out. A linear loudspeaker model was adopted and described

in detail using analogous electronic circuit theory. The modal resonator repres-

entation (given in chapter 2) was used to study its acousto-mechanical coupling

with the loudspeaker. Expressions were derived describing how the resonance

frequencies and quality factors of the resonator modes are affected by the loud-

speaker.

Following this, strategies were laid out to compensate for the side-effects of

the loudspeaker. On one hand this involved the design of a feedforward, inverse

loudspeaker filter, consisting of a derivative and a “lead-lag” filter. On the other

hand, a feedback filter was introduced to compensate for the coupling between

the loudspeaker and the resonator.

Subsequently, the practical design of a hybrid set-up was described. After

presenting the basic properties of the chosen resonator and computing system,

the choice of an optimal loudspeaker was made, which turned out to be a small

and heavy membrane loudspeaker. The loudspeaker and tube were character-

ised with a parameter identification on a series of measurements (provided in

appendix A). Theoretical and measured impedances were compared and it was

concluded that the filters compensated well for the loudspeaker, particularly in

amplitude. However, an increasing phase lag was noted, which was also (more

clearly) observed in a transfer function that enabled a focussed view on the

uncompensated loudspeaker effects.

Finally, a number of shortcomings and according compensation measures

have been listed, addressing the observed increasing phase lag, the appear-

ance of non-piston modes due to the loudspeaker suspension, transversal air-

vibration modes in the loudspeaker’s front cavity, and dynamic range and “jit-

ter” issues. For some of these issues, compensation and prevention measures

have been proposed.
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When a wind instrument is played, the mouth and mouthpiece act as an “ex-

citation mechanism” to the resonator. For the underlying understanding of this

concept, the reader is referred to chapter 2. In this chapter, four excitation mod-

els are presented, from their theoretical development to their implementation

and the sound they are expected to produce with the clarinet-type resonator.

First, the woodwind single-reed mouthpiece physical model is discussed, be-

fore then moving on to the “lip-reed” physical model, which is typically used

for brass instruments. With the hybrid wind instrument, the excitation is per-

formed on a real-time computer. Although this introduces some computational

issues (which are discussed in an initial section 4.1), the freedom offered by this

numerical medium enables the implementation of unusual physical and even

non-physical models (the motivation for which is discussed in section 1.2.1),

such as a “bow-string interaction model” and a mathematical (polynomial) for-

mulation.

As the aim is to explore the various operations that can be achieved with the

hybrid instrument, it is of interest to unambiguously evaluate a range of para-

meters for each excitation model. However, the original physical models often

contain numerous parameters, many of which have a similar effect. Therefore,

it is often preferable to use a reduced set of “independent” variables, obtained

by rearranging the model’s equations.

Also related to this simplification is the “non-dimensionalisation” of the mod-

els and the physical quantities, in order to obtain dimensionless signals and

parameters. This ensures that the models are independent of a particular di-

mensional situation, which is not relevant when exploring the timbre possib-

ilities. Furthermore, a dimensionless model can be seen as a blueprint of a

125
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physical model, which provides a generalised result and parameter values that

are independent of the particular resonator used.

4.1 computed simulation of excitation models

4.1.1 Methods to computationally simulate physically interacting systems

Before focussing on each separate excitation model, it is useful to lay out the

general implications that arise when physical models are numerically simu-

lated. These implications are due to the difference in nature of computational

and physical processes. The former operate in discrete steps, calculating out-

put signals with formulas supplied with known variables and input signals.

Physical processes, however, relate physical components by a pair of poten-

tial and flow variables (pressure and volume flow in the case of acoustics),

whose interdependence is governed by Kirchhoff laws (see e.g. (Bilbao, 2003)).

Hence, the interaction of these variables is direct and bi-directional, which is

fundamentally different from the computational approach. Several approaches

to computationally simulate a physical model exist and a detailed develop-

ment of these can be found for example in (Rabenstein et al., 2007; Bilbao,

2009b). It is possible to formulate finite-difference approximations incorporat-

ing detailed components of the entire physical situation, which favours realistic

sound production and also doesn’t require the formulation of any further phys-

ical approximations. Recently, related time domain finite-difference methods

have been proposed (see e.g. (Bilbao, 2009a) for a “direct simulation” of reed

wind instruments and (Harrison et al., 2015) for brass instruments). Moreover, a

globally energy balanced scheme can be used, which takes into account energy

conservation laws so that numerical stability is guaranteed, also under highly

nonlinear conditions (Bilbao, 2009b; Desvages and Bilbao, 2016). This has been

further formalised as Port Hamiltonian Systems for instance (Falaize et al., 2015;

Lopes and Hélie, 2016).
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The physical models of the excitation mechanisms (i.e. the excitation models)

employed in this thesis are formulated as a set of analytic equations and there

is no spacial domain involved. While the time derivatives can be approximated

via numerical differentiation using a finite difference method, there is a partic-

ular issue that occurs when the physical model is a so-called “stiff system”1,

which is the case for many excitation mechanisms. Stiff elements are compon-

ents which induce an (almost) instantaneous reaction between the Kirchhoff

variables and, hence, the equations describing this situation “depend on them-

selves” or are “implicit”. This issue is also referred to as a “delay-free loop” in

the system and conflicts with the explicit functional approach of the computing

system.

There are several ways of coping with this issue. The simplest idea is to na-

ively introduce a sample delay, making the interdependency indirect. While

in some cases, this approaches the continuous system when the time step be-

comes small enough, there are situations where the numerical system remains

unstable, regardless of the used sampling frequency. This is the case for the

excitation models used in this thesis (for certain parameter ranges).

Other methods involve transforming the physical Kirchhoff variables into

so-called “wave variables” (see e.g. (Rabenstein et al., 2007)). The two wave

variables related to the Kirchhoff pressure and flow rate variables are the up-

and down-stream pressure waves, as introduced earlier in section 2.1.1. These

variables are expressed in a coordinate system that is rotated by 45◦ from the

Kirchhoff variables coordinate system, and they are in an explicit relation with

each other, facilitating a computational implementation. Nevertheless, this ro-

tation does not directly provide a set of explicit equations; to achieve this, a

number of possible methods can be applied.

The preferable method is to simply re-arrange the equations, in order to

analytically obtain equivalent explicit equations. This results in a theoretically

correct and easily programmable implementation with light computational de-

1 A “stiff system” is a known concept, designating the presence of (almost) instantaneous physical
interactions.
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mand, while maintaining the flexibility to alter parameters of the original phys-

ical model during the computation. However, it is not always straightforward

(and often not even possible) to analytically find the explicit equations, so that

another method may be necessary.

While it has been possible to apply the analytical solution to all of the excita-

tion models evaluated in this thesis, it is worth mentioning some other methods

that can be useful for the implementation of more complex excitation models.

One possibility is preparation of a lookup table to replace the analytical for-

mulas. The lookup data can be calculated beforehand, for example by discret-

ising the implicit equation and applying a transformation from the implicit

to the explicit coordinate system. This technique is relatively simple for non-

time-dependent equations (i.e. quasistatic systems), and has for example been

applied by Smith (Smith, 1986), who carried out pioneering work on digital

simulations of many musical instruments. Meanwhile, excitation models that

involve time derivatives can also be simulated using lookup tables, as has been

demonstrated by Borin et al. who introduced the “K-method” (Borin et al.,

2000). A drawback of using lookup tables is that each controllable parameter

of the physical model adds a dimension to the table, increasing the amount of

data exponentially, so that the number of control-assignable parameters is very

limited.

Finally, it is possible to approximatively solve the implicit excitation equa-

tions by means of an iterative method (e.g. by the “Newton–Raphson method”,

see e.g. (Atkinson, 1991)). This approach involves repeated evaluations of the

equation for a given time instance, using the previous evaluation’s error (i.e. the

difference between both sides of the equation) to improve the approximation at

each iteration. While this approach can be applied to any system and is relat-

ively easy to implement, it is usually computationally heavy for sophisticated

models.
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4.1.2 Implementation on the hybrid wind instrument

The computational issue discussed in the previous subsection is focussed on an

entirely numerical implementation of a physical model. However, with the first

implementation of the hybrid instrument (with a single microphone), only the

excitation model is computed and the resonator prepared for hybrid synthesis

(discussed in chapter 3) only operates with the Kirchhoff variables p and q. In

addition, there is an inevitable small latency introduced by the computational

processing time, so that a theoretically coherent implementation is impossible

in practice for this implementation.

Nevertheless, it is possible to achieve a partial implementation, resulting in a

good approximation where the foremost risk of instabilities is compensated for.

Provided that an explicit expression is found of an (arbitrary) excitation model

coupled to an infinitely long tube (i.e. with a real constant input impedance,

matching the characteristic impedance of the resonator being used), the direct

loop in the excitation model is removed and the remaining work involves the

conversion from the Kirchhoff variables {p, q} to the wave variables {p+, p−}.
Taking into account the single sample latency on the measured pressure sig-

nal, pn−1, and using the flow rate value of the previous sample time, q̃n−1, the

delayed upstream pressure can be used p−n−1 = pn−1
− q̃n−12 instead of p−n . (Note

that the discretisation of the excitation models is expressed in terms of the

“historical pressure” ph = 2p−.) The remaining sample delay in the upstream

pressure introduces a minor phase lag, which only becomes of importance at

high frequencies. Given that these high frequencies are only poorly reflected at

the open end of the resonator, the high frequency content of ph is low, so that

the risk of undesirable instabilities is small.

Alternatively, it is possible to introduce a second microphone, a distance c∆t

from the resonator entrance (with c the speed of sound and ∆t the latency),

which enables the calculation of p−n . This implementation is of particular in-
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terest for systems with higher latencies; an implementation and brief evaluation

of such a system is discussed in section 6.1.

4.2 single-reed model

The single-reed mouthpiece is employed by woodwind instruments such as

the clarinet and the saxophone. The basic functioning of this mouthpiece, in

combination with the embouchure, has been briefly introduced in chapter 2.

Here, a detailed explanation is provided and the model is extended by taking

into account some dynamical behaviour. While the latter has little influence on

its operation (as the reed resonance frequency is kept high), the inclusion of

this feature is mainly for computational reasons, as will be discussed.

Figure 32 depicts a schematic diagram of a transverse intersection of a mouth-

piece with a player’s mouth. Displacement, pressure and flow rate signals are

indicated as a reference to the theoretical model that is discussed next.

lip

lip
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reed

p(t)p 
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q(t)

y(t)

Figure 32: Schematic diagram of a single-reed mouthpiece with a player’s mouth, with
indications of the reed displacement, the pressure and the flow rate signals.
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4.2.1 Physical model

To intuitively understand the embouchure’s functioning, it can be thought of

as a valve mechanism that is controlled by the pressure difference across the

reed. As such, one can distinguish two physical phenomena occurring. First, the

pressure difference acting on the reed surface is translated in a force, which will

cause the reed to bend. Second, that same pressure difference is also responsible

for the stream of air flow that is generated through the opening between the

reed and the lay of the mouthpiece. Each of these physical model components

have been individually researched and it is also appropriate to discuss them

separately here.

The single degree of freedom classical model used in this study is depicted

in figure 33, which will be referred to in the next paragraphs.

Figure 33: Dynamical, SDOF model of a single-reed embouchure, with indications of
the reed displacement, the pressure, the flow velocity and the flow rate sig-
nals.

It should be noted that much more developed models exist than the model

used in the current study. For instance, Avanzini and van Walstijn have pro-

posed a more realistic mechanical response of the embouchure (Avanzini and

Van Walstijn, 2004). Also the “reed induced flow”, which is an acoustic flow

component that is produced by the movement of the reed surface (see e.g.

(Hirschberg, 1995)) is not taken into account here; nor the noise introduced by

the flow turbulence (see e.g. (Chafe, 1990)). While the basic model employed in

this study is widely accepted (Wilson and Beavers, 1974; Fletcher, 1979a, 1993;
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Kergomard, 1995; Kergomard et al., 2000; Ollivier, 2002; Dalmont et al., 2003)

and sufficient for the initial investigations on the hybrid wind instrument, an in-

teresting future possibility would be to implement a more realistic single-reed

model, allowing a more accurate comparison to real clarinet sounds.

reed displacement The reed (including the player’s lower lip) is mod-

elled as a single-degree-of-freedom (SDOF) mass-spring-damper system (as can

be seen in figure 33), which is driven by the pressure difference across the reed

∆p = pm − p (with pm(t) the mouth pressure and p(t) the pressure inside the

mouthpiece), acting on part of the reed surface Sr. Hence, the reed’s dynamics

are described by (see e.g. (Wilson and Beavers, 1974)):

1
ω2

r

d2 y
dt2 +

1
Qr ωr

d y
dt

+ y =
−Sr(pm − p)

k
, (51)

with y(t), the displacement of the tip of the reed and k, ωr and Qr corres-

ponding to respectively the stiffness, resonance frequency and quality factor

of the elementary lip-reed combination. Further, the reed displacement is pro-

portional to the effective reed opening section Sf (also referred to as the reed

“channel”):

Sf = H(y + H)(y + H)w, (52)

where w is the effective reed width and the Heaviside function H is introduced

to hold a zero flow rate when the reed hits the lay at position y = −H, which oc-

curs above the “beating pressure” PM . It should be noted that, while the effect

on the flow control of the reed beating is indeed realised by the Heaviside func-

tion, the effect on the reed’s dynamics is not included in this model. For a high

resonance frequency and a small Qr-factor this effect is weak, but for a more

precise implementation, either a “conditional filter” (such as implemented for

the lip-reed model in section 4.3) or a more advanced mechanical reed model

(such as (Van Walstijn and Avanzini, 2007; Chatziioannou and Van Walstijn,
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2012; Muñoz Arancón et al., 2016)) can be considered. More recent single-reed

models describe the reed collision in much more detail (see e.g. (Bilbao, 2009a;

Chatziioannou and Van Walstijn, 2012; Muñoz Arancón et al., 2016)).

entering air flow rate There have been various assumptions regard-

ing the aerodynamic behaviour of the air flow that enters the bore from the

mouth through the reed channel. Wilson and Beavers (Wilson and Beavers,

1974) hypothesised that Bernoulli’s equation would be applicable to calculate

the flow velocity in the air channel between the reed tip and the mouthpiece.

Hirschberg adopted and developed this idea into the form that usually appears

in the current literature (Hirschberg, 1995).

This hypothesis arises from the implication that the turbulence created in the

mouthpiece at the reed channel’s exit results in a negligible pressure recovery.

That is, contrary to the case of a steady flow, where the cross-sectional area

is inversely proportional to the pressure, in a turbulent air jet leaving a small

orifice the kinematic energy is dissipated so that the pressure (almost) remains

at the state it was at the end of the orifice.

The flow velocity in the reed channel, which is just before the turbulent air

regime, can be calculated from Bernoulli’s equation applied to the mentioned

pressure difference:

vf = sgn (pm − p)

√
2|pm − p|

ρ
, (53)

where ρ is the density of air and the sgn operator is introduced to make the

calculation of negative flows possible.

Hence, the air volume flow rate that enters the instrument can be expressed

as the product of the effective reed opening area Sf (eq. (52)) and the flow

velocity vf(t) (eq. (53)):

q = Sfvf. (54)
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The injection of this flow rate into the instrument induces an immediate pres-

sure contribution qZc, where Zc is the characteristic impedance of the resonator.

However, it is typically assumed that the flow escaping from the mouth has a

negligible influence on the mouth pressure.

non-dimensionalising and parameter values A dimensionless form

of the single-reed model initially proposed by Wilson and Beavers (Wilson and

Beavers, 1974) has been developed, which has been simplified later by Kergo-

mard (Kergomard, 1995), to the form often used nowadays.

By defining ȳ = y
H , γ = pm

PM
, p̄ = p

PM
and q̄ = q Zc

PM
, the equation for the reed

dynamics (eq. (51)) can be written as:

1
ω2

r

d2 ȳ
dt2 +

1
Qr ωr

d ȳ
dt

+ ȳ = p̄− γ, (55)

and the equation for the flow rate (eq. (54)) becomes:

q̄ = sgn (γ− p̄)
√
|γ− p̄|

︸                          ︷︷                          ︸
v̄f

ζH(ȳ + 1)(ȳ + 1)︸                    ︷︷                    ︸
S̄f

, (56)

made up of a dimensionless air velocity component v̄f and a reed section open-

ing component S̄f.

There are three important remaining independent parameters: PM, which de-

termines the signal amplitude without timbre variation (within the linear dy-

namic range of a resonator), the mouth pressure γ and the “global embouchure

parameter” ζ, which both have an effect on the signal shape and transients, and

thus the timbre of the sound. The global embouchure parameter ζ = Zcw
√

2H
ρk

lumps all remaining embouchure parameters together. For constant resonator

and mouthpiece parameters (ρ, Zc, w and k), ζ is proportional to the square

root of the the reed opening at rest, which is related to the lip force.

In this study, the dynamic parameters, of importance to the brightness and in

selecting the desired register (Wilson and Beavers, 1974; Silva et al., 2008), are

held fixed to the values used in (Guillemain et al., 2005): ωr = 2π× 2500 rad s−1
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Figure 34: Dimensionless curves of the velocity, the reed opening area and the resulting
volume flow rate, as a function of the pressure in the mouthpiece, for a
quasistatic single-reed model with a dimensionless mouth pressure of γ =
0.5 and an embouchure parameter ζ = 0.4.

and Qr = 5. While this resonance frequency is relatively high compared to a

real instrument (see e.g. (Dalmont et al., 2003)), this close-to quasistatic imple-

mentation is sufficient as a first investigation. Figure 34 depicts the dimension-

less curves of the velocity, the quasistatic reed opening area and the resulting

volume flow rate, as a function of the pressure in the mouthpiece p̄.

It is worth noting that, when the reed dynamics come into play, there will be

an increasing phase lag between the pressure oscillation and the reed displace-

ment, so that the curves of S̄f and q̄ become hysteretic, i.e. the curves become

dependent on the direction of p̄. While it is known that for real reed instru-

ments the quasistatic hysteretic condition (see theorem 2 in chapter 2) does not

occur, it is worth considering the theoretical threshold parameters. The second

derivative of the quasistatic expression of the single reed model (i.e. consider-

ing ȳ = p̄ − γ), shows that the maximum positive gradient lies at γ − p̄ = 1.

Evaluating the condition ∂q̄
∂ p̄ > 1 at p̄ = γ− 1 then reveals the hysteretic condi-

tion: ζ < 1. This condition only applies when the oscillation domain reaches the

beating threshold, otherwise non-hysteretic cases with higher ζ can be obtained

(the lower the mouth pressure).
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4.2.2 Making discrete and explicit

In this subsection, the conversion of the physical single-reed model from im-

plicit equations to computable explicit equations is discussed. While initially

the computation of this model was performed using iterative or lookup-table

methods (see e.g. (Borin et al., 2000) or the more recently proposed iteratively

reweighted least squares method using the standard Nelder-Mead simplex op-

timisation (Chatziioannou and Van Walstijn, 2012)); Guillemain et al. demon-

strated that this model can be made entirely explicit in an analytical fashion

(Guillemain et al., 2005). A key concept in Guillemain’s paper, adopted from

van Walstijn (van Walstijn, 2002), concerns the fact that the reed’s dynamic

equation can be discretised using a classical central difference scheme that re-

lies only on previous samples, and is therefore causal, while stability is pre-

served (for the system concerned). Hence, the direct loop is only present in

the flow velocity component of the calculation, which is a simple second order

equation that can be analytically transformed into an explicit equation. For the

detailed development the reader is referred to (van Walstijn, 2002; Guillemain

et al., 2005); here only the most important steps are repeated.

First, using the Laplace transform, equation (55) can be expressed in the fre-

quency domain to provide the transfer function of the reed’s dynamics:

Ȳ(s)
∆̄P(s)

=
ω2

r
s2 + ωr

Qr
s + ω2

r
, (57)

where ∆̄P= L( p̄ − γ) and Ȳ= L(ȳ). To discretise this, the following central

difference scheme is applied:





s ≈ 1
T(z−z−1)

s2 ≈ 1
T2(z−2+z−1)

(58)

In order to obtain a computable expression, the discrete transfer function should

be causal, which can be achieved by multiplying the numerator and denomin-
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ator by combinations of z−1

z−1 until all positive powers of z (representing future

samples) have disappeared. Given that this transfer function concerns a low-

pass filter, all poles remain in the unit circle, and thus stability is maintained.

After re-arrangement by negative orders of z, the resulting discrete transfer

function is:

Ȳ(z)
∆̄P(z)

=
T2ω2

r z−1

(1 + Tωr
2Qr

)− (2− T2ω2
r )z−1 − ( Tωr

2Qr
− 1)z−2

, (59)

so that an inverse Z-transform yields the time domain difference equation:

ȳn = 0× ∆̄pn + b1∆̄pn−1 + a1ȳn−1 + a2ȳn−2, (60)

with coefficients:





a0 = 1 + Tωr
2Qr

b1 = T2ω2
r

a0

a1 = 2−T2ω2
r

a0

a2 =
Tωr
2Qr −1

a0

(61)

Hence, it can be verified that the output ȳn only depends on previous instances

of the pressure and therefore this is also true for the S̄fn term in equation (56):

S̄fn = ζH(ȳn + 1)(ȳn + 1). (62)

The dimensionless mouthpiece pressure in equation (56) is replaced by the

sum of the historical pressure and the entering flow rate (see equation (7)):

p̄ = p̄h + q̄. Considering the case where q̄ ≥ 0, this leads to the following

implicit equation for time instance n:

q̄n =
√
|γ− p̄hn − q̄n|

︸                   ︷︷                   ︸
v̄fn

S̄fn. (63)
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By taking the square of q̄n, a second order polynomial is obtained, whose roots:

q̄n =
1
2

(
−S̄2

fn±S̄fn

√
S̄2

fn + 4(γ− p̄hn)

)
,

lead to the explicit solution, which is the (+) case, for which q̄n is real and

positive (note that γ− p̄hn > 0 since q̄ ≥ 0 and γ− p̄n > 0). For the case where

q̄ < 0, a similar solution is found, so that a general expression can be composed

of both cases, by re-introducing the absolute value and sgn operator:

q̄n =
1
2

sgn (γ− p̄hn)S̄2
fn



√

1 +
4|γ− p̄hn|

S̄2
fn

− 1


 . (64)

Hence, the entire computational process consists of the sequential evaluation of

equations (60), (62) and (64). And, as mentioned in subsection 4.1.2, due to the

inevitable delay of the computing system, p̄hn−1 = p̄n−1 − q̄n−1 is used instead

of p̄hn in equation (64).

It should be noted that the parameters γ and ζ, and the dynamic reed para-

meters ωr and Qr, can also vary over time. However, this lies well below the

variation rate of the pressure and flow rate signals, so that the parameters ap-

pear as constants in the above equations.

4.2.3 Predicting the influence on the sound

In a continuation of the theory presented in chapter 2, where a number of rules

were obtained to estimate the influence on certain sound features, the case of

the single-reed embouchure model is now studied in depth.

While the estimation theory is only designed for quasistatic excitation mod-

els, the dynamics involved in this single-reed model are almost negligible, as

the resonance frequency of the reed is kept fairly high, at 2.5 kHz (moreover,

empirical tests with a resonance frequency at 10 kHz produced almost the same

sound spectrum). As stated by theorem 1 (see chapter 2), a self-sustained oscil-

lation can only appear when the derivative of the nonlinear excitation curve
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around p̄ ≈ 0 is greater than a small value 1− λ. This introduces the notion of

an “oscillation threshold”, which is the set of minimum excitation model para-

meter values that satisfies this condition. The oscillation threshold has been

extensively studied for the case of single-reed instruments (e.g. (Grand et al.,

1997; Dalmont et al., 2005)). An approximate formula has been derived for the

minimum dimensionless mouth pressure, by considering a resonator with a

single resonance mode and Z(ω = 0) = 0 (Dalmont et al., 2005):

γth ≈
1
3
− ln(λ)

ζ3
√

3
. (65)

Theorem 3 in section 2.3 states that the amplitude of the sustained mouth-

piece pressure, ¯̃pa, is found from the intersection of the characteristic curve

with its ¯̃q-axis mirrored curve: ¯̃qa( ¯̃pa) = ¯̃qa(− ¯̃pa). While the calculation of an

analytical solution is complicated when resonator losses are taken into account,

an approximate formula for a lossless resonator case is fairly easy to obtain,

resulting in (Chaigne and Kergomard, 2013):





p̄a =
√
(3γ− 1)(1− γ) for γ < 1/2

p̄a = γ for γ ≥ 1/2

(66)

For the case where frequency independent losses are included, the amplitude

of oscillation can be found graphically, by studying the progression of the outer

intersections, which is illustrated in figure 35.

Meanwhile, theorem 4 in section 2.3 states that the “spectral richness” in

the steady-state regime is proportional to the RMS of the normalised mouth-

piece pressure wave and therefore to the integration of the gradient under the

excitation curve; and theorem 5 provides a protocol for the estimation of the

even harmonics content of the steady state sound, which is related to the even

(symmetric) component of the excitation curve.
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Figure 35: Evolutions of the estimated dimensionless pressure amplitude for three ζ
values and γ ranging from the oscillation threshold (indicated with a + sym-
bol) until the extinction threshold.

These curves were originally presented in section 2.3, for a single-reed excit-

ation with parameters γ = 0.8 and ζ = 0.2, but for convenience are repeated

here, in figure 36 (c).

Other values of the mouth pressure and global embouchure parameter result

in different nonlinear curve shapes, enabling the estimation of the spectral rich-

ness and the even harmonics content as a function of the excitation parameters.

Figures 36 (a) to (d) depict four arbitrary parameter states which demonstrate

the variety of sound features this excitation model is expected to produce. In (a),

a low ζ = 0.1 and γ = 0.5 are applied; it can be seen that this results in a mainly

symmetrical curve. The estimation of ˆ̃pRMS is obtained by integrating the gradi-

ent, i.e. by subtracting the amount of blue from the amount of green, resulting

in the small amount of green that is captured in the upper right intersection of

the dotted curves, thereby predicting a relatively low spectral richness. In (b),

representing the state ζ = 0.2, γ = 0.6, a much higher spectral richness is pre-

dicted and also the even component has significantly increased in amplitude,

which is mainly due to the increased amplitude ¯̃pa . However, in (c), with the

same ζ and a slight increase of the mouth pressure to γ = 0.8, the gradient

integration does not change significantly but the even component becomes par-
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(a) ζ = 0.1, γ = 0.5 (b) ζ = 0.2, γ = 0.6

(c) ζ = 0.2, γ = 0.8 (d) ζ = 0.3, γ = 1.8

Figure 36: Nonlinear curves of the single-reed excitation model for four sets of para-
meters γ and ζ, with indication of the mean acoustic power estimation with
a gradient (the amount of blue is to be subtracted from the amount of green);
and the even component before and after the subtraction of the mean flow
(respectively in dot-dashed red and solid black lines).
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Figure 37: Evolutions of the RMS of the normalised pressure wave ˆ̃pRMS (a), and the
RMS of the even harmonics normalised flow component ˆ̃qeRMS (b), for three
ζ values and γ ranging from the oscillation until the extinction threshold.
The four parameter sets presented in figure 36 are marked as data points.

ticularly small for this γ. (It is interesting to note that the acoustic losses play

an important role, as otherwise the outer intersections would lead to the intro-

duction of far more even harmonics.) Finally, in (d), the embouchure parameter

and mouth pressure are increased to ζ = 0.3 and γ = 1.8, which results in a

high oscillation amplitude, but as can be seen, the negative part of the gradient

almost equals the positive part, which again leads to a particularly low spectral

richness.

In figure 37, the RMS of the normalised pressure ˆ̃pRMS and of the normalised

even flow rate component ˆ̃qeRMS (obtained using respectively equations (21)

and (22)), are plotted for three ζ values and γ ranging from the oscillation to

the extinction threshold. The four discussed parameter states are indicated and

the curves will be referred to in chapter 5, where the experimental evaluation

of the hybrid instrument is discussed.

It is interesting to note that, around γ = 0.8, ˆ̃pRMS attains a maximum while

ˆ̃qeRMS goes to a minimum, which reflects the previous discussion concerning

figure 36(c). It can be expected that this will be reflected in the evaluation by a

rich timbre of mostly odd harmonics. Another general observation that might

be expected is that the influence of ζ is mainly reflected in the amplitude of

both curves; however, a low embouchure parameter also brings the oscillation
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and extinction thresholds closer to each other, this can also be explained by the

acoustic losses in the resonator.

4.3 lip-reed model

Another class of wind instruments uses the lips themselves as a “pressure-

controlled valve system”. This is the case for brass instruments (also called

“labrosones”, literally meaning “lip-vibrated instruments” (Baines, 1993)). In

the acoustics literature the excitation type of brass instruments is also referred

to as the “lip-reed”. The acoustical functioning of the lip-reed shares similarit-

ies with the single-reed model, but there are differences which are of particular

importance in explaining the appearance of oscillations when coupled to a res-

onator. Moreover, in contrast to the single-reed embouchure, small variations

of the lips can have a large impact on the lip-reed behaviour, which makes

its physical description more challenging (Campbell, 1999). Therefore, unlike

the single-reed model, there is far less consensus on an established lip-reed

model. While it is generally accepted that at least a second degree of freedom

model is required, perceptually convincing simulations have still been obtained

with single-degree of freedom (SDOF) models (see e.g. (Adachi and Sato, 1995;

Vergez and Rodet, 2000)). Given the easier implementation and the less complex

relation to the sound produced, as a first step, it is opted to employ a SDOF

model in this thesis.

It should be mentioned that brass instruments have a typical timbre feature

known as “brassiness”, which is caused by the nonlinear propagation of high

pressure waves in the resonator (Campbell, 1999). This feature is not conserved

when the lip-reed is evaluated at a lower dynamic range when coupled to a

clarinet resonator, which is generally the case for the hybrid wind instrument.
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4.3.1 Physical model

Figure 38 shows a cross-section of the lips under playing conditions on a brass

instrument’s mouthpiece.

Figure 38: Schematic diagram showing the cross-section of lips in playing position on
a brass mouthpiece. (Source: (Adachi and Sato, 1995))

general considerations An important distinction is made between

two main types of functioning of the lip-reed, which has been thoroughly stud-

ied by Fletcher (Fletcher, 1979b).

From a first viewpoint, the lips are considered to displace rotationally (as in-

dicated in the schematic diagram of figure 38), with their movement controlled

by the pressure difference acting across the lips. This model is referred to as the

“swinging door” mechanism. As can be deduced from the schematic diagram,

contrary to the single-reed model, where the reed closes in response to an in-

creasing mouth pressure (i.e. it is “inward striking”), this reed type behaves in

an opposite fashion (and is therefore said to be “outward striking”). This im-

poses important conditions on the reed’s dynamic parameter values in order

to obtain a functional instrument. This was already predicted by Helmholtz in

1877 (Helmholtz, 1877), who stipulated that an outward striking valve model re-

quires its resonance frequency to be lower than the playing frequency, while the

inward striking reed (such as the single-reed) requires the opposite condition.

This is demonstrated in figure 39, where the lip displacement y(p) for a high

lip resonance frequency ωr >> ω0 does not result in the “negative resistance”

(i.e. a positive-sloping curve in the {p, q} coordinate system) that is required to
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obtain the instability which can result in self-sustained oscillations. Instead, a

negative resistance is obtained with a low lip resonance frequency, ωr . ω0, as

the phase is turned towards −180◦. It is worth noting that the lip resonance fre-

quency should remain relatively close to the fundamental frequency, to enable

sufficiently large lip displacements.

vf(p)

y(p)  with ωr ! ω0ωr ! ω0

p

q

=> q(p)=α.y(p).vf(p)
"Negative
resistance"

y(p)  with ωr >> ω0ωr >> ω0

pm

Figure 39: Curves in the {p, q} coordinate system, related to the lip-reed’s flow velocity
v(p) and the lip displacement y(p), the latter is drawn for both high and
low lip resonance frequencies. For ωr . ω0 the appearance of a negative
resistance in the total q(p) curve (in red) is demonstrated.

Another interpretation of the lip-reed’s functioning is still supported by a

considerable number of authors, who stress that the Bernoulli-force causes the

lip-reed to move longitudinally. This is referred to as the “sliding door” prin-

ciple (see e.g. (Adachi and Sato, 1995)), which leads to an operation that is

equivalent to the inward striking reed. It is interesting to note that this model

enables “lipping up”, which is a technique achievable with a real brass em-

bouchure, and occurs when the lip resonance frequency is above the frequency

of the played note.

While most authors seem to agree on the swinging door model, it may be

assumed that a real lip-reed is governed by both the sliding and swinging door

mechanisms (which would require a higher dimensional model), and that the

principally active mechanism depends on the applied embouchure. Interest-

ingly, this hypothesis is experimentally supported by the findings of Chen and

Weinreich (Chen and Weinreich, 1996), who constructed a simple hybrid wind

instrument set-up for this research purpose. From the viewpoint of perception,

both swinging and sliding door lip-reed models have resulted in satisfactory
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results (Campbell, 1999). Vergez evaluated a model comprising both swinging

and sliding door components and noted that the perceptual influence of the

Bernoulli-force on synthesised sounds was small (Vergez and Rodet, 2000).

Finally, it has been concluded that for the evaluation of the hybrid wind

instrument studied in this thesis, the swinging door model is an appropriate

choice.

similarities and differences with the single-reed model Sim-

ilar to the single-reed model, a SDOF mass-spring-damper system is set up as

a valve mechanism. In addition, a few more refinements, related to the lip vi-

brations and valve functioning, have been adopted from different authors in

order to obtain more realistic brass sounds. The employed model mainly draws

on the one proposed by Vergez (Vergez and Rodet, 2000), but it also features a

smoothened transition of the air-channel opening, as observed and implemen-

ted using a power function (Bromage et al., 2010). A schematic diagram of this

model is presented in figure 40.

Figure 40: Schematic diagram of the employed lip-reed model.

The lips are assumed to displace with small rotations with an angle θ, so

that the distance y between both lips is proportional to θ. Similar to the single-

reed model, the pressure difference across the lips ∆p = pm − p (with pm(t)

the mouth pressure and p(t) the pressure inside the mouthpiece) acts on an

“effective” part of the lip surface Sr. Hence, for freely vibrating lips, apart from
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an inverted pressure difference, the dynamic equation is the same as equation

(51) for the single-reed model. Furthermore, the equation for the flow velocity

is equal to equation (53) of the single-reed model.

introducing a lip-collision model An important additional feature

of the lip-reed model is when the lips start colliding. In contrast to the single-

reed model, the much lower resonance frequency and the progressively intro-

duced collision requires more precise modelling. Vergez assumes that the lip

collision can be modelled by an increased stiffness kc and damping coefficient

rc (while the mass remains equal) (Vergez and Rodet, 2000). Meanwhile, to

model the smooth transition between the free and collided lip states, the para-

meters are gradually changed over a small transition range, which introduces

displacement-dependent nonlinear reed parameters. Given that the dynamics

are modelled in terms of the frequency ωr and Qr factor, the nonlinear stiff-

ness is expressed by αω(y)ωr and the nonlinear Q factor by αQ(y)Qr. Thus, the

dynamic equation becomes:

1
(αω(y)ωr)2

d2 y
dt2 +

1
αQ(y)Qr αω(y)ωr

d y
dt

+ y =
Sr(pm − p)

αω(y)k
. (67)

At rest, without any pressures involved, i.e. when pm = p = 0, the lips are as-

sumed to be slightly pressed against each other. It should be noted that Vergez

also assumes a closed lip position at rest but doesn’t assume there to be any

lip-stiffness stresses in this condition, whereas most authors do (see e.g. (Ada-

chi and Sato, 1995)). The full collision-stiffness is thus defined to occur from

y ≤ Hc, while the collision starts happening at the threshold value Ht with a

gradually increasing collision-stiffness (as can also be seen in figure 40).

the lip’s opening section The lip displacement enables calculation of

the opening area between both lips, which functions as a channel for the en-

tering air flow. Msallam et al. (2000) found that the more realistically smooth

transition from open to closed lips, plays an important role for the sound syn-
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thesis, avoiding unrealistically harsh sounds. In order to understand this be-

haviour and propose a coherent model, Bromage et al. (2010) and Copley and

Strong (1996) observed the lip vibrations with a high-speed camera, filming

the lips through a transparent mouthpiece. They concluded that, depending on

the played note and the used embouchure, the shape of the lip opening area

could vary from almost rectangular to diamond-shaped. Bromage proposed

an approximate formula, relating the lip displacement extrema to the opening

area by a power function (Bromage et al., 2010), which can be adapted to the

notation used for the comparable single-reed equation (eq. (52)):

Sf = H(y− Hc)

(
y− Hc

Hc

)ε

Hcw, (68)

where w is the effective lip opening width and ε is an arbitrary exponent that

is found by regression on measured lip-opening area-variations.

non-dimensionalising and parameter values Since the additional

features of the proposed lip-reed model are all expressed as factored versions of

the parameters of the single-reed model, and given the general similarity with

that model, a set of dimensionless equations can be obtained in a similar fash-

ion. Hence, by defining ȳ = y
Hc

, γ = pm
PM

, p̄ = p
PM

and q̄ = q Zc
PM

, the dimensionless

equation for the lip-reed dynamics becomes:

1
(αω(ȳ)ωr)2

d2 ȳ
dt2 +

1
αQ(ȳ)Qr αω(ȳ)ωr

d ȳ
dt

+ y =
γ− p̄
α2
ω(ȳ)

. (69)

As Vergez’s lip collision parameter values are expressed relative to the “free”

lip stiffness and damping, by respectively kc = 4k (as proposed by e.g. Strong

(1990)) and rc = 5r (proposed by e.g. Rodet and Depalle (1990)), the nonlinear

lip resonance frequency and quality factors are provided in the following table:
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ȳ < 1 1 ≤ ȳ < 1.2 1.2 ≤ ȳ

αω(ȳ)
√

kc/k = 2 −5ȳ + 7 1

αQ(ȳ)
√

kc/k
rc/r = 2

5 3ȳ− 2.6 1

Meanwhile, the dimensionless equation for the lip opening section is ex-

pressed as follows:

S̄f = ζH(ȳ− 1)(ȳ− 1)ε. (70)

For a playing frequency around 140 Hz, the exponent is found to be around

ε ≈ 1.5 to 1.8, based on regressions on data from two players (Bromage et al.,

2010). For the evaluation of the hybrid wind instrument, ε is kept constant at

1.5, which resulted in the most realistic sounds.

It can be noted that the lip-reed model contains many more independent

control parameters than the single-reed model, which is a consequence of the

greater complexity of this embouchure type. Some parameters are common to

the embouchure models and play the same role, such as PM, which determines

the signal amplitude without timbre variation (within the linear dynamic range

of a resonator). However others have a different influence, which will be further

discussed in subsection 4.3.3.

Just as for the single-reed model, the global embouchure parameter ζ =

Zcw
√

2Hc
ρk lumps a number of embouchure parameters together. For constant

resonator and mouthpiece parameters (ρ, Zc, w and k), ζ is proportional to the

square root of the the lip opening area at rest, which is related to the force used

to squeeze the lips together. Given that many aspects of a real lip embouchure

are difficult to measure, the parameters w, Hc, k and therefore ζ are unknown.

Consequently, the range of ζ values is chosen in accordance with a realistic

sound output.

Meanwhile, the lip resonance frequency is of great importance for selecting

the desired register and when “lipping” the playing frequency down or up.

While for a real lip-reed, the lip resonance frequency is also mainly controlled
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by the lip force, the resonance frequency is independently evaluated in this

thesis, so that the independent influence of this feature can be revealed.

4.3.2 Making discrete and explicit

An entirely correct discretisation of the dynamic equation (eq. (69)) is not

straightforward, as the equation contains nonlinearities that depend on the out-

put, i.e. the α coefficients vary with the reed position ȳ. In other words, the

equation is implicit in itself and there is no analytic explicit solution. Neverthe-

less, it is possible to simply introduce a sample-delay for the calculation of the

α coefficients, i.e. using ȳn−1. This is empirically found to lead to a stable ap-

proximation, which may be due to the fact that the variations of the resonance

frequency and the Q-factor are relatively small. Hence, the procedure to make

the lip-reed model’s equations implicit becomes entirely analogous to that used

for the single-reed. The dynamic equation is discretised by using the classical

central difference scheme, so that a different equation of the same form as eq.

(60) is obtained:

ȳn = 0× ∆̄pn + b1∆̄pn−1 + a1ȳn−1 + a2ȳn−2. (71)

Here, the coefficients are:





a0 = 1 + Tαω(ȳn−1
)

ωr2αQ(ȳn−1) Qr

b1 =
(
−T2ω2

r

)
/
(
αω(ȳn−1) a0

)

a1 =
(

2− T2(αω(ȳn−1)ωr)2
)

/a0

a2 =
(

Tαω(ȳn−1
)

ωr2αQ(ȳn−1) Qr − 1
)

/a0

(72)

which are all equal to the coefficients of the single-reed case, except for the

inclusion of the αω(ȳn−1) and αQ(ȳn−1) coefficients and the inversion of the b1

coefficient, which is due to the outward striking reed behaviour.



4.3 lip-reed model 151

The subsequent discretisation steps are also similar to those used for the

single-reed model. The S̄fn term, provided by equation (70), is written discretely

as:

S̄fn = ζH(ȳn − 1)(ȳn − 1)ε. (73)

Finally, the entire development to analytically obtain the explicit expression

for the square root component resulting from the Bernoulli equation is identical

to the development for the single-reed, resulting in the explicit solution:

q̄n =
1
2

sgn (γ− p̄hn)S̄2
fn



√

1 +
4|γ− p̄hn|

S̄2
fn

− 1


 . (74)

For the lip-reed, the computational process consists of the sequential evaluation

of equations (71), (73) and (74). And also just as for the single-reed model, and

as mentioned in subsection 4.1.2, due to the inevitable delay of the computing

system p̄hn−1 = p̄n−1 − q̄n−1 is used instead of p̄hn in equation (74).

For future work, it is interesting to note that more advanced lip-reed mod-

els (e.g. multidimensional models) can also be analytically made explicit by

following van Walstijn’s filter implementation (van Walstijn, 2002).

4.3.3 Predicting the influence on the sound

As mentioned in subsection 2.2.2, dynamic excitation models have properties

that make the estimation of sound features cumbersome. One way to under-

stand this is to realise that an excitation mechanism of this type can store energy

using its dynamic properties, which allows for a weaker coupling between the

excitation and the resonator, resulting in a stronger influence of the excitation

properties on the sound. While more complex, the low lip-resonance frequency

imposes a strong low-pass filter effect, which results in displacement, pressure

and flow rate signals that are much closer to sinusoidal than for the case of the

quasistatic single-reed. Therefore, this sinusoidal approximation is taken as a
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first general assumption in this sound features prediction study. Furthermore,

the lip collision model also complicates the intuitive understanding. Given its

relatively small influence, this feature is left out as a second general simplifica-

tion.

The end result is that two approximated cases are considered here, each of

which result in useful indications for isolated parameter cases.

Quasistatic approximation

One solution is to consider a quasistatic approximation of the dynamical model,

which enables the application of the theorems derived in section 2.3. However,

it is important to realise that the quasistatic condition is easily violated, which

results in both systematic and random error. For instance, important features

that are characteristic to the lip-reed model, such as the variation of the playing

frequency, cannot be explained with the quasistatic assumption. Furthermore,

the playing frequency is much more shifted from the resonator’s resonance fre-

quencies, compared to real quasistatic models, which in turn affects the calcula-

tion of dissipated power in the resonator (see subsection 2.3.2). This somewhat

invalidates the calculation of the normalised RMS pressures and flow rates, so

that only the trends of those results should be considered.

The quasistatic assumption made for the lip-reed relies on the fact that the

lip resonance frequency must be smaller than the playing frequency, in order

to become a “negative resistance”, as demonstrated in figure 39. The (close to

sinusoidal) lip displacement signal becomes in phase with the pressure signal,

i.e. ȳ ∝ p̄. This can be understood by first considering the mean component

of all oscillations. Neglecting all time varying signals in equation (69), it can

be concluded that < ȳ >= γ. Then, focussing on only the time varying com-

ponents and considering the case where ωr is low, only the inertial term on

the left side of equation (69) remains and only the dimensionless mouthpiece

pressure remains on the right side, so that the equation reduces to 1
ω2

r

d2 ȳ
dt2 ≈ − p̄.

Integration (considering p̄ ≈ | p̄|. sin(ω0t)) and addition of the the mean value
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Figure 41: Dimensionless curves of the velocity, the reed opening area and the resulting
volume flow rate, as a function of the pressure in the mouthpiece, for a
quasistatic approximation of the lip-reed model with a dimensionless mouth
pressure of γ = 0.5 and an embouchure parameter ζ = 0.4.

then gives ȳ ≈ γ + (ωr
ω0
)2 p̄ and, using equation (70), this gives the quasistatic

approximation of the lip-reed channel opening:

S̄f ≈ ζH(γ + (
ωr

ω0
)2 p̄− 1)(γ + (

ωr

ω0
)2 p̄− 1)ε. (75)

The frequency interval between the lip resonance frequency and the first reson-

ance frequency of the resonator (ω1) is much larger than the interval between

the latter and the playing frequency (ω0). With for example ωr = 0.7 ω1 ≈
0.7 ω0, the scaling parameter for p̄ in equation (75) (using ω = ω0) is 0.72 = 0.49.

This finally results in the nonlinear curve shown in figure 41, which is of similar

shape as for the single-reed model, shown in figure 34. Though, the transition

to the closed state is smoother, which is due to the opening section exponent ε.

Despite the similarity in shape and the similar influence of ζ for both models,

the influence of the mouth pressure plays a quite different role here, which can

be recognised from the fact that for the calculation of the reed opening section

S̄f( p̄), both γ and the 1 offset (representing the initial opening) are opposite

in sign between lip-reed and single-reed models. For the lip-reed, a minimum

pressure of γ = 1 is required for an initial opening between the lips and the

mean lip-displacement is further proportional to γ, i.e. the nonlinear curve is

widening with increasing γ. For the single-reed model however, the reed is ini-
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tially open with no pressures involved and an increasing mouth pressure shifts

the mean opening towards 0, resulting in an increasing shift of the nonlinear

curve.

This different parameter influence has opposite consequences for the amp-

litude of oscillation and for the spectral predictions.

The intersection method stipulated by theorem 3 (which is illustrated for two

particular parameter states with this model with the dotted curves in figure

43), predicts progressively increasing oscillation amplitudes for both the single-

reed and lip-reed models, but there is no extinction predicted with the lip-reed

model, as can be seen in respectively figures 35 and 42 (note that the displayed

parameter ranges correspond to the ranges used for the evaluations in chapter

5).
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Figure 42: Evolutions of the estimated dimensionless pressure amplitude for three ζ
values and γ ranging from the oscillation threshold until an arbitrary value.
The two parameter sets presented in figure 43 are marked as data points.

Furthermore, as can be seen in figure 43, an increasing mouth pressure with

the lip reed increases the normalised power introduced in the resonator (which

is proportional to the integration of the gradient), as well as an increasing even

flow component.

This suggests an opposite trend in terms of both the RMS of the normal-

ised pressure wave ˆ̃pRMS and the RMS of the even harmonics normalised flow

component ˆ̃qeRMS to that seen for the single-reed model. This is confirmed by
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(a) ζ = 0.05, γ = 3 (b) ζ = 0.05, γ = 5

Figure 43: Nonlinear curves of the quasistatically approximated lip-reed excitation
model for ζ = 0.05 and two values of γ. The mean acoustic power estim-
ation is indicated with a gradient (the amount of blue is to be subtracted
from the amount of green); and the even component before and after the
subtraction of the mean flow (respectively in dot-dashed red and solid black
lines).

comparing the relevant curves for the single-reed model in figure 37 and for

the lip-reed model in figure 44, where the latter results in progressive increases

with γ.
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Figure 44: Evolutions of the RMS of the normalised pressure wave ˆ̃pRMS (a), and the
RMS of the even harmonics normalised flow component ˆ̃qeRMS (b), for three
ζ values and γ ranging from the oscillation threshold until an arbitrary value.
The two parameter sets presented in figure 43 are marked as data points.

Small-signal approximation

Another way to obtain useful clues regarding the properties of the self-sustained

operation is to re-consider the model from scratch and to introduce other ap-

proximations, which are reasonable with respect to the operation. By neglecting

the lip-beating and the nonlinear variation of the lip opening area, the model is
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compatible with the generalised model used by Fletcher, who proposed a the-

ory to obtain oscillation properties generated by “pressure-controlled valves”

in gas flows (Fletcher, 1993). Very recently Velut extended this theory (Velut

et al., 2017), but Fletcher’s findings are sufficient for the current study.

Fletcher’s approach was to express the force balance around the lip dynamics,

consisting of the mass-spring-damper forces on the one hand and the acoustic

force exerted by the resonator on the other hand. The latter is here expressed

as an “acoustic stiffness” Ka(ω), a frequency dependent complex quantity that

depends both on the resonator impedance and the lip-reed model parameters.

In the frequency domain this gives:

−
(

ω

ωr

)2

Ȳ +
jω

ωrQr
Ȳ + Ȳ = Ka(ω)Ȳ, (76)

where the parameter names are chosen to correspond with the current study

and Ȳ is the frequency domain response of the dimensionless reed displace-

ment.

The general equation for Ka proposed in (Fletcher, 1993) also considers an

acoustic impedance in front of the reed, which is left out here (by simply

putting it to zero in Fletcher’s equations). Furthermore, the equation is non-

dimensionalised so as to match the dimensionless form used here, so that fi-

nally Fletcher’s result reduces to:

Ka(ω) =
2γ

√
2γ

Z̄t(ω)ζ
+ 1− γ

, (77)

with Z̄t = Zt/Zc, the dimensionless input impedance of the resonator.

By then considering only the real part of each side of the equality expressed

in (76), the expression reduces to:

(
ω

ωr

)2

= 1− Re
(
Ka(ω)

)
, (78)

whose solutions provide an indication of the self-sustained oscillation frequency

ω0.
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Then, the imaginary part of equation (76) gives an indication of the total

losses in the system and therefore can be used to verify if self-sustained os-

cillation is possible at the found frequency. Somewhat similar to theorem 1 in

chapter (2) (but including the resonator impedance), this is the case when a

“negative resistance” is present, i.e. if the following condition holds at ω = ω0:

1 <
Im
(
Ka(ω)

)
ωrQr

ω
. (79)

When satisfied, the negative resistance of the lip-reed model compensates for

the dissipation (i.e. the acoustic losses) in the resonator. The term on the right

of this equation is therefore referred to as the “dissipation ratio”.

For both equation (78) and equation (79), it is not possible to find an analytical

solution, as Ka depends on Zt. Instead, a numerical calculation can be carried

out, which can be graphically demonstrated, as shown in figure 45.
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Figure 45: Graphical demonstration to provide the solutions of equation (78) (the inter-
sections between the dashed blue and dot-dashed red curves) and to verify
condition (79) (which holds when the solid yellow curve exceeds 1), for ar-
bitrary lip-reed parameters.

The blue dashed curve corresponds to the left-hand side of equation (78) and

is only related to the lip-resonance frequency, the red dash-dotted curve refers

to the right-hand side of that equation and the solid yellow curve corresponds

to equation (79). To obtain the resulting oscillation features for this case, first

the intersections of the blue and red curves are studied, which reveals the oscil-

lation frequency above a resonator resonance frequency ωi (with i ∈ {1, 2, ...}).
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Note that this can result in more than one “candidate” oscillation frequencies.

Then, the imaginary component at these frequencies is verified. If a value above

1 is found, the oscillation condition is satisfied, and in the case of more than

one candidate oscillation frequencies, the highest value indicates the chosen

register and thereby the actual oscillation frequency ω0.

This numerical procedure is repeated for the evaluated range of parameter

values and the resulting predicted oscillation frequency evolutions (in Hertz

f0 = ω0
2π ) are shown in figure 46, for three ζ values and γ progressions in (a)

and for a lip-resonance frequency progression in (b).
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Figure 46: Predicted oscillation frequency evolutions, for three ζ values and γ progres-
sions (a), and for a dimensionless lip-resonance frequency θ progression (b).

Note that the latter is shown as a dimensionless frequency, relative to the

frequency of the first tube resonance θ = ωr
ω1

.

It can be seen that ζ, γ, but particularly θ, are positively correlated to the

playing frequency. For ζ and γ this is due to their decreasing influence on

the real value of Ka(ω ≈ ω0) , and for all cases this can be understood from

equation (78) and from figure 45. The increasing lip-resonance frequency also

evokes register jumps, which are more clearly indicated by the dissipation ratio

evolutions in figure 47 (plotted for the same parameter ranges).

It can be seen that the mouth pressure evaluations in figure 47 (a) all result

in positive oscillation conditions (i.e. the curves all lie above 1), though for

ζ = 0.03 and γ ≈ 2.3, the curve comes close to 1. For the lip-reed progression
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Figure 47: The dissipation ratio , for three ζ values and γ progressions (a), and for a
dimensionless lip-resonance frequency θ progression (b).

in figure 47 (b), it can be seen how the registers are selected and how the first

register is surrounded by a prediction of a non-oscillatory state.

4.4 bow-string interaction model

Given that the excitation of a hybrid wind instrument is performed by a com-

puter, any excitation process that leads to self-sustained oscillations can be con-

sidered for implementation. A first thought was to implement existing phys-

ical excitation models of non-wind musical instruments. Knowing that both

the excitation mechanism and the resonator are responsible for the character-

istic sounds of each instrument, it can be anticipated that such a combination

will produce a sound and functioning that contains a mixture of characteristics

of the wind and non-wind instrument. Such features could most likely lead

towards answers to the musical research question that is formulated in this

dissertation.

A good starting point is to consider the excitation mechanism of bowed string

instruments, as it is demonstrated that this class of typical self-sustained instru-

ments has a closely analogous operation to wind-instruments.
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4.4.1 Common features of self-sustained instruments

As McIntyre et al. (McIntyre et al., 1983) and later e.g. Ollivier et al. (Ollivier

et al., 2004) have pointed out, there are significant common features in the fun-

damental physical functioning of instruments that produce self-sustained tones.

They all consist of a resonator that is coupled to an excitation mechanism, with

the resonator and excitation mechanism imposing respectively a linear and a

nonlinear relationship between two physical quantities, so that the combined

relationships can result in a self-sustained oscillation. As such, the sound pro-

duction of a single-reed instrument can be compared to that of a bowed-string

instrument; the resonator being respectively the vibrating air column and the

string (when symmetrical and bowed exactly at its midpoint), the excitation

mechanism being respectively the embouchure and the bow-string interaction,

and the physical quantities being the pressure-air flow rate coupling and the

bow-string velocity-force coupling.

This analogy inspired the idea of using the hybrid instrument to combine the

bow-string interaction mechanism with an acoustic resonator. The computer al-

lows a pressure and flow rate signal to be interpreted as if it were respectively

the velocity and force between a bow and a string. The physical model dis-

cussed in this section only concerns physical units in the context of bowed

strings (i.e. velocity and force), the switch to pressure and flow rate is made

later in the evaluation in chapter 183.

4.4.2 Physical model

The study of the bowed string dates back to at least 1877, when Helmholtz dis-

covered the typical triangular-shaped string motion (Helmholtz, 1877), which

is still referred to as “Helmholtz motion”. Figures 48 and 49 depict a diagram

and a schematic demonstration of a string bowed at its midpoint. The key prin-

ciple that enables an oscillatory energy transfer from the bow to the string, is
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that the portion of the string that is in contact with the bow alternates between

“sticking” and “slipping” phases. In the former case, its velocity equals that of

the bow, while in the latter case, the string velocity is of equal amplitude but

travels in the opposite direction. The corner or “kink” in the string travels back

and forth, crossing the midpoint of the string vibration at the nut and at the

bridge.

Figure 48: A bowed violin, with indication of the bow-string interaction location, on
the middle of a string.
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Figure 49: Schematic representation of the oscillations occurring when a string is
bowed on its midpoint.

An aspect of the bow-string interaction that is not covered by the chosen

model are the introduced noise pulses as the string periodically scrapes the

bow hair during the slipping phase. This phenomenon introduces a particular

periodical noise component that could be taken into account by using the phe-

nomenological model proposed by Chafe (Chafe, 1990) (based on an analysis of

recorded tones). While for the current study this aspect is left out for simplicity,
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it may be of interest for later implementations, to achieve a more realistic sound

quality.

hyperbolic model with absorbed torsional string waves In

contrast to the single-reed case, several bow-string interaction models (here-

after referred to as “bow-string models”) are currently in common usage, which

is probably due to the empirical persistence of elementary models that allow

mathematical simplicity and result in reasonably realistic sounds. For simpli-

city, it was initially decided to employ the “hyperbolic model” on the hybrid

instrument, which employs a quasistatic but physically relevant stick-slip mech-

anism2.

In this model, during the “sticking phase”, the velocity difference between

bow and string surface ∆v′(t) remains zero until the force f (t) between those

parts reaches a break-away “sticktion” force fbµs (with fb the bow force and µs

the static friction coefficient), resulting in a velocity relation conditioned by a

force threshold:

∆v′ = 0 if f < fbµs. (80)

During the “slipping phase”, a kinetic “Coulomb” (viscous-less) friction with

the Stribeck effect occurs as long as the bow and string differ in velocity, which

results in a force relation conditioned by a velocity threshold:

f = sgn(∆v′) fb(µd +
(µs − µd)v0

|∆v′|+ v0
) if ∆v′ , 0, (81)

where µd is the dynamic friction coefficient and v0 is a characteristic velocity.

2 It should be noted that the hyperbolic model is somewhat outdated. Newer, more accurate
models have been proposed more recently (Serafin, 2004; Smith and Woodhouse, 2000; Mansour
et al., 2016), taking into account the thermal effects of rosin on the bow (designated by the term
“tribology”, which is the study of the interaction of surfaces in relative motion).
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It has been reported that the quality of simulations is significantly improved

by including the string rotations in this model (McIntyre et al., 1983). By defin-

ing ∆v(t) = vb− v(t) as the difference between the bow and the string axis, the

previous velocity difference can be expressed as :

∆v′ = ∆v− f
2ZR

, (82)

where ZR is the characteristic impedance for torsional waves. Note that these

waves are assumed to be completely absorbed so that no reflections are con-

sidered. This modelling enables the sticking phase (equation (80)) to also be

expressed as a force relation conditioned by a velocity threshold, which simpli-

fies simulation.

It is worth noting that Weinreich and Caussé used a simplified formula to

model the stick-slip phenomenon to evaluate their hybrid string instrument

(Weinreich and Caussé, 1991). The formula was a reciprocal second order func-

tion, chosen for its simplicity and its resemblance to the nonlinear curve of the

hyperbolic model; however, the parameters in this simplified formula are not in

good agreement with the real physical model. Nevertheless, Weinreich’s model

was later adopted by Ollivier et al. to demonstrate the similarity between reed

woodwinds and bowed-string instruments (Ollivier et al., 2004). Also Karkar

continued using Weinreich’s model, as it was a convenient formula to pre-

dict the oscillations in the steady state regime with a “continuation approach”

(Karkar, 2012).

a dimensionless and reduced parameter form Just as for the

single-reed model, it is possible to rewrite the equations of this bow-string

model using dimensionless quantities and with a reduced set of independent

input parameters. The reduced and dimensionless form newly proposed here

enables an interesting comparison with the single-reed model. By introducing

the dimensionless force f̄ = f
2Zcv0

(where Zc represents the characteristic imped-

ance of the acoustic resonator, when implemented on the hybrid instrument)
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and velocity ∆̄v = ∆v
v0

(with v0 a characteristic velocity) and using equation (82),

equations (80) and (81) can be rewritten and combined as:

f̄ =





f̄sl = sgn(∆̄v)ζb(δ +
1−δ

|∆̄v−α f̄ |+1 ) if |∆̄v| > αζb

f̄st =
∆̄v
α if |∆̄v| ≤ αζb,

(83)

where ζb = f̄bµs = fbµs
2Zcv0

, δ = µd
µs

and α = Zc
ZR

. This form shows that the para-

meter v0 is solely controlling the amplitude of the oscillations (for a bowing

force proportionally varying with v0, i.e. for a constant f̄b). Due to the fact that

µs and f̄b play the same role (for constant δ), these parameters are merged into

a global bow-force related parameter ζb (chosen in analogy to the embouchure

parameter ζ). While there is still an α f̄ term in the equation of the slipping

branch, it is small enough compared with ∆̄v for typical bow-string model

parameters so that ζb is almost directly proportionally controlling the excita-

tion amplitude of that curve. While this term prevents the verification of the

hysteretic condition with theorem 2, this condition can be verified after making

the model explicit, which is carried out in the next subsection.

Also in analogy with the single-reed model, the dimensionless bowing velo-

city is introduced γb = vb
v0

, so that ∆̄v=γb− v̄, where v̄ = v
v0

is the dimensionless

velocity of the string axis.

Figure 50 shows the resulting characteristic nonlinear curve in the dimen-

sionless {v̄, f̄ } coordinate system for a set of arbitrary typical parameters. The

anti-symmetry around v̄ = γb indicates that the model behaves analogously for

up and down bowing (i.e. positive and negative bowing velocities). The linear

part of the curve corresponds to the sticking state, where the constant torsional

impedance is considered: f̄ /v̄ = 1/α; and the hyperbolical part corresponds to

the slipping state, whose decrement is proportional to 1/δ.

The two main, variable control parameters are the dimensionless bow ve-

locity γb and bow force ζb, and typical parameter values are v0 ≈ 0.2 m/s,

δ ≈ [3/8, 2/4], α ≈ [0.26, 1], ζb ≈ [10,50]
N fb, with fb ≈ [0.15, 3]N and γb ≈
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Figure 50: The characteristic nonlinear curve of the dimensionless bow-string model,
with indication of the influence by its parameters.

(5 s/m) vb with vb ≈ [0.04, 3]m/s (Pitteroff and Woodhouse, 1998; Askenfelt,

1989; McIntyre et al., 1983). However, these bow force and velocity ranges are

based on low bow-bridge distances; much lighter forces (or higher bow velocit-

ies) are required when the middle of the string is bowed (McIntyre et al., 1983),

which is a situation that is equivalent to a clarinet resonator.

4.4.3 Making discrete and explicit

In contrast to the two previous models there is no dynamic (i.e. time-dependent)

component in this model. Hence, all variables are for the same time instance n,

so that for simplicity, this sample index is left out in the equations. In a similar

manner as for the single-reed model, the force exerted on the string induces

an instantaneous change in velocity, proportional to the characteristic imped-

ance of the string, so that: v̄ = v̄h + f̄ , where v̄h(=
vh
v0
) is the (dimensionless)

“historical string velocity”. The implicit equation that arises when inserting this

expression into equation (83) (which was already implicit), can be made explicit

analytically, which is another advantage of the hyperbolic model that has been

demonstrated by Demoucron (2008). By firstly considering the ∆̄v ≥ 0 domain,
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the sgn operator can be dropped, therefore, the term −α f̄ can be brought out

of the abs operator and thus, the abs operator itself can be dropped. Then, by

writing the slipping phase equation as a second order function of f̄ , the calcu-

lation of one of its roots leads to the desired explicit equation (the second root

does not correspond to a physical solution of the problem). Furthermore, given

the symmetry of the model around ∆̄v = 0 (and thus also around ¯∆vh = 0),

the abs and sgn operators can be reintroduced to include the ∆̄v < 0 domain.

Altogether this gives:

f̄ =





f̄sl =
sgn( ¯∆vh)

2A (B + ¯|∆vh|+ 1−
√

D) (if �)

f̄st =
¯∆vh
A (if ◦),

(84)

where A = 1 + α, B = Aζbδ, D = ¯(|∆vh| + 1− B)2 + 4(B − Aζb) and ¯∆vh =

γb − v̄h. Condition � holds as long as ¯| fsl| ≤ ζb & D > 0 and condition (◦)
holds as long as ¯| fst| ≤ ζb. The potentially overlapping conditions show the

possibility of a hysteretic behaviour between the stick and slip states (leading

to a “dynamic excitation”, as explained in subsection 2.2.2), which is the case

when d f̄sl( ¯∆vh)
d ¯∆vh

< −1 for any ¯∆vh ≥ Aζb. This phenomenon is referred to as

the Friedlander-Keller ambiguity and the conditions can also be demonstrated

with a graphical method in the {v̄, f̄ } coordinate system (see e.g. (McIntyre

et al., 1983)).

4.4.4 Predicting the influence on the sound

Given that the bow-string model is also a quasistatic simplification (just like the

single-reed model presented earlier), it is possible to apply the theory to estim-

ate the sound features of an arbitrary quasistatic excitation model (presented

in chapter 2). Moreover, given that the single-reed’s γ, ζ and the bow-string’s

γb, ζb parameters have a similar influence on their respective models, this may

be expected to be reflected in the sound features.
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While for the bow-string excitation model, following the oscillation condition

theorem 1 (in chapter 2), the oscillation would simply occur from the moment

that the static friction peak has been reached, i.e. from γbth = αζb
3, a stable

oscillation is only guaranteed when “the string velocity jumps returning to the

bow are strong enough to cause release” (McIntyre et al., 1983). That is, the

frictional force wave introduced during the slip state should be superior to the

static friction peak. This has been first described by Schelleng (Schelleng, 1973),

who derived a “maximum bowing force” (for a given bow velocity). When the

condition is not satisfied, a raucous sound appears. For the current bow-string

model, by supposing that the kinetic friction force is constant and fixed to δζb,

an analytic expression that approximately indicates the non-raucous state can

be derived:
γb

ζb
>

(
1 +

α

2
(α + 2δ− 1)− δ

)
, (85)

which will be referred to as the “raucous threshold”. Just like Schelleng’s for-

mula (which corresponds to the case where α = 0), this results in a linear rela-

tion between the bowing force ζb and velocity γb with respect to the raucous

threshold value (as can be seen in figure 51), but here the non-infinite torsional

impedance (α > 0) raises the threshold.

As for the single-reed excitation, an analytic estimation of the steady state

oscillation amplitude for the bow-string model is complicated, but for a lossless

resonator the approximate amplitude can be found as:

v̄a =
1
2

(
−b +

√
b2 + 2(γb − αζb)

)
, (86)

with b = αδζb − γb +
1
2 . When γb � αζb (far above the oscillation threshold),

γb − αζb ≈ 1
2 − b so that the whole term under the root converges to (1− b)2

and v̄a → γb − αδζb, which is similar to the single-reed case for high mouth

pressures, but here an increasing dimensionless bow force slightly reduces the

amplitude (as can be seen in figure 51). Formulations for a case with resonator

3 Note that this is not a realistic oscillation threshold due to the assumed constant torsional wave
impedance.
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Figure 51: Evolutions of the estimated dimensionless velocity amplitude for three ζb
values and γb ranging from the oscillation until the extinction threshold. The
oscillation and raucous thresholds are indicated with respectively + and •
symbols.

losses would slightly reduce the amplitude and also cause extinction of the

oscillation, which is attested to by the graphical (intersection) method. This

method enabled the estimation of the amplitude velocities shown in figure 51.

As stated by theorems 4 and 5 (in section 2.3) the integration of the gradient

under the excitation curves gives an estimate of the “spectral richness” and

the even harmonics content is related to the even (symmetric) component of

the excitation curve. Figures 52(a) to (d) show the nonlinear curves for four

arbitrary sets of ζb and γb values, demonstrating the variety of sound features

this excitation model is expected to produce.

A first general observation is that all of these states result in fairly similar

nonlinear shapes, compared to the single-reed curves in figure 36. This sug-

gests that the sound features are more progressively related to the excitation

parameters. Additionally in comparison with the single-reed curves, it is re-

markable that the bow-string oscillations appear to occur at a relatively high

offset. This is due to the kinetic friction curve that only slowly descends (with

decreasing velocity), while the single reed curve goes to zero from the moment

the beating reed state is attained. Hence, even though the overall bow-string

nonlinear curve is mainly asymmetrical in shape, there is a large amount of



4.4 bow-string interaction model 169

(a) ζb = 0.2, γb = 0.35 (b) ζb = 0.6, γb = 0.5

(c) ζb = 0.6, γb = 1.0 (d) ζb = 1.0, γb = 1.8

Figure 52: Nonlinear curves of the bow-string excitation model for four sets of paramet-
ers γb and ζb, with indication of the mean acoustic power estimation with a
gradient (the amount of blue is to be subtracted from the amount of green);
and the even component before and after the subtraction of the mean force
(respectively in dot-dashed red and solid black lines).
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power that cancels itself out and the globally high normalised forces (compared

to the normalised flow rates of the single-reed curves) result in a higher even

harmonics component.

In the transition from (a) to (b) the ζb parameter is tripled, while γb is

only moderately increased. This clearly raises both the acoustic power (i.e. the

amount of green in the right upper dotted triangular zone) and the even amp-

litude (note the changed scaling). However, when then the bow velocity is

increased more, the amplitude increases, but this also requires more energy,

which is reflected in the decreasing normalised power (and accordingly the

even amplitude is decreasing too).

In figure 53, the RMS of the normalised velocity ˆ̃vRMS and of the normalised

even force component ˆ̃feRMS, are plotted for three ζb values and γb ranging

from the oscillation to the extinction threshold. The four discussed parameter

states are indicated and the curves will be referred to in chapter 5, where the

experimental evaluation of the hybrid instrument is discussed.

The earlier suggestion regarding the progressive evolutions is confirmed by

these results. It is also interesting to note that near the oscillation threshold the

even harmonics attain a peak value.
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For increasing ζb, in contrast to the dimensionless amplitude that is slightly

decreasing, both the normalised power and even amplitude are increasing, the

latter being a similar behaviour as observed with the ζ parameter for the single-

reed excitation.

Finally, it should be mentioned that the ζb range is chosen so as to meet

a functional hybrid operation (see chapter 5). While the hysteretic case is not

attained within this range, it is worth noting that the cyclic hysteresis effect

causes the pitch to slightly decrease, which is known as the “pitch flattening

effect” (McIntyre et al., 1983).

Note that for the implementation of the bow-string interaction model on the

hybrid wind instrument, the dimensionless string velocity and force are simply

interpreted as the dimensionless pressure and flow rate at the entrance of the

resonator, so {v̄, f̄ } in the above theory is replaced by { p̄, q̄}. Accordingly, the

characteristic velocity v0, used to make the model dimensionless, is replaced by

a characteristic pressure PM around the desired pressure amplitude (in analogy

with the other excitation models).

4.5 the polynomial model

Given that the excitation of the hybrid wind instrument is achieved by execut-

ing programmed mathematical functions, it is possible to move away from any

physical reality and program an arbitrary mathematical function that fulfils the

requirements to establish self-sustained oscillations. This concept allows the

study of the nature of excitation models by analytical decomposition and em-

pirical evaluation. This is a convenient way to empirically study the independ-

ent influence of these sound properties, which is of interest both acoustically

and musically (as discussed in section 1.2.1). Moreover, in view of the latter per-

spective, such excitations can be expected to provide easier access to a target

timbre of choice, and to expand the timbre range towards potentially inspiring

hybrid physical and synthetic sounds.
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It appeared to be a reasonable choice to opt for a third order polynomial

function q(p). Such a function can be positively increasing around p = 0 and

have three real solutions for q(p) = q(−p), which matches the requirements

that have been derived earlier in chapter 2.

The concept is somewhat similar to a well-established musical synthesis tech-

nique known as “waveshaping”. With waveshaping, an input signal x(t) is

manipulated in the time domain with an arbitrary chosen nonlinear function:

y(t) = f (x(t)) (also often a polynomial function), so that harmonics are in-

troduced. However, while the excitation with self-sustained operations can be

understood as a waveshape-like operation between the in- and out-going waves

(thereby also introducing higher harmonics), it is substantially different, as the

output is fed back to the input. Hence, the waveshaping theory is not relevant

for this study and a different oscillatory behaviour can be expected.

4.5.1 The model

First, the flow rate is expressed as a generic polynomial third order function of

the pressure:

q = ap3 + bp2 + cp + d (87)

By now considering the theory of subsection 2.1.2 and sections 2.2 and 2.3, it

can be shown that this function is a suitable excitation model and that it is pos-

sible to obtain a new set of parameters that are directly related to some sound

properties. It would be ideal if the new parameter set took into account the in-

fluence of the frequency independent losses (i.e. the (1− λ) factor, introduced

in chapter 2). However, this is mathematically very complicated and in practice

these losses are relatively small, so that there is still a reasonable correlation

with the sound features when these losses are neglected.
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By defining the dimensionless pressure and flow rate similar to the previ-

ously discussed excitation models, by p̄ = p/α and q̄ = qZc/α (where α is an

arbitrary parameter), the dimensionless form becomes:

αq̄
Zc

= a(α p̄)3 + b(α p̄)2 + c(α p̄) + d (88)

Following theorem 6, which states that the mean flow can be neglected, the

constant term d can be removed. After dividing through by α, the polynomial

equation reduces to:

q̄
Zc

= aα2 p̄3 + bα p̄2 + cp̄. (89)

From the oscillation condition stipulated by theorem 1, it can be concluded

that, for the excitation to be unstable (which is the primary condition for self-

sustained oscillations), the derivative of q̄ at p̄ = 0 should be greater than the

constant positive real factor (1− λ) (& 0). Evaluating q̄′( p̄ = 0) ≥ (1− λ), it is

easy to show that this leads to the condition c ≥ (1− λ)/Zc & 0, i.e. c must be

strictly positive.

Next, theorem 3 in section 2.3 states that a stable oscillation is obtained when

the equality q̄( p̄) = q̄(− p̄) has a non-zero solution. Applying this equality to

equation (89) results in aα2 p̄3 + cp̄ = 0; which, apart from the trivial solution

p̄ = 0, also has the amplitude of the steady state pressure wave as a solution:

p̄a =
√
−c/(aα2). By fixing this dimensionless amplitude to p̄a = 1, it fol-

lows that: α =
√
−c/a, and given that c must be positive, a must be negative.

Therefore, the α factor simply sets the amplitude of the dimensional system (in

Pascals).

It is worth noting that this condition doesn’t impose any requirements for the

b coefficient. However, in practice this coefficient can make the system hysteretic

(discussed later), it may evoke period-doubled bifurcations, or it can lead to

undesirable instabilities when evaluated with the hybrid instrument.
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Dividing equation (89) by c and defining ζ = cZc, the equation can be re-

written as follows:

q̄ = ζ(− p̄3 +
b√−ca

p̄2 + p̄), (90)

which reveals that the ζ parameter directly controls the “amplitude of excita-

tion”. As explained in subsection 2.3.1, this parameter is inversely proportional

to the attack time of emerging oscillations. Furthermore, by considering the-

orem 4 in section 2.3, it is straightforward to conclude that ζ controls the nor-

malised power introduced by the excitation in the resonator, and therefore this

parameter directly controls the brightness of the sound.

While theorem 5 enables the estimation of the level of even harmonics present

in the sound, the a-priori unknown mean flow component (which should be

subtracted, since it is inaudible) does not allow for the definition of an unam-

biguous parameter to provide linear and quantitatively known control for this

polynomial model. However, by applying equations (10), it is straightforward

to conclude that the odd and even harmonics are produced by respectively

the odd and even powers of p̄ (again, by not taking into account the acoustic

losses). Therefore, the second power coefficient in this model can be expressed

as a single new parameter: δ = b√−ca , which will be referred to as the “even

amount parameter”, so that the model equation finally reduces to:

q̄ = ζ(− p̄3 + δ p̄2 + p̄). (91)

It is easy to verify that using a negative δ factor is equivalent to using −q̄(− p̄)

with the opposite (positive) δ, which produces the same oscillations due to the

linearity of the resonator.

Using the condition expressed in theorem 2, the criterion for hysteresis can

be evaluated, i.e. the model is non-hysteretic as long as q̄′( p̄) ≤ 1 for any p̄

involved in the oscillation. Applying this condition to the polynomial model

yields:
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ζ(−3p̄2 + 2δ p̄ + 1) ≤ 1

⇔ −3p̄2 + 2δ p̄ + (1− 1
ζ
) ≤ 0 (92)

A first maximum gradient lies at p̄ = 0 and imposes the condition ζ < 1. When

ζ > 0.25, the second maximum gradient lies between 0 < | p̄| < 1, so that

equation (92) has no real solution, i.e. the discriminant has to be negative, or:

δ2 + 3(1− 1
ζ ) < 0, imposing the condition |δ| <

√
3( 1

ζ − 1). Alternatively, when

ζ ≤ 0.25, the second maximum gradient is found for p̄ > 1. The maximum

gradient in the oscillation domain lies thus at | p̄| = 1, so that the following con-

dition applies: |δ| ≤ 1
2ζ + 1. For instance, with ζ = 0.5, the excitation becomes

hysteretic for |δ| >
√

3 = 1.73, while for ζ = 0.1, that only occurs for |δ| > 6.

It is worth mentioning that higher order polynomials can be used to excite

the hybrid wind instrument. Using higher order polynomials would potentially

give an even greater and more precise control of the sound properties. For

example, it may be interesting to express any quasistatic excitation model as

an approximate polynomial function, by applying a Taylor expansion; which

could be a useful follow-up study.

4.5.2 Making discrete and explicit

The explicit equation for the polynomial excitation model can be found by solv-

ing the set of equations p̄ = p̄h + q̄ and equation (91), which leads to a third

order equation of q̄:

0 = q̄3 + q̄2 (3p̄h − δ)︸        ︷︷        ︸
r

+q̄ (3p̄2
h − 2δ p̄h +

1
ζ
− 1)

︸                          ︷︷                          ︸
s

+ ( p̄3
h − δ p̄2

h − p̄h)︸                  ︷︷                  ︸
t

. (93)
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This equation illustrates the existence of a hysteretic case, which occurs when

it has more than one real root. As empirical evaluations revealed that this only

occurs for parameter ranges exceeding the stable operational range, the hyster-

esis is not taken into account here and only the case for a single-real solution is

considered. For this case, the determinant is written as:

D = (
√

A3 + B2 − B)1/3, (94)

where

A =− r2
f +

s
3

, (95)

B =r3
f − rf

s
2
+

t
2

(96)

and rf = r
3 are introduced for notational and computational convenience. Fi-

nally, the explicit solution is found by:

q̄ = −rf −
A
D

+ D. (97)

The computational protocol simply involves the successive calculation of r, s,

t, rf, A, B, D and finally q̄.

4.5.3 Predicting the influence on the sound

The polynomial model is designed exactly with the goal of gaining independ-

ent control of the sound features. Therefore, one could think that the study

to predict the sound features (introduced in section 2.3) is redundant for this

model. Nevertheless, the theory is certainly meaningful, because the (frequency

independent) acoustic losses have not been taken into account in the design of

the model, while they are included in the sound prediction protocol (i.e. the vir-

tual pressure and flow rate { p̃, q̃} are used, rather than the real wave variables

{p, q}). Furthermore, it is useful to obtain a more absolute estimation.
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Figure 54: Evolutions of the estimated dimensionless pressure amplitude for four ζ
values and θ ranging from 0 until 2.

The proposed parametrisation of the polynomial model lacks the concept

of an oscillation threshold, as any given set of (non-zero) parameters {α, ζ, θ}
results in an oscillatory state. While a decreasing ζ would lead to an extinction

of the oscillation, it can be seen from equation (93) that the s term goes to

infinity when ζ approaches 0, and while the α parameter could be used to

initiate an oscillation, this parameter preserves the wave shape and therefore is

not of great interest for evaluation.

For the evaluation of sustained oscillations, a set of four ζ values is chosen

between 0.075 and 0.4, and increasing progressions of θ are applied from 0 to 2

(these ranges are determined from empirical experimental evaluations, which

are further detailed in chapter 5).

Figure 54 shows the evolutions of the estimated pressure amplitudes, de-

termined with the graphical intersection method (as explained in theorem 3 in

section 2.3).

If there was total absence of frequency independent losses, this amplitude

would remain constant at 1. As a consequence, taking into account these losses,

more energy is required to maintain this amplitude. As can be seen from this

figure, the lower the ζ value, the more the amplitude slightly decreases, until

ζ ≈ 0.075, where a steep amplitude drop occurs.
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(a) ζ = 0.183, δ = 1.1 (b) ζ = 0.292, δ = 0.6

Figure 55: Nonlinear curves of the polynomial excitation model for two sets of para-
meters δ and ζ, with indication of the mean acoustic power estimation with
a gradient (the amount of blue is to be subtracted from the amount of green);
and the even component before and after the subtraction of the mean force
(respectively in dot-dashed red and solid black lines).

Theorem 4 (in section 2.3) states that the integration of the gradient under

the excitation curves gives an estimate of the “spectral richness” and theorem 5

states that the even harmonics content is related to the even (symmetric) com-

ponent of the excitation curve, excluding the mean flow component. Figures

55(a) and (b) show the nonlinear curves for two arbitrary sets of ζ and δ val-

ues, demonstrating how each of the input parameters can affect the mentioned

sound features.

Just like for the bow-string interaction curve, it is interesting to note that both

curves are similar in shape (which is also the case for other parameter sets), so

that a relatively progressive relation to the sound features can be expected.

The influence of the excitation parameters is relatively straightforward. Just

like for the other excitation models, ζ directly influences the global flow rate

which is therefore proportionally controlling the amount of positively intro-

duced acoustic power. Meanwhile, the δ parameter determines the amplitude

of the symmetrical component. Given that the transition from (a) to (b) involves

a doubling of ζ and an almost halving of δ, it can be seen that the amplitude of

the symmetrical component is almost equal.

In figure 56, the RMS values of the normalised pressure ˆ̃pRMS and of the nor-

malised even flow rate component ˆ̃qeRMS, are plotted for the mentioned para-
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Figure 56: Evolutions of the RMS of the normalised pressure ˆ̃pRMS (a), and the RMS
of the even harmonics normalised flow rate component ˆ̃qeRMS (b), for four
ζ values and δ ranging from 0 until 2. The two parameter sets presented in
figure 55 are marked as data points.

meter ranges. The two discussed parameter states are indicated and the curves

will be compared with the practical evaluations, discussed in chapter 5.

In (a), the normalised RMS pressures confirm that the ζ parameter controls

the spectral richness. It is important to note that the earlier mentioned steep

amplitude drop for ζ = 0.075 also results in a stronger spectral deviation. That

effect is also noted in (b), where the even component remains close to 0 for

the whole range of δ. While δ does not affect the overall normalised RMS pres-

sure, its influence for the higher three ζ values is clearly linearly related to the

normalised even RMS flow rates.

4.6 summary

This chapter presented several “excitation models”, which are physically based

models whose role is to provide acoustic energy to the resonator. For the hybrid

instrument, these models are executed on a computer. Therefore, first some

computational considerations were made, dealing with the “delay-free loop”

or “implicit equation” issue that arises with the simulation of physical models

by a sequential operation. In order to cope with this issue, analytical explicit
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expressions for the implicit representations were sought, which is a case-by-

case task that was considered for each separate excitation model.

Four “excitation models” were presented. First a single-reed physical em-

bouchure model was described, it was modelled as a classical single-degree-of-

freedom (SDOF) mass-spring-damper (MSD) oscillating system that is forced

by the pressure difference across the reed. This pressure difference, and the

reed opening section, then determined the air flow rate that passes through the

“reed channel”. The dimensionless representation and the discretisation were

drawn from the literature. Finally, relying on the theory of chapter 2, an estima-

tion was made of the acoustic power that would be introduced in the resonator,

as a function of the dimensionless mouth pressure γ and lip force ζ parameters.

This estimation then led to a prediction of the oscillation threshold, the amp-

litude, the spectral richness and the amount of even harmonics present in the

steady-state oscillations.

Next, a (brass-instrument-like) simple lip-reed model was presented. Like

the single-reed model, it was also a SDOF MSD pressure-controlled valve, but

the valve was of the “outward striking” type (i.e. an increasing mouth pressure

tends to open the valve) and its resonance frequency lies below the playing fre-

quency. Moreover, some additional features were introduced, such as a refined

lip-collision model and a variable opening section, which both account for an

improvement of the sound produced. While the theory to estimate the sound

features was initially only derived for the case of quasistatic excitation mod-

els, it was shown that the acoustic power calculation for the case of dynamical

models could be approximately reduced to an approach that allows the ap-

plication of the quasistatic theory. Hence, also for this model, the amplitude,

spectral richness and even harmonics predictions were made as a function of

the most relevant parameters for the quasistatic approximation of this model:

the dimensionless mouth pressure γ and lip force ζ. Meanwhile, using a sinus-

oidal signal approximation the theory by Fletcher was applied (Fletcher, 1993),
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which allowed for oscillation threshold and fundamental frequency estimations

for variations of γ, ζ, the lip resonance frequency θ and the quality factor Qr.

By interpreting the pressure and flow rate at the entrance of the resonator as

if it were respectively a string velocity and an introduced force to the string, it

was explained that the hybrid wind instrument could be excited with the ex-

citation mechanism of self-sustained string instruments, i.e. with a “bow-string

interaction model”. For this, a classical quasistatic “slip-stick” model was used.

The slipping part was modelled by a hyperbolical curve, while for the stick-

ing part the interaction was modelled by a constant impedance, induced by

torsional string waves that are totally absorbed at the string ends. Also, a di-

mensionless reduced parameter form was proposed, which revealed interesting

similarities with the single-reed model. These similarities were reflected in the

obtained predictions of the amplitude, spectral richness and even harmonics

curves, which were expressed as a function of the main control parameters: the

dimensionless bowing velocity γb and bowing force ζb. Also the estimation of

oscillation thresholds and “raucous thresholds” was obtained.

Finally, an arbitrary formula was considered as an excitation model. For this,

a third order polynomial turned out to be an appropriate choice. Starting from a

generic polynomial equation, the theorems stipulated in chapter 2 were applied

so that a new form was obtained, whose parameters could be expected to inde-

pendently control sound features such as the amplitude, the spectral richness

and the amount of even harmonics. The application of the sound predicting

theory confirmed the strong correlations.
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To evaluate the hybrid self-sustained operation, the loudspeaker-resonator sys-

tem combined with the loudspeaker-compensating filters (described in chapter

3) is put in interaction with the theoretical excitation models laid out in chapter

4.

From the moment these components are active and interacting, a self-sustained

operation will emerge if the excitation conditions are favourable. The hybrid

results are compared with simulations of the entire instrument, where the tube

resonator is also simulated.

All excitation models are evaluated with slowly varying input parameters

to study the sustained operation, as well as with rapid “attack envelopes”, en-

abling a characteristic transient sound to appear. These results are then studied

by first observing snapshots of the mouthpiece pressure in both the time and

frequency domains, and then focussing on a few typical “sound descriptors” to

allow for a wider comparison. The descriptors are also compared with sound

feature prediction curves, which were obtained for each excitation model in

chapter 4.

5.1 computational and simulation aspects

All the simulations and post-evaluations presented in this chapter were imple-

mented in MATLAB and Simulink (see subsection B.3.1 for some examples),

which are convenient platforms for both the real-time evaluation of physical

models and the analysis of the obtained signals.

183
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5.1.1 Hybrid instrument computations

For the evaluation of the hybrid instrument, a real-time computer was used,

whose details and set-up are described in subsection B.2.1. This computer en-

sures that the total latency introduced by the analogue-to-digital and digital-

to-analogue conversions and/or by the processing time is minimal, and well

below the oscillation period of the appearing oscillations. In fact, the latency of

the used computing system is just a single sample time (at a sampling rate of

fs = 40 kHz).

5.1.2 Simulation of the excitation models

For the simulation of the excitation models, their respective discretised models

(laid out for each excitation model in chapter 4) were programmed with stand-

ard Simulink blocks; a straightforward task in most cases (for an example, see

figures 84 and 85 in subsection B.3.1, which show the implementation of the

single-reed model).

For the simulation of the dynamic reed with the particular discretisation

scheme mentioned in section 4.2.2, a customised “S-function” block was em-

ployed (a Simulink-specific custom designed block in C++ code). Another S-

function block was used for the discrete lip-reed dynamics (see section 4.3.2).

This block is based on the same filter code as for the single-reed dynamics. The

main difference is that the gradual lip-collision model is implemented as an ad-

ditional “displacement-condition”, which introduces nonlinearly variable filter

coefficients. Both the bow-string interaction model and the polynomial model

are entirely quasistatic (i.e. without dynamic components, see chapter 4). The

former was implemented with Simulink blocks (using conditional blocks to

switch between the slipping and sticking phases), while the latter was entirely

programmed in a single S-function block.
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It should be mentioned that the choice between Simulink blocks and C++

code does not influence the actual operation (when correctly implemented).

Indeed, it is worth mentioning that a C++ code implementation is often easier

for many models.

5.1.3 Simulation of the entire instrument

For the simulation of the entire instrument (hereafter simply referred to as

“simulations”), each excitation model was coupled with a numerical simulation

of the tube resonator. This resonator simulation was also carried out with Sim-

ulink, applying a fourth order Runge-Kutta solver and using the same sampling

frequency as for the hybrid instrument ( fs = 40 kHz). The tube was simulated

with a modal approximation (explained and calibrated in appendix-section

A.4), calculated with a series of 14 “transfer function” blocks that operate as

parallel bandpass filters (figure 86 in subsection B.3.1 partially shows this im-

plementation). Each filter corresponds to a second order transfer function of

equation (25) (see chapter 2). Even though the limited amount of modes trun-

cates the spectrum of the produced signals, it is known that typically between

10 and 20 modes are necessary to ensure a coherent self-sustained operation, be-

cause either the cut-off frequency of the tone-hole lattice or the reed low-pass

filter behaviour significantly reduces the importance of the higher frequency

modes (Karkar et al., 2010). In this thesis, the reed resonance frequency is held

constant at 2.5 kHz, so that the 14th mode of the chosen resonator — having a

resonance frequency of about 3.8 kHz — is a reasonable truncation choice. This

is also empirically confirmed by simulating the single-reed model (using para-

meter ranges used throughout the thesis) with higher numbers of modes. As

can be noted from figure 83 (in appendix-section A.4), the modal approximation

matches the measured input impedance of the resonator with high precision.

Hence, it can be concluded that the simulations correlate well with the func-

tioning of the “ideal” hybrid instrument, which was identified in the require-
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ments in subsection 1.4.3 as a target operation for the hybrid instrument. There-

fore, the simulations enable a quantitative comparison with the hybrid system,

which will be useful as a measure of accuracy and for identifying flaws in the

hybrid system, with a focus on the intended self-sustained operation.

Given that the loudspeaker, including the associated compensation filters (see

subsection 3.2.3), is the hybrid component that deviates the most from its sim-

ulated equivalent (i.e. from the ideal piston), most of the observed differences

between the hybrid and the simulated results are due to the uncompensated

loudspeaker effects.What to observe?

Figure 57 depicts a schematic representation of the hybrid and simulated

evaluations, which are respectively indicated by blue and red arrows. (This

colour index is maintained throughout this chapter.) The term “experimental

results” is used to refer to both the simulated and hybrid results.

p&
d(p+ q)

dt
≈ pradiatedp&

d(p+ q)

dt
≈ pradiated

Impedance measurement + modal regression

HYBRID

SIMU-
LATION

Sound descriptors: PP amplitude, 
Spectral Centroid, f0, EA, Noisiness,…

Figure 57: Schematic representation of the hybrid and simulated evaluation (with the
example of a single-reed excitation).

The next question, which should be considered in the light of the main re-

search questions, is which signals would be most suitable to observe?
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5.1.4 Selecting appropriate signals

A straightforward choice of the signals that should be studied are the (dimen-

sionless) pressure and flow rate at the entrance of the resonator, p̄ and q̄. These

signals have the most direct relation to the physical functioning involved and

are therefore particularly useful for studying and verifying the acoustic func-

tioning of the instrument.

Another important focus is the sound perceived by a listener. Therefore, a

signal related to the pressure waves radiated by the instrument is also calcu-

lated. A simplified, yet sufficiently relevant, “monopole” radiation model de-

scribes the radiated pressure as being proportional to the temporal derivative

of the pressure waves propagating downstream in the resonator (i.e. p̄+) (see

e.g. (Jacobsen, 2011)). Equation (9) in chapter 2 shows that this downstream di-

mensionless pressure corresponds to p̄+ = ( p̄ + q̄)/2, so that the approximated

external pressure can be written as:

p̄ext ∝
d( p̄ + q̄)

dt
. (98)

To ensure a consistent comparison between the simulated and hybrid results,

the spectral content of the signals obtained with the hybrid wind instrument

in the frequency domain above the upper simulated mode should be ignored.

Therefore, before studying the sound features, a steep (IIR, 33
rd order Butter-

worth) low-pass filter was applied on p̄ext, with a cut-off frequency of 4 kHz.

This filter also prevents the amplification of high frequency noise that is ampli-

fied by the derivative.

5.1.5 Sound descriptors

To allow for a quantitative and useful comparison of hybrid and simulated

sounds, so called "sound descriptors" were employed. These represent a stand-
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ardised set of features that describe relational values derived from the spectral,

temporal and harmonic representations of the sound. Sound descriptors can be

meaningful characteristic features regarding both perception (to quantify the

timbre and other sound features) and the instrument’s acoustic functioning.

For the selection of descriptors, the work of Barthet — who extensively

studied the timbre of the clarinet and its relation to the instrument’s input

parameters (Barthet et al., 2010; Barthet, 2009) — provides a useful starting

point. Barthet’s work resulted in the abstraction of a clarinet-related three-

dimensional perceptive timbre space, based on the classification of a set of

clarinet-synthesised sounds (using a realistic temporal mouth pressure envel-

ope) by listeners. Then, an algorithmic procedure was used to demonstrate that

these dimensions are well correlated to a selection of sound descriptors, in

particular to the "(Logarithmic) Attack Time”, the "Spectral Centroid" and the

"Odd/Even harmonics Ratio" (OER).

However, Barthet only evaluated a single-reed excitation, and while he used

a ζ range similar to the range used in the current study, he evaluated the γ para-

meter over a more narrow range, between 0.53 and 0.8 (see section 4.2 for an

introduction to these parameters). Furthermore, for the current study it is also

of interest to choose descriptors that are directly related to the curves obtained

in chapter 4, which predict the sound features of each excitation model.

Therefore, the descriptors selected for evaluation in this thesis are the "Log-

arithmic Attack Time" (LAT), the "Harmonic Spectral Centroid" (HSC) and the

"Even Amount" (EA)1.

The LAT descriptor represents the logarithm (at a decimal base) of the time

taken for the amplitude envelope to increase from 10% to 80% of the maximum

amplitude value for the sound event (i.e. the amplitude of the steady-state re-

gime when the excitation parameters are held constant).

1 The harmonic descriptors such as the HSC and the EA rely on a number of harmonic peaks
in the spectrum. Here this number was set to 20 (both odd and even) harmonics, as above this
value wrong peaks were sometimes identified.
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The Spectral Centroid represents the frequency of the centre of the spectrum,

using the amplitude weight of each frequency, and has a robust connection

with the perceived impression of "brightness". Here the harmonic variant is

opted for, which only takes into account the spectral content defined by a de-

tected fundamental frequency and its multiples, though it should be mentioned

that the HSC itself is not necessarily a multiple of the fundamental frequency.

This choice is more convenient for the comparison of the hybrid instrument

with the entirely simulated equivalent, given that other frequency components

such as noise were filtered out. (The noise could be separately studied with the

“Noisiness” (NN) descriptor.)

The Even Amount descriptor provides a dimensionless measure of the even

harmonics’ energy relative to the total energy of all the harmonics. The choice

to opt for the EA rather than the OER descriptor is primarily motivated by

the fact that the sound prediction theory also provides an estimation of the

amount of even harmonics (see the relevant sections for each excitation model

in chapter 4). Moreover, this choice turns out to be more suitable. Knowing

that the OER descriptor is calculated as the ratio of odd and even harmonic

amplitude components (i.e. the ratio of the “Odd Amount” and “Even Amount”

descriptors), and given that the Odd Amount descriptor is empirically found

to be well correlated with the Spectral Centroid, it can be concluded that the

main component that differentiates the OER from the SC is the EA descriptor.

In addition, the fundamental frequency ( f0) and the Peak-to-Peak pressure

(PP) evolutions are studied. Given the known typical progression of the PP

mouthpiece pressure as a function of the mouth pressure progression (see e.g.

(Atig et al., 2004)), the PP of p̄ is calculated rather than p̄ext. Furthermore, the

end of the attack time (EAT) is reported (for the single-reed model only), which

is the time when the amplitude envelope reaches 80% of its maximum, relative

to the start of blowing. In contrast to the LAT, this time span expresses the delay

between the mouth pressure onset and the resulting sound onset, which is an

important feature with respect to the timing of played notes. Finally the Spectral
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Flux (SF) is measured in the attack transient of each sound (also only for the

single-reed model). This descriptor is a measure of the degree of variation of the

magnitude spectrum over time. It corresponds to the mean of the correlation

coefficients between adjacent short-time spectra.

Peeters and Barthet provide precise mathematical definitions of all these

descriptors (Barthet et al., 2010; Peeters et al., 2011), and the actual calculation of

most of the descriptors was carried out using the MATIMBRE toolbox, a MAT-

LAB program developed by Barthet (Barthet et al., 2010; Barthet, 2009). Only the

Peak-to-Peak and Noisiness descriptors were programmed from scratch, based

on the mathematical descriptions provided by (Peeters et al., 2011), and using

pre-calculated features in the MATIMBRE toolbox.

5.2 preparing and interpreting the evaluations

5.2.1 Evaluation protocol and parameter ranges

For the evaluation of the self-sustained operation, each excitation model was

supplied with appropriate parameter values. It is possible to determine the

range of parameter values by relying on existing theories. For instance the

single-reed model is known to function within a typical parameter range, and

in chapter 4 the sound feature estimations of other excitation models have indic-

ated certain threshold values beyond which oscillation is not feasible. Empirical

evaluations lead to certain threshold choices. It is also interesting for the sake of

musicality to explore the effect of parameter values beyond the typical range.

Tables 2 to 5 show the evaluated parameter values for each excitation model.

Many parameters were held constant as their variation is not of primary rel-

evance or has little influence. Some parameters were evaluated for a discrete

number of distinct values, which is notated as a set in curly brackets or using

an indexed sequence (where k ∈ N). Other parameters were evaluated over a

continuous range, which is notated as a mathematical interval in square brack-
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ets. More details on the parameter meanings and their respective excitation

models can be found in chapter 4. The parameters values that were either used

for the sustained or attack evaluation are indicated by the notation (S) or (A).

For the single-reed model, sustained sound evaluations were carried out for

increasing γ values (over the ranges provided in table 2), repeated for four

constant ζ values. The attack evaluations were performed over a reduced γ

range as the extinction for the case of the sustained sounds is higher due to a

hysteresis effect.

The self-sustained evaluation of the lip-reed model was carried out for two

sets of varying parameters, which are indicated by the notations (S1) and (S2).

For the first evaluation, the same protocol as for the single-reed evaluation was

carried out, i.e. increasing γ values, repeated for constant ζ values and using a

constant lip resonance frequency θ = ωr
ω1

= 0.7 (where ω1 = 2π.140 rad s−1 is

the frequency of the first tube resonance). These parameters were also used for

the attack evaluations (indicated with (A)). Then, these parameters were held

constant at ζ = 0.05 and γ = 3, and θ was progressively evaluated over the

proposed range, and this was repeated for a set of Qr values.

Just as for the single-reed evaluation, the sustained sounds of the bow-string

interaction model were evaluated for increasing bow velocity γb, repeated for

three constant bow forces ζb. The attack evaluation was performed over the

same parameter ranges.

Finally, the sustained evaluation of the polynomial model was performed for

four constant ζ values with increasing δ progressions. However, while the at-

tack evaluation was performed for the same parameter ranges, the δ parameter

cannot induce an oscillation onset, so in contrast to the other excitation models,

the attack envelopes (whose shape is detailed in subsection 5.4) were applied

to ζ (which does cross an oscillation threshold, i.e. when ζ lies below a certain

threshold, no sound occurs).
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Single-
Reed

Sym-
bol

Eval.
values

Notes

“Global
em-
bouchure
para-
meter”,
related to
the lip
force.

ζ {0.1, 0.2, ...
0.3, 0.35}

For real clarinets, this value is estimated
to lie between 0.3 and 0.4 (Chaigne and
Kergomard, 2013). However, empirical
evaluations revealed an unstable state
above 0.35.

Dimen-
sionless
mouth
pressure

γ

(S)
[0.33, 2.4]

For γ < 0.33 theoretically no oscillatory
would occur. But with the hybrid
instrument this produces instabilities (see
5.5.1). The maximum values correspond
to the extinction thresholds of the highest
ζ value used. For the sustained sounds
this is 2.4 and for the attack sounds 1.2.

(A)
{0.45, (0.4+

k.(1.2−0.4)
8 )8

k=0}

Reed
resonance
frequency
(including
lip)

ωr 2500 Hz While this is relatively high compared to
a real instrument, this close to quasistatic
implementation is sufficient as a first
investigation. It is reported that, to avoid
pitch flattening, classical playing
techniques involve reed resonance
frequencies above 1500 Hz (Chaigne and
Kergomard, 2013)

Quality
factor of
the lip
dynamics

Qr 5 The quality factor is typically assumed to
be in the range Qr ≈ [1, 4] (Avanzini and
Van Walstijn, 2004; Dalmont et al., 2003;
Silva et al., 2008), though it remains a
relatively crude approximation. The used
value is proposed by (Guillemain et al.,
2005) and approximates a quasistatic
(and still stable) implementation.

Beating
pressure

PM 100 Pa Higher amplitudes (up to 800 Pa)
resulted in similar results, but for high ζ,
saturations easily occur. For real clarinets
this lies between 4 kPa to 10 kPa (Ollivier,
2002). The maximum used here is much
lower due to the hybrid instrument’s
amplitude limitations.

Table 2: Single-reed model parameter descriptions, evaluated values, and additional
notes.
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Lip-Reed Sym-
bol

Eval.
values

Notes

“Global
embouchure
parameter”,
related to the
lip force.

ζ

(S1,A)
{0.03, ...

0.05, 0.07}

Realistic values for ζ are less well
known than for the single-reed
model. The values are based on
empirical findings.

(S2) 0.05

Dimension-
less mouth
pressure

γ

(S1) [1, 5] Below 1, no oscillation is possible,
there is no extinction threshold but
above 5 the sound does not change
much in timbre.

(A) (1 +
k.(5−1)

8 )8
k=0

(S2) 3

Dimension-
less lip
resonance
frequency
(relative to
ω1)

θ
(S1,A) 0.7 This is based on empirical findings,

but corresponds to typical values.
This range covers three registers.

(S2) [0.5, 4]

Quality factor
of the lip
dynamics

Qr

(S1,A) 3
As for the single-reed, real quality
factor estimates are poor. The used
values are of the same order as
values proposed by other authors:
2.88 (Vergez and Rodet, 2000), 5
(Saneyoshi et al., 1987) and
2 ≤ Qr ≤ 3 (Keefe, 1992).

(S2)
{2, 3, 4}

Beating
pressure

PM 50 Pa

This is much lower than for real brass
instruments, which is due to the
hybrid instrument’s amplitude
limitations.

Table 3: Lip-reed model parameter descriptions, evaluated values, and additional
notes.
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Bow-string
interaction

Sym-
bol

Eval.
values

Notes

Dimension-
less bow
force

ζb {0.2, 0.6, 1} Based on empirical findings. While
higher values can result in stable
oscillations when γb is sufficiently
high, the limit is eventually
conditioned by the maximum
amplitude (and therefore also by v0).

Dimension-
less bow
velocity

γb

(S)
ζb.[α, 10.42]

The minimum value corresponds to
the theoretical oscillation threshold
(the peak of the nonlinear curve). The
maximum value is based on a
theoretical extinction threshold
formula:
γbth = 4ζb(1− δ).(1− β)β2/ ω1

a1Q1

(Schelleng, 1973) (with ω1
a1Q1

= 0.03,
an estimate of the dimensionless
admittance of the first tube resonance
mode).

(A) ζb.(α+
k.(10.42−α)

8 )8
k=0

The relative
position of
the bow on
the string

β 0.5 The analogy with the clarinet
imposes that the the string is bowed
in the middle.

Torsional
admittance
relative to the
characteristic
string
admittance
1/Zcs

α =
Zcs
ZR

0.5 Other values were also empirically
evaluated (0.26 as proposed by
(Schelleng, 1973) and 1), only minor
influence was noted. This parameter
also remains constant for real bowed
strings.

Ratio of
dynamic over
static friction
coefficients µd

µs

δ 0.375 Proposed by (McIntyre et al., 1983).
Values between 0.4 and 0.5 were
proposed by (Askenfelt, 1989). Other
values were empirically evaluated,
only minor influence was noted. This
parameter also remains constant for
real bowed strings.

Characteristic
pressure

PM 15 Pa When exciting a wind instrument
resonator, this parameter corresponds
to a global pressure amplitude. This
value was empirically found to result
in a hybrid operation without
saturations.

Table 4: Bow-string interaction model parameter descriptions, evaluated values, and
additional notes.
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Polynomial Sym-
bol

Eval. values Notes

Excitation
amplitude

ζ

(S) (0.075+
The minimum values are empirically
found oscillation thresholds for the
hybrid instrument.

k.(0.4−0.075)
3 )3

k=0

(A) (0.05+
k.(0.4−0.075)

3 )3
k=0

Even
amount
parameter

δ

(S) [0, 2]
Beyond the empirically found maxima,
unstable regimes were obtained.(A) {0, 0.6, ...

1.2, 1.8}
Pressure
amp-
litude

α 100 Pa Higher amplitudes resulted in similar
results, but for high δ, saturations
easily occur.

Table 5: Polynomial model parameter descriptions, evaluated values, and additional
notes.

Where saturations are mentioned in the tables, this refers to the limitations

imposed by different components of the hybrid instrument (discussed in sec-

tion 3.3.2).

5.2.2 General notes and observations

Before moving on to the specific evaluations, a number of general facts and

observations should be mentioned.

The hybrid sustained sound evaluation with the polynomial model was car-

ried out at a later stage of the research. While generally good repeatability

is noted (further discussed in section 5.5), at this later stage, the difference

between the hybrid results and the simulations was found to be more signi-

ficant. Given that all components have been thoroughly verified and no faults

were found, the most likely cause of this difference is the loudspeaker, which

is a relatively complex mechanical component whose deviations can result in

subtle variations that are not easy to identify. From the empirical observations

of the descriptor data presented below, it was concluded that the loudspeaker’s

characteristics were slightly changed due to ageing and/or occasional damage,
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which is subsequently referred to as the “loudspeaker deterioration”. The latter

hypothesis relates to two known occurrences. First it was noticed that a part of

the suspension became loose and had to be glued back, though the repair was

done carefully and seemed successful. Another deterioration occurred later, a

small particle became stuck between the voice coil and the gap surrounding

the coil, it was successfully removed but it (indirectly) may have introduced

damage to the coil. Brief attempts to re-calibrate the system, i.e. to find new

parameters for the loudspeaker compensating filters, did not lead to satisfact-

ory results, which suggests that the deterioration is nonlinear and cannot be

compensated for with the linear compensation filters.

As a reference, to have an idea of the impact of the loudspeaker deterioration,

the single-reed model is evaluated both before and after. For clarity, the second

evaluation results are only shown for the HSC, the f0 and the LAT descriptor.

As mentioned, for the polynomial model, only data from the second hybrid

evaluation is available. The hybrid evaluation after the loudspeaker deteriora-

tion is indicated by “Hybrid2” and green coloured curves are used to make the

distinction, with the blue coloured curves belonging to the first hybrid evalu-

ation.

The observed differences in the descriptors seem to indicate the presence

of a slight phase shift close to the fundamental frequency of the produced

tones. This reduces the overall accuracy of most descriptors, as this frequency

range determines key features of the self-sustained operation. Due to this initial

(yet hypothetical) phase shift, a downshift in fundamental frequency is caused,

which affects other features. The consequences are further laid out throughout

the descriptors discussion that will follow.

For each excitation model, the sound files of both the pressure signal at the

resonator entrance and the calculated external pressure signal are available for

download. There are separate DOI entries for each excitation model evaluation

(which each include the sustained and attack evaluations). The corresponding

DOI-URLs are given in table 6.
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Excitation model DOI-URL

Single-reed http://dx.doi.org/10.21954/ou.rd.3848415

Lip-reed http://dx.doi.org/10.21954/ou.rd.4587307

Bow-string interaction http://dx.doi.org/10.21954/ou.rd.4587361

Polynomial model http://dx.doi.org/10.21954/ou.rd.4587367

All evaluations http://dx.doi.org/10.21954/ou.rd.c.3715489

Table 6: URLs to the download location of the sustained and attack sounds for each
excitation model.

The evaluation order in each sound file is for ascending parameter values. For

the sustained sounds, the ramped parameter (γ, γb or δ) is repeated for increas-

ing values of ζ or ζb. The same order is maintained for the attack evaluation,

except for the polynomial model, where both parameters are swapped.

Finally, it should be mentioned that due to the amount of data, not all descriptor

comparisons are discussed. When the outcome was obvious, or the reason for

a particular outcome was unknown, discussion is often omitted.

5.3 self-sustained operation : sustained sounds

5.3.1 Recalling the theoretical sound feature estimations

In order to verify the relevance of the experimental results, a comparison is

made with the theoretical predictions of the sound features, which were ob-

tained for each excitation model in subsections 4.2.3, 4.3.3, 4.4.4 and 4.5.3.

Some predictions are of direct quantitative relevance to the experimental res-

ults. Hence, to favour comparison efficiency, they are plotted along with the

experimental descriptor results. The theoretical amplitudes (estimated with the

“intersection method”) are plotted with the experimental peak-to-peak amp-

litude descriptors in figure 62 and the fundamental frequency estimations are

plotted with the according descriptor results, as shown in figure 64.

http://dx.doi.org/10.21954/ou.rd.3848415
http://dx.doi.org/10.21954/ou.rd.4587307
http://dx.doi.org/10.21954/ou.rd.4587361
http://dx.doi.org/10.21954/ou.rd.4587367
http://dx.doi.org/10.21954/ou.rd.c.3715489
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Meanwhile, figure 58 represents the “normalised RMS pressures”. In subsec-

tion 2.3.2 it was explained how this notion is related to the spectral richness

of the pressure waves. For the {γ, ζ} evaluation of the lip-reed model (figure

58 (LR1)), both the normalised RMS pressure and the “dissipation ratio” are

copied from subsection 4.3.3 in the same plot here (corresponding to respect-

ively the thick and thin curves), while for its {Qr, θ} evaluation (figure 58 (LR2)),

only the dissipation ratio is shown. These estimations are mainly related to the

experimental Harmonic Spectral Centroid descriptors, discussed in subsection

5.3.5, but also reference is made from other descriptor discussions.

In figure 59 the “normalised even harmonic RMS flow rates” are presented.

They were also obtained for each excitation model in chapter 4 (except for the

lip-reed {Qr, θ} evaluation), and are intended to provide an estimation of the

amount of even harmonics that the excitation model produces when coupled to

a clarinet-type resonator. Hence, they are related to the Even Amount descriptor

findings presented in figure 65.

5.3.2 Single oscillation periods

Figure 60 shows single periods of the steady-state temporal dimensionless pres-

sure waves p̄(t) produced by the hybrid and simulated instruments for constant

input parameter states, along with their corresponding air flow signals ˜̄q calcu-

lated by the excitation models. The parameter values — included on this figure

— are based on average values of the previously mentioned parameter ranges

for each excitation model, and hence, they result in a typical operational state.

general considerations From an overall comparison of the hybrid

and simulated signals it can be concluded that the amplitudes, wavelengths and

wave shapes are in reasonable correspondence, in particular for the pressure

waves. This conclusion can be drawn for the whole range of the sustained sound

evaluations, although, a few notable deviations can be identified.
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Figure 58: Sound predicting curves: Normalised RMS pressures ˆ̃pRMS.
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Figure 59: Sound predicting curves: Normalised even RMS flow rates ˆ̃qeRMS.
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Figure 60: Steady state temporal pressure wave at the resonator entrance for a selection
of excitation parameters.
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single-reed model The simulated single-reed pressure and flow rate

wave shapes (figure 60 (SR)) are somewhat asymmetrical from the hybrid waves,

at the pressure extrema. This explains the phase difference in the spectra in the

corresponding Fourier series in figure 61 (discussed in more detail later).

For the single-reed model, as well as the hybrid and simulated air flow sig-

nals, the measured air flow signal q̄ is shown (determined from measurement

of the loudspeaker membrane velocity with a laser Doppler vibrometer, along

with an estimate of the membrane surface area Sd). As expected, this signal

does not contain any mean flow given that the average membrane velocity is 0.

However, it is interesting to note that there are significant deviations from the

calculated flow rate. This is due to loudspeaker characteristics that are not fully

compensated for by the feedforward and feedback filters discussed in chapter 3.

A part of the effect appears to be (close to) a constant phase delay, as both flow

rate peaks occur later in time. This is confirmed by the measurements carried

out on the loudspeaker-tube system presented in subsection 3.3.3; while the Z̃∗t

impedance curve reported in that section indeed reveals an increasing phase

lag that resembles a constant phase delay, the Z̃∗t(ss) curve — calculated from

the steady state oscillations presented here — shows an even greater constant

phase delay, which is most likely due to a nonlinear loudspeaker effect.

Due to the complexity of the measurement set-up, and the unanticipated use-

fulness of the results, loudspeaker membrane velocity measurements were not

carried out for the other excitation evaluations. However, given that the com-

parison of hybrid and simulated evaluations is characterised by broadly similar

deviations for all excitation models, it is reasonable to assume that the differ-

ence between the calculated and real flow rate signals is mainly characterised

by a similar phase deviation.

lip-reed model It can be seen that the waves generated from the lip-

reed evaluation are more rounded in shape (figure 60 (LR1)), which is a direct

consequence of the low-pass filtering effect of the relatively low lip resonance
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frequency. A good correlation between simulated and hybrid results is noted

for this model.

bow-string model Another notable deviation is observed for the bow-

string interaction (figure 60 (BS)). At the pressure wave extrema, in comparison

with the simulation results, the pressure and flow rate waves resulting from the

hybrid operation exhibit an additional chaotic oscillation, which is perceived

as a raucous sound. It should be mentioned that this phenomenon also occurs

for the simulation, but the raucous behaviour appears below a much lower

“raucous threshold” (given by equation (85), expressed as the ratio of bowing

velocity over bowing force). While this chaotic instability is partly due to the

characteristics of the excitation model (explained in section 4.4), it appears that

the hybrid instrument’s raucous threshold lies at a higher level, which is most

likely due to a more general unstable behaviour of the hybrid instrument (fur-

ther discussed in subsection 5.5.1). The more precise raucous thresholds are

discussed later with the descriptor representation of the entire sustained sound

evaluation.

polynomial model Similar to the single-reed and bow-string models,

the polynomial model is a quasistatic excitation model and its produced pres-

sure waves are essentially square-shaped. Unlike the single-reed model, the

hybrid and simulated wave shapes are not asymmetrically related at the pres-

sure extrema. This is related to the aforementioned loudspeaker deterioration

and is further explained with the descriptor observations that will follow.

5.3.3 Fourier series of the pressure periods

Figure 61 shows the Fourier series corresponding to the steady-state pressure

waves presented in figure 60. The magnitudes are represented in decibels of
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the dimensionless pressures (i.e. 0 dB corresponds to | p̄| = 1) and the phase

responses are shown as relative to the phase of the first harmonic.

single-reed model For the single-reed model (figure 61 (SR)), a very

good overall match is observed between the hybrid operation and the simula-

tion, particularly for the odd harmonics whose magnitudes differ by no more

than 3 dB up to 3.5 kHz, while the first eight even harmonics resulting from

the simulation are on average 3 dB louder. This level of agreement is obtained

for all sounds obtained with the single-reed model within a parameter range

that ensures a stable output (hereafter this notion is referred to as the “stable

parameter domain”), γ < 3
4 γex (with γex the extinction threshold) and ζ ≥ 0.1,

where the steady oscillation state is not easily influenced by other parameters

such as noise, the imperfect loudspeaker and its model. The relative phases of

all harmonics remain fairly close (which is an expected outcome for at least

the odd harmonics of a quasistatic excitation of a closed-open cylindrical reson-

ator), and the previously mentioned asymmetrical difference between the wave

shapes of the hybrid and simulated results is indeed explained by a phase dif-

ference, particularly present between 1 kHz and 3 kHz.

lip-reed model An interesting property of the lip-reed pressure wave is

that the magnitudes of the harmonics (figure 61 (LR1)) decrease significantly

faster with frequency than with the quasistatic excitation models. As a con-

sequence, the magnitude from 1.7 kHz onwards goes below −70 dB so that the

differences between the hybrid and simulated results are negligible.

bow-string model Examination of figure 61 (BS) reveals that, up to

2 kHz, the magnitudes of the odd harmonics corresponding to the hybrid and

simulated bow-string evaluations are also in good agreement (and up to 1.5 kHz

for the even harmonics). Above that, the harmonics corresponding to the hybrid

operation are mostly higher in magnitude, which can be explained by the pres-
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Figure 61: Fourier series of the steady state pressure wave at the resonator entrance (of
the temporal signals in figure 60) for a selection of excitation parameters.
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ence of the chaotic oscillations mentioned earlier. However, it should be noted

that this additional component is not stationary in practice; i.e. in this Four-

ier series, although these oscillations appear in the harmonic series, in reality

they represent a high frequency noise component, not bound to the harmonic

series. These oscillations are also responsible for the large deviations in the

relative phase response representation in that frequency range (note that the

relative phases of the odd harmonics of the simulation remain close to zero up

to 3.5 kHz).

polynomial At lower frequencies, the magnitudes of the hybrid and sim-

ulated pressure waves generated with the polynomial model (figure 61 (PO))

are also in reasonable agreement. However, with increasing frequency, both

the odd and even harmonics of the hybrid result progressively become smal-

ler in magnitude in comparison with those arising from the simulation. This,

and the slightly larger difference in fundamental frequency, can be explained

by the loudspeaker deterioration, which is detailed later with the f0 and HSC

descriptors. It is interesting to note that the phase of the even harmonics for

this model is almost opposite to that of the odd harmonics. This is due to the

fact that the second order term of the polynomial curve has an inverted amp-

litude compared with the single-reed and bow-string models, which can be

established from figures 36, 52 and 55 in chapter 4. While this does not have

any audible influence with the cylindrical tube resonator, the sign of the even

component is of importance when the excitation model is coupled to a reson-

ator that excites both odd and even harmonics (such as a conical resonator for

instance).

5.3.4 Peak-to-peak descriptor

Figure 62 shows the peak-to-peak amplitude descriptors (PP), calculated for

the entire parameter ranges of all excitation models, evaluated for the sus-
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tained sounds. Along with the hybrid and simulated results, the theoretical

amplitudes are plotted. These amplitudes were graphically estimated with the

“intersection method”, and the curves are copied from the relevant figures (35,

42, 51 and 54) in chapter 4. For the single-reed and bow-string models (see fig-

ure 62 (SR and BS)) the oscillation thresholds are indicated with a + sign. For

the bow-string interaction model, the “raucous thresholds” are also indicated

(with large black dots).

general considerations Both the simulated and hybrid results seem

to correlate well with the theoretically predicted oscillation thresholds and amp-

litude progressions. Also the theoretical and experimental extinctions (where

the amplitudes drop to zero with increasing γ and γb) coincide reasonably

well. However, in some cases the theoretical extinction threshold (which only

takes into account frequency independent losses in the resonator) is higher than

the experimentally found extinction threshold. This can be explained by the fre-

quency dependent part of the acoustic losses, which can be verified with the

normalised RMS pressure estimations in figure 58. For these estimations, the

pressure waves were assumed to be trapezoidal in shape (see figure 16) so that

for ˆ̃pRMS = 0.5, the pressure wave becomes triangular in shape. For lower ˆ̃pRMS

values, the pressure maxima can no longer be reached so that extinction occurs,

which explains how the frequency dependent losses can cause extinction. In or-

der to address the oscillation condition for separate excitation models, further

reference to figure 58 will be made.

Furthermore, the hybrid and simulated amplitude evolutions are in overall

good agreement. However, a combination of high ζ and δ for the evaluation

of the polynomial model (see figure 62 (PO)) or high ζ, γ and Qr for the lip-

reed model (see figure 62 (LR1 and LR2)), results in an excessive steepness of

the nonlinear excitation curves leading to unstable states, particularly in the

case of the hybrid evaluation (see section 5.5.1 for a general discussion on this

issue). These states can be recognised by irregular amplitude descriptors, but
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Figure 62: Peak-to-peak amplitude descriptors for the sustained sounds.



5.3 self-sustained operation : sustained sounds 209

the noisiness descriptor (figure 66) represents an even better indicator of this

issue.

The hybrid progressions generally reach extinction slightly earlier than the

simulations, which could be explained by the fact that uncompensated loud-

speaker effects (e.g. introducing the increasing phase lag noted in figure 27)

can be interpreted as an increase in losses in the hybrid system.

single-reed model According to the trapezoidal wave shape assump-

tion, a somewhat contradictory single-reed occurrence can be observed. It can

be noted that the experimental extinction thresholds in figure 62 (SR) corres-

pond to ˆ̃pRMS values slightly below 0.5 (see figure 58 (SR)). This can be ex-

plained by the fact that the pressure waveform around this parameter state

is closer to sinusoidal rather than trapezoidal or triangular, which somewhat

invalidates the estimation theory.

lip-reed model In figure 62 (LR1), it can be seen that, in spite of the ap-

plied crude quasistatic assumption, the theoretical estimation of the amplitudes

via the lip-reed model with the {γ, ζ} evaluation, turns out to be fairly coher-

ent with the experimental results . Even the oscillation thresholds are predicted

well.

Meanwhile, the “dissipation ratio” (shown in thin lines in figure 58 (LR1)),

which should indicate the oscillation thresholds when above 1, only provides

a coherent oscillation threshold estimation for ζ = 0.03, where the ratio goes

down to 1 at γ = 2.5. This could be explained by the fact that this prediction

does not take into account the lip-beating, which might be of particular import-

ance for high ζ and low γ. However, the usefulness of this predictor is clearly

illustrated with the {Qr, θ} evaluation (figure 58 (LR2)), where the theoretically

predicted oscillation condition is not satisfied for {Qr = 3, θ = [1.5, 2]} , which

is indeed reflected in the experiments. Finally, it should be noted that the re-

gister selection (clearly noted in the fundamental frequency leaps in figure 64
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(LR2), which will be discussed later) is indeed coherently estimated by selecting

the highest dissipation ratio (as explained in subsection 4.3.3).

As further noted from figure 62 (LR1 and LR2), the hybrid and simulated

peak-to-peak amplitudes for all sustained lip-reed evaluations are in very good

agreement, except for the mentioned unstable states.

bow-string model The theoretical and experimental bow-string extinc-

tions show mismatches, in particular for ζb = 0.6, where the theoretical extinc-

tion is almost twice as high (see figure 62 (BS)). As explained earlier, this can be

explained by the frequency dependent losses in the resonator. Indeed, consid-

ering the bow-string model’s normalised RMS pressure estimations in figure

58 (BS), it can be seen that for ζb = 0.6 and γb > 4, the normalised amplitude

ˆ̃pRMS < 0.5.

Comparing the hybrid and simulated results in figure 62 (BS), it is interesting

to note that the former have a higher amplitude for low γb. This is an effect of

the additional, raucous oscillations occurring at the pressure peaks (as could

be noted from figure 60 (BS)). Observations of the pressure waves revealed

that the hybrid amplitude in absence of these oscillations matches well to the

simulations, even near the oscillation threshold.

polynomial model With the polynomial excitation model for ζ = 0.075,

the theory predicts a much lower amplitude than what is found experimentally

(see figure 62 (PO)). However, as can be noted from figure 58 (PO), this ζ value

results in ˆ̃pRMS ≈ 0.5, which explains that the oscillation is near to extinction.

The oscillation amplitude changes rapidly around this value, which explains

the difference between experimental and predicted amplitudes.

For ζ = 0.4, the hybrid evaluation produced a period doubling. While the

chosen descriptors do not reveal this effect, it can be clearly heard in the sound

examples. The period doubling phenomenon is further briefly discussed in sec-

tion 5.5, but it is worth mentioning that the effect was not noted for the simu-
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lated case, which may be an exceptional deviation that could be of interest from

a musical point of view.

5.3.5 Harmonic Spectral Centroid descriptor

The Harmonic Spectral Centroid descriptors for the hybrid and simulated res-

ults are shown in figure 63.

general considerations The “normalised RMS pressures” predictions

of the quasistatic excitation models (figure 58 (SR, BS and PO)) give a useful in-

dication of the related spectral centroids (figure 63 (SR, BS and PO)). Within the

evaluated parameter domain of each excitation model, a reasonable direct pro-

portionality can be noted, i.e. the shapes and relative distances of the predicted

curves correlate reasonably well with the experimental results. Furthermore,

the absolute interrelation between different excitation models is also respected

to some extent.

For many parameter ranges with the single-reed and bow-string evaluations,

a linear mapping can be made from the ˆ̃pRMS = [0.6, 0.8] range to a HSC

range of [500, 1000] Hz. For instance, this mapping is relevant with the single-

reed model in the range {γ = [0.6, 1.2], ζ = [0.2, 0.3]}, and with the bow-

string model for all ζb values and γb somewhat higher than the oscillation

threshold but below half the extinction value. Some non-matching ranges can

be explained by the fact that the oscillation becomes sinusoidal instead of

trapezoidal, as mentioned earlier. For the polynomial model (focussing on the

simulations only, as the hybrid HSC results are affected by the loudspeaker

deterioration) a linear mapping from ˆ̃pRMS = [0.52, 0.75] to a HSC range of

[500, 1000] Hz results in a good correlation for all parameter states.

The overall difference between the simulated and the hybrid evaluations does

not exceed 10%.
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Figure 63: Harmonic Spectral Centroid descriptors for the sustained sounds.



5.3 self-sustained operation : sustained sounds 213

single-reed model It is worth mentioning that the findings with the

single-reed excitation (figure 63 (SR)) are all in broad agreement with those of

Almeida et al. (Almeida et al., 2013), who excited a real clarinet using a basic

artificial mouth and then took a similar evaluation approach to that used in

this study. However, the level of the agreement with Almeida’s results is much

smaller than the correlation between the hybrid and simulated results reported

here. Hence, the similarity between Almeida’s evaluation of a real clarinet and

the results presented here only indicates that the single-reed model employed

in this study reflects the behaviour of a real clarinet mouthpiece, played by an

artificial mouth.

Nevertheless, as mentioned in subsection 1.4.3, and also stressed in another

paper by Almeida (Almeida et al., 2010), such studies represent interesting po-

tential for hybrid evaluation, for instance with more complex resonators.

Further in figure 63 (SR), for the single-reed excitation with ζ = 0.2, the simu-

lated and first (blue) hybrid curves are well-correlated. Higher ζ values (produ-

cing a richer sound) seem to increase the HSC of the simulated sounds slightly

more. This can be partly explained in terms of the difference in fundamental

frequency (shown in figure 64 (SR)). As noted in the characterisation of the hy-

brid system in chapter 3, in particular in the impedances presented in figure

27 in subsection 3.3.3, the modes of the resonator follow a positive inharmon-

icity (i.e. instead of being exact multiples of the frequency, the resonance fre-

quencies shift upwards, e.g. 1275.3 Hz/9 =141.7 Hz > 139.79 Hz). Provided the

embouchure parameters remain unchanged, a higher fundamental frequency

will lead the higher harmonics towards the tube’s resonant peaks so that they

are amplified, and hence the HSC increases. This is confirmed by the differ-

ences between the hybrid and simulated results in terms of both fundamental

frequency and HSC. Nevertheless, the differences are relatively small and all

progressions are similarly rapidly increasing after the note appearance, to then

decrease until its extinction.
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In contrast to the first hybrid evaluation, the loudspeaker deterioration res-

ulted in a globally lower fundamental frequency in the second evaluations (the

green curves), which in turn induces a lower HSC for the whole parameter

range of the hybrid evaluation (see figures 63 (SR) and 64 (SR)). The second

measurement lies between 8% to 20% lower.

lip-reed model The normalised RMS pressure curves (the thick lines in

figure 58 (LR1), which are based on the quasistatic approximation of the lip-

reed model) show a relative correlation with the HSC descriptor (figure 63

(LR1)). The quasistatic approximation used for this prediction is not relevant

for the study of the variation of lip-reed dynamics, performed in the {Qr, θ}
evaluation. However, for that evaluation, the dissipation ratio (figure 58 (LR2))

seems to provide a reasonable correlation with the HSC descriptor (figure 63

(LR2)).

Like the peak-to-peak amplitudes, all simulated and hybrid lip-reed evalu-

ations resulted in a good HSC descriptor agreement (see figure 63 (LR1 and

LR2)).

It can be noticed that very low HSC values can be achieved, down to 100 Hz

for a guaranteed oscillation condition. However, in contrast to the single-reed,

where the reed resonance frequency can be very high and doesn’t affect the

oscillation so much, the lip-reed needs to be continuously “tuned” to the ap-

plied fingering. This represents a practical disadvantage that is of particular

concern with a hybrid instrument. Indeed, while real brass players use the

direct, acoustic feedback on the lips to find the right embouchure and obtain

a targeted pitch, the playing control of the hybrid instrument normally lacks

such a bi-directional interaction. Instead, to find the right pitch with the hybrid

instrument, much slower feedback mechanisms are used, such as auditive feed-

back and/or based on the awareness of the applied fingering (where the latter

can be understood as a form of cognitive feedback).
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bow-string model Regarding the relationship between the HSC and the

fundamental frequency (see respectively figures 63 (BS) and 64 (BS)), the bow-

string interaction evaluations show a similar effect as for the single-reed evalu-

ation.

With low γb, both hybrid and simulated HSC correlate positively with the

fundamental frequency. For higher γb, the fundamental frequencies of the sim-

ulations decrease while they remain almost constant for the hybrid case. This,

in turn, is reflected in the downwards diverging HSC of the simulation.

polynomial model For the polynomial model, as far as the theoretical

estimation is concerned, the HSC is predicted to be independent of the even

harmonics parameter δ (see figure 58 (PO)) . However, the experimental results

indicate a slightly positive correlation with this parameter (see figure 63 (PO)).

This can be explained by the fact that the theoretical prediction is based on the

pressure signal at the resonator entrance, which is considered to only contain

odd harmonics (see section 2.3). As indicated by equation (98), the radiated

pressure also contains the even harmonics present in the flow rate signal q(t),

which therefore explains the positive correlation of δ and HSC.

As for the second hybrid evaluation of the single-reed, the fundamental fre-

quencies and HSC of the hybrid polynomial model evaluation is globally lower

than the HSC of the simulations (see figures 64 (PO) and 63 (PO)).

The fact that the HSCs resulting from the second measurement of the hybrid

single-reed evaluations lies between 8% to 20% lower than the first evaluation

suggests that the hybrid polynomial model’s HSCs are decreased by similar

percentages.

While the slightly decreasing fundamental frequency with δ tends to reduce

the spectral richness, the variation is relatively small (compared to the other

quasistatic evaluations), so that the opposing effect of the even harmonics is

more important. This hypothesis is confirmed by observations of the “Odd
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Spectral Centroid” descriptor (not shown here), which indeed slightly decreases

with increasing δ.

Another interesting aspect of the polynomial model is that HSCs down to

350 Hz can be achieved, while the oscillation condition remains satisfied (even

in combination with variable resonator conditions, i.e. while playing several

notes on a clarinet resonator for instance). The obtained timbre is much more

“rounded” than typical reed excitations, and therefore this excitation may en-

able interesting alternative musical expression possibilities. While the single-

reed model with low ζ values can result in similar HSCs, the oscillation con-

dition is much weaker and therefore cannot be easily applied to produce a

melodic phrase for instance.

5.3.6 Fundamental frequency

All fundamental frequency progressions are represented in figure 64.

general considerations There is a clearly different effect on the fun-

damental frequency between dynamic (the lip-reed) and (almost) quasistatic

excitation models (the single-reed, bow-string and polynomial models).

For the lip-reed, the dynamics have a strong influence on the fundamental fre-

quency, given that the lip resonance lies close to the playing frequency. Hence,

the embouchure parameters have a much stronger effect on the pitch compared

to the subtle effect of the resonator.

Close to the oscillation threshold, with a quasistatic excitation, the oscillation

is close to sinusoidal and as such, relies almost solely on the first resonator

mode, thereby determining its fundamental frequency. Further away from the

oscillation threshold, the variation of the fundamental frequency is determined

by the influence of higher resonator modes via the harmonics of the oscillation.

This can be understood from the fact that the first few resonator modes are

known to maintain the self-sustained oscillation (Dalmont et al., 1995); and
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Figure 64: Fundamental frequency descriptors for the sustained sounds.
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hence, the preferred oscillation frequency results from a weighting of these

modes by the spectrum of the mouthpiece pressure. Therefore, the resonator’s

inharmonicity effect on the first modes should be considered2. As mentioned

earlier, the tube impedance Z∗t is positively inharmonic (as can be seen from

the first five modes in figure 27).

Regarding the hybrid instrument, it should be first understood that the en-

ergy that sustains the oscillation comes from the frequencies where the phase

response of the resonator impedance crosses zero. Hence, the observed phase

decrease due to uncompensated (nonlinear) loudspeaker effects in Z̃t(ss) in fig-

ure 27, indicates that during hybrid self-sustained operation, the resonator ap-

pears to be negatively inharmonic.

An interesting fact that applies to the quasistatic excitation models is that,

as mentioned in the discussion on the HSC descriptor, the variation of the

fundamental frequency in turn has an effect on the spectrum, given that the

harmonics are weighted by the resonance frequencies of the resonator.

single-reed model It is notable that the hybrid and simulated funda-

mental frequency curves have different trends (see figure 64 (SR)) which is not

observed for the other descriptors. However all variations are small (<2 Hz or

<25 cent) and are almost imperceptible.

Near the oscillation threshold, e.g. with ζ = 0.1, the simulation starts at a fun-

damental frequency close to the first modal frequency of 139.8 Hz. However, the

fundamental frequency of the first hybrid instrument evaluation (in blue) starts

a few Hz above 139.8 Hz (the temperature used in the simulation matched that

observed during the operation of the hybrid instrument). A possible reason for

this initial pitch shift might be an imperfect compensation by the loudspeaker-

correcting filter H̃−1
LS which would introduce a slight phase shift for the first

mode and as such a shift of the frequency at which instability occurs. This can

2 It is a well known theory that the inharmonicity causes the playing frequency to change with the
brightness of the sound (see e.g. (Benade, 1990) and more recently developed analytical theories
in (Coyle et al., 2014))
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be verified from figure 27, where the phase response of the first mode of Z̃∗t is

indeed slightly shifted upwards in frequency from Z∗t (by approximately 1 Hz,

found by zooming).

At higher mouth pressures, the frequency variation can be explained by the

resonator’s inharmonicity, causing the fundamental frequency to generally fol-

low the HSC (shown in figure 63 (SR)), which is indeed the case for the simula-

tions in figure 64 (SR).

Meanwhile, for the case of the hybrid instrument, the negative inharmonicity

indeed explains that the effect on f0 for the first hybrid measurement is opposite

to the simulated results (respectively the blue and red curves in figure 64 (SR));

and accordingly for the HSC descriptor (figure 63 (SR)).

In contrast, the fundamental frequency of the second hybrid evaluation (the

green curves in figure 64 (SR)) starts somewhat lower, at about 138.4 Hz near

the oscillation threshold, which globally shifts the f0 downwards by about 2 Hz

in comparison with the first hybrid evaluation. This is an effect of the phase lag

introduced by the loudspeaker deterioration, which also turns the inharmon-

icity (considering the phase’s zero crossings) positive again, thereby explaining

the correlation with the simulation of the relative progressions.

lip-reed model The fundamental frequency for the case of the lip-reed

excitation (see figure 64 (LR1 and LR2)) is clearly more variable and is mainly

determined by the lip-resonance frequency θ (both enabling the selection of

registers and controlling the playing frequency within the register), but also γ

and ζ have a significant influence.

As predicted, the lower the lip-frequency below a resonance frequency of

the tube, the closer the playing frequency approaches this modal frequency,

though remaining always higher (which is valid with the “outward striking”

lip-reed model used here). When the lip frequency is too distant from the modal

frequency (i.e. below 0.5 or above 1.33 for the first register), extinction occurs

or another register is selected.
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From the good correlation between theory and experiments, for both {γ, ζ}
and {Qr, θ} evaluations, it can be concluded that the “small signal” assumption

used in the prediction (i.e. subsection 4.3.3) is sufficiently valid to predict the

fundamental frequency. The globally lower fundamental frequency estimation

noted in the {γ, ζ} evaluation is due to the nonlinear stiffness increase during

the lip-beating phase, which has been empirically confirmed with evaluations

where the dynamical lip-reed parameters were held constant.

bow-string model The same conclusions as for the single-reed model

(with the first hybrid evaluation) apply to the results with the bow-string inter-

action model.

polynomial model Unlike the single-reed and bow-string models, the

simulation of the polynomial model does not result in a positive correlation

between the HSC and the fundamental frequency (see respectively figures 63

(PO) and 64 (PO)), which is due to the earlier explained fact that the odd spec-

tral centroid actually follows a progression that is opposite to the total HSC.

The hybrid results for this excitation model are comparable with the second

evaluation with the single-reed model.

5.3.7 Even Amount descriptor

Figure 65 shows the Even Amount descriptors, calculated for all evaluations.

general considerations It should be understood that, while a zero

value for both the prediction (the “normalised even harmonic RMS flow rates”

in figure 59) and the EA descriptor indicates that the signal only contains odd

harmonics, there is an important scaling difference between both quantities.

The prediction provides a quadratic mean estimation of the even harmonics

wave component, relative to the total amplitude of the pressure at the reson-
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Figure 65: Even amount descriptors for the sustained sounds.
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ator entrance. Conversely, the EA descriptor represents the energy ratio of the

even over all harmonics, so that it is also influenced by the energy of the odd

harmonics. Hence, in order to compare both features, the predicted normalised

even RMS is to be interpreted relative to the total normalised RMS curves in

figure 58.

Given the influence of the amount of odd harmonics on the EA descriptor,

the hybrid-simulated relationship can be partly explained by the according con-

clusions made in the discussion on the HSC descriptor (see subsection 5.3.5 and

figure 63). However, most hybrid evaluations with quasistatic excitation models

globally result in slightly lower EA values (see figures 65 (SR, BS and PO)).

Another general observation is that a maximum EA of 0.2 could be obtained

with the hybrid instrument.

single-reed model Taking into account the mentioned influence of the

odd harmonics in the EA descriptor, it can be understood that the EA descriptor

changes more moderately for ζ variations and increases with γ, compared to

the predictions (see figures 65 (SR) and 59 (SR)).

lip-reed model The theoretical prediction of the lip-reed model’s EA (fig-

ure 59 (LR1)) is also in proportional agreement with the relevant experimental

results (figure 65 (LR1)). Given that the EA descriptor results are less influ-

enced by the resonator modes compared to the HSC descriptor, the lip-reed’s

EA results are of similar order as the other excitation models.

This descriptor seems to be highly influenced by the Qr factor, though there

are no theoretical estimations to explain this interesting observation.

bow-string model Similar conclusions as for the single-reed evaluation

can be drawn regarding the relationship between theory and experiments.

Whereas the hybrid evaluations with other quasistatic excitation models res-

ult in lower EA values, with the bow-string model, as can be seen in figure 65
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(BS), similar hybrid and simulated EA results are found with low γb (though

the fluctuating curves attest to a low accuracy in this range).

polynomial model The conservation of the predicted linear progres-

sions with the polynomial model attests for a particularly good correlation

between the theory and the experiments (see figures 59 (PO) and 65 (PO)).

The potential of the polynomial model to obtain stable oscillations with high

EA values, and to independently and precisely control this sound quality, down

to an entirely odd spectrum (with δ = 0) also provides an interesting potential

for musical purposes.

5.3.8 Noisiness descriptor

Finally, the sustained sounds are analysed for the amount of noise by calculat-

ing the ratio of total spectral energy over the energy of all harmonic compon-

ents, which is reported by the noisiness descriptors presented in figure 66.

It should be borne in mind that the ranges among the different excitation

models vary greatly; e.g. the single-reed descriptor’s noisiness range is more

than 50 times smaller than the values that were obtained with the bow-string

and polynomial models. For the latter models, this descriptor indicates where

the oscillation becomes unstable, i.e. both due to the raucous character and due

to the instability issue discussed in subsection 5.5.1.

5.4 self-sustained operation : attack sounds

A second set of self-sustained evaluations is focussed on the study of attack

transients. While clarinet players mostly initiate a note by tonguing, it is known

that the tongue action mainly determines the timing of the initial transients

(Li et al., 2016) rather than the attack time of the note onset. Hence, while the
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Figure 66: Noisiness descriptors for the sustained sounds.
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applied single-reed model doesn’t include the effect of the tongue, it is sufficient

to apply a steep increase of the mouth pressure to imitate a tongue release.

The same idea applies to the lip-reed model (with Qr = 3 and θ = 0.7) and

analogously, attack envelopes of γb for the bow-string excitation were applied.

However, for the polynomial model, the ζ parameter was used to generate

attack transients, as the δ parameter does not cross an oscillation threshold.

These measurements were repeated for the same ζ and ζb values and, for the

polynomial model, four constant δ values were chosen in the range used for the

sustained sound evaluation (all values are provided in the tables in figures 67

to 68).

A number of constant values (ten γ values for the single-reed model, nine γ

values for the lip-reed model, nine γb values for the bow-string model and four

δ values for the polynomial model) between the parameter extrema stated in

tables 2 to 5, were evaluated and the attack time measured.

These values were introduced using an “attack envelope” for the concerning

excitation parameter. On the one hand, this is done to match real playing con-

ditions, as even with a quick tongue release, the instrument is still gradually

exposed to the mouth pressure. On the other hand, it turned out to be also re-

quired in order to obtain coherent results. Indeed, for most excitation models an

(almost) instantaneous parameter onset resulted in chaotic attack times (some-

times faster, but sometimes much slower). Nevertheless, so as not to influence

the attack time, the attack envelope’s rise time must be shorter than the attack

time. A rise time of 0.3 s appeared to be sufficient (shorter rise times did not

influence the resulting attack time for the particular sets of ζ, ζb and δ). Any

evaluations that did not result in a note onset were left out of the descriptor

representation.

It should be mentioned that, like the sustained evaluation of the polynomial

model, all attack evaluations with the bow-string, lip-reed and polynomial ex-

citation models were evaluated in a later stage of the research and, hence, the

loudspeaker deterioration influenced these results. In order to provide an idea
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of the effect, the hybrid single-reed evaluation was also repeated and both eval-

uations (before and after the loudspeaker deterioration) are shown for the LAT

descriptor. For this reason, and because of the noted high correlation between

different attack-related descriptors, the overall evaluation of the attack meas-

urements is kept brief. Apart from the Logarithmic Attack Time descriptors

shown in figure 67, which are calculated for both hybrid and simulated instru-

ments with all four excitation models, the End of Attack Time and Spectral

Flux descriptors, shown in figure 68, are only represented for the single-reed

evaluation.

5.4.1 Logarithmic Attack Time descriptor

single-reed model For the single-reed excitation, it has been shown that

the spectral centroid and the attack time of a note onset are inversely correlated

features, which are mainly controlled by the embouchure parameter ζ (Barthet,

2009). This is clearly confirmed when comparing the LAT results in figure 67

(SR) with the HSC curves in figure 63 (SR) (over the common γ range from 0.4

to 1.2).

Nevertheless, it can be noted that for increasing ζ and notably considering

the two highest ζ values, the LAT results are more “saturated” than the HSC. It

can be said that the general effect of this saturation is partly due to the applied

spectral truncation at 4 kHz (as explained in subsection 5.1.4), but it is also

apparent that the attack time is more nonlinearly related to ζ than the spectral

richness of the steady-state regime.

These findings on the attack time are also in good relative agreement with

a recent study on the transients in a real clarinet (played with an artificial

mouth). This study was conducted by Li et al. (Li et al., 2016), following a

similar approach to Almeida (Almeida et al., 2013). However, as with the sus-

tained sounds, the agreement between our and their findings is much smaller

than the observed correlation between the simulated and hybrid results, so that
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Figure 67: Logarithmic Attack descriptors for the attack sounds.
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it is not possible to draw any further meaningful conclusions regarding their

experiments. As mentioned in subsection 1.4.3, it is worth reminding here that

the reproduction of rapid changes in mouth pressure is difficult to realise with

a blowing machine (Ferrand and Vergez, 2010), so that such studies may well

benefit from an evaluation with a hybrid instrument.

Furthermore, the correlation between the single-reed LAT and HSC simula-

tion results with the first hybrid evaluation are of the same order of precision,

but the systematic deviations don’t follow the same trend. For instance, while

the correlation is inverse, for ζ = 0.1, both the hybrid HSC and LAT are higher

than the simulations. Meanwhile, for ζ = 0.3 and ζ = 0.35, the LAT simulation

and hybrid results match well for γ ≤ 0.6, but diverge above. (The divergence

is in the same direction, but the trend is somewhat opposite to that noted for

the HSC.)

The second hybrid evaluation with the single-reed model resulted in slightly

more hybrid-simulated deviating behaviour due to the loudspeaker deteriora-

tion (see the green curves in figure 67 (SR)). It is notable that for ζ ≥ 0.3, low

mouth pressure onsets result in longer attack times than before the loudspeaker

deterioration, while high mouth pressures result in the opposite effect. The fact

that the correlation of the LAT and HSC of these results is weaker supports the

hypothesis that the loudspeaker deterioration is nonlinear in nature.

lip-reed model Similar to the single-reed model, the results with the lip-

reed are also inversely correlated to the HSC descriptor results (see figure 67

(LR1)). However, it is interesting to note that the lip-reed LAT values are of the

same order as the quasistatic excitation models, while the HSC results were

much lower.

bow-string model It is striking that the LAT descriptor results obtained

with the bow-sting interaction are not inversely correlated to the HSC descriptor

(see respectively figures 67 (BS) and 63 (BS)). Indeed, following a bow velocity
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(γb) progression, the curves are actually positively correlated, and when γb is

high, different bow-forces ζb also conserve this correlation. However, this is

less the case around the oscillation threshold, where the HSC is peaking, while

the LAT peaks (i.e. slowest attack times) lie in the middle of the oscillation

and extinction thresholds. This is an interesting and different behaviour to the

single-reed results, demonstrating the diversity that can be obtained with dif-

ferent excitation models, which are even only quasistatic.

A reasonable explanation of this difference can be gained by re-considering

the sound-feature prediction theory, notably the acoustic power estimation curves

in figures 17 and 52 in chapter 4. Indeed, given that the oscillation onset is an

increasing amplitude from ˆ̃p = 0 to the domain covered by the steady state,

for the LAT descriptor it is of importance how the normalised power is dis-

tributed (from the centre to the sides). For the single-reed model, it can be

verified that this distribution is correlated with the total normalised power in

the steady-state oscillation, while for the bow-string model, the correlation is

almost opposite.

It is known that the attack time of bowed strings can be much faster then the

attack times obtained with reed instruments (McIntyre et al., 1983). The reason

why the obtained attack times are of the same order for both excitation models

is that the ζb parameter range that is used is much lower than for the case of

real bowed-strings. The combination of a high bowing force and velocity leads

to short attack times.

The overall agreement between the hybrid and simulated results is reason-

able, although the hybrid results seem to be shifted upwards with respect to γb.

However, the fact that these results are biased by the loudspeaker deterioration

makes more detailed comparison irrelevant.

polynomial model As with the single-reed and lip-reed models, the

polynomial model mainly shows an inverse correlation between the LAT and

HSC descriptors. However, to compare those descriptors, the changed role of
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ζ and δ should be considered. Hence, a correlation can be noted. Indeed, the

HSC curves (in figure 63 (PO)) almost remain constant for δ variations, which

is also the case for the LAT curves in figure 67 (PO’) (given that the curves for

several δ coincide).

The correlation is also mainly conserved for variation of the ζ parameter.

However this is less the case for the simulation, where for ζ ≥ 0.15 the LAT

stagnates at about −1.4, while the HSC is still increasing for these values, which

might be due to similar reasons as for the noted saturation of the single-reed

LAT descriptor.

5.4.2 End of Attack Time and Spectral Flux descriptors

Figure 68 shows the End of the Attack Time and Spectral Flux descriptors for

the single-reed evaluation only. The EAT descriptor reveals the actual sound on-

sets, the time between the start of the input parameter envelope (which can be

thought of as the start of a performer’s action) and the instant the steady-state

oscillation is reached. It can be noted that more important hybrid-simulation

deviations occur than for the case of the LAT descriptor, in particular for low

γ values. The additional delay in the simulations may be due to the absence

of irregularities that may help stimulate the attack, such as noise (present in

real wind instruments, due to the flow turbulence). This hypothesis is suppor-

ted by the findings of an additional experiment: a repeated simulation with an

added noise signal (of similar amplitude to the noise present with the hybrid

instrument) resulted in a reduction of up to 30% in the EAT compared with

the noiseless simulations, which partly confirms the assumption. Given the im-

portance of timing, this aspect might be of consideration for reed instrument

physical models. (It should be noted that the added noise did not significantly

influence the LAT descriptor.)

The Spectral Flux curves show similar behaviour to the LAT curves of figure

67 (SR), but a main difference is the smaller descriptor variation with chan-
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ging γ. Furthermore, this descriptor shows other particularities, such as the

lower Spectral Flux values near the oscillation threshold. Similar conclusions

can mostly be drawn for the other excitation models.

5.5 discussion and conclusions

5.5.1 Comparisons within the obtained results

theory vs . experiments While many simplifications were introduced

when developing the theory to predict sound features of the steady-state oscil-

lation regime, both amplitude and spectral based predictions showed valuable

correlations with the related audio descriptors (both in a relative and an ab-

solute sense). This suggests that the prediction theory can be helpful in the

choice of particular quasistatic excitation models. Once the characteristic curve

is presented, the theory and theorems presented in section 2.3 can be applied,

in a similar fashion as was done for all presented excitation models in chapter

4. As demonstrated for the case of the lip-reed model, even dynamical models

can be reduced to an approximate quasistatic case, still enabling good correl-

ations with the sound features. However, those predictions cannot be used in

absolute comparison with real quasistatic excitation models, in particular for

the spectral features.

hybrid vs . simulation It is worth first commenting on the immediately

apparent aural resemblance of the hybrid and simulated results across all ex-

citation models (the only noticeable difference being the higher noise level of

the hybrid sounds, caused by the derivative in (98), which is not an issue when

listening to the direct performance of the hybrid instrument).

For both sustained and attack sounds, over most of the stable parameter

domain, the difference for each descriptor curve between the simulated and

the hybrid results is less than 5%, with the exception of the evaluations per-
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formed after the loudspeaker deterioration, i.e. the second single-reed evalu-

ation and the polynomial model evaluation. Another exception occurs when

the extinction threshold is approached (occurring for the single-reed and bow-

string models), as the sound changes rapidly towards this threshold and the

threshold value itself appears to decrease with the noisiness of the sound. The

increased noisiness in the measurements obtained with the hybrid instrument

decreased the thresholds by about 8%.

While the parameter values were chosen over a range that mainly covers

a stable domain, for certain extreme values undesirable instabilities could oc-

cur, which was found to always happen first with the hybrid instrument. The

noisiness descriptor appears to be the best indicator for such instabilities, but

the best distinction can be made aurally. The phenomenon occurred notably for

high ζ or ζb values, but with the lip-reed high Qr values also resulted in instabil-

ities, particularly for the second and third register. This reduced stable range

for the hybrid operation of the studied prototype imposes a limited timbre vari-

ety, representing restrictions to both the research tool and musical perspectives

of this work (see section 1.4). The stability issue is related to a number of short-

comings mentioned in section 3.4. Particularly the increasing phase lag and the

loudspeaker front-cavity modes measured in the hybrid system are responsible

for unstable behaviour. In section 6.1, this issue is further investigated and an

improved prototype is presented. Given the broadness of this topic, the issue is

finally reviewed in subsection 7.1.1 in the general discussion in chapter 7.

Apart from the discussion around the loudspeaker deterioration, an aspect

that has not been addressed so far is how well the hybrid instrument repro-

duces the same results upon repetition of the evaluations. The experiments

have been repeated several times, with short and long interruptions and it can

be concluded that a generally excellent repeatability is found with the hybrid in-

strument (which is why no error bars are used). However, the imperfect timing

precision of the real-time computing system introduces a slight jitter (manifes-

ted as an additional noise signal, see appendix B). This slow irregular fluctu-
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the hybrid instrument at two distinct time instances, revealing a long-term
non-repeatability.

ation is manifested as a long-term non-repeatability of the hybrid sounds. Nev-

ertheless, the conclusions that have been drawn are all still applicable. Figure

69 shows two pressure signals measured with a three day gap in between. In

this time, a sudden irregular change in jitter has occurred, leading to the notice-

able non-repeatability effect. At 25.3 s, when p approaches γ, the steep part of

the single-reed curve introduces some unstable behaviour, which appears more

amplified for the first measured case (the solid blue signal) in comparison to

the second (the dashed orange signal). The former also has a higher extinction

threshold of about γth = 2.04, compared to the latter where γth = 1.90. The

tube impedances including the loudspeaker and compensating filters (Z̃∗t ) and

related temporal signals were also measured at both instances, which did not

show any significant differences, thereby confirming that the non-repeatability

is not due to changes in the behaviours of any of those components.

It should be noted that the non-repeatability never exceeded the order of

deviations demonstrated in this figure and all measurements reported above

were carried out on the same day with no occurrence of such repeatability

issues (apart from the mentioned “Hybrid2” measurements).

excitation model comparison Comparing the descriptors and sounds

produced across the different excitation models, it can be noted that the timbre

range is fairly comparable for most excitation models, particularly for the quasi-
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static models. As might be expected, the main reason for this is that a sub-

stantial part of the timbre is determined by the resonator, but there are also

some excitation properties that are of consideration. A first limitation imposed

by the hybrid excitation possibilities is the aforementioned instability issue. A

second reason is related to the simplifications used for the basic physical excit-

ation models; even though the operation of the single-reed and the bow-string

interaction are fairly distinct physical phenomena, the fact that for both mod-

els a quasistatic approximation is used clearly results in resemblance of their

timbres. That said, the manner in which parameters change the nonlinear excita-

tion curve also influences the general perception of a model. Indeed, parameter

transitions lead to distinct sound feature transitions, which in turn play an

important role in defining the sound character. For instance, whereas a compar-

ison with static parameters between the single-reed and the polynomial model

does not suggest major differences, comparing those models with varying para-

meters clearly reveals the differences between these models. In the case of the

single-reed model, an underlying physical model is perceived, while the poly-

nomial model seems more artificial to the ear, which confirms the suggestions

made in section 1.2.1 regarding physical versus non-physical systems.

5.5.2 Unreported empirically obtained results

other parameter variations and atypical states with musical

potential Most of the reported parameter ranges used for the evaluations

were obtained after many empirical evaluations. While the most relevant vari-

ations are captured in the presented results, there were also a few particular

states outside of the ranges used in the presented evaluations, which are worth

mentioning.

As noted for the polynomial model, with ζ = 0.4 a special phenomenon

occurs, known as “period doubling”. This particular excitation state enables

the introduction of subharmonics, even in the absence of resonance modes of
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the resonator at those frequencies. While not appearing in real single-reed in-

struments, the period doubling is found for the case of quasistatic theoretical

models of the single-reed with ζ ≥ 0.4 (see e.g. (Taillard et al., 2010)).

A useful method to explain this phenomenon is with the graphical represent-

ation of the iterated maps theory, such as shown for the case of a quasistatic

clarinet excitation with ζ = 0.4 in figure 11 in chapter 2. In fact, when ζ is only

slightly higher, it can be shown that the oscillation finally settles to two distinct

iteration squares instead of a single square, which clarifies the period doubled

appearance.

There is a wide range of literature covering this topic, focussing on theoretical

developments (see e.g. (Feigenbaum, 1978; Collet and Eckmann, 1980; Taillard

et al., 2010)), experimental observations on real instruments (Gibiat and Castel-

lengo, 2000) and on hybrid constructions (Kitano et al., 1983; Maganza, 1985).

Using physically based and abstract (i.e. a non-physically related mathematical

formula) excitation models with his hybrid wind instrument set-up, Maganza

has reported the appearance of a series of period doubling “bifurcations”, even-

tually leading to a chaotic oscillation state (Maganza et al., 1986).

While this phenomenon has interesting potential regarding the musical per-

spectives, a thorough investigation lies outside the scope of this thesis, but it

can be confirmed that the hybrid instrument investigated here is capable of

producing period-doubled oscillations. As well as being possible to produce

such oscillations with the polynomial model, with the bow-string model sev-

eral period doublings could be obtained, when setting α = 1 and for ζb ≥ 8.

With the single-reed model, the required condition to obtain period doublings

is ζ ≥ 0.4. Hence, those states could not be obtained with this prototype, given

that such high ζ values result in the appearance of instabilities.

Furthermore, with the bow-string model with α = 1, for ζb values up to 4,

the sound was less raucous. When setting α = 0.26 (as proposed by (Schelleng,

1973)), a more raucous, slightly more crackling and nasal sound was obtained.

Also δ = 0.75 was verified, which required high ζb and γb values to obtain
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an oscillatory state. However, the simulation produced mainly squeaks and the

hybrid instrument produced a chaotic instability with little variation, likely of

poor musical interest.

Variation of other parameters (other than those evaluated in the thesis) and

other parameter ranges with the lip-reed model did not result in significantly

different timbres.

Another noteworthy finding occurs when the hybrid instrument is driven

with (too) high amplitudes. While the correlation with the simulations de-

creases, the increasing saturation also introduces a particular character, which

may be of interest to composers or musicians. In fact, such deviations represent

a particular character of the hybrid instrument. This effect could be obtained

by increasing the PM (for the single-reed and lip-reed models), v0 (for the bow-

string model) or α (for the polynomial model) parameter.

deviating models A few deviations from the presented excitation mod-

els were also verified with simulations and/or hybrid evaluation. While many

of the experiments were not intended, due to a wrong implementation of the

theory, others were implemented to try out a different physical model or to

obtain a certain effect.

Hence, the previously mentioned amplitude saturation effect could also be

obtained purposefully by adapting the programmed model. This can result in

even more extreme saturations, as the excitation model could be designed so

that (in theory) the amplitude would never stop expanding; that is, when the

excitation model has an initial instability, as mentioned in theorem 1, but lacks

the presence of a fixed amplitude, as described by theorem 3. This results in a

continuously growing oscillation amplitude, until the limit of the loudspeaker

is reached (note that this could also be the limit of either the amplifier or the

microphone when other components are used). The effect could be obtained for

example by omitting the Heaviside function in the single-reed excitation model

(i.e. in equation (52)), which resulted in a very rich spectrum of odd harmonics
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with a partly synthetic and partly acoustic character that might be of musical

interest.

Other deviating models were empirically found. This resulted in effects such

as larger frequency shifts than reported earlier (with a quasistatic model) or

fast alternations of the sound features by driving excitation parameters with

low frequency oscillators (LFOs).

Finally, many ideas for various excitation models and techniques are reported

for future evaluation in the perspectives section of chapter 7.

5.5.3 Perceptual considerations

In the present study, the focus lies on the spectrum of the steady-state oscil-

lation of the hybrid instrument. However, it is known that the characteristic

sound of self-sustained instruments is determined to a large extent by the tran-

sient behaviour (see e.g. (Deutsch, 1999)). Therefore it is important to bear in

mind that excitation models with similar steady-state spectra may differ in char-

acter when more extensive transient evaluations and analyses are performed.

While the descriptors all relate to perceptual features, it is not straightfor-

ward to draw direct conclusions with regard to the “perceivable distance” when

comparing the descriptor results. Moreover, while the descriptors represent a

quantitative kind of perception space, musical sound events are not so easy to

categorise. There are complex interrelations between features and even these

are often not fixed, as there are high level psycho-acoustic aspects that come

into play. Therefore, it was preferable to restrain the study to the descriptor set

used here, which is also based on perceptually and musically relevant features.

A qualitative musical evaluation is kept as a future study, which should be car-

ried out by taking into account the preferences of human listeners and involve

musicians to play the instrument (see section 7.2).
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5.6 summary

In this chapter, the functioning of the hybrid instrument whose development

was described in chapter 3 has been evaluated by introducing the four excita-

tion models described in chapter 4: the single-reed model, the lip-reed model,

the bow-string interaction model and the polynomial model. The performance

of the prototype hybrid instrument has been assessed via comparison with sim-

ulations.

First a few computational aspects were discussed, explaining the implement-

ation in MATLAB, Simulink and C++. Then, appropriate signals for considera-

tion were selected (the pressure at the resonator entrance and an approximation

of the radiated pressure), the notion of audio descriptors was introduced and a

selection of suitable descriptors was made.

The applied parameter ranges for each excitation model were provided in a

set of tables. These values were derived from both theory and empirical find-

ings.

Some general observations were made, regarding the appearance of a loud-

speaker deterioration which affected a number of evaluations, and referring to

the sound files of all evaluations.

First an evaluation of sustained sounds was performed, by slowly varying

one parameter: the mouthpiece pressure γ for the single-reed and lip-reed

models, the bow speed γb for the bow-string interaction model and the even

harmonics amount parameter δ for the polynomial model. The lip-reed was

also evaluated for lip-resonance frequency θ progressions. This was repeated

for a set of constant values of a second parameter, respectively the global em-

bouchure parameter ζ, the bow force ζb, the excitation amplitude ζ and the

quality factor Qr.

After studying an isolated pressure wave for each excitation model, for sets

of typical parameters, the sounds obtained over the evaluated parameter range

was studied with the following descriptors: the Peak-to-Peak pressure amp-
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litude (PP), the Harmonic Spectral Centroid (HSC), the Fundamental frequency

( f0), the Even Amount (EA) and the Noisiness (NN).

Sound prediction curves (estimating both amplitude and spectral related fea-

tures) obtained for each excitation model in chapter 4 showed valuable correl-

ations with the related audio descriptors, both in a relative and an absolute

sense.

The hybrid and simulated descriptor curves are generally in good agreement

which was also confirmed by aural judgement, demonstrating the successful im-

plementation of the hybrid system. In particular, the descriptors show similar

progressions, indicating that the excitation models and their control maintains

their effect, and characteristic values such as the beating pressure and the oscil-

lation thresholds are approximately the same in both the hybrid and simulated

curves. The fundamental frequency progressions showed particular differences,

which were identified as an effect of the increasing phase lag reported in sub-

section 3.3.3 and which in turn influenced other descriptors such as the HSC.

Nevertheless, the effect remained small.

The lip-reed model was the only non-quasistatic model (i.e. where dynamics

play an important role). This was reflected in the sound and descriptor out-

comes, e.g. by generally much lower HSC values.

Next a brief study on the evaluation of attack transients was carried out, in-

vestigating the same excitation parameters and studying the logarithmic attack

time descriptor (LAT). The single-reed LAT values showed an inverse correla-

tion with the HSC progressions, which was also found to be the case for the lip-

reed and polynomial models. However, it was notable that for the bow-string

model this relation was almost opposite.

The end-of-attack time (EAT) and spectral flux (SF) were only investigated

as part of the single-reed evaluation, revealing good correlation with the LAT

descriptor but also that the hybrid instrument showed shorter EAT.
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Finally a general comparison of the results was made, some unreported em-

pirically obtained outcomes were presented, and some perceptual considera-

tions were discussed.





6F U RT H E R D E V E L O P M E N T S

In contrast to the other chapters, the sections in this chapter are unrelated. Each

section discusses a particular further development to the hybrid instrument.

First, in section 6.1, the instability issue is investigated and appropriate meas-

ures are taken for the design of an improved prototype. Then, the implement-

ation of the hybrid principle on a real clarinet resonator is briefly described in

section 6.2. Finally, section 6.3 describes the implementation and evaluation of

some control and effect possibilities.

6.1 improving the stability with a centred and second micro-
phone

As mentioned in section 3.4 and noted throughout chapter 5 (particularly dis-

cussed in subsection 5.5.1), the normal operation of the hybrid instrument that

has been studied so far (from here on referred to as the “initial prototype”) is

limited by an “instability issue” when certain excitation models with particular

parameter values are evaluated. The study described in this section focusses on

this particular issue.

In subsection 6.1.1, the functioning of the initial prototype hybrid instrument

is briefly reviewed (a detailed description is given in chapter 3), and an explana-

tion is given as to how unstable behaviour can appear with this prototype. Then,

in subsection 6.1.2, the development and evaluation of an improved prototype

is laid out.

243
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6.1.1 The initial prototype and its instabilities

Set-up using a single microphone

The design of the initial prototype and the excitation models have been dis-

cussed in detail in respectively chapters 3 and 4. To help understand the in-

stability issue, the main concept is revisited here. The complete set-up is shown

schematically in figure 70. The prototype features a loudspeaker and a single

microphone, both positioned at the entrance of the tube. Given that the loud-

speaker’s membrane velocity is transformed by the driver’s dynamics (which

can be modelled as a mass-spring-damper system), a feedback and feedfor-

ward filter are implemented on the computing system to account for the loud-

speaker’s response. Details of the filters are reported in chapter 3. Here, both

filters are included in the block entitled “Filters accounting for the loudspeaker”

in figure 70.

The pressure signal captured by the microphone is sent to the computing sys-

tem which introduces input-to-output (I/O) latency. For the case of the comput-

ing system used for the initial prototype, the latency is 20 µs, corresponding to

1 sample (N = 1) at a sampling rate of fs = 50 kHz. The dimensionless pressure

signal is sent to both the feedback filter and the excitation model. For the latter,

the (equally delayed) dimensionless flow rate signal is subtracted, in order to

obtain the required (dimensionless) “historical pressure” ¯̃ph = p̄(z−1)− ¯̃q(z−1).

As well as using the tilde sign for the flow rate calculated by the excitation

model, in this chapter the tilde is also used for the approximate historical pres-

sure supplied to the excitation model.

For a coherent hybrid operation, the flow rate generated by the loudspeaker

should be as close as possible to the flow rate calculated by the excitation model

and then sent to the feedforward filter, so that q̄ ≈ ¯̃q; and the latency should be

as small as possible so that ¯̃ph ≈ p̄− ¯̃q.
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Figure 70: Schematic diagram of the initial prototype, using a single microphone to
supply a pressure signal to the excitation model. The pressure is delayed by
the input-to-output latency of the computer.

Observed instabilities with a single-reed excitation model

the single reed excitation model By introducing a single-reed ex-

citation model to the set-up (its detailed description can be found in section

4.2), hybrid self-sustained clarinet sounds can be produced. The resulting non-

linear curve, relating the outputted flow rate as a function of the pressure in

the mouthpiece q̄( p̄), is represented as a dashed curve in figure 71 (note that

for convenience of the further development, the quasistatic implementation is

considered, which assumes the reed to be mass and friction-less).
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Figure 71: Characteristic nonlinear curves associated with the functioning of the em-
bouchure. The dashed curve corresponds to the implicit equation q̄( p̄) and
the solid curve to the explicit equation q̄( p̄h). γ represents the dimensionless
mouth pressure and ζ is a global “embouchure parameter”.
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γ represents the dimensionless mouth pressure and shifts the curve along the

horizontal axis, and ζ is a generalised “embouchure parameter”, which controls

the vertical scaling of the nonlinear curve.

Given that the flow rate instantaneously influences the pressure at the en-

trance of the tube, p̄ is also an instantaneous function of q̄ (as explained in

section 4.1). Hence, for a numerical sequential simulation, it is not possible to

directly use the implicit equation q̄( p̄) to obtain the flow rate from a measured

pressure value. Therefore, the so-called “historical pressure” is used, which ex-

cludes the instantaneous pressure contribution resulting from the entering flow

rate: p̄h = p̄− q̄. As explained in section 4.2, using an approach proposed by van

Walstijn (van Walstijn, 2002) and Guillemain et al. (Guillemain et al., 2005), an

explicit equation q̄( p̄h) is derived (see equation (64) in subsection 4.2.2), whose

(quasistatically approximated) curve is represented as a solid line in figure 71.

observed instabilities Although a stable and musically relevant self-

sustained operation was obtained for a range of ζ values, when ζ ≥ 0.35 an

unstable behaviour appeared. Figure 72 shows the (steady state) pressure wave

generated using the single-reed excitation model with ζ = 0.35 and γ = 0.5. As

can be seen, a high frequency oscillation appears when the mouthpiece pressure

is around p̄ ≈ γ = 0.5, which rapidly increases in amplitude with increasing ζ.

Looking up this pressure value on the nonlinear curve in figure 71 leads to the
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Figure 72: Pressure wave of a self-sustained oscillation produced with the initial pro-
totype (with applied parameters ζ = 0.35 and γ = 0.5), demonstrating the
appearance of a high frequency oscillation.
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hypothesis that the system becomes unstable when a strong negative gradient

is encountered on the curve.

Stability analysis of a linearised system: study of the open-loop

While it is not straightforward to derive theoretical stability criteria in a nonlin-

ear system1, it is possible to linearise the nonlinear curve at an arbitrary point

so that a locally valid linear stability study can be carried out. Considering the

nonlinear single-reed curve, it can be seen that a positive and a negative linear-

isation is possible, as is shown by respectively the green and red dashed lines

in figure 71.

A typical stability study in such a system involves considering the Bode plot

of the “open-loop”, i.e. the system contained between the signals ¯̃q and ¯̃ph, in-

cluding the filters, the coupled loudspeaker-resonator system, the microphone

and the calculation of ¯̃ph. In the frequency domain, this system is represented

by the transfer function ¯̃Ph/ ¯̃Q and its Bode plot (obtained by supplying a sine-

swept signal ¯̃q while recording ¯̃ph) is shown in figure 73. It is worth noting

that this transfer function is related to Z̃t, the input impedance including the

loudspeaker and compensating filters (earlier reported in subsection 3.3.3). The

relationship is as follows:
¯̃Ph
¯̃Q
=

¯̃P− ¯̃Q
¯̃Q

= Z̃t − 1 (note that Z̃t is complex).

The gain margins are the complement (i.e. the inverse) of the gains at the

0◦ and −180◦ phase transitions, respectively corresponding to the positive and

negative linearisation of the excitation curve (indicated in respectively green

and red in figure 73). The stability criterion stipulates that, at frequencies for

which the gain multiplied by the slope of the linearised excitation curve sur-

passes 1 (or 0 dB), the system is unstable.

While the low frequency positive instabilities at the resonator’s resonance

frequencies enable the desired instability that leads to the self-sustained opera-

tion, also a few prominent negative instabilities at high frequency can be noted.

These instabilities are normally not present in the case of an entirely acoustic

1 This could be done with energy methods however, see e.g. (Falaize et al., 2015).



248 further developments

0 2000 4000 6000 8000 10000

Frequency (Hz)

-200

0

200

P
h
a
se

(◦
)

0 2000 4000 6000 8000 10000

Frequency (Hz)

-20

0

20

G
a
in

(d
B
)

Figure 73: Open-loop stability study: Bode plot of the ratio ¯̃Ph/ ¯̃Q for the initial proto-
type; with indication of the 0◦ and −180◦ gain margins. The magenta dot-
dashed and purple dashed lines represent the phase response correspond-
ing to the I/O latency of respectively the initial and improved prototype’s
computing systems.

instrument whose open-loop phase response remains in the [90◦,−90] range.

Moreover, it is somewhat surprising, as normally the excitation can only add

energy to the resonator when it is acting as a “negative resistance” (McIntyre

et al., 1983).

In subsection 3.4.3, more precisely with figure 31, it was revealed that the

high gains at these frequencies result from non-planar (transverse) vibration

modes in the small cavity in front of the loudspeaker, which has a diameter

that is about 2.7 times the diameter of the tube. Meanwhile, the observed in-

creasing phase lag has multiple causes such as the I/O latency and loudspeaker

effects that cannot be compensated for with filters, which was discussed in sub-

section 3.4.1. The group-delay corresponding to the I/O latency of the initial

and the improved prototype’s computing systems (the latter is discussed in the

next subsection) is shown in figure 73 by respectively magenta dot-dashed and

purple dashed lines.

It can be concluded that during hybrid self-sustained operation, when p̄ ≈ γ,

high pitched oscillations can occur. Given the nonlinear variation of the excita-
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tion, this unintended instability is not just a high pitched squeak (such as in the

case of a typical audio feedback or “Larsen” effect), but rather a raucous sound

with chaotically introduced high frequency oscillations.

6.1.2 The improved prototype

In order to improve the stability, a new prototype with a modified set-up has

been constructed. For this prototype, the digital real-time audio platform “Bela”

is used. The details of this system are provided in subsection B.2.2. While the

total latency is about 4.5 times larger than the previous computing system (the

effect on the phase can be seen when comparing the relevant phase responses

in figure 73), this is still a fraction of the latency of generic souncards and a

technique is put in place to compensate for the latency.

Furthermore, given the microphone positioning requirement (detailed later)

and due to material availability limitations, different microphones to that used

for the initial prototype were employed. The Knowles EK-26899-P03 micro-

phone turned out to be an appropriate choice (see section A.1 for technical

details). However, it should be mentioned that this microphone has a less flat

frequency response.

Accounting for the instabilities

By introducing a second microphone a distance c.∆t along the tube (where c

is the speed of sound), the I/O latency can be accounted for. (This approach

is related to that of Guicking (Guicking and Karcher, 1984), who used two mi-

crophones to modify the reflection coefficient.) It should be noted that this is

of importance, particularly given that the Bela platform has a larger input-to-

output latency than the previous system, which had a latency of only 20 µs.

However, migration to a new system was necessary, as the previous system did

not support the now required multiple audio inputs. Figure 74 shows a schem-

atic diagram explaining this concept by considering the pressure as subdivided
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into forward and backward travelling waves, respectively represented by p̄+

and p̄−.
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Figure 74: Schematic diagram describing how the historical pressure p̄h can be ob-
tained from two pressures p̄ and p̄∆. p̄ is measured at the (closed) tube
entrance and p̄∆ at a distance d = c.∆t from the entrance.

Hence, taking into account the closed boundary condition, from the pressure

signal at the first microphone one can derive (see also equation (9) in subsection

2.1.1):

p̄ = p̄+ + p̄− = p̄+ + ( p̄+ − q̄) = 2p̄+ − q̄ ⇒ p̄+ =
p̄ + q̄

2
. (99)

As such, the pressure at the second microphone position can be expressed as:

p̄∆ = p̄+(t− ∆t) + p̄−(t + ∆t) =
p̄(t− ∆t) + q̄(t− ∆t)

2
+ p̄−(t + ∆t). (100)

Finally, the historical pressure can be obtained from delayed measurements

from both microphones and a delayed flow rate signal:

p̄h = 2p̄− = 2p̄∆(t− ∆t)− p̄(t− 2∆t) + q̄(t− 2∆t). (101)

This principle is then applied in the final implementation (schematically rep-

resented in figure 75). The distance of the two microphones is chosen so as to

correspond to the I/O latency: d = c.∆t = c.N/ fs.
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Figure 75: Schematic outline of the implementation of the new prototype, using two
microphones to obtain ¯̃ph ≈ p̄h(= p̄− q̄) , which is an approximation that is
free of I/O latency.

It is worth mentioning that this method doesn’t affect the precision of the fi-

nal ¯̃ph calculation in theory, given that the first microphone is positioned at the

closed boundary of the tube, where all of its acoustic longitudinal modes have

a pressure antinode. Instead, the precision is equal to the single-microphone

technique for frequencies that have a pressure node at the second microphone

position and an increased precision is achieved for frequencies where both mi-

crophones are located at a pressure antinode.

It should be noted that this latency compensation concept assumes that the

acoustic wave propagation between the two microphones is lossless. Hence, the

relevance of the concept is only guaranteed when the two microphones are

reasonably close to each other, i.e. when the latency is small.

A second improvement simply involves the repositioning of the first micro-

phone to the centre of the loudspeaker cavity, so that the pressure antinodes of

the first non-planar vibration modes are avoided.

Presentation of the improved prototype

Figure 76 shows the improved prototype set-up. As can be seen, the prototype is

also equipped with two dial-buttons, enabling real-time control of the excitation

parameters.
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Figure 76: Picture of the improved prototype set-up, with indication of the compon-
ents.

Study of the open-loop

Figure 77 shows the transfer function ¯̃Ph/ ¯̃Q, for the new prototype. As can
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Figure 77: Open-loop stability study: Bode plot of the ratio ¯̃Ph/ ¯̃Q for the improved
prototype; with indication of the 0◦ and −180◦ gain margins.

be seen, the high frequency gain peaks caused by the non-planar modes have

disappeared and the phase lag is reduced so that, all together, the gain margins

are increased and the system remains stable, even in regions where the gradient

of the nonlinear curve is steep. Nevertheless, it can be noted that there is still

a phase lag, which is mainly due to an uncompensated loudspeaker effect (see
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3.4.1), but it could be that the nonlinear frequency response of the microphone

(see section A.1) also contributes to this effect.

However, it should be noted that in comparison with figure 73 the lower

frequency response (around 2 kHz) has also slightly changed. By studying the

influence of separate components, it has been shown that this is a result of the

two-microphone concept, combined with the loudspeaker front cavity, which

introduces a small phase shift compared with a directly terminated tube. This

conclusion was made after verifying many possible causes. For instance, a meas-

urement with a directly terminated tube was carried out, feeding a sine sweep

signal at the other end of the tube while measuring the pressure signals with

the two microphones. This enabled it to be demonstrated that the re-calculation

of the pressure at the tube entrance (using equation (101) with an added q̄(t)

term) resulted in a close agreement to the directly measured pressure at the en-

trance by the first microphone. Meanwhile, for the case where the loudspeaker

was used to terminate the tube, a significant phase lag could be noted around

the low frequency range under consideration.

Self-sustained operation

An evaluation of the improved prototype was carried out, using the single-reed

excitation model with the same parameter values. The resulting pressure wave,

represented in figure 78, is indeed free of high frequency noise. The system

remains stable for ζ values up to 0.7, a wider timbre domain can be reached

and an evaluation with a real clarinet resonator results in musically relevant

sounds (see section 6.2).

This opened up the possibility of studying the particular phenomenon of

“period doubling bifurcations”, which is a form of multiphonic where subhar-

monic frequencies are introduced and which is only manifested for ζ ≥ 0.4

with the single-reed excitation model (the period doubling phenomenon was

briefly discussed in section 5.5).
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However, it is important to note that the wave is less square in nature than

that produced by the initial prototype (see figure 72) and that resulting from

simulations. This is most likely due to the change in the lower frequency region

of the open-loop transfer function.
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Figure 78: Pressure wave of a self-sustained oscillation produced with the improved
prototype (with a single-reed embouchure model with parameters ζ = 0.35
and γ = 0.5). No high frequency noise is present, but the wave is less square
in nature.

6.2 implementation on a clarinet-resonator

Given that the hybrid instrument’s operating principle is almost entirely inde-

pendent of the acoustic resonator, it requires very little work to replace the tube

with another resonator, such as that of an existing reed instrument. This is suc-

cessfully confirmed by empirical tests with a clarinet resonator. To this end, a

new mechanical adaptor piece was designed, enabling the loudspeaker to be

mounted on the clarinet, while conserving its internal cross-sectional area St.

This latter point is important, as the cross-sectional area affects the character-

istic input impedance (Zc =
ρc
St

). This value is used in the excitation simulation,

more precisely, to re-dimensionalise the dimensionless flow rate calculated by

the excitation model (see subsection 4.2.1). Nevertheless, it only involves a small

change, given that the inner diameter of the clarinet that was used is 14.3 mm,

while the tube had an inner diameter of 15.0 mm.
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A video of the empirical evaluation, carried out with the initial prototype

and the single-reed excitation model, can be found here: http://dx.doi.org/

10.21954/ou.rd.3848115. As can be verified, the sound is more “clarinet-like”

than the single-reed evaluations obtained with the tube resonator (a selection of

sounds, originating from the evaluation with a single-reed model (discussed in

chapter 5) can be found here: http://dx.doi.org/10.21954/ou.rd.3848415).

Figure 79 shows a spectrogram of the radiated sound produced in the eval-

uation with the clarinet resonator. It should be mentioned that the conditions,

the set-up and the recording equipment were not intended for research use

(using a mobile phone, next to a reflecting wall,...). Therefore, only relative con-

clusions can be drawn from the spectrogram, and the most relevant are spectral

comparisons between the notes.
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Figure 79: Spectrogram of the radiated sound by the clarinet resonator while playing
two chromatic scales downwards.

It can be seen and heard that a fairly good note-range of 2 octaves is covered

and that the notes all sound reasonably similar in timbre, which confirms that

the loudspeaker is reasonably well compensated for over a broad frequency

range. Furthermore, it can be seen that the first two (odd) harmonics are clearly

present for the whole note range. A much higher number of harmonics are

present, but the overall spectrum appears to be low-pass filtered above about

http://dx.doi.org/10.21954/ou.rd.3848115
http://dx.doi.org/10.21954/ou.rd.3848115
http://dx.doi.org/10.21954/ou.rd.3848415
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3 kHz. It is worth noting that the spectrally rich events at some note onsets

(for example around 2 s) represent the sound of the keys being operated. The

key noise is relatively loud in comparison with the produced notes as the self-

sustained operation of the hybrid clarinet operates at a down-scaled amplitude

(see subsection 7.1.1 for further discussion on this). As can be heard, and seen

on the spectrogram, the last note (around 7 s) is affected by high pitched oscilla-

tions, caused by the instability issue mentioned in section 3.4 and compensated

for in section 6.1.

It can be perceived that the instrument is slightly mistuned (i.e. the higher

notes are somewhat too low in pitch). This could be either due to uncom-

pensated increasing (loudspeaker) phase lag (see subsection 3.3.3 or figure 73 in

this chapter) or due to the crudely estimated effect of the missing “reed-induced

flow” (or both). The alternating reed induced flow component is generated by

the movement of the reed, which acts as a “membrane” and pulls and pushes

the air that is in contact with it. As it introduces a virtual length correction,

it is taken into account by reed instrument manufacturers by shortening the

resonator, e.g. by up to 10 cm for a clarinet (Dalmont et al., 1995). For the hy-

brid instrument, since the employed single-reed model (and the other excitation

models) does not take into account this flow component, the clarinet resonator

is increased in length again by using a 10 cm long adaptor to the loudspeaker.

Hence, it is possible that this physical length correction is overestimated. An

alternative would be to include a reed-induced flow model in the mouthpiece

simulation, see for example (Avanzini and Van Walstijn, 2004).

Similar results were obtained with the improved prototype in combination

with the clarinet resonator, and the improved stability also applied to the en-

tire playable note range. Furthermore, it was observed that the sensitivity for

instability and the magnitude of the related undesired squeaks is dependent

on the played note. This can be explained by the fact that certain notes have

high frequency longitudinal vibration modes that stimulate the undesirable
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non-planar waves in the loudspeaker cavity, while for other notes this situation

does not occur.

From the musical perspective, a logical next step is to explore sound ma-

nipulation options with the hybrid instrument and to consider useful control

possibilities to enable a musical interaction with the instrument. Some brief

investigations of these are presented in the next section.

6.3 control and effects

This section groups together a few extensions supporting the musical potential

of the hybrid instrument. It should be mentioned that these extensions were

only briefly tested. Their usefulness in a research context will be relevant when

it comes to qualitative evaluation with performers and/or composers.

The first two subsections discuss some control possibilities, with the devel-

opment of a mouthpiece controller and parameter mapping strategies. The fol-

lowing subsection presents a vibrato sound effect obtained with a parallel op-

eration in the hybrid feedback loop.

6.3.1 Development of a mouthpiece controller

For a hybrid instrument to be adequately employable in a musical perform-

ance, it is important to provide and maximise expressive control possibilities

available to a player. As for many wind instruments both hands are already

used to obtain a desired note by manipulating the resonator, it is an appro-

priate choice to re-introduce the mouth as a means of controlling the excitation

properties. Another motivation for this choice is that it enables an existing wind

instrument player to conserve their embouchure expertise (to a certain extent).

This is an important advantage for new musical instrument designs, given that

the conservation of expertise is a research-worthy proposition for tackling the
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Figure 80: The prototype mouthpiece controller.

ongoing problem concerning poor employment prospects after the introduction

of new (electronic) instruments.

First, some ready-made mouth-controllers were considered for use with the

hybrid instrument. However, few controllers are sold as a separate tool that

provides both mouth air pressure and lip force measurements. A large vari-

ety of “breath controllers” exists, but typically these are only equipped with a

pressure sensor (such as the Yamaha BC series). While TEControl provides two

“breath and bite” controllers (e.g. the BBC2), they only feature a USB output

with MIDI encoded data, which is not straightforward for implementation on

the real-time computing system.

Alternatively, there are complete “wind controllers”, which do provide both

pressure and force measurements. However, they too are not suitable for con-

trolling the hybrid instrument excitation, given the redundant instrument body

(hosting keys and synthesis electronics) and, similar to the TEControl control-

ler, due to the difficulty accessing analogue sensor signals. Currently available

wind controllers are, for example, the AKAI EWI series, the Yamaha WX series,

the Softwind Synthophone and the recently introduced Roland AE-10 aero-

phone.

It was therefore decided to develop a custom-made mouth controller. Fig-

ure 80 depicts the designed prototype mouthpiece controller. It is equipped

with a Freescale MPX12GP pressure sensor, measuring the air pressure in the
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mouth via a small tube. Meanwhile, the lip-force is captured with a Honeywell

FSS020WNSX load cell. Both of these sensors can capture realistic physical em-

bouchure states, i.e. pressures of up to 10 kPa and forces of up to 10 N. Two

INA125 instrumentation amplifier ICs provide amplification and an offset to

obtain a voltage range suitable for the computing system’s acquisition inter-

face.

It should be mentioned that the controller cannot be used with the initial

prototype, given that multiple simultaneous data acquisition is not supported

by that computing system. However, it can be employed with the improved

prototype.

6.3.2 Mapping control parameters to the excitation model

An important element for consideration, both in terms of obtaining a realistic

operation and providing alternative musical expressions, is how the excitation

model’s input parameters are related to the musician’s control commands (i.e.

their physical gestures). This provides a strong motivation for considering para-

meter “mapping” strategies.

A parameter mapping is a function that states how the raw input data from

the controller (e.g. the mouth controller) is related to the parameters of a given

excitation model.

While Hunt et al. argue that a complex and combinational mapping of elec-

tronic musical instruments is preferred for an expressive “instrument-like” be-

haviour (Hunt et al., 2002), their view disregards the sound generation by phys-

ical modelling, which inherently is instrument-like when conserving the one-

to-one natural mapping. This is, for instance, emphasised by Smith, who states

that virtual instruments (physical models simulating real instruments) “con-

trast with “abstract” and “recording-based” synthesis algorithms that are cap-

able of high quality sound synthesis, but which lack the intuitive and expressive

control-response of model-based synthesis.” (Smith, 2005).
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Nevertheless, given that the wind-instrument physical excitation models em-

ployed in this thesis (i.e. the single-reed and lip-reed models) have been re-

expressed in dimensionless and reduced parameter forms, a simple mapping

is required. This mapping can be obtained from the dimensionless parameter

definitions in respectively subsections 4.2.1 and 4.3.1, leading to:

PM =
H0k− fl

Sr
= c1(c2 − fl)

γ =
pm

PM
(102)

ζ = Zcw

√
2(H0 − fl/k)

ρk
= c3

√
c4 − fl

where pm is the dimensional mouth pressure and fl the lip force, both captured

by the mouth controller. H0 is the initial reed opening without the presence

of the mouth, and k, Sr, Zc, w and ρ are earlier defined dimensional para-

meters. For use with arbitrary mouthpiece parameters, the form with the con-

stants ci=1...4 can be implemented. This way, the controller sensor ranges can be

matched to the γ, ζ and PM parameter ranges specified in tables 2 and 3, which

are convenient for an optimal hybrid operation. Doing this results in a realistic

mouthpiece simulation, except for PM, as realistic beating pressures surpass the

amplitude capacity of the hybrid instrument (i.e. c1 would need to be about ten

times smaller than a realistic value, in order to avoid saturations).

It should be mentioned that the reed resonance frequency and quality factor

are two unknown parameters. It might be possible to use an advanced mouth-

piece model to find an approximate mapping between the lip force and the

resonance frequency. However, the quality factor is mainly dependent on em-

bouchure features that are not captured with the provided sensors. In any case,

the constant average values proposed in the tables can be provisionally used.

Alternatively, from the point of view of exploring different musical expres-

sion possibilities, less realistic or arbitrary parameter mappings can be chosen.

This can be useful to accentuate certain timbres, e.g. focussing on the period
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doubling appearance (mentioned in chapter 5), which only appears over a nar-

row excitation parameter range. Moreover, nonlinear and dynamic mappings

can be implemented, using for instance techniques such as wave-shaping, de-

rivation, integration, low-frequency-oscillators (LFOs),...

6.3.3 Vibrato

While in this thesis the focus is on the design of nonlinear excitation models, the

hybrid set-up is perfectly capable of allowing one to (simultaneously) perform

active control operations. For an advanced active control implementation on a

wind instrument, the work by Meurisse can be consulted (Meurisse, 2014). Here,

a simple “vibrato” application is presented to provide a preliminary demonstra-

tion of active control as a “side-chain” application to the excitation model.

In contrast to advanced active control applications, the proposed vibrato ef-

fect is not “aware” of the resonator’s status (i.e. the resonator’s impedance),

resulting in a crude implementation, but with the advantage of being almost

note-independent.

One way to understand the applied concept is by considering it as an addition

of a virtual volume positioned at the entrance of the resonator. This volume

behaves as an acoustic compliance, which can be simulated by introducing a

flow rate signal proportional to the derivative of the measured pressure at the

resonator entrance (see e.g. (Chaigne and Kergomard, 2013)). Given that the

virtual volume induces a “length correction” of the resonator, the pitch will

decrease. In order to obtain the targeted vibrato effect, the volume’s parameters

can be controlled with a LFO, which ultimately leads to the following controller

expression:

Cvib =
avib

(
sin(2π fvibt)− 1

)

Zc
s. (103)
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avib and fvib refer to, respectively, the amplitude and frequency of the vibrato

effect and s is the Laplace transform of the derivative. The amplitude is re-

lated to the “depth”, i.e. the approximate frequency span of the fundamental

frequency fluctuation. Mathematically, the amplitude sets the time added to

the period of oscillation; thus, the vibrato depth is proportional to the funda-

mental frequency of the played note. While this note-dependency is inevitable

with a resonator-independent implementation, in practice the effect sounds suf-

ficiently homogeneous over the entire clarinet scale.

Another inconvenience is that this technique does not allow one to shift the

frequency upwards, given that a positive Cvib (which would require a “negat-

ive volume”) leads to an unstable system (hence the −1 term in equation (103)).

This means that the vibrato will occur around a mean frequency slightly be-

low the fundamental frequency of the note played without vibrato. However, it

should be noted that this mean frequency flattening also occurs when produ-

cing a vibrato effect with the mouth on a single-reed mouthpiece.

Empirical evaluations demonstrated that maximum amplitudes of avib =20 µs

could be used (above that, undesirable instabilities occurred), resulting in vi-

brato depths of about ±0.5 Hz and ±3.5 Hz for fundamental frequencies of

respectively 140 Hz and 320 Hz, i.e. corresponding to vibrato depths of respect-

ively ±6 cents and ±19 cents.

6.4 summary

This chapter discussed a number of discrete further developments to the hybrid

instrument.

First, the instability issue noted in the earlier chapters was investigated. It

was demonstrated that the behaviour of the initial prototype hybrid wind in-

strument (using the single-reed excitation model as an example) could become

unstable when the nonlinear curve of the excitation model had regions with

strong negative gradients.
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A linearised “open-loop”study of the ¯̃Ph/ ¯̃Q transfer function Bode plot re-

vealed that this was due to low gain margins. The high frequency gain peaks ap-

peared to result from non-planar air vibration modes in the front-loudspeaker

cavity, which could be avoided by repositioning the microphone at the centre

of the loudspeaker cavity. Meanwhile, the inverted (−180◦) phase state was

caused by various phase lag sources, including the input-to-output latency of

the computing system. This could be accounted for by introducing a second

microphone a distance c.∆t along the tube.

These changes were implemented in a new prototype, which used the “Bela”

real-time audio platform. Despite the higher input-to-output latency, this com-

puting system featured several analogue inputs so that the two-microphone

method could compensate for this delay. The new prototype’s open-loop study

revealed improved gain margins, but at the expense of a modified lower fre-

quency response.

Evaluation with the single-reed model resulted in more stable but less coher-

ent (i.e. less square-shaped) sounds, enabling a larger variety of musical sounds

and opening up the study of the period doubling phenomenon.

Next, the successful development of the hybrid instrument was assessed by

considering it in relation to a real wind instrument. To this end, the prototype

system was empirically tested by connecting it to a real clarinet resonator, res-

ulting in more realistic clarinet sounds than achieved with the cylindrical tube

resonator. Both the sound produced and the associated spectrogram were re-

ported to demonstrate a fairly consistent timbre over 2 octaves.

Another development concerned the introduction of control and effects to

the hybrid wind instrument. A mouth controller was designed, featuring two

sensors to capture both the mouth pressure and the lip force. Mapping strategies

were then proposed to relate the controller output to the excitation model’s in-

put parameters. It was concluded that a “physical” mapping is an appropriate

choice in the first instance, while other mappings could be of interest for explor-
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ing particular timbres and functionalities, which supports the musical potential

of the hybrid instrument.

Finally, the successful implementation of a vibrato effect was discussed. This

effect demonstrated the possibility of applying an active control application in

parallel to the hybrid functionality. The effect was obtained by introducing a

controller that adds a size-fluctuating “virtual volume” to the entrance of the

resonator.



7G E N E R A L D I S C U S S I O N , C O N C L U S I O N S A N D
P E R S P E C T I V E S

This last chapter first discusses a number of aspects that are of key importance

to the thesis. A number of unrealistic aspects observed in the hybrid instru-

ment’s behaviour are reviewed. Then, in order to check the overall work for

consistency, the research questions and requirements defined in the introduct-

ory chapter are reassessed.

Following this, a wide variety of perspectives is presented, bringing together

various new ideas to further the development and evaluation of the hybrid

instrument.

7.1 general discussion

7.1.1 Unrealistic hybrid aspects

The performance of the current hybrid instrument prototype is not fully real-

istic in several different aspects. The following paragraphs consider a number

of ways in which its behaviour does not reflect the functioning of real acoustic

wind instruments. (While also of minor concern, the list does not include the

inconsistent slight repeatability issue, discussed in section 5.5.)

dynamic range For the imaginary case of a resonator with an infinite

linear acoustic response (which is assumed in the simulations), arbitrarily small

or large self-sustained amplitudes can be produced. However, this does not

apply to the case of the hybrid instrument, whose dynamic range is limited by

noise and saturation thresholds introduced by the equipment.

265
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For example, it is found that self-sustained operations with amplitudes below

about 10 Pa are difficult to realise on the prototype hybrid instrument, which is

due to noise starting to dominate the sound.

Meanwhile, as mentioned in section 3.3.2, the maximum dynamic level of the

hybrid instrument (with a reasonably linear loudspeaker operation) is determ-

ined by the power rating of the loudspeaker. Unlike the minimum dynamic

performance, the maximum level is not only determined by the pressure amp-

litude, but also by the spectral richness of the sound. This is explained by the

fact that the feedforward (i.e. the flow rate related) component of the coil cur-

rent is proportional to the derivative of the flow rate signal.

In order to inspect the evaluations in this regard, their dimensional peak-to-

peak amplitude has to be considered first. This can be obtained by multiplying

the dimensionless amplitudes by the relevant amplitude parameter of the ex-

citation model. The following constant amplitudes were used in the reported

evaluations: PM = 100 Pa for the single-reed model, PM = 50 Pa for the lip-reed

model, v0 = 15 Pa for the bow-string model and α = 100 Pa for the polynomial

model.

Comparing for instance the simulations of the single-reed and bow-string

excitation models, it can be noted that a similar spectral richness (indicated

by equal harmonic spectral centroid values of HSC = 1000 Hz) was found at

respective parameter states of {ζ = 0.35, γ = 0.75} and {ζb = 1, γb = 2}.
If attention is now turned to the hybrid operation, while the same HSC for

the bow-string evaluation was found, the single-reed HSC turned out to be

only 940 Hz. Taking into account the amplitude parameters, the dimensional

amplitudes at these instances were 70 Pa for the single-reed and 28 Pa for the

bow-string result, which indeed suggests that the loudspeaker’s operation dur-

ing the hybrid single-reed evaluation was slightly saturated at this state. This

assumption is also supported by the fact that lower ζ values resulted in better

correlations between hybrid and simulated results.
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The hypothesis is also supported by the findings for the lip-reed evaluation.

In fact, with this model, amplitudes up to 300 Pa could be reached with the hy-

brid HSC remaining close to the simulations (i.e. no saturation occurred). This

can be explained by the fact that the HSC value of 300 Hz is relatively low com-

pared with the HSC’s obtained with the single-reed, bow-string and polynomial

quasi-static excitation models. As a result, a lower coil-current is required with

the lip-reed model. Despite all of this, the overall brightness performance of the

hybrid instrument is still much lower than typical brightness values found for

real clarinets evaluations (see e.g. (Almeida et al., 2013; Li et al., 2016)).

It should be mentioned that the derivative of the flow rate also increases with

the pitch of the played note. A quantitative investigation on that effect is yet to

be carried out, but it can be expected that the dynamic range of higher notes

will be even more constrained.

Additionally, in section 3.3.2, it was noted that the range over which the hy-

brid instrument produces stable sounds lies well below the pressure amplitudes

found in real wind instruments, which tend to range from 1 kPa to 8 kPa (Fuks

and Sundberg, 1996). The evaluated wind instrument excitations are “scaled

down” in amplitude (by using much smaller PM values than are realistic). Con-

sequently, the current hybrid instrument prototype cannot be used to invest-

igate the nonlinear sound propagation within the resonator that can occur at

large amplitudes in real wind instruments, particularly for narrow and long

ducts.

Another consequence of the reduced dynamic range is in terms of perception.

Indeed, while the same waveforms may be produced at lower amplitude, the

human ear does not behave linearly with respect to amplitude (which is related

to the notion of loudness), resulting in a change of the perceived timbre. An

empirical experiment was carried out where the hybrid performance (using a

real clarinet resonator) was amplified with an additional (external) loudspeaker.

Informal evaluations by a few musicians revealed that this not only resulted in
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more realistic perceived timbres, it also improved the musician’s immersion

with their playing performance.

absent mean flow component In chapter 2, theorem 6 stated that

the mean air flow passing through a real wind instrument when it is played

has a negligible influence on the oscillating behaviour; this was informed by

the literature (see e.g. (Rienstra and Hirschberg, 2013; da Silva et al., 2010)).

While this statement is valid to the first degree, the flow component can have

a perceptible influence in certain cases. Given that the hybrid instrument filters

out this part of the spectrum (with no DC flow generated by the loudspeaker),

this represents another unrealistic property of the hybrid instrument.

For instance during transient oscillations, in a real instrument, there is a

volume flow component that changes at a frequency far below the loudspeaker

resonance frequency. Given that this flow is not produced with the hybrid in-

strument, the transients will not be perfectly reproduced. This limitation was

also acknowledged by Almeida, as he reported in his work on a simplified

hybrid wind instrument set-up with a loudspeaker (Almeida et al., 2010). In

contrast, the sustained operation does not include sub-fundamental frequency

components (apart from the mean flow), which suggests that the hybrid sus-

tained operation is likely to be more truthful. This is indeed supported by aural

comparison of the hybrid and simulated results, where the attack sounds ap-

pear to diverge more than the sustained sounds.

the instability of the hybrid instrument A cross-cutting topic in

this thesis is the instability of the hybrid instrument.

In section 3.4, an increasing phase lag and high frequency gain peaks were

reported in the measurement of the impedance curve of the resonator includ-

ing the loudspeaker and compensating filters. These issues were caused by un-

compensated loudspeaker effects and transversal resonant modes in the loud-

speaker front cavity.
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In section 5.5, some unstable occurrences were observed, which appeared to

be best indicated by the noisiness descriptor. It was concluded that the unstable

behaviour of the studied hybrid wind instrument imposed a limitation on the

variety of the timbres that could be produced, representing restrictions both

in its usage as a research tool and its musical potential. However, throughout

chapter 5, there was no ground to identify the phase lag issue as one of the reas-

ons for the unstable behaviour. Instead, the issue was identified as the primary

reason for the variation in fundamental frequency from the expected value and

consequentially for the associated shift in the harmonic spectral centroid.

In the following chapter, in section 6.1, a focussed study on the stability issue

led to in the hypothesis that it arises due to a combination of the high frequency

gain peaks, the phase lag issue and a steep nonlinear excitation curve. The hypo-

thesis was confirmed by the design of an improved prototype where the phase

lag introduced by the computing system’s latency was compensated for by the

addition of a second microphone. Meanwhile, the gain peaks were reduced by

repositioning the first microphone at the centre of the loudspeaker. While the

stability was improved, the oscillations produced with the improved prototype

hybrid instrument seemed to show greater divergence from the simulations

than the initial prototype. For future realisations it may be worth reconsidering

some of the prevention strategies noted in section 3.4.

Finally, it is interesting to note that the (earlier mentioned) restriction on

dynamic level occurs in similar conditions as the appearance of instabilities.

Indeed, a steep nonlinear excitation curve usually produces high HSC values,

which should lead both to increasing saturation and greater likelihood of in-

stability. However, surprisingly it was noted that the coincidental surpassing of

the maximum dynamic level and the instability condition does not necessarily

lead in (strong) unstable behaviour, i.e. it appeared that the occurrence of sat-

uration increased the instability threshold. This interesting observation may be

related to the fact that the steep nonlinearity implies high flow rate derivatives,

which cannot be realised with the loudspeaker at high dynamic levels.
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fundamental frequency deviations and consequences The fun-

damental frequencies obtained for the hybrid evaluations with the quasistatic

excitation models have been found; in general, to differ from these obtained

via the simulations. This effect has been shown to be due to the phase lag is-

sue. In turn, the fundamental frequency deviation results in variation from the

expected values for other sound features, such as the spectral centroid.

concluding remark Particularly from the “research tool” perspective,

it is important to note that even though the obtained accuracy of the hybrid in-

strument is reasonably good, the concept of accuracy is not “one-dimensional”.

That is, certain features may be independent of the current hybrid instrument’s

shortcomings (e.g. a study on the mean air flow), while others are highly de-

pendent on them (e.g. a study focussed on the influence of the fundamental

frequency). Nevertheless, certain acoustic self-sustained properties in wind in-

struments are very suitable for investigation with the current hybrid instrument

prototype, particularly those properties that are not influenced by the shortcom-

ings presented in section 3.4.

7.1.2 Reviewing the “research tool” and musical motivations

In order to confirm that the presented work has remained in line with the in-

tended goals, it is relevant to reconsider the motivations (see section 1.2). These

motivations were formalised in the research questions and the derived require-

ments laid out in subsection 1.4.3. While two distinct research questions were

stipulated (one regarding the hybrid instrument as a new musical instrument

and the other regarding the usage as a tool for wind instrument research), the

requirements demonstrated that both viewpoints shared many common initial

targets.

For convenience, the requirements are briefly repeated here:

• Diversity (in terms of the perceptible variety of the sound)
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• Precision, in terms of:

– the sound control (regardless of parameter mapping strategies).

– the accuracy of the sound control in relation to predictions and sim-

ulations.

• Repeatability, i.e. repeated progressions of the excitation model’s input

parameters should result in repeated sound features (if hysteresis effects

are avoided before the repetition).

• Musically relevant atypical behaviour, typical to the hybrid operation.

These requirements support the general aim of ensuring a hybrid functioning

that is as close as possible to that of an ideal hybrid instrument. This target and

the separate requirements have been guiding factors throughout the develop-

ment, excitation design and evaluation stages.

In the development phase (including the further investigation of the stability

issue in section 6.1), the main focus was to obtain a “hybrid impedance” as

close as possible to the measured input impedance of the resonator. The close

impedance agreements revealed in figure 27 confirm that this was successfully

achieved for the first five resonant modes of the prototype hybrid instrument.

Given that those modes are of greatest importance for the self-sustained op-

eration, this indicates that the hybrid operation will behave similar to predic-

tions and simulations, which clearly supports the accuracy requirement. Fur-

thermore, the close to harmonic reconstruction of the input impedance also

ensures that the sounds produced by the hybrid instrument are spanned over

a wide spectral variety, which is in support of the diversity requirement. This,

combined with the fact that an excellent repeatability was found also favours

a precise control of the sound of the hybrid instrument. However, it should be

said that those impedance measurements only concern low amplitude meas-

urements, therefore, conclusions with regard to the dynamic range cannot be

made yet.
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The choice of evaluating two wind instrument excitation models was mo-

tivated by both research questions, whereas the implementations of the bow-

string interaction and polynomial excitation models were mainly with a view

to exploring further musical potential. For all four excitation models, the sound

prediction theory provided understanding of how certain sound features are re-

lated to the excitation models and their parameters. Therefore, the theory rep-

resents a helpful tool for inspecting the variety of sounds that can be produced

as a function of the excitation model and its parameter values, and which para-

meter states are likely to give precisely tunable timbres. Moreover, given that

this theory can also predict extreme states (e.g. high amplitudes or spectral fea-

tures) it may also be useful for identifying when atypical behaviour is likely to

occur.

The hybrid evaluations were studied with sound descriptors to enable quant-

itative and perception relevant comparisons with theoretical predictions and

with simulations. Given the accuracy of the resonator simulation, the simulated

results were used as a reference, representing the ideal hybrid functioning, al-

lowing the precision along with the atypical behaviour of the real hybrid instru-

ment to be evaluated, which turned out to be reasonably precise within the eval-

uated parameter ranges for all excitation models. Also a generally good repeat-

ability was confirmed in these evaluations. Meanwhile, comparison between

different excitation models was of interest in terms of the diversity require-

ment. While it was observed that some audio descriptors describe a similar

range among distinct excitation models, the particular progressions can make

one model distinct from another model, which can also be interpreted as a wide

perceptible variety.

The further investigations concerning player control, mapping strategies and

effects are mainly relevant from the musical performance perspective. The player

control and mapping strategies allow one to select or accentuate certain para-

meter ranges and enable a suitable gesture control, which is useful for max-

imising the range of timbre variations with regard to the practical use of the
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instrument, or to ensure that only precise and/or repeatable ranges are given

attention. Alternatively, mappings can also be designed to focus on atypical

behaviour of the hybrid instrument.

For future research, there remains common ground between both research

questions. For instance, in both cases it would be appropriate to study the be-

haviour of the hybrid instrument with conventional wind instrument resonat-

ors for various notes. However, the increased functionality achieved during this

study, culminating in the improved prototype of the hybrid instrument, increas-

ingly enables development and evaluation strategies independently focussed

on one of the research questions. This is demonstrated by the ideas for future

investigation, presented in the next section. For instance from the musical point

of view, it would be interesting to initiate a qualitative evaluation with human

participants, including exploring more excitation possibilities. Also, the ideal

hybrid instrument does not necessarily represent the target hybrid operation

for musical use. Indeed, it is likely that certain deviations from the ideal op-

eration do not represent a problem in that respect. Indeed, it may even be

desirable that the hybrid instrument does not produce the same sounds as an

entirely simulated instrument, in a similar way to it being preferable to use a

non-ideal amplifier with an electric guitar. The non-ideal behaviour imposes

part of the particular character of the total instrument. However, for the hybrid

instrument to be a useful research tool, the ideal hybrid operation target should

be maintained.

7.2 perspectives and recommendations

In this section, some ideas for future hybrid wind instrument investigations,

developments and evaluations are proposed.
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7.2.1 The hybrid resonator

loudspeakers and other actuators There are good reasons to carry

out further investigations regarding the hybrid instrument’s actuation. The

loudspeaker in the prototype presented in this study has proven to provide

a reasonably good operation, but it has been shown that this component is still

responsible for the principal shortcomings of the hybrid instrument.

To extend the dynamic range, a more powerful loudspeaker would be de-

sirable. As mentioned in section 3.3.2, the optimal loudspeaker design is not

available as an off-the-shelf product. Instead, such a design could be realised

via customisation of an existing loudspeaker, for instance by replacing the voice

coil with a higher power rating coil. This would increase the total mass of the

moving parts of the loudspeaker, but therefore removes the need for adding

more mass to the membrane to lower the loudspeaker’s resonance frequency.

While the use of alternative loudspeaker technologies has been considered,

it may be helpful to review the available loudspeaker types with the present

results and shortcomings in mind. Dynamic loudspeakers were found to offer

the best power ratings for the required operation, but it could be that certain

loudspeaker technologies offer better linearity, so that the increasing phase lag

issue could be avoided.

Finally, it may be worth considering the use of other aeroacoustic actuation

possibilities. Earlier studies have reported on the employment of an electrovalve

with a “supercritical” set-up (i.e. using an air supply of much greater pressure

than the pressure at the output) to drive a hybrid wind instrument (see (Buys

and Vergez, 2012)). However, compared with the current hybrid instrument’s

performance, the results were much less close to the ideal hybrid behaviour

(although the electrovalve system did provide a greater dynamic level). This

was mainly due to the mechanical friction of the valve components.

It is worth noting the possibility of a subcritical set-up with an electronic

valve mechanism. Hence, a mouth pressure equivalent supply pressure could
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be chosen, which would result in a reed-equivalent valve displacement. A re-

lated idea is to equip a real reed with a piezo-electric actuator to realise a

particularly relevant subcritical valve actuation.

microphones The microphone used in the initial prototype hybrid instru-

ment was largely satisfactory in terms of acoustic requirements. However, its

rather large size made it impractical for the centrally located position in the

improved prototype hybrid instrument discussed in section 6.1. Another mo-

tivation for looking for alternative microphone options could be the relatively

high cost.

However, it is not straightforward to find a low-cost microphone that can

withstand the high pressures generated in wind instrument resonators (even

the reduced dynamic levels experienced with the current hybrid prototype ap-

pear to be challenging in that regard). While currently unsuitable, it may be

that future MEMS microphone realisations (i.e. piezo-based or dynamic mini-

ature microphones) will provide good candidates. Early research results seem

to confirm this perspective (see e.g. (Horng et al., 2010)).

electronic systems Some alternative electronic systems used in the

realisations of related hybrid and augmented instruments are discussed in sec-

tion B.1. In particular computing performance is continuously improving and

it is more than likely that even faster, more compact and cheaper systems than

the ones used in the current research will soon become available. Neverthe-

less, there are few real world applications which have ultra-low latency require-

ments, which explains why typical everyday computing systems remain un-

suitable for hybrid instrument implementations. Such requirements are mainly

driven by industrial control system applications, which have been key in con-

tributing to the development of real-time computing solutions. Such solutions

include the Xenomai platform used in this study (see section B.2) and digital

signal processing (DSP) interfaces for instance.
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As demonstrated in earlier work, the excitation can also be realised with ana-

logue electronic circuitry (Kitano et al., 1983; Maganza, 1985; Weinreich and

Caussé, 1986; Grand, 1994; Grand et al., 1997; Almeida et al., 2010). While

this option is much more restrictive (given that electronic components cannot

model any desirable operation), it has the advantage that virtually no latency is

present. Moreover, from the musical perspective, it is likely that certain imper-

fect analogue behaviour is reflected in the sound. This could produce musically

desirable variations, similar to the often preferred analogue electronic musical

systems. Furthermore, as for the amplification of the electric guitar, electronic

vacuum tubes could be used for the excitation, which may introduce a charac-

teristic nonlinear behaviour with musically expressive potential.

general set-up It is also worth considering (slightly) alternative hybrid

wind instrument set-ups.

For instance, it may be advantageous to additionally make use of a real-

time measurement of the loudspeaker’s membrane displacement during the

hybrid operation. This could for instance be applied in the context of an act-

ive control application to modify the acoustic impedance at the diaphragm of

the loudspeaker (Boulandet et al., 2012). While Boulandet et al’s set-up allows

simulation of “open pipe” conditions at the loudspeaker position, it should be

mentioned that this extreme case is only achievable within a narrow frequency

range. Indeed, as stipulated in subsection 1.4.2, the target operation remains

close to the functioning with an uncompensated loudspeaker. Hence, the pass-

ive presence of the loudspeaker only allows for an open pipe simulation close

to its resonance frequency. Dr Sami Karkar confirmed this conclusion and pro-

posed considering a hybrid set-up with an actual opening at the resonator en-

trance, along with a loudspeaker (personal communication, 23 November 2016).

Provided that the flow rate at the resonator entrance can be measured in real-

time (rather than the pressure for this case), such a set-up would enable the

simulation of open-entrance wind instruments such as flutes and (flue pipe)
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organs. However, this approach does not allow the computing system to se-

lect either the closed or open resonator situation, which would be a convenient

feature for musical purposes.

Regarding the two-microphone set-up discussed in subsection 6.1.2, the low-

frequency deviation could be possibly avoided by designing an appropriate

filter to compensate for the loudspeaker cavity.

simulation of the entire hybrid set-up In order to study the in-

fluence of transducers and of other elements that are not intended to affect

the principal functionality of the hybrid instrument, the option of simulat-

ing the whole hybrid system (including the transducers and compensating fil-

ters) could be investigated. Such configurations could be simulated with Port-

Hamiltonian Systems (PHS) and/or other frameworks (e.g. COMSOL).

7.2.2 Excitation models

Another possible future development of the hybrid instrument prototype con-

cerns the exploration of various excitation models and techniques.

physically based excitation Physical models that are closely related

to the currently used single-reed and lip-reed models (such as double-reed

(Guillemain, 2004)) are easy to implement. In addition, the implementation of

a free-reed model could be tried, which is rarely applied for self-sustained

oscillations. Also the recorder’s excitation mechanism could be considered. The

latter would either require the open-entrance pipe situation as discussed in

the previous section, or it may be possible to switch the physical (Kirchhoff)

variables, i.e. to interpret the microphone’s pressure measurement as a flow

rate signal and vice-versa for the signal sent to the loudspeaker.

Furthermore, some more advanced physical excitation models could be con-

sidered. This is of interest from the point of view of obtaining more realistic and
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more “physical” sounds. For instance, the bow-string and single-reed excitation

models studied in this thesis were both approximated using a quasi-static as-

sumption. However, it is likely that more advanced physical models may result

in quite different timbres for both excitation types.

More sophisticated single-reed models could, for example, include the flow

that is induced by the reed movement (Dalmont et al., 1995), or more realistic

reed geometries and physics (Avanzini and Van Walstijn, 2004). As well as an

improved realism, such additional inclusions might lead to a flow signal that is

easier to produce by the loudspeaker (given that the loudspeaker cannot easily

reproduce the abrupt flow variations imposed by the sudden and discontinuous

reed beating with the current single-reed model).

A more advanced bow-string interaction model is proposed by Smith and

Woodhouse (Smith and Woodhouse, 2000), where the thermal effect of rosin

is taken into account. Meanwhile, the addition of pulsed noise to simulate the

structural irregularities during the bow-string’s slipping phase or the turbulent

air injection of flow-based excitation models could introduce another element

of realism (Chafe, 1990).

Regarding the lip-reed model, more dimensional models could be considered

(see e.g. (Adachi and Sato, 1996)), but it may also be possible to add another

filter to simulate the nonlinear propagation of air waves in the resonator (see

e.g. (Msallam et al., 2000) where this is taken into account for the case of an

entirely simulated brass instrument).

non-physically based excitation To fully explore the musical poten-

tial of the hybrid approach (as discussed in section 1.2.1), more non-physically

based models (such as the polynomial model) could be combined with an

acoustic resonator using the prototype set-up.

For example, tools intended for other audio purposes could be considered,

such as a limiter or compressor, which also introduce controlled nonlinearities.
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It may be of further interest to introduce a delay corresponding to the os-

cillation period (provided this period is known in advance). This could, for

example, be useful to introduce effects that otherwise require anti-causal oper-

ations (for instance, to compensate for the increasing phase lag introduced by

the loudspeaker).

A challenging yet promising idea would be to consider excitation model

design strategies that are guided by a target (steady-state) external pressure

spectrum. This could be achieved by deconvolution of that spectrum with the

resonator impedance and further inverse operations to finally obtain (pointers

towards) formulations of an excitation model. Such a study may be informed

by the harmonic balance or related techniques (see e.g. (Gilbert et al., 1989;

Karkar et al., 2012)). A related approach has been investigated by Drioli et

al., who aimed for the design of a “generalised musical-tone generator” using

neural network identification techniques to identify both the excitation model

and suitable parameters (Drioli and Rocchesso, 1997).

solutions to the implicit equation issue and numerical stabil-

ity Each model requires discretisation, which forms an important constraint

for numerical simulations in general. For many excitation models it is not pos-

sible to analytically obtain an explicit solution, which may then necessitate the

employment of complicated and computationally heavy algorithms (see section

4.1). The “K-method” appears to be a reasonably good technique for the digit-

alisation of such excitation models (Borin et al., 2000). However, overall it can

be concluded that even if the theoretical model is known, it is not guaranteed

that it is ready for use with the hybrid instrument.

As mentioned in subsection 4.1.1, globally energy balanced numerical schemes

could be used, so that numerical stability is guaranteed, also under highly non-

linear conditions (Bilbao, 2009b; Desvages and Bilbao, 2016). This technique

may prove useful for the simulation of more complex excitation models.
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7.2.3 Other additions

As illustrated as a further development in subsection 6.3.3, it is possible to

simultaneously perform active control operations while the hybrid instrument

is operating. This represents an interesting new focus for detailed investigation,

both in terms of musical potential and usage as a research tool.

A related idea is the application of an arbitrary filter to the signal sent to

the loudspeaker, and the simultaneous application of its inverse filter to the

microphone signal (provided both filters are causal). Given that the resonator

is linear with respect to the amplitude (to a good extent), from the excitation

model’s perspective these filters cancel each other out, so that the operation is

identical to the situation without filters. However, from the perspective of the

resonator, the signals are filtered. Hence, this technique opens up the possib-

ility of applying “equalisation” and other linear (and causally invertible) filter

operations to the sound produced by the hybrid instrument, without affecting

the underlying oscillation mechanism. However, it should be borne in mind

that this idea is only possible in practice when the filters do not significantly

affect the principal frequency components that are of key importance to the self-

sustained oscillation mechanism. This concept may, for instance, be of interest

for investigating the earlier proposed idea: for the perceptive simulation of the

nonlinear propagation of air waves in the resonator.

In addition to the mouthpiece controller introduced in section 6.3, various

other sensors could be introduced. For instance, the motion of the instrument

body could be measured with incorporated sensors or simple foot pedals could

be used.

7.2.4 Further evaluations and uses

musical motivation The hybrid operation can certainly produce unique

sounds with interesting musical potential, i.e. sounds that are not produced by
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full simulations. In this view, the reported saturation effects or appearances of

certain noises could be explored for instance.

Meanwhile, many sounds are (almost) equally produced by simulation. It is

still of interest to study such features, but it is important to note that the sim-

ulation already represents a good method for their (initial) evaluation. This ap-

proach has the advantage of bypassing the hybrid instrument’s technical com-

plications. The simulated evaluation provides a good indication of the musical

suitability, which could then be verified using the hybrid instrument.

This is of general interest for the initial evaluation of various excitation mod-

els and specific oscillation phenomena. One example is the observed period

doubling phenomenon (reported in section 5.5), demonstrating how atypical

behaviour can enlarge the musical expression domain. In line with Maganza’s

evaluation focus (see (Maganza, 1985)), it would be interesting to examine this

phenomenon in more detail, verifying the occurrence of further period doub-

ling “branches” and chaotic states.

As proposed in the introduction, it would be useful to conduct a qualitative

evaluation with musicians and/or listeners regarding the musical potential of

the hybrid instrument. This could be carried out with a real clarinet resonator

as well as with other wind instrument resonators. Furthermore, it would be

useful to employ the newly developed mouthpiece controller discussed in sec-

tion 6.3. To evaluate perceptive features, a (parallel) psycho-acoustic test can

be envisaged, comparing the hybrid instrument with real and/or simulated

instruments.

It is also conceivable that the hybrid instrument could be a component of a

larger (i.e. “intelligent”) musical system, where the resonator fingering could

also be automatised for example.

research tool evaluation As questioned earlier, it could be invest-

igated whether the absence of the mean air flow through the instrument ad-

versely affects the sound produced. This could be addressed by, for example,
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injecting a separate mean flow component via a capillary tube connected to the

entrance of the instrument. This injection technique could be further expanded

to introduce other chemical gas compositions, and the influence of the temper-

ature and humidity could also be verified. It is known that these gas properties

play a role when wind instruments are blown by human players (Rienstra and

Hirschberg, 2013), and an evaluation with a hybrid instrument would enable a

precise experimental verification.

It is worth noting that, while the dynamic range of the hybrid instrument

is restricted, it is nevertheless possible to simulate a small range of realistic

wind instrument excitation situations. For example, it would be possible to use

a realistic beating pressure (PM) in combination with a γ value just above the

oscillation threshold, resulting in a low amplitude oscillation, which can be

realised with the hybrid instrument.

The evaluation carried out in this thesis has mainly focussed on the sustained

operation of the hybrid instrument. However, it is known that the perception of

transient behaviour is of vital importance in defining an instrument’s character.

An interesting perspective would be to perform a detailed study of how the

transients are produced by the hybrid instrument, and then compare those

findings with simulations and a real instrument’s behaviour.

other purposes In addition to the uses for the hybrid instrument that

have already been discussed, some alternative applications were raised in the

introductory chapter.

For instance, Dr Henri Boutin stressed the potential of the hybrid wind instru-

ment concept for application to historical wind instruments that are no longer

allowed to be sounded by human players (personal communication, 25 Novem-

ber 2016), which was already mentioned in subsection 1.4.3 as a potential of

hybrid instruments.

Meanwhile, the possibility of (partly) automatising the excitation control

could have potential use in an educational context, allowing students to sep-
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arately train their fingering. The reduced dynamic range could also represent a

desirable feature, for instance in environments where the maximum sound level

is restricted. This perspective is supported by Yamaha, who are developing a

“Silent instrument” series.

Finally, in agreement with the “research tool” aspect, the hybrid instrument

can also be useful as a tool for wind instrument makers. Indeed, the imple-

mentation of sophisticated physical embouchure models leads to a good rela-

tionship with real mouthpiece constructions. By comparing a hybrid evaluation

with various embouchure properties and geometries, this can then inform the

design of a given mouthpiece component.

7.3 summary

In the first section of the current chapter, the work presented in this thesis was

reviewed. This was done by considering together all unrealistic hybrid aspects

(with respect to real wind instruments) noted throughout the thesis: the restric-

ted dynamic range, the absence of the mean flow component, unstable hybrid

behaviour and fundamental frequency deviations. A concluding remark was

made on the ambiguous notion of the “accuracy” of the hybrid instrument.

Then, the initial research questions and the associated requirements were reas-

sessed, verifying that their focus was maintained throughout the development,

excitation model design and evaluation stages.

The second section of the chapter presented a wide variety of perspectives

and recommendations, focussing on separate parts and possible functionalities

of the hybrid instrument. The suggestions were mainly ideas of the present au-

thor, although where relevant they were informed by literature. For the further

development of the instrument, ideas for alternative loudspeakers, other actuat-

ors, microphones, electronic systems (digital and analogue) and general set-up

considerations were made. Then, for the design of further excitation models, the

implementations of alternative and more advanced physical and non-physical
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models were suggested and a generic solution for the implicit equation issue

was proposed. Furthermore, the addition of simultaneous active control possib-

ilities, an equalisation implementation, and a few ideas for sensor systems were

proposed. Finally, some ideas for further evaluations and uses were presented,

covering musical, “research tool” and other perspectives.



Part III

A P P E N D I X

The last part of this dissertation comprises two appendixes. The first

appendix includes information on measurement equipment, prepar-

ations and regression techniques. It also reports on two measure-

ments and on the associated loudspeaker-tube parameter identific-

ation. The second appendix discusses the real-time computing sys-

tems employed in this thesis, preceded by a brief literature review

on related systems. Also some examples of code and programs are

provided.





AM E A S U R E M E N T A N D R E G R E S S I O N

The main practical measurement equipment, techniques and protocols that

have been applied in this study are laid out in this appendix, including a report

on the measurement of the coupled loudspeaker-tube system and the parameter

identification using the models provided in chapter 3.

a.1 measurement equipment

In this section, the equipment used to make the measurements to character-

ise the loudspeaker and the resonator are reported. For details on the mouth-

piece controller (comprising the load cell and pressure sensor), subsection 6.3.1

should be consulted. Meanwhile, more details on the computing systems are

discussed in the next appendix, in chapter B.

a.1.1 Microphones

The microphone used in the initial prototype (generally used in this thesis, ex-

cept for the piece of work involving the improved prototype, discussed in sec-

tion 6.1) is a 1/4 ” Brüel & Kjær (B&K) microphone type 4187 (equivalent to the

more common type 4135) with a B&K microphone preamplifier type 2633. This

microphone has a sensitivity of −48 dB re. 1 V Pa−1 (4 mV Pa−1), which is relat-

ively low, but sufficient to capture the lowest amplitude pressure waves in the

resonator. An excellently linear frequency response is reported in the datasheet,

with sensitivity deviations of maximum 1 dB for frequencies between 10 Hz to

20 kHz. The 3% Total Harmonic Distortion (THD) limit, giving an indication

287
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of the maximum achievable linear dynamic pressure measurement, is high at

164 dB (3170 Pa) and the lower threshold of the dynamic range is limited by

the (A-weighted) noise level of 39 dB (1.8 mPa). Both thresholds largely exceed

both the amplitude range used for the characterisation measurements and the

operational range of the hybrid instrument.

For the improved prototype, two Knowles microphones of type EK-26899-

P03 were used. These are small (4 mm × 5.6 mm × 2.2 mm) relatively low cost

microphones offering a high dynamic range (which is a rare combination). The

sensitivity of −71 dB re. 1 V Pa−1 (0.28 mV Pa−1) still enables a reasonable ac-

curacy in the context of the hybrid instrument’s operation, given that signals

largely exceed the (A-weighted) noise level, found at 40 dB (2.0 mPa). The fre-

quency response of these microphones is slightly less flat than that of the B&K

microphone. The sensitivity increases with frequency, culminating at 10 kHz

with −68.5 dB, and while this magnitude deviation is not an issue for the hy-

brid operation, the associated phase deviation is not provided and is potentially

of greater concern. A characterisation of this microphone model with respect to

this matter may be a useful future investigation. Using the “extended dynamic

range circuit” with a supply voltage of 10 V, as proposed by the manufacturer,

the dynamic range of the microphones can be fully exploited. The 10% THD

limit lies at 154 dB (1002 Pa), which still exceeds the useful pressure range for

the current hybrid wind instrument prototypes.

a.1.2 Amplifiers

Throughout the entire thesis, the loudspeaker is powered using a Cambridge

Audio type A1 amplifier, providing 30 W of maximum continuous power. The

frequency response of this amplifier was measured and the gain and phase

were found to deviate by less than ±0.42 dBV and ±0.1 rad respectively, in a

frequency band far greater than the hybrid operation.
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Initially, a B&K amplifier type 2706 amplifier was tested, which had a slightly

flatter frequency response. However, it was suspected that this amplifier did not

sufficiently reject power line noises.

a.1.3 Vibrometer and data acquisition

For the measurement of the loudspeaker membrane velocity, a Polytec Laser

Doppler vibrometer was employed, consisting of a PSV-400 scanning head, a

junction box, an OFV-5000 vibrometer controller and a data management sys-

tem to conduct the acquisition and store the measurements. This system al-

lowed for the additional measurements of the voltages originating from the

amplifier input and output and from the microphone. By carrying out all meas-

urements with the same acquisition card, synchronisation of all measurement

data was guaranteed.

In earlier measurements sessions than the ones reported in section A.4, an

additional USB acquisition card was used, and the data of the real-time comput-

ing system was also considered for use as “measurement data”. However, the

combination of measurement data originating from different acquisition equip-

ment consistently resulted in synchronisation issues, which demonstrated the

importance of using a single measurement system.

a.2 measurement preparations

a.2.1 Precautions

A typical issue when dealing with electrical measurements is related to ground-

ing. This issue can greatly affect accuracy and introduce (fluctuating) bias sig-

nals when not properly considered. The problem can occur when the electrical

supply of a signal source is “distantly related” to the electrical supply of the ac-
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quisition equipment. A detailed description of the issue lies outside the scope of

this thesis, but a suitable National Instruments guide provides a clear explan-

ation and useful practical guidelines (National-Instruments, 2016). All signal

sources used in this thesis were “floating” (i.e. all of the output leads were in-

dependent of the electrical ground), which allowed for an appropriate use of a

“referenced single-ended” (RSE) configuration. In this configuration, the float-

ing ground and signal outputs of the source are connected to the respective

inputs of the acquisition card (set to RSE mode) without additional wiring or

resistors.

A major cause of failures and malfunctions in today’s electrical components

and systems is “electrostatic damage” (ESD). This can occur when an electro-

static loaded body makes contact with a vulnerable contact of a component. To

cope with this issue, whenever possible, contacts and leads of components were

not touched and for the assembly of sensitive electronic components (e.g. the

Knowles microphones) an antistatic wrist strap was worn to direct any static

charges to ground.

Finally, given that the measurement set-up is relatively complex, involving a

large amount of equipment and wiring, the measurement set-up was built up

step-by-step with intermediate test measurements. This approach enables rapid

identification of the cause of faults in the system. It was particularly helpful

following problems originating from the vibrometer system, whose acquisition

inputs turned out to substantially decrease in impedance when powered off

(thereby affecting the measurement of signal sources that were still connected

to these inputs).

a.2.2 Calibration

Some of the equipment that was used required calibration in order to obtain

coherent absolute measurements. Both microphones could be calibrated using a

B&K “pistonphone”, which provides a pressure signal of known dynamic level.
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The amplifier could be calibrated by measuring its input and output voltages

while supplying a sine signal to the input. During this calibration, care was

taken to suppress noise, by applying an averaging filter, which could be carried

out using an oscilloscope.

a.3 nonlinear curve fitting by regression

In order to characterise a physical system, a suitable physical model and appro-

priate measurement data can be matched, resulting in the retrieval of approx-

imate physical parameter values for the system. This can be done using curve

fitting methods, which attempt to match the measurement data with curves

obtained with the model. A widely used nonlinear curve fitting method, that

is appropriate for all measurements carried out in this thesis, is the regression

with a “least-squares” approach1. This involves the calculation of the sum of

squares

S =
m

∑
i=1

(yi − f (xi, β))2 (104)

where (xi, yi) are measured data points (e.g. the pressure and flow rate amp-

litudes at a certain frequency), f (xi, β) is the physical model’s function (e.g. a

modal impedance model), and β is a vector containing the model’s parameter

values (e.g. the modal frequencies, quality factors and amplitudes).

The minimum value of S is obtained when the gradient of this equation

(with respect to β) is zero. Hence, a preparatory step is to theoretically obtain

all gradient equations (each parameter leads to a gradient equation); this theor-

etical development is not further described here. Once the gradient equations

are known, the regression procedure can start. An initial parameter vector β0,

contains an “initial guess” of the parameter values (note that this guess should

be reasonably close for the regression to converge). In the next step, a slightly di-

1 Note that alternatively the very recently appeared technique using recursive parallel filters by
Maestre et al. could be employed (Maestre et al., 2017).
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verging parameter vector β1 is evaluated, which allows the gradient equations

to be solved. In turn, these equations indicate whether the new parameters were

improved. Finally, the iteratively repeated execution of these steps leads to the

numerical approximation of the parameter values.

This regression technique is entirely performed by the MATLAB lsqcurvefit

function which takes (xi, yi), f (xi, β) and β0 as input parameters and returns an

estimated parameter vector β. Depending on the intended use, it is important

to make decisions regarding the data to use. For instance, when the parameters

are to be used to simulate the resonance modes of the resonator for simula-

tion of the self-sustained operation, it is important that the model matches the

measurements closely around the resonant peaks (particularly of the lower res-

onance modes). Given that both the measured data and the physical model can

diverge at frequencies far away from these resonant peaks (e.g. at frequencies

far below the first resonance), it is of interest to exclude this frequency range

from the regression. In addition, it is important to select an appropriate function

in this regard. For instance, to obtain a good regression around the impedance

peaks, an optimal regression is obtained by using the impedance expression

and not the related admittance (which would accentuate the antiresonances).

Apart from the modal resonator estimation, regressions were also used in the

characterisation of the loudspeaker, and for finding optimal parameter values

for the lead-lag filter, all discussed in the next section.

a.4 measurements and identification of loudspeaker and tube

parameters

In a first approach, the loudspeaker and tube were individually measured and

characterised. For the loudspeaker’s parameter identification, Klippel’s method

can be used (Klippel and Seidel, 2001). However, it was found that all measure-

ments could actually be performed on the assembled loudspeaker-tube system.

Using its associated coupled model, a method related to the one proposed by
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Klippel could then be used, enabling the estimation of both loudspeaker and

resonator parameters. This assembled approach allows an even more direct and

complete parameter identification. It also has the advantage of comprising in-

situ measurements so that the parameter values fully correspond with the hy-

brid instrument application. The adapted version of Klippel’s method involves

two measurements (described in A.4.1 and A.4.2) and four least square linear

regressions. The regressions were carried out on the frequency domain repres-

entations of the measured data and enabled retrieval of both the loudspeaker

and resonator parameters. In theory it should even be possible to characterise

the entire system with a single measurement. However, this would require a

nonintrusive electrical current measurement of reasonable precision, which is

difficult to realise with practically available current sensors, in particular due to

the precision requirement. (This was empirically confirmed with a Hall Effect-

based current sensor).

For reference, all of the obtained loudspeaker parameters and lead-lag filter

coefficients are shown in table 1 in subsection 3.3.3.

a.4.1 Measurement 1

For the first measurement, a resistor with resistance Rs was placed in series

with the loudspeaker and a sine wave signal with an amplitude of 0.3 V was

supplied, swept in frequency from 0 kHz to 1 kHz over 20 s. This amplitude is

of the same order as the hybrid signals encountered in this study, and covers

about half of the loudspeaker’s linear dynamic range. The voltages across both

the resistor and the loudspeaker were measured so that the current (and thus

the speaker’s electrical input impedance) could be derived, as in equation (37).

To ensure a good precision for both voltage measurements, Rs was chosen to be

of the same order as the DC voice coil resistance, with its precise value determ-

ined using an ohm-meter. The loudspeaker’s membrane velocity was measured

synchronously using the laser-Doppler-vibrometer (see section A.1). The meas-
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Figure 81: Regression of the electrical loudspeaker input impedance Z∗e(mt) using equa-
tions (105a) and (105b).

ured values were then inserted into the following two alternative expressions

for the impedance:

Z∗e(mt) =
V∗

I∗
(105a)

Z∗e(mt) =
Ze V∗

V∗ − Bl Ẋ∗
, (105b)

where the asterisks refer to measured quantities.

A regression using both expressions resulted in a good match, as can be seen

in figure 81, enabling the retrieval of precise electrical loudspeaker parameters

Bl and Re.

It should be noted that the observed phase lag in the impedance obtained

with equation (105b) increases with frequency and isn’t taken into account by

the used model. In subsection 3.3.3 it is reported that, unlike the loudspeaker’s

model, its input to output phase response indeed increases more and more with

frequency (possible causes for that are given in subsection 3.4.1). Given that the

velocity measurement is used in equation (105b), the phase lag is reflected in
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the measurement with that equation. Hence, for a correct parameter estima-

tion with the used loudspeaker model, the regression is applied from 20 Hz to

300 Hz only.

a.4.2 Measurement 2

In the second measurement, the series resistance was left out so that the low

amplifier output impedance and, consequently, the loudspeaker’s Qts-factor

were maintained. Here, the supplied sine wave signal was swept from 0 kHz

to 5 kHz over 55 seconds for both a 0.3 V and a 0.6 V amplitude, in order to

observe possible nonlinear effects. The amplifier’s input voltage was captured,

together with the membrane velocity and the pressure in front of it. The ampli-

fier gain was derived before the measurement, so that the voltage V delivered

by the amplifier could be obtained.

Identification of the loudspeaker’s mechanical parameters

The measurements were then inserted into equation (38), so that a regression

with:

1/Z∗m(et) =
1

Zm̃(e) + Sd
P∗
Ẋ∗

(106a)

1/Z∗m(et) =
Ze Ẋ∗

V∗ Bl
, (106b)

using the expression for Zm̃(e) in (30), revealed all mechanical loudspeaker para-

meters (note that the inverse impedances are needed for optimal conversion, as

explained in section A.3).

The regressed curves (presented in figure 82) show a good correlation. At

higher frequencies the same increasing phase lag behaviour is observed, but it

is interesting to note that the measurement with the 0.6 V input signal is less

affected. The 20 Hz to 1000 Hz frequency range is chosen for the parameter
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Figure 82: A regression of two mechanical loudspeaker reciprocal impedances 1/Z∗m(et),
obtained by equation (106a) (for a 0.3 V amplitude) and equation (106b) (for
0.3 V and 0.6 V amplitudes) and a regression of Q̂/Q∗ (including the HLL
compensator transfer function).

estimation, as it corresponds with the spectral domain that is of importance to

the self-sustained operation with an excitation model.

Identification of the lead-lag filter coefficients

The same measurement data can be used to find appropriate coefficients for

the lead-lag compensator HLL. The targeted range for this filter is between the

loudspeaker resonance frequency and the frequency where the effect of the

loudspeaker’s damping and stiffness becomes negligible, i.e. 80 Hz to 300 Hz

for the current set-up.

Using the obtained electrical and mechanical loudspeaker parameters and

the measured pressure signal P∗, the signal Q̂∗ can be derived by inversely

applying the feedback and feedforward filters to the measured amplifier output
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voltage V∗. A regression using the lead-lag equation (44) was applied on the

ratio between this input and output:

H∗LL( f = [80, 300]) =
Q̂∗

Sd Ẋ∗
, (107)

which is also shown in figure 82, revealing an effective loudspeaker resonance

compensation above ωLS(= 2π×67.4 rad s−1).

Identification of the modal tube coefficients

This measurement data and the Sd value (obtained via the first regression) also

enabled the measurement of the input impedance of the resonator:

Z∗t =
P∗

Ẋ ∗ Sd
.

Figure 83 shows the magnitude and phase of this impedance (solid line), along

with a modal approximation (dashed line), which is derived from the meas-

ured impedance by regression, using equation (25) (thereby revealing the modal

parameter values). The resonance frequencies of the regression are found with a

±2 cent precision and, over a large range around the resonances, the magnitude

does not deviate by more than ±0.3 dB from the measurement.

This method is compared with other acoustic input impedance measure-

ment techniques (e.g. with the “capillary tube method” (Sharp et al., 2011))

and is found to provide a measurement with the closest match to a theoretic-

ally obtained curve, except in terms of the phase at frequencies greater than

2 kHz, where the phase-lag issue arises (which is why the measurement with

the 0.6 V signal is used here). Nevertheless, the regression can be focussed

on the magnitude response for that frequency range, resulting in a corrected

phase. Moreover, the phase response at such high frequencies doesn’t affect

self-sustained oscillations at the tube’s first register note. As such, using a fre-

quency range of 20 Hz to 4050 Hz, the parameters of 14 modes are identified. A
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Figure 83: Fourteen first modes of the measured tube impedance Z∗t (solid line) and its
modal regression using equation (25) (dashed line).

detailed view on the first five impedance peaks is given in figure 27 in subsec-

tion 3.3.3.
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b.1 digital and analogue electronic systems used in earlier

hybrid instruments

An important component of hybrid musical instruments is the electronic system

that must acquire, process and deliver signals within specific time constraints,

determined by the target operation. This section reviews a number of electronic

systems reported in the literature. When provided, the characteristics that are

relevant to the current study are mentioned.

Analogue systems, although benefiting from fast response times, often lack

in control precision or flexibility. However, the studies of Kitano et al. (1983),

Grand et al. (Grand, 1994; Grand et al., 1997), Almeida et al. (2010) and (partly)

Maganza (1985) and Weinreich and Caussé (1986) allowed the use of simpli-

fied excitation models, which could be realised with a few simple (nonlinear)

electronic components.

In contrast, digital systems are appealing for their flexible and precise control

options, but many fall short when it comes to timing requirements. Moreover,

the processing power imposes a maximum sampling frequency, which limits

the usable frequency range.

A non-negligible difference between active control and hybrid applications

with regard to the restricted frequency bandwidth is that, with the former, the

instrument can still produce frequencies exceeding the bandwidth, while with

hybrid instruments, the bandwidth fully dictates the spectrum of the sound

produced by the instrument. Early digital solutions were based on specialised

analogue-to-digital (A/D) and digital-to-analogue (D/A) converters and fast

Digital Signal Processing (DSP) integrated circuits that could be programmed

299
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in low-level programming languages or in C. Such solutions were, for example,

employed by Guérard et al. (Guerard and Boutillon, 1996; Guérard, 1998), Wein-

reich et al. (Weinreich and Caussé, 1991) (mentioning a “computer” with a

sampling rate of 125 kHz), Boutin (2011) and Berdahl (2009), with various levels

of system performance. Hanagud and Griffin (1998) initially used a DSP board

and a PC, and later they used a system housed in a “portable box” (without

mentioning further technical details). Maganza also evaluated his hybrid wind

instrument with a digitally implemented excitation model, using IRCAM’s 4C

computer, which was specially developed for such applications, featuring a

total input-to-output delay of 100 µs (Maganza, 1985; Maganza et al., 1986). This

computer was also used by Weinreich, as reported in earlier work on his hybrid

string instrument (Weinreich and Caussé, 1986).

Vergez and the current author have previously used a dSpace “DS1006” di-

gital interface, which can be programmed in Simulink, offering flexible and

graphical programming benefits (Buys and Vergez, 2012). This system could

run at a maximum sampling rate of 50 kHz with a total latency of only 20 µs,

corresponding to a single sample delay. Disadvantages of the dSpace system

are the considerable price and its relatively large size, in comparison with the

compact DSP interfaces for instance.

More recently, musical active control projects have been reported which use

standard PCs, optimised with a real-time framework such as Xenomai or RTAI.

These systems enabled similar performances to the dSpace interface, with total

latencies down to 24 µs at sampling frequencies around 40 kHz (Dozio and

Mantegazza, 2007; Lee et al., 2008; Berdahl, 2009; Benacchio et al., 2013; Meur-

isse et al., 2013). While more complex operations increase the delay time slightly,

excitation models are relatively simple operations, so that this approach was

chosen for the development of the hybrid instrument presented in this thesis.
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b.2 the real-time computing systems employed in the current

work

The hybrid operation requires a “real-time” feedback-loop that includes a nu-

merical interface. For both prototype hybrid instruments described in this dis-

sertation, general purpose computing systems were configured in order to meet

the real-time requirement.

A typical computer operating system rapidly alternates between the execu-

tion of various processes (both user-defined and background tasks such as veri-

fying e-mails, or making a cursor blink on the screen), so that their occurrence

appears to be simultaneous. However, within small time scales, the process al-

ternations become clear. Everyday computing applications can be interrupted

in this way, but the short waiting periods prove to be problematic for applica-

tions with fast and almost instant processing requirements.

The solution chosen for the hybrid wind instrument implementation in the

current work involves the recompilation of a Linux kernel on general purpose

computer architecture, which is covered by the Xenomai framework1 . This

framework makes changes in the priority handling of a Linux distribution, al-

lowing the attribution of 100% priority to user defined processes. That is to say,

when a program is compiled from C++ code that includes specific Xenomai

code, its execution gains full priority over all processes; this is also referred to

as a “hard real-time” process. Meanwhile, a fast acquisition interface guaran-

tees equally fast analogue signal to data conversion and vice versa.

b.2.1 A PC-based system

The first Xenomai implementation, used for the development and evaluation

of the initial prototype (used throughout this thesis, apart from in section 6.1),

was carried out on a Pentium 4 desktop computer. While being a relatively old

1 http://www.xenomai.org

http://www.xenomai.org


302 computing systems and programs

computer, its processor only contains a single core, which is known to provide

better co-operation with the Xenomai platform. Furthermore, given that the

set-up of the Xenomai system is not always straightforward, it was decided to

choose the set-up to be as close as possible to the successful Xenomai set-up by

Benacchio et al., who also used a Pentium 4 computer (Benacchio et al., 2013).

This system includes special drivers (by the “Analogy” software project),

which enable uninterrupted access to a National Instruments 6281 (M series)

16-bit acquisition card that provides analogue inputs and outputs. To enable

the co-operation with the Xenomai functionality, specific Analogy driver-code

is added to the processes that require “hard real-time” data input and output

handling.

In order to introduce these specific commands into the C++ code that is

generated from a Simulink program, the work by Benacchio et al. is relied on,

who created a patch-file that makes the necessary modifications to the C++ code

(Benacchio et al., 2013). In this way, the system can be used with a minimum

sampling time (without overruns) of T = 25 µs, corresponding to a sampling

rate of fs =40 kHz (sufficient for capturing the frequencies produced by the

instrument).

The analogue inputs are sampled with an A/D converter while calculated

digital output data is simultaneously sent to the D/A converter (shown in the

global block diagram in figure 19). In this process, some signal transformations

occur. While the A/D converter contains an anti-aliasing low-pass filter and

introduces quantisation noise, the D/A converter also involves a low-pass “re-

construction filter”. However, given that a high sampling rate and bit depth

are used, the effect of these transformations is negligible for the frequency and

amplitude range of interest in this study, so that only the introduced latency is

taken into account in the general computing system transfer function Hcptr(z).

For the PC-based system, as there are no sources of latency other than the A/D

and D/A conversion itself, the total latency is restricted to a single sample only,

so that:
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Hcptr(z) = z−1. (108)

It should be mentioned that the real-time computing system was still affected

by an imperfect timing issue, which introduced a slight “jitter” (i.e. small fluc-

tuations of the acquisition punctuality, which is manifested as an additional

noise signal). The mean time deviation (around ±3 µs), and therefore the amp-

litude of the noise, was found to change over longer periods (hours or days). A

hypothesis for the cause of this issue is that the clock signal used for the Sim-

ulink code is independent from the acquisition card’s clock, when ideally they

should be co-operating. In chapter 5, the issue was identified as the reason for

a long-term non-repeatability effect, causing deviations of the hybrid sounds.

Another drawback of this system is that it only supports a single input and

output to be used.

b.2.2 Bela, a BeagleBone Black based system

Relatively recently, with the purpose of fast-interacting audio computing in

mind, Andrew McPherson et al. at Queen Mary University designed “Bela”, a

system based around the BeagleBone Black embedded small computer (McPh-

erson and Zappi, 2015). The BeagleBone Black is equipped with a Linux dis-

tribution which therefore supports a Xenomai implementation. McPherson et

al. specifically designed an additional acquisition board (a “cape”) for the hard

real-time audio purpose, supporting 8 analogue inputs and outputs.

The support of several audio inputs has been the main reason for the choice

of this platform for use in the improved prototype discussed in section 6.1, as

that prototype requires an input for each of the two microphones.

Bela’s minimum total I/O latency is ∆t =90.7 µs, with N = 4 (i.e. the min-

imum I/O sample delay) and fs = 44.1 kHz. Hence, for this system the comput-

ing system transfer function is:
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Hcptr(z) = z−4. (109)

While this system introduces a greater input-to-output latency then the PC-

based Xenomai system discussed in subsection B.2.1, as explained in section

6.1, the 2 microphone technique compensates for this delay.

Another advantage of the Bela system is that its compactness makes the en-

tire hybrid wind instrument easily transportable.

While the system does not support the use of Simulink, the hybrid wind

instrument’s computing operations (the excitation models and the loudspeaker-

compensating filters) are relatively simple to implement in C++ code, which

also provides superior performance compared with Simulink-generated C++

code.

b.3 selected programs

b.3.1 Principal programs for the hybrid and simulated evaluations with the PC-system

The MATLAB code displayed in code listing 1 shows the main contents of the

hybrid_wind.m file, which governs the evaluation procedure for the hybrid in-

strument and for the simulations. A detailed explanation is not provided, but it

can be verified that the code handles functions as discussed in this dissertation.

Listing 1: "hybrid_wind.m" — MATLAB code for the global self-sustained evaluations.

% Script for the hybrid wind instrument

% version 1.3

clc

clearvars

close all
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%% %!set the instrument mode and the desired excitation model:

instrument_mode = 'simulation';

%instrument_mode = 'hybrid';

%Main excitation models %!select

%excitation_model = 'single_reed';

excitation_model = 'lip_reed';

%excitation_model = 'bowed_string_hyperbolic';

%excitation_model = 'polynomial';

% Solver

Ts = 25e-6; %(s) solver period

fs = 1/Ts; %(Hz) sampling frequency for solver

runtime = 5; %(s)

%Resonator Parameters:

rho = 1.204; %(kg/m^3) air volumetric mass

c = 344; %(m/s) the speed of sound (21.5 C)

% Tube characteristic impedance :

a = 14.2e-3/2 % (m) tube cross sectional radius: 14.2e-3/2; %real

clarinet: 15.0e-3/2 %! set!

St = a^2 *pi; % (m^2) tube cross sectional area

Zc = rho*c/St;

%Excitation model:

% Execute script containing the excitation model variables and

vectors:

run(excitation_model)
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if strcmp(instrument_mode,'simulation')

% Load the modal resonator parameters:

load('../../../Data/Characterising/Calculated/Impedances/Modal

coefficients/modal_coeff_vibro_pt1-2.mat','modal_coeff');

an = modal_coeff(:,1);

wn = modal_coeff(:,2);

Qn = modal_coeff(:,3);

elseif strcmp(instrument_mode,'hybrid')

temp = 22.6; %!set

%Amplifier parameters:

maxlinevoltage=0.447;

maxoutputvoltage = 5;

%! Perform an amplifier gain calibration first. Put the found

factor here:

amp_gain_factor = 0.73316;%last calibration:%23/9/2016

% Microphone, loudspeaker and amplifier parameters

micpreampsensitivity = -0.0025726 % (V/Pa) the minus sign is to

correct for the inverted output.

%Loudspeaker Parameters:

% load LS estimated parameters for the loudspeaker compensating

filters:

load('../../../Data/Characterising/Calculated/LS Parameter

estimation/Estimated_LS_parameters_vibro_pt1-2.mat')

%Calculate lead-lag discrete filter variables:

HLL_c = tf([1 LLwresn/LLQnd LLwresn^2],[1 LLwresd/LLQnd LLwresd

^2]);

HLL_d = c2d(HLL_c,Ts);
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end

%% Runtime & post procedures:

if strcmp(instrument_mode,'simulation')

% Launch the simulation with these parameters :

sim(['simu_wind_' excitation_model '.mdl']);

p_dl = p_dl.signals.values;

q_dl = q_dl.signals.values;

%zeta_vect_simu = zeta_vect_simu.signals.values;

%gamma_vect_simu = gamma_vect_simu.signals.values;

% Save all acquisition parameters & results:

timevect = (0:Ts:runtime)';

plotlinespecs = '--r';

save(['Acquisition_parameters_and_results_simulation_'

excitation_model]);

elseif strcmp(instrument_mode,'hybrid')

%activate driver (actually needed just once, but does no harm

executing each time...)

unix('echo xenomai | sudo -S /usr/xenomai/sbin/analogy_config

analogy0 analogy_ni_pcimio 0x4,0');

%run the calibration program:

unix('./calib_micoffset -time 3');

load('calib_micoffset.mat');

voltsin_calib = rt_yout(:,2); ampin_volts_calib = rt_yout(:,3);

micoffset_V=mean(voltsin_calib);

%build the c code:

rtwbuild(['hybrid_wind_' excitation_model])

%run the xenomai patch:
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unix(['echo xenomai | sudo -S ./moulinette.sh hybrid_wind_'

excitation_model]);

%execute the program:

unix(['echo xenomai | sudo -S ./hybrid_wind_' excitation_model '

-time ' num2str(runtime)]);

%load the results and put it into appropriate vectors:

load(['hybrid_wind_' excitation_model '.mat'])

timevect = rt_tout(:,1);

p_dl = rt_yout(:,1);

q_dl = rt_yout(:,2);

ampin_volts = rt_yout(:,3);

nclipped=sum(abs(ampin_volts)-maxoutputvoltage>=0);

if nclipped>0

warning('AMPLIFIER SIGNAL HAS CLIPPED %d TIMES!',nclipped)

figure,

plot(timevect,ampin_volts)

end

clear rt_yout rt_tout;

plotlinespecs = '-b';

save(['Acquisition_parameters_and_results_hybrid_'

excitation_model]);

end �
On line 34 the excitation parameter values and vectors are prepared. If the

simulation mode is set, the sim command on line 66 starts the calculation of the

Simulink patch. If the hybrid mode is set, the commands between line 76 and

85 prepare the C++ code from the hybrid instrument’s Simulink patch. On line

85, the Xenomai patch is applied on the C++ code and the program is compiled,

using the moulinette.sh script. Finally, the real-time program is launched with

a unix command on line 88.
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Figure 84 presents the relevant Simulink patch for the simulation. The red

block represents the excitation model (in this case the single-reed model), whose

content is detailed in figure 85. While the magenta blocks handle the excitation

input parameters, the blue blocks store the generated pressure and flow rate

signals. Furthermore, the orange blocks handle the conversion between dimen-

sionless and dimensional physical variables. Finally, the yellow block contains

the modal resonator simulation, whose contents are partly shown in figure 86

(for the first two modes).
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Figure 84: Main Simulink patch for the simulated evaluations. The red block contains
the excitation model, the orange blocks handle the dimension(less) conver-
sion and the yellow block contains the modal tube simulation.

The Simulink patch for the hybrid instrument (not shown) is fairly similar.

Instead of a resonator block, it contains input and output ports, which enable

access to the acquisition card.

These and more hybrid and simulated evaluation programs are available

for download on the following webpage: http://dx.doi.org/10.21954/ou.rd.

4753465.

http://dx.doi.org/10.21954/ou.rd.4753465
http://dx.doi.org/10.21954/ou.rd.4753465
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Figure 85: Simulink patch for the single-reed excitation (the content of the red block in
figure 84). The patch corresponds to the calculations detailed in subsection
4.2.2.
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Figure 86: A part of the Simulink patch for the modal resonator simulation (the con-
tent of the yellow block in figure 84). The shown part corresponds to the
calculations of the first two modes, as calculated by equation (25) in section
2.4.

b.3.2 Main programs for the hybrid evaluation on Bela

The C++ code developed for execution on the Bela platform is partly similar

to the MATLAB code presented above. Additionally, the Simulink patches are

transformed into C++ code. All hybrid evaluation code for execution on the

Bela platform can be downloaded from the following web location: http://

dx.doi.org/10.21954/ou.rd.4753471. Here, only the arbitrary example of the

bow-string interaction model is given in listing 2 (copied from the file ). As with

the MATLAB example, only a few explanations are given below the code.

Listing 2: "BowStringInteraction.cpp" — C++ code for simulation of the bow-string in-

teraction excitation model on the Bela platform.

http://dx.doi.org/10.21954/ou.rd.4753471
http://dx.doi.org/10.21954/ou.rd.4753471
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/*

*

* Bow-string interaction model. The classical quasi-static "hyperbolic"

model by Woodhouse, but proposed in a new dimensionless form.

*

* Kurijn 04/2016

*

*

*/

#include "BowStringInteraction .h"

#include " . ./ include/Uti l i t ies .h"

#include <cmath>

#include <stdio.h>

#include <cstdlib>

// Excitation control types:

#define PT 1 //excitation through potentiometers

#define MC 2 //excitation through mouthcontroller

#define CV 3 //excitation with constants value

#define SC 4 //excitation with scores

#define EXCITATION_CONTROLLER MC // Set to PT / MC / CV / SC

BowStringInteraction::BowStringInteraction() {

beta = 0.5;

mu_d=0.3;

mu_s=0.8;

delta=mu_d/mu_s;

alpha=0.5;//Schelleng: lies in between 0.26 and 1.

gammab=1;

zetab=0.2;

_f = 0.0;
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_slipping = false;

v0_cte = 400;

v0 = v0_cte;

//Define the excitation control scores:

int numcycles = 3;

float runtime = 15;

float zetab_min = 0.2;

float zetab_max = 1.0;

zetab_score.setCteStepEnvs(numcycles, runtime, zetab_min, zetab_max);

float minmult = alpha;

float Y0t2Zcstring = 0.03;//based on 1st mode: 1/(an(1)*Qn(1)/wn(1));

float maxmult = 3*(1-delta)*(1-beta)*powf(beta,2)/Y0t2Zcstring;

gammab_score.setProgresSawToothEnvs(numcycles, runtime, zetab_min,

zetab_max, minmult, maxmult);

}

void BowStringInteraction::mouthcontroller(float control_0_smooth, float

C0in_offset, float control_1_smooth, float C1in_offset) {

gammab = map(control_0_smooth, C0in_offset, .65f, 0.0f, 7.0f); // 1st

controller for the bow velocity

zetab = map(control_1_smooth, C1in_offset, .8f, 0.0, 1.4f); // 2nd

controller for the bowing force

v0 = map(control_1_smooth, C1in_offset, .8f, v0_cte, 0.0f); // Lip

force -> PM

}

float BowStringInteraction::update(float Vh, float control_0_smooth, float

C0in_offset, float control_1_smooth, float C1in_offset) {

// Map controllers to parameter ranges

#if EXCITATION_CONTROLLER == PT
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// Using the potentiometers:

gammab = map(control_0_smooth, 0, 1, 1.0f/3.0f, 4.2f); // 1st

controller for the mouth pressure

zetab = map(control_1_smooth, 0, 1, 0, 0.8); // 2nd controller for the

lip force

#elif EXCITATION_CONTROLLER == MC

mouthcontroller(control_0_smooth, C0in_offset, control_1_smooth,

C1in_offset);

#elif EXCITATION_CONTROLLER == CV

// Using cte. values

gammab = 0.5;

zetab = 0.15f;

#elif EXCITATION_CONTROLLER == SC

// Using a score

gammab = gammab_score.update();

//excitation.zeta = 0.6f;

zetab = zetab_score.update();

#endif

// dimensionless mouth pressure minus dimensionless historical pressure

static float _deltavh; _deltavh = gammab-Vh/v0;

static float A; A = alpha+1.0f;

static float B; B = A*zetab*delta;

static float abs_vh_p_1; abs_vh_p_1 = fabs(_deltavh)+1;

static float D; D=powf((abs_vh_p_1-B),2.0f) + 4*(B-A*zetab);

static float fstick; fstick = _deltavh/A;

static float fslip; fslip = ((0.0 < _deltavh) - (_deltavh < 0.0)) * (

abs_vh_p_1+B-sqrtf(D)) / (2*A);
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if(_slipping) // If previously slipping, determine if still slipping:

_slipping = fabs(fstick)>zetab;

else // If previously sticking, determine if now slipping starts.

_slipping = fabs(fslip)<=zetab && D>0.0f;

// Set output force to slipping / sticking accordinly

if(_slipping)

_f = fslip;

else

_f = fstick;

//Return bow-string force:

return (_f*v0/Zc);

} �
In contrast to the PC-based system, this code enables the input of control

data, originating from the mouth controller (using the specifically dedicated

mouthcontroller function starting on line 52) or from dial buttons. Preprocessor

directives (the commands preceded by a # sign) are used in the code to enable a

user-defined choice between excitation control options, which will be processed

before the compilation of the program.

The actual stick-slip calculation of the model is processed in the update func-

tion, starting on line 58. As can be seen, the physical simulation process is

captured between lines 82 and 101, which involves relatively few calculations.
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