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ABSTRACT: 

The kinetochore is a multi-protein complex that connects the chromosome with microtubule and pulls 
the chromosome during chromosome segregation.  In yeast, a single kinetochore assembles on a Cse4 
nucleosome and attaches to a single microtubule, making it an ideal system for studying the 
architecture of kinetochore-microtubule interaction, function, and regulation. The inner kinetochore 
assembles on the centromere and anchors the outer kinetochore that attaches to the dynamic 
microtubule. The interplay between the kinetochore structure and microtubule dynamics in a living 
cell has not been studied. 

I have used a combination of in-house developed quantitative microscopy, genetic techniques 
and mathematical simulation in the budding yeast, S.cerevisiae, to elucidate a novel structural 
transition of the kinetochore. During anaphase, the microtubule undergoes rapid depolymerization. 
Kinetochore tracking of microtubule during this phase is critical for chromosome segregation, but 
how this tracking is achieved is not well understood. A combination of FRAP and photoconversion on 
kinetochore proteins have revealed that the kinetochore consists of highly dynamic sub-modules and 
stable sub-modules. I show that microtubule dynamics significantly affect the dynamic kinetochore 
sub-modules but not the stable ones. Mathematical modeling of microtubule dynamics and 
kinetochore attachment has revealed the importance of kinetochore structural transition for 
microtubule attachment. In addition, I have discovered that kinetochore structural transitions are 
regulated by known metaphase-anaphase specific pathways. 

Scm3 is the chaperone responsible for assembling the centromeric nucleosome that contains a 
specific histone variant Cse4. I helped to identify and characterize a new chaperone for Cse4. I 
demonstrated that recombinant yCAF-1 can promote the assembly of Cse4 nucleosomes in vitro and 
at non-centromeric positions, causing problems for chromatin-based processes. 

In summary, my thesis work has significantly contributed to our understanding of centromere 
and kinetochore function in budding yeast. I speculate that many of the findings will inform our 
perspectives on centromere and kinetochore function in higher eukaryotes. 

Director of studies: Jennifer.L.Gerton 

Title: Investigator 
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Introduction 
 

Successful propagation of living organisms depends on the faithful segregation of 

equal sets of chromosomes. Error in this process results in aneuploidy and birth defects (Pfau 

and Amon 2012). Understanding the chromosome segregation is critical. Microtubules (MT) 

emanate from the spindle pole body (SPB) (microtubule organizing center) and interact with 

the chromosomes through a mega-Dalton protein complex called the kinetochore (KT). 

Kinetochores, microtubules, and SPBs - along with the chromosomes - form a ‘spindle-like’ 

structure which is important for proper chromosome capture and alignment during 

segregation. The kinetochores assemble on a specialized region on the chromosome called 

the centromere. In Saccharomyces cerevisiae (budding yeast), the centromere sequence spans 

~125 bp and is predefined. In yeast, each chromosome interacts with a single microtubule 

(Winey et al. 1995), making it an ideal system to study kinetochore behavior. In my thesis 

work, I investigated the structure of the kinetochore complex over the cell cycle, especially 

during G1, metaphase, and anaphase. In chapter 1, I’ll start by introducing the major players 

in the cell cycle transition. Next, I will review what is known about the kinetochore and the 

centromere in budding yeast. I finish the chapter by discussing microtubule dynamics and 

propose a model for kinetochore-microtubule interaction. Chapters 2 and 3 present data to 

elucidate the structural plasticity of the yeast kinetochore. Chapter 4 presents experiments 

done to understand how the centromeric nucleosome is assembled by a histone chaperone. In 

the final chapter, I conclude my thesis work and present future directions based on my work. 

 

Cell cycle  

The cell cycle is an essential, complex, and well-choreographed event for equal 

partition of correctly duplicated sister chromatids. Several cyclins and cyclin dependent 
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kinases (cdk) along with check point proteins make sure that genome is accurately duplicated 

and segregated into daughter cells. Cyclin dependent kinases are regulated by the quantities 

of activators (cyclins) or inhibitors and mark the different cell cycle phases. There are 4 major 

stages of the cell cycle, namely, G1 (Gap1- preparation phase), S (Synthesis phase- DNA 

duplication), G2 (Gap2- to complete the DNA replication) and M (Mitotic phase) (Morgan 

2007).  

Budding yeast has a major CDK called “Cdc28” that interacts with ~9 cyclins (3 Clns 

family and 6- b-type Clb cyclins) (Andrews and Measday 1998) to demark the different 

phases of the cell cycle (Fig.1.1) (Morgan 2007). In higher eukaryotes, multiple CDKs 

interact with a wide variety of cyclins over the cell cycle. CDK has different binding sites for 

the activators and inhibitors that regulate its function. CDK interacts with cyclins, and 

together it can phosphorylate multiple targets, controlling their functions. Most of the cyclins 

have redundant function, such that single deletion of a cyclin may still produce viable cells 

but multiple deletion of cyclins may make the yeast inviable (Richardson et al. 1989). 

The kinetochore assembles on the centromeric region of a chromosome and connects 

to the microtubule. In human cells, during mitosis, the kinetochore assembles dynamically on 

the centromeric region after nuclear membrane break-down (Gascoigne and Cheeseman 

2013). Mif2/CENP-C, an inner kinetochore protein, stably associates with the centromere 

throughout the cell cycle. In G2, Mis12/MIND binds to CENP-C to start the kinetochore 

assembly. During mitosis, nuclear membrane break-down allows the Ndc80 complex to bind 

the kinetochore. The kinetochore disassembles in mitotic exit and is regulated by Cdk1 

(Gascoigne and Cheeseman 2013).  Even though each phase has multiple CDK targets to start 

or stop the phase, little is known about their role in kinetochore dynamics. In this thesis work, 

I have shown evidence (Chapter 3) for regulation of kinetochore dynamics during cell cycle 

stages. Here I will review major cyclins and CDKs involved in the cell cycle transitions and 

their known roles in kinetochore assembly. 
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Figure 1.1: CDKs and cyclins over the cell cycle. 

Budding yeast has 3 G1-specific cyclins (Cln1, Cln2 and Cln3). Cln1 and Cln2 accumulate over the 

cell cycle by low-levels of Cln3. In late G1, S-phase CDKs begin to increase and are activated in S-

phase. In G2 and mitosis, S-phase CDKs are inhibited by S-phase cyclins degradation. In S-phase, 

critical concentration of CDKs and cyclins initiate DNA replication. Clb5 and Clb6-associated 

CDKs are responsible for DNA replication in yeast. Mitotic cyclins can also support DNA 

replication, in the absence of S-phase cyclins. Mitotic CDKs can initiate chromosome condensation, 

spindle formation and nuclear breakdown (Bardin and Amon 2001). 

G1 

The cell cycle starts with a single copy of the genome in Gap1. G1 cells sense multiple 

inputs like nutrient availability, mating, and stress conditions before deciding to progress to 

the next phase (Andrews and Measday 1998; Mendenhall and Hodge 1998). First, Cln3 binds 

to Cdc28 and starts the transcription of Cln1 and Cln2 by promoting the nuclear import of 

phosphorylated transcription factor Whi5 (Polymenis and Schmidt 1999; Levine, Huang, and 

Cross 1996; Tyers et al. 1992; Costanzo et al. 2004; de Bruin et al. 2004). In late G1, 

accumulation of Cln2/3 activates Clb5 and Clb6 to start the processes of DNA replication and 

duplicated spindle pole bodies (SPB) separation (Andrews and Measday 1998). Budding 

yeast has a closed mitosis, meaning the nuclear membrane does not break during mitosis. 
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Because of this, the kinetochore can interact with the SPB throughout the cell cycle. In G1, 

the kinetochore cluster stays near the SPB and is disrupted with microtubule drugs, indicating 

that kinetochores are still attached to the SPB (Kitamura et al. 2007). Although kinetochores 

stay clustered, green fluorescent protein (GFP) tagged kinetochore proteins are slightly 

diffused but form a sub-diffraction limited spot, which can be ideal for quantitative 

microscopy like image calibration. 

S phase 

  The presence of Sic1, a Cdc28-Clb5/Cdc28-Clb6 inhibitor, suppress the activation of 

the origin recognition complex (ORC) in G1 (Schwob et al. 1994). Towards the end of G1, 

degradation of Sic1 by Cln1/2-CDK mediated phosphorylation, relieves the inhibition of S 

phase cyclins and initiates the firing of the pre-replication complex (Pre-RC) (Toone et al. 

1997). Deletion of CLB5 and CLB6 does not hinder the initiation of DNA replication as 

multiple B-type cyclins can initiate DNA replication (Schwob et al. 1994). CDKs with S-

phase cyclins ensures the initiation of DNA replication once per cell cycle (Arias and Walter 

2007; Toone et al. 1997). 

During S-phase, the yeast kinetochore detaches from the microtubule for ~5 mins to 

complete the replication of the centromere (Kitamura et al. 2007). The kinetochore is then 

reassembled on the newly replicated centromeres to interact with microtubules from the 

duplicated SPB (microtubule organizing center). Microtubules from the SPB attach to the 

kinetochore through a ‘search and capture’ mechanism. First, the kinetochore attaches 

laterally and later is converted into end-on attachment for more stability as the microtubule 

depolymerizes (Tanaka 2010). To ensure segregation of identical sister chromatids, a ring-

like structure known as the cohesin complex holds it together to create tension between sisters 

that facilitates bi-orientation on the spindle. Cohesin is loaded on to the chromosomes during 

G1 by Scc2-Scc4 complex (Fernius et al. 2013). 
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G2 

In G2, the cell waits for the completion of DNA replication and repairs the DNA 

damage, if any, before entering mitosis. This is achieved by inhibitory phosphorylation on 

Tyrosine 15 (Tyr15) of Cdc2 in S. pombe (Gould and Nurse 1989) and humans (Stark and 

Taylor 2006; Krek and Nigg 1991; Heald, McLoughlin, and McKeon 1993).  In S. pombe, 

mutation of Tyr15 prevents the cell from G2 arrest. However, in budding yeast, G2 arrest is 

not regulated by the phosphorylation of the Tyr15 (Keaton and Lew 2006), rather, budding 

yeast lacks typical G2 and G2/M transitions. 

Metaphase 

In higher organisms, metaphase is preceded by prophase where condensin I, another 

ring-like complex, condenses the chromosome and assembles the Spindle Assembly 

Checkpoint proteins (SAC) (Morgan 2007). Followed by prophase, the nuclear membrane 

breaks down and the kinetochore is captured by a microtubule, marking the prometaphase. In 

metaphase, oscillating chromosomes congress to the cell equator or middle of the cell. 

Budding yeast lacks most of the pre-metaphase stages as it has smaller chromosomes and the 

cell cycle is within a closed nuclear membrane without forming the metaphase plate. 

Before entering a checkpoint-free anaphase, metaphase kinases and phosphatases 

make sure that each chromosome is correctly connected to the microtubule. Spindle assembly 

checkpoint (e.g. Mps1) and Aurora B/Ipl1 modulate the kinetochore affinity by increasing the 

affinity for a correct connection and reducing it for an incorrect connection. A major deciding 

factor for appropriate kinetochore-microtubule connection is the tension between the sister 

chromatids. Sister chromatids need to attach to the microtubules from two oppositely placed 

SPBs (centrosome equivalent in yeast) to bi-orient (amphitelic) and create tension (Fig.1.2). 

Error in this process can be syntelic where sister chromatids interact with microtubules from 

the same SPB, monotelic where only one sister chromatid attaches to one SPB, or merotelic 
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(higher eukaryotes) where one of the sister chromatids attaches to both SPBs. Aside from 

merotelic attachment, the rest of the attachments can lead to spindle assembly checkpoint 

activation (Fig.1.3) (Biggins 2013). 
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Figure 1.2: Kinetochore capture during metaphase. 

In S-phase old mature SPB duplicates and produces immature SPB. In early S-phase, the centromere 

region replicates and disassembles the kinetochore. Soon after the centromere replication, the 

kinetochore assembles on the old and newly replicated centromere. Both the kinetochores interact with 

the old mature SPB. At the end of S-phase, the new SPB matures and initiates the microtubule 

polymerization. Now the kinetochores interact with the microtubules from both SPBs. Initially the 

kinetochore attaches to the microtubule through lateral attachment and it changes into end-on, a more 

stable attachment. Maturation of the new SPB subsequently separates the SPBs to form a bipolar 

spindle and bi-orients the chromosomes (Tanaka, Stark, and Tanaka 2005). 

Ipl1/Aurora B 

For the proper segregation of the sister chromatids in anaphase, the kinetochore must 

be attached to the microtubules and generate tension through that interaction. Ipl1/Aurora B 

kinase along with Bir1 (Survivin) and Sli15 (INCENP), localizes to the kinetochore from 

early S phase to the metaphase-anaphase transition and play a major role in detecting and 

detaching the syntelic kinetochore attachment (He et al. 2001; Tanaka et al. 2002). Ipl1 and 

Sli15 temperature-sensitive mutants have mono-oriented attachments with single SPBs. 

Inactivation of the kinetochore protein Dam1 after bi-polar attachment, cannot establish and 

maintain the bi-orientation attachment (Tanaka et al. 2002). However, similar experiments on 

Ipl1 mutants could maintain the bi-polar attachment, suggesting that Ipl1 is important for 

establishing bipolarity and acts early in the cell cycle to attach the microtubule from the newly 

replicated SPB (Tanaka et al. 2002). Ipl1 phosphorylates Cse4, Ndc80, and Dam1 to reduce 

the affinity of the kinetochore for the microtubule and enables bipolar attachments to silence 

the SAC (Biggins et al. 1999; Cheeseman et al. 2002). It is not clear how Ipl1-mediated 

phosphorylation leads to the kinetochore detachment or what its other direct targets are. 

. 
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Figure 1.3: Modes of kinetochore-microtubule attachments on the spindle. 

Presence of two SPBs can create multiple attachment modes between microtubule and kinetochore. 

The constructive interaction is amphitelic or bi-orientation where microtubules from opposite SPBs 

interacts with sister chromatids. In monotelic attachment, the kinetochore only interacts with a 

microtubule from one SPB and the other kinetochore is unattached. In syntelic attachment, both 
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kinetochores interact with a single SPB. In merotelic, a single kinetochore attaches to both SPBs. 

Syntelic and monotelic attachments can activate the spindle assembly checkpoint. However, 

merotelic attachment produces tension and can not necessarily activate the checkpoint (London and 

Biggins 2014). 

. 

Spindle Assemble Checkpoint 

Although Ipl1 can resolve most of the syntelic attachment errors, other kinds of errors 

are detected by a second group of check point proteins called spindle assembly checkpoints 

that pause the metaphase-anaphase transition. A genetic screen in budding yeast identified 

several proteins involved in the SAC like Mps1, Mad1, Mad2, Mad3, Bub1 (Weiss and Winey 

1996; Li and Murray 1991), and Bub3 (Hoyt, Totis, and Roberts 1991). The SAC is a very 

sensitive network as even a single unattached kinetochore can activate the checkpoint (Ault 

et al. 1991; Ault and Rieder 1992). Unlike in higher eukaryotes, most of the SAC proteins are 

non-essential in budding yeast. Bub1 and Bub3 are localized on the metaphase kinetochore 

while Mad1 binds only to the unattached kinetochore (Gillett, Espelin, and Sorger 2004; Hoyt, 

Totis, and Roberts 1991; Li and Murray 1991). The signal for Mad1 binding on the 

kinetochore is unknown. The SAC is best explained by the Mad2 template model, where the 

kinetochore bound Mad1 recruits Mad2 to the kinetochore causing it to undergo a 

conformational change to Mad2-C (Mad2-Closed). Kinetochore bound Mad2-C promotes the 

binding of Mad2-O (Mad2-open) and its conversion to Mad2-C for signal amplification 

(Fig.1.4) (London and Biggins 2014). 

Anaphase Promoting Complex (APC) 

Anaphase Promoting Complex/Cyclosome (APC/C) commits the highly regulated and 

irreversible metaphase-anaphase transition to segregate the genome equally into two daughter 

cells. APC/C is essential for cyclin destruction in telophase and was discovered as an ubiquitin 

ligase (Peters 2006; King et al. 1995; Sudakin et al. 1995). DNA damage and SAC inhibit the 

APC from initiating cohesin cleavage. Phosphorylation of Securin/Pds1 by the DNA 



Chapter 1 
 

28 
 

checkpoint kinase Chk1, blocks it from APC-mediated proteolysis (Harrison and Haber 2006) 

and inhibits the metaphase-anaphase transition. Mutations in the phosphorylation site of 

Securin/Pds1 stabilizes the complex and increases the DNA damage sensitivity. In a parallel 

pathway, Rad53, a DNA damage kinase, inhibits the association of APC-CCdc20 with 

Securin/Pds1 and blocks the metaphase-anaphase transition. Mec1, a downstream protein of 

Chk1 kinase pathway, activates PKA (cAMP-dependent kinase) which in turn phosphorylates 

Cdc20 preventing its association with Separase/Pds1 (Harrison and Haber 2006). 

An unattached kinetochore activates the SAC by accumulating Mad2-C on the 

kinetochore (Hwang et al. 1998; Li and Murray 1991), that further can bind and sequester 

Cdc20 for stabilization. APC-CCdc20 stabilization further stabilizes the Securin/Pds1 and stops 

the metaphase-anaphase transition. In vitro studies show that Cdc28-Clb2 phosphorylates 

multiple sites on most of the APC-CCdc20 subunits, however, these sites are not important for 

APC function in vivo (Rudner and Murray 2000). APC-CCdc20 blocks the metaphase-anaphase 

transition through cleavage of the cohesin ring. Cleaving the cohesin ring by inserting the 

TEV site within Scc1/Mcd1 and expressing TEV protease during metaphase, circumvents the 

Cdc20 requirement for the anaphase entry (Uhlmann et al. 2000).  

 

Figure 1.4:  Spindle assemble checkpoint recruitment and activation 
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(A) The unattached kinetochore recruits the Mad1 through its kinetochore receptor, Nuclear division 

cycle 80 (Ndc80). Budding inhibited by benzimidazole 1-related receptor protein kinase (Bubr1) 

forms a complex with Bub1 and Bub3 on the kinetochore. Bub1-Bub3 complex is recruited by 

Monopolar spindle 1 (Mps1) to the kinetochore. Mad1 interacts with Bub1 to form a complex and 

recruits Mad1-Mad2 to the kinetochore. Mad1-Mad2 amplifies the checkpoint signal by recruiting 

more Mad2 to catalytically convert Mad2-(O) (open) to Mad2-(C) (closed) (London and Biggins 

2014). (B) Initial assembly of checkpoint proteins on the kinetochore amplifies the signal to form the 

mitotic checkpoint complex (MCC). Mad2-(C) on the unattached kinetochore binds to the cell division 

control protein 20 (Cdc20) through an intermediate conformation. The APC/Ccdc20 is inhibited by the 

MCC and stabilizes the Securin and mitotic cyclins (cyclin B) (London and Biggins 2014). 

Anaphase/Telophase 

When the SAC is cleared, the cell proceeds to anaphase to complete chromosome 

segregation . By this time the cell is committed to the irreversible step of the cell cycle, ending 

as two separated nuclear mass. Anaphase is divided into two parts called anaphase A and B. 

In yeast, anaphase A marks the separation of sister chromatids and anaphase B represents the 

spindle elongation (Straight et al. 1997). Multiple motor and MAPs work redundantly to 

complete anaphase. During anaphase, the kinetochore tracks on the depolymerizing 

microtubule. At the end of anaphase B, the cell must activate the mitotic exit pathway to 

complete the cell cycle after ensuring that mother and daughter cells have equally partitioned 

the genetic material. An error in this process activates the spindle position checkpoint 

(SPOC).  

Mitotic exit 

Before entering anaphase, the cell degrades most of the Clb5 and Clb2 through APC-

CCdc20 dependent ubiquitination (Yeong et al. 2000). To exit mitosis, the cell must get rid of 

all the CDKs and reverse all the CDK-mediated phosphorylation events. In budding yeast, 

release of Cdc14 from the nucleolus dephosphorylates the CDK substrates and stabilizes 

mitotic-CDK inhibitors (Stegmeier et al. 2004). Dephosphorylation of Cdh1 by Cdc14 

triggers APC/C mediated cyclin destruction (Zachariae et al. 1998; Jaspersen, Charles, and 

Morgan 1999). Cdc14-mediated de-phosphorylation of Sic1 prevents its destruction and 
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promotes the transport of the Sic1 transcription factor Swi5 into the nucleus (Visintin et al. 

1998). Cdc14 is also important for rDNA segregation and to modulate the spindle midzone 

through microtubule dynamics (D'Amours, Stegmeier, and Amon 2004; Sullivan et al. 2004). 

Cdc14 is sequestered by Cfi1/Net1 in the nucleolus in the rest of the cell cycle (Shou et al. 

1999; Visintin, Hwang, and Amon 1999). In anaphase, Cdc Fourteen Early Anaphase Release 

(FEAR) network and Mitotic Exit Network (MEN) are activated to release Cdc14 from the 

nucleolus (Stegmeier and Amon 2004). Early release of Cdc14 during early anaphase is 

important for timely cell cycle exit. On the other hand, MEN works in late anaphase 

(Stegmeier and Amon 2004). 

Figure 1.5: FEAR and MEN pathways in S.cerevisiae. 

Cdc14 is released from the nucleolus during early anaphase by FEAR network. Activation of MEN 

further releases Cdc14 from the nucleolus. Continuous presence of Cdc14 throughout anaphase, 

promotes the mitotic exit (Rock and Amon 2009). 

Cdc Fourteen Early Anaphase Release (FEAR) 

FEAR is not fully understood, but includes Separase/Esp1, Cdc5 (polo-like kinase), 

Slk19 (kinetochore protein), Spo12, Bns1 and Fob1 (replication fork blocking protein) 

(Stegmeier, Visintin, and Amon 2002; Stegmeier et al. 2004). Clb1/2-CDKs along with PP2A 
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activates the FEAR network (Fig.1.5) (Azzam et al. 2004; Yellman and Burke 2006; Queralt 

et al. 2006; Wang and Ng 2006). There are two parallel pathways (Visintin, Stegmeier, and 

Amon 2003), one involving Spo12, Bns1 and Fob1, and another having Separase/Esp1, Slk19 

(Visintin, Stegmeier, and Amon 2003). The Cdc5, polo-like kinase activates both pathways 

downstream, or in parallel with Esp1/Slk19 (Visintin, Stegmeier, and Amon 2003). Cdc5 has 

a role in MEN as well as in FEAR. In early anaphase, destruction of Securin/Pds1 triggers the 

Cdc14 release through the activation of Separase/Esp1 and sequesters PP2A.  Spo12 or Cdc5 

also phosphorylate Cfi1/Net1 to release Cdc14 (Azzam et al. 2004; Queralt et al. 2006). While 

the FEAR network needs MEN to complete the exit, the mechanism of inter-dependency is 

unknown. 

Mitotic Exit Network 

Tem1, a GTPase in Ras-like pathway activates downstream targets in the pathway 

(Stegmeier and Amon 2004; Bardin and Amon 2001; Seshan and Amon 2004). Lte1, a 

putative guanine nucleotide exchange factor (GEF) (Shirayama, Matsui, and Toh 1994; 

Shirayama, Matsui, and Toh-e 1996) and Bub2-Bfa1, a GTPase activating complex (GAP) 

(Krishnan et al. 2000; Alexandru et al. 1999; Bardin, Visintin, and Amon 2000; Fesquet et al. 

1999) regulate the Tem1 GTPase function. Tem1 activation triggers the activation of 

downstream kinases: Cdc15 and Dbf2 (Fig.1.5). The mode of Cdc15 activation is not known, 

however activated Cdc15 phosphorylates and activates Dbf2 in vitro (Mah, Jang, and 

Deshaies 2001). Mob1, a Dbf2-associated factor, is required for Dbf2 activation (Mah, Jang, 

and Deshaies 2001; Komarnitsky et al. 1998; Luca et al. 2001). Cdc5 inhibits the Bub2-Bfa1 

complex to promote MEN (Bardin, Visintin, and Amon 2000; Seshan, Bardin, and Amon 

2002; Lew and Burke 2003). 

Tem1 activation is not fully understood, but the movement of the daughter SPB into 

the daughter cell cortex is thought to activate it. Kin4 kinase specifically localizes on the 

mother cell cortex and misaligned spindle in the mother cell activates the SPOC through Kin4 
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(Lew and Burke 2003; D'Aquino et al. 2005).  Kin4 phosphorylates Bub2-Bfa1 to inhibit 

MEN, preventing Cdc14 release (D'Aquino et al. 2005; Pereira and Schiebel 2005). Until the 

spindle enters the daughter cell, the cell does not exit from the cell cycle.  

Cytokinesis 

Cytokinesis is a poorly understood process in yeast. It ends the cell cycle by physically 

cleaving the cell into mother and daughter cells. Cytokinesis is coordinated by the actin-

myosin ring and the septum formation. During anaphase, Cdc14 localizes on the putative 

septum site, although its function is not clear. The acto-myosin assembly includes septins, 

myosins, and formins to complete the cytokinesis in late telophase. Myosin II plays a major 

role in animal cells during the acto-myosin ring assembly (Moseley and Goode 2006). Myo1 

(type II myosin) deletion does not have any effect, but mutation in the motor domain results 

in cytokinesis defect. There are four septins, Cdc3, Cdc10, Cdc11 and Cdc12 that are essential 

for septum formation during cytokinesis. Temperature sensitive mutants of these septins 

results in a cytokinesis defect. The septum is a chitin-rich disk that separates the mother and 

daughter cells. 

Cell cycle and kinetochore 

 In budding yeast, the kinetochore attaches to the microtubule throughout the cell cycle. 

In higher eukaryotes, the inner kinetochore stably attaches to the centromere in G1 and adds 

the Mis12/MIND complex in G2. During mitosis, the kinetochore adds the Ndc80 complex 

and disassembles in mitotic exit. Cdk1 has been shown to affect the binding of CENP-T, an 

outer kinetochore protein, to the kinetochore. Kinetochore regulation of other subunits is not 

known and is crucial for understanding kinetochore dynamics during cell cycle stages. 

Whether the kinetochore structure is dynamic over the cell cycle and its role in microtubule 

tracking, are not known. Here I review the structural organization of the kinetochore and its 

attachment with the microtubule. 
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Kinetochore 

The kinetochore (KT), an evolutionarily conserved multi-complex structure, connects 

the microtubule with the chromosome. The kinetochore assembles on the centromeric region, 

which is specified by the centromere specific histone 3 (H3) variant called Cse4 in budding 

yeast. In yeast, a single centromeric nucleosome assembles the whole kinetochore. Binding 

of the Cbf3 complex to the centromeric DNA along with Mif2 marks the assembly site of the 

future kinetochore complex.   

The kinetochore is essential for error correction, tracking on the microtubule, and to 

generate force to pull the chromosome during anaphase. The kinetochore assembles in a 

hierarchical order, starting with Cbf3 complex, which is necessary for outer kinetochore 

assembly, and ends at the microtubule with the Dam1 complex. Each layer of the kinetochore 

provides the possibility for its regulation on microtubule attachment. Genetic screens, affinity 

purifications, chromatin immunoprecipitations, mass spectrometry analyses along with 

microscopy have identified >65 proteins to assemble the whole organization of the 

kinetochore (De Wulf, McAinsh, and Sorger 2003; Tytell and Sorger 2006; Miranda et al. 

2005; Euskirchen 2002). Biophysical studies and electron microscopy on purified 

recombinant expression of protein complexes have shown their functions in kinetochore 

organization. Though the composition of kinetochore complexes has been studied,how each 

complex contribute to kinetochore function is unknown. 

Chromosome segregation is chiefly governed by properties of the mitotic spindle. In 

haploid yeast (16 chromosomes), the mitotic spindle has ~42 microtubules (kMT) (32 

kinetochore microtubules-one microtubule per kinetochore and ~8 interpolar kinetochore 

microtubule (ipMT)-overlap each other for sliding) arranged in a cylindrical structure, 

forming a bipolar microtubule bundle (Fig.1.6; Yeh et al., 2008; Stephens et al., 2011). 

Kinetochores on the centromeric region form a DNA-protein interface between the 
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centromeric nucleosome and the microtubule. Kinetochores consist of more than 8 

subcomplexes with ~65 different proteins (Cheeseman and Desai, 2008; Santaguida and 

Musacchio, 2009)). Major subcomplexes in the budding yeast are Dam1, Ndc80, Mtw1, 

Spc105, Ctf19, and Cbf3. The Dam1 complex forms a ring-like structure with ten proteins 

and it stabilizes the association of the Ndc80 complex with microtubules by helping during 

sliding. The Ndc80 complex forms a hetero-tetramer with Spc24, Spc25, Nuf2, and Ndc80. 

Phosphorylation of the N terminal of Ndc80 by Ipl1 and Mps1 controls its binding to 

microtubules (Cheeseman et al., 2006). Nnf1, Nsl1, Dsn1, and Mtw1 form the MIND complex 

and connect the Ndc80 complex to the inner kinetochore. Mis12 is connected to the Spc24-

25 complex through the Nsl1-Dsn1 heterodimer. Ctf19 is the CCAN complex in human. Cbf3 

interacts with Cse4 and is necessary for the establishment of the centromeric nucleosome. 

Mis-regualtion of kinetochore proteins and proteins involved in kinetochore-microtubule 

interaction lead to cancer development and aneuploidy (Yuen, Montpetit, and Hieter 2005; 

Meng et al. 2015). Understanding the kinetochore function is important for finding novel 

therapeutic targets for cancer.  

Figure 1.6: Mitotic spindle in budding yeast.  
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The kinetochore microtubule (kMT, green) emanating from the spindle pole body (SPB, Red) is 

attached to the centromere. Pericentromeric region form loops with cohesin (purple). Sister chromatids 

extend perpendicularly from the spindle axis. ipMT is interpolar microtubule. 

 

The proper segregation of chromosomes depends on amphitelic attachment where 

sister kinetochores are attached to MTs from opposite poles creating tension. The physical 

connection between sister chromatids by the cohesin complex and ipMT sliding generates 

tension. To equalize the tension, pericentromeric chromatin is stretched and recoiled back by 

the ‘microtubule rescue’. This movement accounts for the oscillation of sister chromatids at 

the spindle equator and, due to high tension, nucleosome turnover is also high (Verdaasdonk 

et al., 2012). The Ndc80, MIND, and Dam1 complexes are essential for MT tracking. 

The mitotic spindle and pole separation require kinesin-related motor proteins (Hagan 

and Yanagida, 1990; Hoyt et al., 1992). The presence of these motor proteins on MTs helps 

in the sliding of the anti-parallel midzone microtubules and the separation of spindle poles 

(Hagan and Yanagida, 1992; Hoyt et al., 1992). Cin8 and Kip1 are functionally redundant 

proteins predominantly working during metaphase to separate the spindle poles. Deletion of 

both motors collapses the spindle (Saunders and Hoyt, 1992). Kar3 (kinesin-14), localized 

near the SPB, is important for capturing the kinetochore. Cin8 (kinesin-5), present in the 

ipMT, helps in the sliding of MTs.  Kip1, Kip2, and Kip3 are involved in spindle assembly 

and positioning. During anaphase, Dyn1, a minus-end directed motor (cytoplasmic Dynein 1 

heavy chain) dominates sister chromatids separation, pulling the cytoplasmic MT to the pole.  
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Figure 1.7: Centromere and centromeric nucleosome.  

(A) Budding yeast has a point centromere with a single nucleosome per chromosome and it attaches 

to a single microtubule. It has 3 conserved DNA elements (CDEI, CDEII, and CDEIII). Higher 

eukaryotes have a much larger regional centromere which is epigenetically defined and contains 

centromeric protein A (CENPA). (B) The canonical nucleosome has 2 copies of H2A, H2B, H3, and 

H4 each forming an octamer. CENP-A octameric nucleosome comprising 2 copies of CENP-A, H4, 

H2A, and H2B. Proposed model for tetrameric centromeric nucleosome. 
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Centromeric region 

The kinetochore assembles on a specialized region on the chromosome called the centromere, 

which is defined by sequence in budding yeast and epigenetically in higher eukaryotes. The 

budding yeast ‘point’ centromere was first identified by its plasmid stability in mitosis and 

meiosis. The ~125bp sequence has three distinct conserved regions called Centromere-

Defining Elements (CDE): CDE1-an 8-bp palindrome, CDEII-a 78-bp AT-rich sequence and 

CDEIII-a conserved 26-bp element (Fitzgerald-Hayes 1987; Fitzgerald-Hayes, Clarke, and 

Carbon 1982; Clarke and Carbon 1985). Cbf1p of the inner kinetochore with its helix-loop-

helix motif binds to the CDEI region and Cbf3 binds to the CDEIII region through its CCG 

motif. Deletion of CDE1 results in a 10-fold increase in chromosome missegregation (Bram 

and Kornberg 1987; Hegemann et al. 1988). CDEII and CDEIII are essential for kinetochore 

assembly (Fig.1.7). In higher eukaryotes, the centromeric region spans hundreds of kilobases 

of heterochromatic, repetitive α-satellite DNA. 

Cse4 

The centromere of a chromosome is important for the segregation of sister chromatids 

during anaphase. Centromeric regions form a connection with the spindle through the 

kinetochore. In budding yeast, the centromeric region is genetically defined (Clarke and 

Carbon, 1980) and well understood. But in higher eukaryotes, to some extent the centromere 

is epigenetically specified. Within yeast, Saccharomyces cerevisiae has a conserved 

centromeric sequence but Schizosaccharomyces pombe lacks it (Polizzi and Clarke, 1991). 

Even though the centromere is different in each organism, the centromeric nucleosome is 

universally marked by histone 3 variant called Cenp-A (in budding yeast-Cse4). The Cenp-A 

sequence is diverged in all species especially at the N-terminal region, and affects  

kinetochore formation, as yeast Cse4 is sufficient to build a functional kinetochore in human 

(Wieland et al., 2004). 



Chapter 1 
 

38 
 

A genetic screen for increased chromosome loss rate with CDEII sequence has 

identified Cse4 as one of the targets. Cse4 shares more than 70% homology with the H3 

histone. A temperature-sensitive mutant form (cse4-1) activates the SAC with duplicated 

chromosomes. Centromeric nucleosome structure is still not clear because different 

experimental techniques suggest different structures, including hemisome and octasome 

(Fig.1.7). Our results suggest that the centromeric nucleosome exists in different structures 

depending on the cell cycle stages. In budding yeast, it forms a hemisome 

(Cse4/H4/H2A/H2B), switching to an octasome during anaphase (Shivaraju et al., 2012). In 

human, during S phase, the centromeric nucleosome changes to an octasome while forming a 

tetrasome during the rest of the cell cycle (Bui et al., 2012). Suppressor 

of Chromosome Missegregation (Scm3), a Cse4 histone chaperone (Shivaraju et al., 2011), is 

necessary for Cse4 deposition and regulation at the centromere (Camahort et al., 2007). 

Another histone chaperone called Chromatin assembly factor 1 (Caf1), an H3/H4 chaperone, 

also co-purifies with CENP-A in vivo and assembles the centromeric nucleosome in vitro. 

The CAF-1 complex’s functions in assembling the Cse4 nucleosome on a non-centromeric 

region are not well studied. Here I review the known Cse4 chaperones. 

Cse4 chaperone 

Histone chaperones assemble the nucleosome in a step-wise manner to produce a 

functional nucleosome. They can prevent charge-based interactions, transport histones and 

disassemble nucleosomes.  

Scm3 

Centromeric nucleosomes are assembled by centromere specific chaperones called Scm3 in 

budding yeast (Camahort et al. 2007) and HJURP in human (Dunleavy et al. 2009; Foltz et 

al. 2009). Scm3 recruits Cse4 with Ndc10 to the centromere. Temperature sensitive mutant 

of Scm3also get arrested in metaphase like Cse4 mutants (Camahort et al. 2007). Scm3 is 

localized to the centromere throughout the cell cycle with reports showing Scm3 leaves the 
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centromere during metaphase-anaphase transition. Scm3 is not sequence specific, however, it 

is a Cse4-specific chaperone, as it lacks the ability to assemble H3 nucleosome in vitro.  

Budding yeast kinetochore complex 

The kinetochore complex is a molecular machine essential for tracking the microtubule end 

and pulls the chromosome during chromosome capture and segregation. It consists of multiple 

submodules with more than 60 proteins in budding yeast and most of them  are evolutionarily 

conserved from yeast to human. In budding yeast, the kinetochore has multiple sub-modules 

namely: Cbf3, CCAN, CENP-W, CENP-T/Cnn1, COMA/Ctf19, Mis12/MIND/Mtw1, 

KNL1/Spc105, and Ndc80 (centromeric nucleosome to microtubule interacting module) 

along with microtubule associated factors like Stu2 and motor proteins (Fig.1.8).  The inner 

kinetochore binds and assembles the kinetochore on the centromeric region. Each complex in 

the inner kinetochore has specific functions. For example, Mif2 and Cbf3 find the centromeric 

sequence to recruit further kinetochore complexes. The outer kinetochore, mainly interacts 

with the microtubule and recruits other check point proteins. 
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Figure 1.8: Kinetochore organization in budding yeast. (A)   The human kinetochore consists of 
KMN as a core which is made up of the MIND and Ndc80 complexes and interacts with multiple 
microtubules. (B) Yeast kinetochore organization. The centromeric nucleosome is marked by Cse4. 
Mif2, and Cbf3 complexes and binds to CEN DNA. The CCNA complex interacts with Mis12/Mtw1 
complex. The ‘linker complex’ Mtw1/Mis12 connects the inner kinetochore to the outer kinetochore. 
The Ndc80 and Dam1 complexes are microtubule interacting sub-modules (Lampert and Westermann 
2011). 

Table 1.1: Evolutionary conservation of budding yeast kinetochore 

 S.cerevisiae H.sapiens Features 

D
N

A
-b

in
di

ng
 Cse4 CENP-A Histone H3 variant, 

CEN DNA binding 

Cbf3 complex 

Ndc10   
Cep3  Zn-cluster motif 

Ctf13  F-box domain, 
activated by Skp1 

Skp1  SCF component 
Cbf1   

In
ne

r 
ki

ne
to

ch
or

e 

CCAN 

Mif2 CENP-C AT-hook 

COMA 

Ctf19 CENP-P RWD domain 
Okp1 CENP-Q  

Mcm21 CENP-O Less cohesin at the 
centromere 

Ame1 CENP-U  

O
ut

er
 k

in
et

oc
ho

re
 

Ctf3 
Ctf3 CENP-I Coiled-coil domain 

Mcm16 CENP-H  
Mcm22 CENP-K  

 

Iml3/Mcm19 CENP-L  
Chl4 CENP-N  
Mhf1 CENP-S Histone fold domain 
Mhf2 CENP-X Histone fold domain 
Nkp1   
Nkp2   
Ybp2   

Cnn1 Cnn1 CENP-T Histone fold domain 
Wip1 CENP-W Histone fold domain 

 Spc105 
Spc105 KNL-1 Mps1, Bub1 and Bub3 

recruitment 

Ydr532/Kre28 Zwint Mps1, Bub1 and Bub3 
recruitment 

 Mis12/MIND/ 
Mtw1 

Mtw1 MIS12 Heterodimer with 
Nnf1 

Dsn1 Dsn1 Heterodimer with Nsl1 
Nnf1 Nnf1  
Nsl1 Nsl1  

M
ic

ro
tu

bu
le

-
bi

nd
in

g 

Ndc80 
Spc24 Spc24 

Spindle assembly 
checkpoint protein 

recruitment 

Spc25 Spc25  
Nuf2 Nuf2  
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Ndc80 Ndc80 
Positively charged 
calponin-homology 

domain 

Dam1 

Ask1   
Dad1   
Dad2   
Dad3   
Dad4   

Dam1  Positively charged N-
terminal 

Duo1  MT binding 
Spc19   
Spc34   
Hsk1   

MAPs 

Stu2 Ch-TOG Ndc80 binding, TOG 
domain 

Bik1 CLIP-170 MT plus-end binding 
Slk19   
Stu1 CLASP  
Bim1 EB1  

Motors 

Kip1 BimC-family  
Kip3 Kinesin-8  
Cin8 Kinesin-5  
Kar3 Kinesin-14  

 

Chromosome 
Passenger 
Complex 

Ipl1 Aurora B Protein kinase 
Sli15 INCENP  
Nbl1 Borealin  
Bir1 Survivin  

 Glc7 PP1  

Spindle 
Assembly 

Checkpoint 

Mad1 Mad1  
Mad2 Mad2  
Bub1 Bub1 Ser/Thr protein kinase 
Bub3 Bub3 WD40 domain 
Mps1 hMps1 Ser/Thr protein kinase 

 

Inner kinetochore sub-modules 

Here, inner kinetochore refers to complexes close to the chromatin and outer 

kinetochore refers to complexes which mediate the microtubule attachment. Constitutive 

Centromere Associated Network (CCAN) was identified during CENP-A purification (Obuse 

et al. 2004; Foltz et al. 2006; Okada et al. 2006). In higher eukaryotes, CCAN consists of 
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CENP-C, CENP-H/I/K, CENP-L/M/N, CENP-O/P/Q/R/U, CENP-T/W (histone-fold 

containing complexes) (McAinsh and Meraldi 2011; Perpelescu and Fukagawa 2011; 

Takeuchi and Fukagawa 2012), and CENP-S/X. Yeast has most of the CCAN orthologues 

along with yeast-specific Cbf3 complex (Table 1.1).  

Cbf3 

The centromere binding factor complex (Cbf3) was initially purified through its specific CEN 

DNA binding (Ng and Carbon 1987; Lechner and Carbon 1991). The CBF3 complex has four 

proteins: Ndc10 (CBF3A/CTF14), Cep3 (CBF3B), Ctf13 (CBF3C), and Skp1 (Cbf3/p19). 

Each protein from the CBF3 complex is essential for viability, and mutations either in CBF3 

or CDEIII result in loss of Cbf3 binding in vitro and increased chromosome loss in vivo 

(Doheny et al. 1993; Goh and Kilmartin 1993; Strunnikov, Kingsbury, and Koshland 1995; 

Connelly and Hieter 1996; Jehn, Niedenthal, and Hegemann 1991). All of the proteins from 

the CBF3 complex can bind to CEN DNA. However, Cep3 has a zinc figure motif for DNA 

binding which specifically recognizes the CCG-sequence of CDEIII (Espelin, Kaplan, and 

Sorger 1997). Even though Ndc10 has a similarity to tyrosine DNA recombinases (Perriches 

and Singleton 2012; Cho and Harrison 2011), it does not have catalytic activity. A mutation 

in Ndc10 (ndc10-1) at non-permissive temperature disrupts kinetochore assembly (Poddar et 

al. 2004; Stoler et al. 1995) and does not activate the spindle assembly checkpoint. 

CCAN 

  Mif2, a component of CCAN, was identified in a screen for mutants with a high rate 

of chromosome loss under overexpression. The low sequence similarity between yeast and 

human proteins delayed the identification of CCAN components in yeast. CENP-C is the 

orthologue of Mif2 in human. Mif2 mutant cells are inviable with G2/M arrest and activate 

the spindle assembly checkpoint (Meeks-Wagner et al. 1986; Brown, Goetsch, and Hartwell 

1993; Meluh and Koshland 1995, 1997). Mif2 dimerizes and binds as a single dimer to the 
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CDEIII region. Synthetic lethality of Mif2 with Ndc10 suggest that their interaction is 

essential for kinetochore function (Meluh and Koshland 1997, 1995). Mif2 has an eight-amino 

acid sequence called ‘A-T hook’ that binds to the minor groove of AT-rich DNA (Cohen et 

al. 2008). Cse4 and CBF3 are necessary for Mif2 localization at the centromere. Mis12/MIND 

mutants also show mislocalization of Mif2 (Westermann, Cheeseman, et al. 2003). 

COMA complex 

Ctf19 or COMA complex has 4 major proteins (Ctf19, Okp1, Mcm21 and Ame1) and 

other additional proteins (De Wulf, McAinsh, and Sorger 2003). Only Okp1 and Ame1 are 

essential for cell growth, however Mcm21 deletion increases chromosome loss with reduced 

cohesin at the centromere (Ng et al. 2009). Four proteins of CCAN form two sub-complexes 

(Cnn1/Wip1 and Mhf1/Mhf2) with Histone fold domain (Bock et al. 2012; Schleiffer et al. 

2012). Orthologues of these sub complexes in human (CENP-T/W, CENP-S/X) form a 

hetrotetramer and interact with DNA to form a nucleosome-like structure (Nishino et al. 2012; 

Hori et al. 2008). Cnn1, like CENP-T has an Ndc80 interacting domain and in yeast, it anchors 

the Ndc80 complex only during anaphase (Malvezzi et al. 2013; Bock et al. 2012; Schleiffer 

et al. 2012). Quantitative microscopy suggests that 2 to 3 COMA complexes associate with a 

single kinetochore in yeast (Joglekar et al. 2006). CTF3 complex is part of the COMA 

complex and contains proteins Ctf3, Mcm22 and Mcm16 which are non-essential and localize 

to the kinetochore. Okp1 and Ame1 anchor the Mis12/MIND complex along with Mif2. 

Temperature sensitive mutants of Okp1 and Ame1 at non-permissive temperature have 

declustered kinetochores.  

Inner kinetochore complexes are essential for CPC (Chromosome Passenger 

Complex) which has Ipl1/Aurora B, Bir1 (Survivin), Sli15 and Nbl1 (Borealin) and localize 

to the kinetochore for proper spindle assembly checkpoint. The CPC complex binds to the G1 

kinetochore and localize to the spindle midzone during anaphase (Widlund et al. 2006; 

Carmena et al. 2012). 
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Outer kinetochore 

Most of the outer kinetochore submodules are important for the microtubule binding 

activity and tracking the microtubule without losing the interaction. All of the outer 

kinetochore complexes are essential for cell growth. Mtw1/MIs12/MIND complex act as a 

‘linker complex’ between inner and outer kinetochore. Ndc80 complex interacts with the MT. 

Dam1 complex also interacts with MT with its ring-like structure and Spc105/Knl-1/Blinkin 

interacts with MT and brings the Mps1 kinase to the kinetochore (Aravamudhan, Goldfarb, 

and Joglekar 2015). 

Spc105 complex 

Spc105 (KNL1orthologue) is an essential complex consisting of two proteins called 

Spc105 and Kre28 in a 1:2 ratio (Nekrasov et al. 2003; Pagliuca et al. 2009). Mutation in this 

complex results in chromosome loss. Purified yeast Spc105 has a weak MT binding activity 

(Pagliuca et al. 2009) and is important for recruiting the Mps1, Bub1 and Bub3 

(Aravamudhan, Goldfarb, and Joglekar 2015; Kiyomitsu, Obuse, and Yanagida 2007; 

Kiyomitsu, Murakami, and Yanagida 2011; Rosenberg, Cross, and Funabiki 2011; Liu et al. 

2010). Spc105 was first identified during Mis12 complex purification. Its C-terminal interacts 

with the Mis12/MIND (Maskell, Hu, and Singleton 2010) while N-terminal of Spc105 has 

MT binding activity (Cheeseman et al. 2006; Kiyomitsu, Obuse, and Yanagida 2007; Pagliuca 

et al. 2009; Welburn et al. 2009). Spc105 is highly phosphorylated by Mps1 which recruits 

Bub1 to kinetochore and is dephosphorylated by Glc7/PP1 to silence the checkpoint 

(Kiyomitsu, Obuse, and Yanagida 2007; Liu et al. 2010; Rosenberg, Cross, and Funabiki 

2011). The Spc105 interaction with MT is not fully understood. Purified kinetochore from 

spc105-15 at non-permissive temperature showed reduced Ndc80 complex with defective MT 

attachment (Akiyoshi et al. 2010). 
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Mis12/Mtw1/MIND complex 

Mis12 complex has four proteins (Mtw1, Nnf1, Nsl1, and Dsn1) in 1:1:1:1 

stoichiometry (Fig.1.9; (Euskirchen 2002; De Wulf, McAinsh, and Sorger 2003; Nekrasov et 

al. 2003; Hornung et al. 2011; Pinsky et al. 2003; Westermann, Wiedemann, et al. 2003). 

Mtw1 was initially identified as a homolog of S. pombe Mis12+ (Goshima and Yanagida 

2000). Mtw1 localizes to the kinetochore and mutations in Mtw1 results in loss of tension at 

the centromere (Goshima and Yanagida 2000). Mis12 complex in S. pombe and higher 

eukaryotes have similar kinetochore localization and depletion of any one of the subunit 

results in chromosome loss (Goshima et al. 2003; Obuse et al. 2004). The Mtw1/Nnf1 and 

Dsn1/Nsl1 form a heterodimeric globular domain (Maskell, Hu, and Singleton 2010; Hornung 

et al. 2011). The Mis12 complex lacks the microtubule binding activity but purified Mis12 

complex with Ndc80 increase the microtubule attachment cooperatively (Cheeseman et al. 

2006; Hornung et al. 2011; Kudalkar et al. 2015). C-terminal region of Dsn1 anchors the 

Ndc80 complex through Spc25/Spc24 heterodimer (Hornung et al. 2011). In human, 

(heterochromatin protein 1) HP1 is needed for the Mis12 recruitment to kinetochore though 

its function is not understood (Obuse et al. 2004). 

 

Microtubule interacting submodules: 

Ndc80 complex 

Spc24, Spc25, Nuf2, and Ndc80 form a 200kDa complex called Ndc80 with 1:1:1:1 

stoichiometry (Janke et al. 2001; Wigge and Kilmartin 2001; Wei, Sorger, and Harrison 

2005). Electron microscopy and X-ray studies of the purified Ndc80 complex show a rod-like 

structure with two globular head domains (Ciferri et al. 2008; Wei, Al-Bassam, and Harrison 

2007; Wei, Sorger, and Harrison 2005; Cheeseman et al. 2006). Mutations in the Ndc80 

complex cause microtubule detachment. Loss of Spc24 or Spc25 inactivates the spindle 

assembly checkpoint with a detached kinetochore, suggesting Spc24/Spc25-mediated 
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recruitment of checkpoint proteins (Janke et al. 2001; He et al. 2001). Dam1 complex and 

microtubule associated proteins (MAPs) localization also depends on the Ndc80 complex 

(Maure, Kitamura, and Tanaka 2007; Hsu and Toda 2011). Ndc80 has an unstructured N-

terminal tail which is important for microtubule binding and has a loop region which recruits 

the Dam1 complex in vivo (Hsu and Toda 2011). In S.pombe, the loop region also recruits the 

Dis1 complex and in higher organism it interacts with the Ska1 complex, Dis/TOG/Stu2, and 

Cdt1 (Hsu and Toda 2011). Mutation in the Ndc80 complex disrupts the microtubule 

attachment (Wei, Sorger, and Harrison 2005; Ciferri et al. 2008; Wei, Al-Bassam, and 

Harrison 2007; Cheeseman et al. 2006), like the CBF3 complex. 

 

Figure 1.9: Budding yeast kinetochore-microtubule interaction site. The Ndc80 complex interacts 

with the microtubule through its N-terminal domain. The Dam1 complex forms a ring-like structure 

surrounding the microtubule. MAPs (like Stu2) localize on the plus-end microtubule and affect the 

microtubule dynamics. (Original drawing by Mark Miller) 

DAM1/DASH/DDD complex 

The Dam1 complex is a yeast-specific complex consisting of 10 essential proteins 

(Ask1, Dad1, Dad2, Dad3, Dad4, Dam1, Duo1, Hsk3, Spc19, and Spc34) that form a ring-
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like structure in vitro (Hofmann et al. 1998; Jones et al. 1999; Westermann et al. 2005). The 

Dam1 complex localizes on the spindle as well as on the kinetochore and mutations in Dam1 

arrest the cell in M-phase with a broken or short spindle (Cheeseman and Boon 2001). The 

dam1-1 mutant at non-permissive temperature shows defective monopolar attachment and 

directional instability on the spindle pole (Jones et al. 1999). The spc34-3 mutant shows equal 

segregation of individual sisters, suggesting that this mutant does not have a strong 

kinetochore-microtubule interaction (He et al. 2001; Janke et al. 2001). 

Bacterially expressed and purified Dam1 forms a 210 kDa complex and 16 Dam1 complexes 

forms a ring around the microtubule with 50 nm diameter (Miranda et al. 2005; Westermann 

et al. 2005; Wang et al. 2007; Ramey et al. 2011).  The Dam1 ring binds to the GTP-tubulin 

and stabilizes the microtubule through polymerization in vitro. Different degrees of the 

oligomeric Dam1 complex interacts with microtubule and oligomerization of the Dam1 

complex is necessary for its function (Gestaut et al. 2008; Grishchuk et al. 2008). The Dam1 

complex at low concentration contacts the tubulin E-hook with its C-terminal (Westermann 

et al. 2005; Ramey et al. 2011). The Dam1 ring interacts with the microtubule through the 

electrostatic interaction of the Duo1 N-terminal similar to the Ndc80 complex (Hofmann et 

al. 1998; Cheeseman and Boon 2001; Rayala et al. 2007; Ramey et al. 2011).  The Dam1 

complex has known phosphorylation sites for Ipl1/Aurora B kinase and phosphorylation of 

the Dam1 complex reduces the Ndc80 association with the microtubule in vitro. Similar to 

Dam1 mutants, ipl1-2 and ipl1-321 mutants show monopolar spindles (He et al. 2001; 

Cheeseman et al. 2002). The Dam1 complex acts as microtubule force-coupler and moves 

along the depolymerizing microtubule. 

+TIPs 

Proteins associated with the plus-end of the microtubule are known as +TIPs or MAPs 

and they physically interact to regulate the microtubule dynamics during mitosis. There are 

at least eight known +TIPs in higher eukaryotes with known homologs in budding yeast. Most 
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of the +TIPs are cytoplasmic in yeast, but a few localize to the kinetochore. Bik1, Bim1, and 

Stu2 localize to the kinetochore near the Ndc80 complex. Along with MAPs, there are motor 

proteins like Kip3, Kar3, Kip1, and Cin8 that also associate with the kinetochore. 

 

 

Stu2: 

Stu2 has been implicated in microtubule destabilization (van Breugel, Drechsel, and 

Hyman 2003; Kosco et al. 2001). Stu2 has a vertebrate orthologue known as XMAP215/DIS 

in Xenopus and ch-TOG in humans. It is localized on the kinetochore, cortical tips, the plus-

end microtubule, and the spindle mid-zone (He et al. 2001; Wang and Huffaker 1997). Stu2 

is transported to a newly captured kinetochore to promote microtubule polymerization and 

coincide with microtubule rescue (Kitamura et al. 2010). In vivo, Stu2 stabilizes the inter-

polar microtubule and mutation in STU2 does not affect the bi-orientation but does affect the 

transient separation. Along with reduced oscillation, the Stu2 mutant exhibits reduced 

kinetochore velocity by regulating the microtubule dynamics (Pearson et al. 2003). Stu2 

dimerizes to bind the microtubule and relay on Ndc80 for kinetochore localization (Miller, 

Asbury, and Biggins 2016). Studies on kinetochore proteins localization have placed Stu2 

near the Ndc80 complex (Aravamudhan et al. 2014). 

Bik1: 

Bik1, like Stu2, also localizes near the kinetochore. Deletion of BIK1 has no obvious 

phenotype in haploid or diploid. However, it is essential in polyploid cell to generate tension 

at the sister kinetochore (Lin et al. 2001). Bik1 binds in a Kip2 dependent manner to the 

shrinking and growing microtubule and stabilizes the growing microtubule (Perez et al. 1999; 

Carvalho et al. 2004). Kip2 is very specific to cytosol and its kinetochore receptor is not yet 

known. Bik1 specifically localizes on the kinetochore attached to the microtubule (Tanaka et 
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al. 2005). Bik1 is not conserved as it cannot substitute the Clip-170 function in higher 

eukaryotes (Wieland et al. 2004). 

Other kinetochore +TIPs: 

Bim1, one of the MAPs, has a homolog in humans called EB1. Similar to Bim1, EB1 

also associates with the kinetochore and stabilizes the microtubule (Kerres et al. 2004; 

Tirnauer et al. 2002). Depletion of EB1 leads to reduced tension at the kinetochore in human 

cells (Tirnauer et al. 1999; Draviam et al. 2006). Bik1 in yeast is not studied very well. Stu1 

and Pac1 also interact with the plus-end of the microtubule. Stu1 is important for kinetochore 

capture and localizes on the spindle mid-zone as Stu1 mutants have a collapsed spindle. Stu1 

genetically interacts with Dam1 and Cin8 but their association is not well studied in yeast 

(Jones et al. 1999; Yin et al. 2002).  

Kinesins 

Kinesins are motor proteins which use ATP hydrolysis (chemical energy) for 

directional motion (mechanical energy) to move a cargo along the MT (Asbury 2005). 

Kinesins have coiled-coil stalk for the cargo-binding and globular domain with ATPase 

function. Most of the kinesins take 8nm discrete steps after each ATP hydrolysis. The kinesin 

functions differ from moving the cargo to destabilizing the microtubule ends (Lawrence et al. 

2004). Budding yeast has six kinesins and one dynein kinesin. The nuclear region has four 

kinesins (Cin8, Kip1, Kip3, and Kar3) that localize to the kinetochore and/or spindle mid-

zone. The kinesins are classified based on structure, function, and directionality on the MT. 

Kinesin-5 motors (Cin8 and Kip1) form a homotetramer with plus-end direction and play a 

major role in cross-linking parallel, anti-parallel MT (Tytell and Sorger 2006). Even though 

Cin8 and Kip1 are not essential, deletion of CIN8 increases chromosome loss with frequent 

spindle collapse at 37°C. Deletion of KIP1 and CIN8 is synthetically lethal, however 

overexpression of Kip1 can suppress the spindle collapse in cin8∆. The cin8∆ strain has 

synthetic lethality with deletion of MAD2, but the kip1∆ strain does not (Hoyt et al. 1992). 
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Kip3 (kinesin-8 or -13 family) has a functionally similar MCAK in mammals; 

XKCM1 in Xenopus and Klp5 and Klp6 in S. pombe. The kinesin-13 family of motors 

destabilize the microtubule end by using mechanical force to pull the protofilament and 

enhance the microtubule to curve away (Su et al. 2011). In yeast, the kip3∆ strain is resistant 

to benomyl (microtubule drug), suggesting the role of Kip3 in destabilizing microtubule. Both 

kinesin families are important for metaphase alignment of unattached kinetochore and de-

polymerization of microtubule during anaphase. 

Kar3, a kinesisn-14 family member, localizes on the SPB, the kinetochore, and at the 

cortical microtubule based on its interaction with non-motor proteins. Kar3s specifically 

destabilize the minus-end MT and cytoplasmic MT in vitro (Maddox et al. 2003). It is 

important for karyogamy during mating and depends on non-motor proteins for localization. 

Interaction with Vik1 localizes Kar3 on the nuclear site of the SPB and interaction with Cik1 

localizes Kar3 on ipMT. Kar3/Cik1 is essential for nuclear migration during cytoplasmic 

microtubule mediated karyogamy (Sproul et al. 2005; Maddox et al. 2003). 

Dynein and dynactin 

Dynein is a cytoplasmic minus-end directed motor that localizes on the cortical. Dyn1, 

a 471kDa polypeptide, has a 4 ATP binding site (P-loops) flanked by a conserved MT binding 

coiled-coil domain. Cortically localized dynein-dynactin motor exerts force on the minus-end 

of SPB to pull it towards the periphery of the cell (Markus, Punch, and Lee 2009). In budding 

yeast, dynein, a non-essential motor, has overlapping function with another non-essential 

motor family, Cin8. Deletion of both the motors is inviable, probably because of failed 

anaphase spindle elongation. 
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Kinetochore dynamics 

During metaphase, dynamic instability of the microtubules oscillates the sister 

chromatids front and back along the spindle axis. Tension between the sister chromatids 

stretches the chromatin region around the centromere (He et al. 2001). However, the tensile 

(spring) nature of the stretched chromatin comes back to the rest state by promoting 

microtubule polymerization (Gardner et al. 2005). Microtubule instability promotes the 

proper attachment and movement along the microtubule. Depolymerization coupled 

centromeric movement transiently disperses about 10kb of DNA and this transient separation 

is mediated by enrichment of cohesion at the peri-centromeric region (He et al. 2001). The 

kinetochore interaction with the microtubule imposes a structural constraint on the 

kinetochore. How the kinetochore maintains its interaction with the microtubule without 

losing the attachment is unknown. I have addressed this question in chapter 2. 

Microtubule 

The microtubule (MT) is a polymer of the tubulin monomer and is made up of α and 

β tubulin subunits. It is a self-assembled hollow structure with 25nm diameter, consisting of 

almost always 13 protofilaments (Desai and Mitchison 1997; Nogales 1999; Nogales et al. 

1999). Tubulin heterodimer is asymmetrically assembled into MTs with α-tubulin at the stable 

minus-end and β-tubulin present on the unstable plus-end of the MT. Microtubule 

stochastically switches between polymerization (recue) and depolymerization (catastrophe) 

and it is referred to as dynamic instability. Four states characterize microtubule dynamic 

instability: growth (polymerization), shrinkage (depolymerization), rescue (switch from 

depolymerization to polymerization), and catastrophe (rapid depolymerization) (Mitchison 

and Kirschner 1984, 1984; Desai and Mitchison 1997). Even though GTP can bind to α and 

β tubulin, GTP is only hydrolyzed by β tubulin. MT only incorporates the GTP bound αβ-

tubulin dimer and on incorporation GTP is hydrolyzed to form a microtubule lattice. The 
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GDP-bound tubulin is more unstable than the GTP-bound form promoting rapid 

depolymerization and release of mechanical force to move the attached kinetochore 

(Fig.1.10). The GDP-bound tubulin have curvature conformation and store potential energy 

in the microtubule lattice (Desai and Mitchison 1997).  

In vitro studies of microtubule dynamics greatly differ from in vivo studies, suggesting 

that other factors might be influencing the dynamics. Kinesins and MAPs are known to 

influence the microtubule dynamic as these proteins specifically localize on GTP-bound plus-

end of the microtubule.  

 Recently a new member of the tubulin superfamily was discovered through 

molecular genetic studies called γ−tubulin which is required for the microtubule nucleation 

and acts as a microtubule organizing center. In vivo studies have shown that gamma-tubulin 

can control the microtubule nucleation and it has independent role to control the cell cycle. 

The Gamma-tubulin concentration increases at the centrosome in the beginning of mitosis 

and decreases at the end of mitosis.  
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Figure 1.10: Microtubule is a dynamic structure and modulated by many factors. 

(A) Microtubule is a polymer of α and β tubulin, a heterodimer. (B) Addition of GTP-bound tubulin 
dimer is called polymerization or growth phase. Removal of the tubulin dimer results in 
depolymerization or ‘shrinkage’. Microtubule stochastically switch between growth and shrinkage. 
Kinetochore has to interact with this unstable structure without losing the attachment (Conde and 
Caceres 2009). 

   

Mode of kinetochore-microtubule interaction 

Based on the proteins involved in the kinetochore-MT interaction, three types of 

models were proposed to explain the kinetochore attachment on disassembling MT. ATP-

powered microtubule depolymerizing motors are assumed to play an important role in the 

chromosome segregation but deletion of these motors does not affect the kinetochore 

attachment. Recently, two models have gained favor over other models namely: the 

conformational wave model and the biased diffusion model (Koshland, Mitchison, and 

Kirschner 1988; Hill 1985). 

Conformational wave model 

The conformational wave model is based on the movement driven by the conformation 

(power stroke) change of MT protofilaments to move the kinetochore (Fig.1.11). The power 

stroke gains energy from the bending strain of GDP-bound tubulin. During depolymerization, 

MT protofilaments peels away from the tip, producing enough energy to pull the kinetochore 

continuously (Mandelkow, Mandelkow, and Milligan 1991). Based on the kinetochore 

proteins interaction with the MT, two modes of interactions were proposed: 1) ring-based 

interaction and 2) fibril-based interaction. In both modes, curling microtubule protofilaments 

produce force to move the kinetochore. The purified yeast Dam1 complex, which forms a 

ring-like structure, tracks progressively on the depolymerizing microtubule, favoring the 

conformational wave model (Miranda et al. 2005; Westermann et al. 2005). The non-ring 

form of the oligomeric Dam1 complex can also track the depolymerizing microtubule and 

still validates the model. High-resolution EM showed curled protofilaments in vivo (McIntosh 
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et al. 2008; VandenBeldt et al. 2006). Regulation of the kinetochore-microtubule interaction 

in the conformational wave model is achieved by changing the contacts with the protofilament 

(Asbury, Tien, and Davis 2011; Desai et al. 1999; Kerssemakers et al. 2006).  

 

 

Figure 1.11: Conformational wave model for the kinetochore function. 

(A) Kinetochore component (green) interacts with the curling microtubule protofilament (red) to drive 

the movement. From position (i) to (ii), kinetochore components make a small angle and little 

displacement. Development of larger angle (ii) to (iii) displaces the kinetochore for movement. (B) 

Bending energy versus kinetochore component position. Red dots mark the position of the kinetochore 

component from (a). When protofilament comes to its naturally favorable bent-position (iii) releases 
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g+G total energy, results in d+D displacement. In (ii) initial bending, it releases G amount total energy 

with less axial displacement. 

 

Biased diffusion model 

The biased diffusion model was proposed first by Hill in 1985. The kinetochore has 

multiple binding sites and they make transient diffusive attachment with the MT (Fig.1.12). 

More attachments by motion favor the additional unidirectional attachment on the 

microtubule. In other words, depolymerization promotes additional attachment by Brownian 

motion. Hill’s theoretical model showed that the kinetochore can do mechanical work on the 

disassembling microtubule. The presence of multiple copies of Ndc80 and Dam1 complexes 

favors the biased diffusion model as purified the Ndc80 and Dam1 complex form a load-

bearing attachment during assembly (Asbury et al. 2006; Franck et al. 2007; Powers et al. 

2009; Tien et al. 2010). If the kinetochore follows a conformational wave model, then this 

state is least favored because protofilament lacks the curved feature. Interestingly, assembly 

state is most favored in biased diffusion. In terms of force production at the kinetochore, the 

Monte Carlo simulation of biased diffusion produces very close approximation to in vivo 

calculation of the pulling force (10pN) (Powers et al. 2009). The biased diffusion is also 

favored by the ultrastructure observation of the kinetochore, which reveals a web-like mat 

contacting the microtubule with parallel projections (Dong et al. 2007; McEwen and Dong 

2010). 
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 Figure 1.12: Biased diffusion model of kinetochore-microtubule attachment. Free energy versus 

kinetochore position with (M=3) microtubule-binding component. Free energy change for the 

detachment is W and b is the energy change needed for a single element to adopt transition between 

sites. Red dots represent energies corresponding to the position of the tip-bound and lattice–bound 

microtubule-binding element. (A) The energy landscape of the rigid microtubule is represented by the 

heights of the corrugations, b, 2b, 3b and increase in number of microtubule-binding elements will 

result in M.b energy. The effective step, l, by the microtubule-binding element is constant. (B) The 

energy landscape for a flexible array, the effective step size, l, 1/2l, 1/3 l and decrease as more elements 

are bound with minimum energy of l/M. In the case stated above, the Corrugated height, b, is constant. 

Experimental evidences show that transition energy for detachment (w+b for the landscapes shown 

here) is much larger than the corrugated height, b. Ndc80, a potential microtubule-binding element, 

has a lattice diffusion rate of Do= 0.17µm2 s-1, implying fast hopping rate from site to site, khop= 2,600 

s-1(=Do/l2, l= 8nm (tubulin spacing)). koff= 1.2 s-1 is for the Ndc80 complex detachment rate with 

transition energy of at least 7.7 kgT larger than b. It follows the Boltzmann’s law, where ∆U is the 
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energy difference, khop/ koff=exp (∆U/kBT) represents ratio of rates. Here kBT is thermal energy (4.1 pN 

nm at 25° C) (Asbury, Tien, and Davis 2011). 

Kinetochore architecture: 

Advancements in fluorescent microcopy have helped to quantify the number of 

proteins in each complex of the kinetochore and built the architecture of the kinetochore-

microtubule site. Green fluorescence protein was widely used to genetically tag a protein in 

vivo to study the kinetochore function. Internal, well defined reference intensity has been used 

to define the kinetochore architecture. Budding yeast has a single centromeric nucleosome 

where the whole kinetochore assembles. The single centromeric nucleosome has 2 Cse4 

molecules in anaphase. By using this as a reference, initial studies showed that the kinetochore 

has ~5 Mis12 complexes, ~ 8 Ndc80 complexes and 1-4 copies of other complexes (Table.1.2) 

(Joglekar et al. 2006; Joglekar et al. 2008). By choosing the dynamic reference, the results 

were misleading. In order to circumvent the problem, in my thesis work I have used a stable, 

ubiquitously expressed  GFP with normal folding time as a reference to calculate most of the 

kinetochore complexes. By using Ndc80 intensity as a reference, quantitative microscopy of 

the kinetochore on point and regional centromere revealed the similar kinetochore 

architecture. Vertebrate kinetochores have multiple microtubules (~20-25 microtubules in 

humans) on their dynamic kinetochore, making it difficult to study the kinetochore 

architecture. Recent advances in tagging the kinetochore protein of chicken cell line DT40 

have shown that they have similar copy number of kinetochore proteins per microtubule 

(Johnston et al. 2010). These studies provide evidence for the conservation of the basic 

kinetochore structure from yeast to human. Even though the architecture of the kinetochore-

microtubule site is known, dynamics nature of the kinetochore over the cell cycle and how it 

tracks on the microtubule is not known. 

 

 



Chapter 1 
 

58 
 

 

Table.1.2. Copy number of kinetochore complex proteins per attachment (kinetochore). 

Complex Budding 
yeast 

Fission 
yeast 

Vertebrate 
homologue S.cerevisiae Chicken 

(DT40) 
S. 

pombe 

    Metaphase Anaphase  
 

Ref. 
protein  

Budding 
yeast 

      Ndc80     
(anaphase) 

 Cse4 in 
metaphase 

Cse4 in 
anaphase 

Budding 
yeast 

Ndc80 
(anaphase) 

 

 Cse4 Cnp1 CENP-A 2 2  2 

Cbf3 Ndc10   4 2-3   
Cep3   2 1-2   

 Mif2 Mif2 CENP-C 1-2 1-2 9 1 
COMA Ctf19  CENP-F 3 2   

CCAN 

Ctf3   - 1   
Chl4   - <1   
Nkp2   - 1   
Cnn1  CENP-T - - 7  

 Spc105  KNL-1 5 5 7  
MIND Mtw1 Mis12 Mis12 6-7 4-5 9 5 
Ndc80 Nuf2 Ndc80 Nuf2 8 7 9 7 
Dam1 Ask1  Dam1 16-20 10-11  1 

          (Joglekar et 

al.2006) 
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Summary 

The kinetochore is a molecular machine that pulls chromosomes by tracking on the 

depolymerizing microtubule during anaphase. Purification of submodules and the whole 

kinetochore have made a significant progress in understanding the kinetochore function and 

its organization. The biophysical studies on these kinetochore complexes have shown their 

unique properties under tension but their function in vivo is not clear. Due to the lack of 

available methods to study the kinetochore in vivo, it has been a mystery for years. In this 

thesis, I have elucidated the novel structural transition of the kinetochore over the cell cycle 

(Chapter 2). This structural plasticity is important for their tracking and proper chromosome 

segregation. Further I investigated the role of tension in the structural transition. Chapter 3 

provides further evidence for how the kinetochore structural transitions in metaphase-

anaphase are regulated and in late anaphase. In chapter 4, I present my studies on the role of 

chaperones on assembly of Cse4 nucleosomes by in vitro analysis and live-cell imaging. 

Chapter 5 contains speculations and future directions. Over all, in this thesis work, I have 

explained the novel conserved structural plasticity of the kinetochore during cell cycle which 

will further broaden our understanding of kinetochore biology and chromosome biology in 

vivo. 
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Abstract  

The kinetochore is a large evolutionarily conserved protein structure that connects 

chromosomes with microtubules. During chromosome segregation, outer kinetochore 

components track the depolymerizing end of a microtubule to facilitate separation of 

chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon 

which a single kinetochore is built which attaches to a single microtubule. This defined 

architecture facilitates quantitative examination of kinetochores during the cell cycle. Using 

three independent measures, calibrated imaging, FRAP, and photoconversion, we find that the 

Dam1 submodule is unchanged during anaphase whereas MIND and Ndc80 submodules add 

copies. Stu2-dependent microtubule depolymerization contributes to copy addition. 

Mathematical simulations indicate that the addition of microtubule attachments facilitates 

tracking during rapid microtubule depolymerization. We speculate that the minimal 

kinetochore allows for correction of mis-attachments. Our study provides insight into the 

dynamics and plasticity of the kinetochore structure during chromosome segregation in living 

cells. 
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Introduction 

Pairs of sister chromatids must be precisely divided into two cells during cell division to 

prevent missegregation. Chromosome missegregation results in aneuploidy which is associated 

with cancer and birth defects (Pfau and Amon 2012; Yuen, Montpetit, and Hieter 2005). 

Therefore, understanding the mechanisms of chromosome segregation is critical to understand 

the fidelity of chromosome transmission. Microtubules attach to the chromosome via 

kinetochores and pull them to the poles during chromosome segregation. The kinetochore is a 

several megadalton sized protein structure assembled on a specialized region of the 

chromosome called the centromere. The centromeric region is a ~130-bp sequence in budding 

yeast and is epigenetically defined in higher organisms. Most of the kinetochore proteins and 

their functions are evolutionarily conserved. In higher eukaryotes, each kinetochore interacts 

with multiple microtubules (Walczak, Cai, and Khodjakov 2010; Chan, Liu, and Yen 2005; 

McAinsh, Tytell, and Sorger 2003), whereas in S. cerevisiae each chromosome interacts with 

only one microtubule (Winey et al. 1995), making it an ideal defined system for studying the 

kinetochore-microtubule interaction.  

The yeast kinetochore (Fig.2.1A) consists of more than 60 proteins that assemble into 

sub-modules, constituting the inner and outer kinetochore. The inner kinetochore consists of 

CBF3/Ndc10, Mif2, and COMA complexes that connect the centromeric region of the 

chromosome to the outer kinetochore. The MIND/Mis12, Spc105/CeKNL-1, Cnn1, Dam1, and 

Ndc80 complexes form the outer kinetochore, and link the inner kinetochore to the microtubule 

(De Wulf, McAinsh, and Sorger 2003; Lampert and Westermann 2011). The Ndc80 complex 

is a heterotetramer of Spc25, Spc24, Nuf2, and Ndc80. Ndc80 binds to the tubulin subunits of 

a microtubule using an unstructured N-terminus as a finger-like projection (Powers et al. 2009; 

Guimaraes et al. 2008). The MIND/MIS12 complex, a heterotetramer of Nsl1, Nnf1, Dsn1, and 

Mtw1, links the Ndc80 complex to the inner kinetochore (Hornung et al. 2011; Obuse et al. 

2004). The Dam1 complex, a heterodecamer, is the functional analogue of the Ska1 complex 
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in higher eukaryotes and forms a ring-like structure around the microtubule in vitro that may 

slide along the microtubule as it disassembles (Wang et al. 2007; Schmidt et al. 2012; Welburn 

et al. 2009). Ndc80 and Dam1 complexes use different means of microtubule contact but work 

cooperatively to track the disassembling end of the microtubule during chromosome 

segregation (Umbreit et al. 2014; Tien et al. 2010; Powers et al. 2009), resulting in the 

movement of chromosomes to the poles (Grishchuk and McIntosh 2006). Although some 

structural details of the kinetochore submodules that provide attachments to microtubules have 

been determined, how the submodular structure for kinetochore-microtubule attachments 

functions in a living cell is not clear. 

A microtubule is a polymer of α and β tubulin dimers and interacts with the outer 

kinetochore to pull the chromosome. A microtubule is a highly dynamic structure, as it can add 

or lose tubulin dimers in processes called ‘rescue’ and ‘catastrophe’, respectively (as reviewed 

in (Desai and Mitchison 1997)). Growing and shrinking microtubule tip structures differ by 

their degree of microtubule protofilament curvature which can influence the interaction with 

the Ndc80 complex (as reviewed in (Foley and Kapoor 2013; Asbury, Tien, and Davis 2011)). 

Microtubule Associated Proteins (MAPs) can alter the microtubule dynamics by interacting 

with the microtubule tip and the tubulin dimers. MAPs have been implicated in chromosome 

capture, spindle stability, and chromosome movement (Pearson et al. 2003; Gandhi et al. 2011). 

Stu2, one of the XMAP215 family proteins, specifically interacts with the Ndc80 complex 

{Miller, 2016 #285; and affects microtubule behavior. Loss of Stu2 results in loss of bi-

orientation, leading to missegregation of chromosomes (Miller, Asbury, and Biggins 2016). 

Although the function of Stu2 has been studied in metaphase with purified kinetochores, the 

function of MAPs during anaphase, when a kinetochore must track a microtubule with 

prolonged rapid disassembly, has not been examined. 

Microtubule associated proteins also include motor proteins. Kip3 (kinesin-8 motor) is 

a non-essential protein that depolymerizes microtubules at its plus-end (Niederstrasser et al. 

2002). Deletion of KIP3 is lethal in the absence of DYN1 (Dynein 1) and exhibits shorter 
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spindle with unseparated nuclear mass (Miller et al. 1998). Cin8, a kinesis-5, localizes on the 

spindle midzone and has redundant functions with Kip1 (Hildebrandt and Hoyt 2001; Hoyt et 

al. 1992). Deletion of both the motors result in shortened spindles. In cin8∆ strain at 25°C 

shows chromosome loss with frequent broken spindle and is inviable at 37°C (Hoyt et al. 1992). 

Kar3 is a kinesin-14 motor protein that is important for karyogamy and depends on non-motor 

proteins for its localization. Kar3 binds to Vik1 to localize on SPB and interacts with Cik1 for 

its midzone localization. Deletion of the non-motor protein partners, forces Kar3 to its 

respective location. However, importance of motor protein for kinetochore attachment is not 

well understood. 

We present data consistent with structural plasticity of the kinetochore during 

chromosome segregation. Calibrated imaging, Fluorescence Recovery after Photobleaching 

(FRAP), photoconversion, and genetic studies suggest that the outer kinetochore complexes, 

especially the MIND and Ndc80 complexes, add new copies of proteins during anaphase. 

However, the Dam1 complex remains unchanged. The MAP Stu2 influences the copy number 

increase of MIND and Ndc80 subcomplexes, suggesting these kinetochore submodules can 

adjust their addition based on the Stu2-determined rate of microtubule depolymerization. 

Simulations of kinetochore function using Hill’s kinetochore attachment model (Hill 1985) 

predict that the addition of each coupler (or copy) decreases the detachment rate ~4 fold. 

Therefore, addition of the Ndc80 submodule could improve attachment during anaphase. We 

observe similar structural changes in kinetochores in fission yeast, suggesting structural 

plasticity is an evolutionarily conserved property of kinetochores in higher eukaryotes. Taken 

together, our results suggest that parts of the kinetochore structure can sense and adapt to 

microtubule dynamics while other parts remain constant. Overall, the design of the kinetochore 

may accommodate structural plasticity that promotes accurate segregation of chromosomes. 
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Results 

Sub-modules of the yeast kinetochore increase in intensity during anaphase 

Budding yeast has 16 chromosomes with centromeres that form a cluster (Jin et al. 1998; Jin, 

Fuchs, and Loidl 2000), and eGFP-tagged kinetochore proteins form a sub-diffraction-limited 

spot (Joglekar, Salmon, and Bloom 2008). Kinetochores form a single cluster from G1 through 

late S phase. When sister kinetochores bi-orient and start to separate, the single cluster divides 

into two equal clusters with half as many kinetochores. To investigate the kinetochore structure 

during the cell cycle, we used endogenously expressed kinetochore proteins tagged with eGFP 

at the C-terminus to examine fluorescence intensity. In an asynchronous culture, cells having 

no bud are categorized as G1 phase while anaphase cells exhibit the maximum distance 

between kinetochore clusters or spindle pole bodies. The fluorescence intensity of kinetochore 

clusters, represented by a heat map, shows subunits of the Ndc80 complex have higher intensity 

in anaphase cells than in G1 cells (Fig.2.1B). However, Dam1p of the Dam1 complex has 

similar intensity in both anaphase and G1 cells (Fig. 2.1C).  

We further quantified the intensity of the kinetochore cluster through the cell cycle by 

arresting cells in G1 using alpha factor and subsequently releasing them for imaging. As 

expected, the intensity of Nuf2 (Ndc80 complex) increases during S phase and then drops as 

the cell progresses through metaphase (Fig.2.1D). However, the fluorescence intensity of the 

cluster increases again gradually as the chromosomes separate during anaphase (Fig. 2.1D and 

2.2A). At the end of anaphase, the fluorescence intensity of a cluster (16 chromosomes) is on 

par with the intensity in S phase (32 chromosomes), suggesting more proteins are present in 

each kinetochore structure (Fig. 2.1D). We examined all proteins from the Ndc80 and the 

MIND complexes (not shown), finding similar intensity profiles to Nuf2 and Dsn1 (MIND 

complex, Fig.2.2B-C). In contrast, similar experiments with Dam1 complex proteins show little 

intensity increase during anaphase. As an example, we show Ask1, the intensity of which 

doubles from G1 to S phase as expected but does not increase during anaphase (Fig.2.1E, 2.2D). 
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A kymograph heat map analysis shows Nuf2 increases in intensity during anaphase whereas 

Ask1 does not (Fig. 2.1F, G). Our analyses indicate that the increase is specific to anaphase, 

since the intensity drops in the subsequent G1 stage. 

 

Figure 2.1. The intensity of some kinetochore sub-modules increases in anaphase. 

(a) Model of a yeast kinetochore, showing inner and outer kinetochore complexes. The Ndc80 complex 

interacts with microtubules with finger-like projection; the Dam1 complex can form a ring-like 

structure. Heat map analyses of Ndc80-eGFP (b) and Dam1-eGFP (c) intensities in an asynchronous 

culture. Cell cycle stages have been marked near the cell. Red inserts show enlarged intensity heat map. 
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Ndc80 is much brighter in anaphase than G1. The intensity of Dam1 is similar in G1 and anaphase. 

Scale bar, 5µm. Intensity profiles of Nuf2-Egfp which is normalized to the intensity of the first-time 

point “0” (d) and Ask1-eGFP (e) over the cell cycle are shown. The distance between the two 

kinetochore clusters (Kt-Kt distance, bottom graph) helps to define the cell cycle stage, in addition to 

the bud morphology (top). (f) Kymograph of Nuf2-eGFP heat map over the cell cycle shows an increase 

in intensity as kinetochore clusters separate in anaphase. (g) Kymograph of Ask1-eGFP heat map shows 

G1 and anaphase kinetochore clusters have similar intensity. Scale bar, 5µm. 



  Chapter 2 

83 
 

 

Figure 2. 2. Subunits in the MIND and Ndc80 subcomplex increase in intensity during anaphase 

whereas the intensity of a subunit in the Dam1 subcomplex does not. 

(a)Intensity of Nuf2-GFP and Dsn1-GFP (b) were followed from metaphase (kinetochore cluster 

distance <0.8µm) to anaphase/telophase. In this experiment intensity measurements were collected at 

very short intervals. The intensity of Nuf2 and Dsn1 increases gradually as the kinetochore clusters 

separate from each other. (c) The intensity of Dsn1-GFP was followed over the cell cycle. α-factor 
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arrested cells were released to image the complete cell cycle with more widely spaced timepoints to 

prevent photobleaching. The intensity of Dsn1 increases during anaphase like the intensity of subunits 

of the Ndc80 complex. (d) The intensity of Ask1 stays constant or decreases from metaphase to 

anaphase. For the metaphase to anaphase quantification the time point ”0” is defined as the first 

timepoint where kinetochore clusters separate apart by <0.8µm and for the whole cell cycle, the time 

point “0” is defined by the first timepoint of the movie at G1 (cells with Schmoo). 

 

Some kinetochore subcomplexes increase during anaphase 

To further quantify the fluorescence increase, we used calibrated imaging, which is based on 

measuring the absolute intensity of eGFP in live yeast using Fluorescence Correlation 

Spectroscopy (FCS). Nuclear pore complex proteins have been used extensively to validate 

this method (Shivaraju et al. 2012). Strains with eGFP epitope tagged proteins of Ndc10, 

Ctf19/COMA (hereafter COMA), Cnn1, Spc105, MIND, Ndc80, and Dam1 kinetochore 

complexes were used for quantification in G1 and anaphase. All strains were karyotyped to 

validate normal ploidy (Table 2. S1, see Materials and Methods). Although data was collected 

for calibrated imaging from an asynchronously growing culture, we compared calibrated 

imaging results for Dsn1 during G1 using an asynchronous culture versus alpha-factor arrest 

(Fig.2.4A). The copy number was independent of the method used to obtain G1 cells. This data 

also demonstrates the reproducibility of the calibrated imaging method between two 

independent experiments. 
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Figure 2.3. The kinetochore has higher copy numbers of Ndc80 and MIND subcomplexes in 

anaphase while the Dam1 complex has similar copy number throughout the cell cycle. 

(a) Violin plot of copy numbers of the inner kinetochore proteins in G1 and anaphase. The horizontal 

middle line is the mean and the box represents the standard deviation. 50-173 clusters were used to 
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calculate the copy number. (b) Violin plot showing copy number of the outer kinetochore proteins. 

Subunits in the MIND and Ndc80 subcomplexes nearly double in copy number in anaphase. 50-150 

clusters were used to calculate the copy number. (c) Violin plot showing the copy number of the subunits 

of the Dam1 subcomplex, with similar counts in G1 and anaphase. 50-280 clusters were used to 

calculate the copy number. For a-c, a two-tailed t-test was used to test for statistical significance. N.S. 

indicates not significant. (d) The ratio of kinetochore proteins in anaphase to G1 show the subunits of 

the MIND and Ndc80 subcomplexes have higher copy number in anaphase as compared to the Dam1 

subunits. Error bars represent standard error. 

 

Several of the inner kinetochore proteins display a significant increase in their copy 

number during anaphase (Fig.2.3A). Outer kinetochore proteins also display an increase in 

copies during anaphase (Fig.2.2B). These include proteins from the MIND and Ndc80 

complexes which increase in copy number in anaphase by 50-100% (Fig. 2.3D,2.4B). Subunits 

of the COMA subcomplex, such as Okp1 and Ame1, also increase in copy number in anaphase 

(Fig. 2.3A). The MIND complex is joined to the inner kinetochore by COMA (Hornung et al. 

2014) and associates with the microtubule associated Ndc80 complex of the outer kinetochore. 

These three subcomplexes all display increases as chromosomes are separating during 

anaphase, consistent with the idea that they operate together structurally.  

The subunits of the Dam1 complex, in contrast to subunits of COMA, MIND and Ndc80 

complexes, have a similar copy number in G1 and anaphase (Fig. 3C, D). Subunits of the Dam1 

complex show only a slight increase in copy number between G1 and anaphase (Fig. 3C). The 

mean distribution of 12±4 (SEM) correlates reasonably well with the modeling of 16-fold 

symmetry of a Dam1 ring encircling a microtubule, assembled in vitro (Westermann et al. 

2006; Wang et al. 2007). Overall, inner complex proteins tend to be present at lower copy 

number relative to the outer complex proteins, consistent with a structure with an initial 

anchoring point to the centromere with amplification moving toward the microtubule side. 

Debate in the past over calibrated imaging of centromere/kinetochore proteins in yeast 

has centered on the size of the cluster, which undergoes compaction in anaphase (Joglekar et 

al. 2006). Simulations of centromere compaction demonstrated an observed increase in the 
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peak intensity of the cluster of centromeric Cse4 by ~40% (Aravamudhan, Felzer-Kim, and 

Joglekar 2013). It is worth noting that the 40% estimate (Aravamudhan, Felzer-Kim, and 

Joglekar 2013) for differences in amplitude assumed a 1.4 NA objective, and thus is inaccurate 

when applied to the data presented here and in a previous publication (Shivaraju et al. 2012), 

as this data was acquired with a 1.2 NA objective. The difference in amplitude expected based 

on spot size is highly dependent on the resolution of the system and given our resolution, the 

maximum difference in amplitude we could expect based on compaction is 20 to 25% (Smith, 

Slaughter, and Unruh 2014). We took specific steps to ensure that the data presented here are 

not clouded by this complication. First, we include data only on spots whose fit width is under 

a threshold (set as a standard deviation of 182 nm for the Gaussian fit) (Shivaraju et al. 2012). 

The increase by 50% or more by the end of anaphase for many of the kinetochore proteins after 

selecting similarly sized clusters surpasses the 25% increase that may occur due to compaction. 

Furthermore, we do not observe an increase in the Dam1 complex, despite the similar extent 

of compaction observed for it relative to other kinetochore submodules. These factors strongly 

suggest that the intensity increase we observe is not due to the compaction of the kinetochore. 

Nonetheless, we repeated our analysis with the integrated intensity method (Joglekar et 

al. 2006), which is immune to artifacts from compaction. After applying the same size filter as 

above to eliminate spots that are disperse, we integrated the total intensity of each spot in G1 

and anaphase. We normalized the kinetochore protein intensities to the average integrated 

intensity of Cse4 during anaphase (which we set as 2 Cse4/kinetochore) (Fig. 2.4C). While 

noise increases, as expected based on integration, we obtain consistent results, with many 

proteins in the inner and outer kinetochore increasing in copy number in anaphase, while the 

Dam1 complex does not.  



  Chapter 2 

88 
 

 

 

Figure 2.4. Copy number of kinetochore proteins in G1 and anaphase calculated by the 

integrated intensity method. 

(a) The copy number of Dsn1-GFP as calculated by calibrated imaging from 100-150 clusters 

(n=3) is similar for cells in G1 whether derived from an asynchronous culture or α-factor 

arrest. (b) The percent change in kinetochore proteins from G1 to anaphase is shown (n=3). 
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Subunits of the MIND and Ndc80 subcomplexes typically display >50% increase in 

anaphase. (c) An alternative method for data processing to that shown in Figure 2, known as 

integrated intensity (Joglekar et al., 2008b), in which Cse4 levels from anaphase are used as a 

reference to calculate the copy number, also reveals an increase in subunits of the MIND and 

Ndc80 subcomplexes in anaphase as compared to G1. A two-tailed t-test was used to test for 

statistical significance. * indicates statistical significance (p<0.005). N.S. indicates not significant. 

MIND and Ndc80 complexes recover in FRAP but the Dam1 complex does not 

If copies of a kinetochore protein are added in anaphase, fluorescence recovery after 

photobleaching (FRAP) experiments should reveal this addition. We bleached the kinetochore 

cluster in metaphase (when kinetochore clusters are <1µm apart) and followed it through the 

cell cycle to quantify the percent recovery in the subsequent anaphase. As the kinetochore 

clusters move towards the pole, proteins from COMA, MIND and Ndc80 complexes recover 

to varying degrees (Fig. 2.5A, B; Fig. 2.6A-C). Quantification of subunits of the bleached 

MIND and Ndc80 complexes shows a recovery of >80% in late anaphase (Fig. 2.5E). The 

recovery of a few subunits of the MIND and Ndc80 subcomplexes in FRAP beyond the starting 

value (>100%) suggests that these complexes might have more protein in anaphase than 

metaphase. However, Ask1 and other subunits of the Dam1 complex fail to recover in anaphase 

(Fig. 2.5C, D; Fig.2.6D). While we see some experimental variation of the percent recovery 

with subunits of the same complex, we attribute this in part to variable bleaching of the 

nucleoplasm. Overall, however, our FRAP experiments reveal that all of the Ndc80 and MIND 

subunits examined recover more fluorescence than the Dam1 subunits (Fig. 2.5E; Fig.2.6). 

Similar FRAP experiments performed on metaphase clusters by ourselves (not shown) and 

others (Joglekar, Salmon, and Bloom 2008; Suzuki et al. 2016), resulted in no recovery within 

metaphase, suggesting that recovery is specific to progression from metaphase through 

anaphase. Furthermore, bleaching in mid-late anaphase did not result in recovery within 

anaphase as determined by ourselves (not shown) and others (Joglekar, Salmon, and Bloom 
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2008; Suzuki et al. 2016). Taken together, the FRAP data are consistent with the addition of 

MIND and Ndc80 subunits from early to late anaphase and little addition of Dam1 complex 

subunits. 

Figure 2.5. Subunits of the Ndc80 and MIND subcomplexes recover in FRAP whereas subunits 

of the Dam1 subcomplex do not. 
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(a-b) Kinetochore clusters in metaphase with Nuf2-eGFP were bleached once they were separated by 

<2µm (1 min) and recovery was monitored, and the intensities were quantified. For A, C the scale bar 

indicates 5µm. For both the mother and daughter clusters, intensity was normalized to 1 at 0 min. 

Second time point represents photobleach step. (c-d) Kinetochore clusters with Ask1-eGFP were 

followed as in (a-b). Quantification of the Ask1-eGFP kinetochore cluster intensity (d) shows no 

recovery. (e) Percent recovery after photobleaching for kinetochore proteins is shown; each dot 

represents an individual cluster. Subunits of the COMA (Ame1, Okp1), MIND, and Ndc80 complexes 

show >80% recovery in anaphase (green) whereas Mif2 and subunits of the Dam1 subcomplex show 

little recovery (red).  
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Figure 2.6. Quantification of FRAP shows subunits of the COMA, MIND and Ndc80 

subcomplexes recover in anaphase but subunits of the Dam1 subcomplex do not. 

(a) FRAP results are shown for centromere-proximal kinetochore proteins Mif2, Ctf19, Okp1 and 

Ame1. Metaphase cells were used to bleach the kinetochore cluster. Bleached kinetochore clusters were 

followed through anaphase. Intensity was normalized to 1 at 0 min. The second-time point represents 

the photobleach moment. Mif2 and Ctf19 do not recover in anaphase, suggesting some of the 

centromere proximal kinetochore proteins form a structure that does not turnover. However, essential 

proteins in the COMA subcomplex that anchor the MIND subcomplex do recover in anaphase (Ame1, 

Okp1). Cnn1 has some recovery. Spc105, which can interact with microtubules, shows recovery in 

anaphase after bleaching. (b) The MIND subcomplex subunits (Nnf1, Nsl1 and Mtw1) were subjected 

to similar FRAP experiments. These display >80% recovery in anaphase. (c) Proteins from the Ndc80 

subcomplex (Spc24, Spc25 and Nuf2) recover in photobleaching experiments in anaphase. Similar 

recovery of MIND and Ndc80 subunits suggest they are both added as chromosomes are moving toward 

the poles in anaphase. (d) Proteins from the Dam1 subcomplex (Ask1, Dam1 and Dad1) do not recover 

in anaphase from photobleaching during metaphase. Anaphase was determined by the distance between 

the kinetochore clusters. 

 

MIND and Ndc80 complexes add copies during anaphase while the Dam1 

complex remains stable 

Our FRAP studies indicate that sub-modules of the kinetochore, especially the MIND and 

Ndc80 complexes, are dynamic during anaphase. However, FRAP cannot distinguish between 

complete protein turnover vs. retention of old subunits plus the addition of new subunits. To 

address this issue, we used kinetochore proteins tagged with a photoconvertible epitope (tdEos) 

that can be converted from green to red fluorescence with a brief exposure to ultraviolet light 

(405 nm) (Wisniewski et al. 2014; McKinney et al. 2009). We selectively photoconverted the 

kinetochore cluster in metaphase and followed it through anaphase. Pre-existing protein will 

be red following photoconversion, and protein in the nucleoplasm will remain green (with the 

exception of a small amount of off-axis photoconversion, which we estimated to be less than 

5%). Photoconversion of the cluster was >70% in our experiments. We then monitored the 
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addition of protein to the kinetochore during anaphase. Addition of green fluorescence is 

unmistakable evidence for addition of protein subunits. In the case of Ndc80-tdEos, we 

observed a >40% increase in green intensity at the kinetochore cluster during anaphase, 

suggesting that new copies are being added (Fig. 2.7A, B). Red fluorescence at the kinetochore 

cluster was similar throughout the experiment, implying that the pre-existing protein is 

maintained, although in some experiments a slight increase in red fluorescence was observed, 

possibly due to photoconversion of nearby nucleoplasm (Fig. 2.8A).  
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Figure 2.7. Ndc80 and MIND subcomplexes add new copies during anaphase while Dam1 does 

not. 

(a) Ndc80-tdEos is photoconverted in metaphase (4 min) and followed through anaphase. The increase 

in green fluorescence (white arrows) suggests that new copies are added. Scale bar, 5µm. (b) 

Quantification of normalized green and red fluorescence intensities at the Ndc80-tdEos spot is plotted 

over time. (c and d) A similar analysis was performed for Ask1-tdEos. Scale bar, 5µm. The normalized 

green fluorescence plot shows that new protein is not added during anaphase. (e) The average change 
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in the normalized green fluorescence intensity is shown for each kinetochore protein during anaphase. 

Error bars represent standard error. (f) Graph showing percent of green fluorescence addition during 

anaphase by kinetochore protein for the number of individual clusters indicated. MIND and Ndc80 

subcomplexes (green) have more green fluorescence at the maximum kinetochore distance than Dam1 

subunits (red). 

 

 

A similar photoconversion experiment using Ask1-tdEos from the Dam1 complex does 

not show any addition of new protein in anaphase (Fig. 2.7c, d; Fig. 2.8e), suggesting this 

complex is more stable. Cnn1 and Spc105 are added during anaphase (Fig. 2.8b). 

Photoconversion experiments suggest MIND and Ndc80 complexes add >50% new protein in 

anaphase (Fig. 2.7e, f; Fig. 2.8c, d) while the Dam1 complex adds little if any new protein in 

anaphase.  
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Figure 2.8. Quantification of photoconversion experiments for outer kinetochore proteins. 

(a) Summary graph showing the retention of red fluorescence at the kinetochore in photoconversion 

experiments with number of experiments indicated in brackets. Most of the proteins retain a similar 

level of red fluorescence at anaphase, suggesting the kinetochore keeps its old copies. Dam1 and Ask1 
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subunits show a slight loss of red fluorescence, suggesting either a few copies are lost or there is some 

minor photobleaching. (b) In metaphase, a kinetochore cluster was photoconverted from green to red 

and followed through anaphase. Quantification of Cnn1-tdEos and Spc105-tdEos shows addition of 

new copies in anaphase. (c) Quantification of Nsl1-tdEos, Dsn1-tdEos and Mtw1-tdEos following 

photoconversion. Proteins from the MIND subcomplex show addition of new protein in anaphase. (d) 

Photoconversion of Ndc80 subcomplex subunits (Spc24 and Spc25) in metaphase reveals addition of 

copies (green) in anaphase. (e) Photoconversion of Dam1 shows no increase in green fluorescence, 

indicating that no new protein is added during anaphase. Percent green addition correlates well with the 

percent FRAP recovery.  

 

To rule out the possibility that the increase in green fluorescence might be due to the 

compaction of the kinetochore, or that folding dynamics of tdEos are a factor, we 

photoconverted the surrounding nucleoplasm during metaphase, changing the protein to its red 

form, without photoconverting the kinetochore cluster (leaving it green). As these cells 

progressed into anaphase, red fluorescence was added to the kinetochore cluster, strongly 

suggesting that new copies were added from the nucleoplasm (Fig. 2.9a-c). Taken together, the 

independent observations from FRAP, photoconversion, and calibrated imaging experiments 

suggest that additional copies of the MIND and Ndc80 subcomplexes are added to kinetochores 

as cells progress from metaphase to anaphase while the Dam1 complex remains constant. 
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Figure 2.9. Photoconversion of Dsn1-tdEos in the nucleoplasm reveals copy addition during 

anaphase. 

 (a and b) Snapshots with quantification of nucleoplasm photoconverted (marked as a white dashed line) 

cell from metaphase through anaphase. Protein from photoconverted nucleoplasm (red) in the daughter 

cell (upper cluster) was added to the kinetochore during anaphase. The addition of new protein is 

demonstrated by the increase in the red fluorescence. (c) The mother cell kinetochore (lower cluster), 

without nucleoplasm photoconversion, shows the expected increase in green fluorescence but no 

increase in red fluorescence during anaphase. Scale bar, 5µm. This experiment was repeated 7 times 

with similar results. 
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Figure 2.10. A mutation in STU2 reduces the addition of Ndc80 subunits in anaphase. 

(a) Box-plot analysis of Nuf2 copy number of wildtype and mutants. (b)box-plot analysis of 

Dam1 and Ask1 copy number in wildtype and mutants. (c) Calibrated imaging was used to 

calculate copy number for the protein indicated in each MAP mutant during G1 and 

anaphase, similar to Figure 2, and then plotted as in Figure 2D. The stu2-11 mutant has a 

lower anaphase to G1 ratio than WT for Nuf2 whereas Dam1 is unaffected. 50-130 clusters 

were considered for the copy number calculation. (e and f) Snapshots and quantification of 
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FRAP shows that Nuf2 does not recover during anaphase in the stu2-11 background. (g and 

h) Photoconversion of Ndc80-tdEos in the stu2-11 background shows that green 

fluorescence does not increase in anaphase. Scale bar, 5µm. 

MAPs affect kinetochore copy number 

As the kinetochore tracks the depolymerizing microtubules during anaphase, chromosomes 

move to the poles. Microtubule Associated Proteins (MAPs) affect microtubule function and 

dynamics (Wolyniak et al. 2006; Mallavarapu, Sawin, and Mitchison 1999). Bik1, Stu2, and 

Bim1 are MAPs that locate near the kinetochore-microtubule attachment site (Aravamudhan et 

al. 2014; He et al. 2001). Stu2/XMAP215 (STU2 homologue in human) has been implicated as 

a microtubule destabilizer and in some cases as a microtubule polymerase (van Breugel, 

Drechsel, and Hyman 2003; Al-Bassam et al. 2006; Podolski, Mahamdeh, and Howard 2014). 

Stu2 is important for spindle elongation and stabilization during anaphase (van Breugel, 

Drechsel, and Hyman 2003; Severin et al. 2001; Kosco et al. 2001). Stu2 mutants have slower 

microtubule dynamics with a longer paused state and shorter spindles (Pearson et al. 2003; He 

et al. 2001). Ndc80 complexes physically interact with Stu2 (Miller, Asbury, and Biggins 

2016). A yeast strain bearing a temperature sensitive stu2-11 allele has slower spindle 

elongation and takes longer to complete anaphase than wildtype cells (~10 mins slower). 

Mutations that affect MAPs can therefore affect microtubule dynamics.  

To test the effect of microtubule dynamics on kinetochore structure, we used strains 

with compromised MAP function, deleting BIK1, BIM1, or using a temperature sensitive allele 

of the essential STU2, stu2-11. Calibrated imaging revealed that the stu2-11 mutant had fewer 

copies of the Ndc80 complex in anaphase compared to the WT strain or the bim1∆ or bik1∆ 

strains, suggesting microtubule dynamics controlled by Stu2 could affect anaphase addition 

(Fig. 2.10a). In contrast, the Dam1 complex was relatively unaffected by compromising MAP 

function, suggesting that microtubule dynamics more specifically affect the Ndc80 complex 

(Fig. 2.10b). FRAP experiments show poorer recovery of Nuf2-GFP in the stu2-11 mutant 

compared to WT (Fig. 2.10C, D, and Fig. 2.14A). Furthermore, photoconversion experiments 
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suggest Ndc80-tdEos fails to add copies during anaphase in the stu2-11 strain (Fig. 2.10E, F). 

Taken together, these data suggest that microtubule destabilization with slower spindle 

elongation in the stu2-11 mutant specifically affects the number of Ndc80 complexes added 

during anaphase. We speculate that the addition of the Ndc80 submodule can adjust based on 

the Stu2-determined rate of microtubule depolymerization during anaphase, while the Dam1 

submodule structure is relatively immune to microtubule dynamics during anaphase. 
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Figure 2. 11. Motor proteins affect the kinetochore copy number in anaphase. 
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(a) Kar3 associates with non-motor proteins Vik1 and Cik1 to localize on the SPB and spindle midzone 

respectively. In vik1∆ strain, Kar3 localizes on spindle midzone and deletion of CIK1 localizes Kar3 to 

SPB. (b) Kar3 association with non-motor proteins have different effect on the spindle. In vik1∆, Nuf2 

clusters are not separated well in metaphase. Deletion of CIK1 shows similar Nuf2 cluster separation in 

metaphase. (c, d) Kar3 association with non-motor proteins impact the kinetochore differently. (e, f) 

Deletion of motor proteins have differing effect on kinetochore. Kip3, a known microtubule 

depolymerase, affects the kinetochore copy number. The motor proteins have more profound effect on 

the Ndc80 complex than the MIND complex, suggesting that motor proteins may play a critical role in 

the addition of the Ndc80 sub complex. 

 

Motor proteins affect the kinetochore copy number. 

Kar3, a minus-end directed nonprocessive kinesin-14 motor, associates with non-motor 

proteins Vik1 and Cik1 for their location specific function and localization (Tytell and Sorger 

2006). Vik1 interaction with Kar3 localize on SPB and Vik1 is also required for efficient 

cohesion (Mayer et al. 2004). On the other hand, Kar3 binds to Cik1 for midzone localization 

(Fig.2.11A). Cik1 binding to spindle midzone  depends on another microtubule binding protein, 

Bim1 (Mieck et al. 2015). The kinetochore protein Nuf2 forms a bi-lobed structure in cik1∆ 

strain. However, in deletion of VIK1, the kinetochore forms a collapsed single lobe structure. 

In the absence of Cik1, Kar3 interacts with Vik1 to localize on the spindle and does not affect 

the kinetochore localization (Fig.2.11 A, B). Cik1-Kar3 can bind to the Ndc80 complex to 

localize on microtubule (Mieck et al. 2015). Our image calibration on these mutants showed 

that Kar3-Vik1 (SPB localized form) has reduced copy number of MIND and Ndc80 

complexes (Fig.2.11a). However, both the complexes are not affected in cik1∆ strain 

(Fig.2.11b). Together, Kar3 affects the kinetochore based on its interaction with non-motor 

protein. Vik1 may be required for the structural transition. 

Kip3 (MCAK in mammals) is a microtubule depolymerizing motor that localizes on 

the kinetochore (Su et al. 2011). kip3∆ strain is resistant to microtubule depolymerizing drug 

benomyl, consistent with depolymerizing activity of Kip3 (Su et al. 2011). Kip3 has been 

implicated in correcting improper kinetochore-microtubule attachment and aligning the 
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chromatids at metaphase plate. Image calibration of MIND and Ndc80 complexes in kip3∆ 

strain shows that the kinetochore has anaphase-specific reduction of copy number (Fig.2.11c, 

d), consistent with reduced microtubule depolymerization the mutant has reduced copy 

number.  Deletion of other motor proteins affect the Ndc80 complex both in G1 and anaphase, 

making it harder to interpret their role in MIND and Ndc80 regulation over the cell cycle. Taken 

together, some motor proteins differentially regulate the copy number of MIND and Ndc80 

complexes. While others do not affect. Kip3 which has a pronounced effect on the structural 

transition may work via its effects on microtubule depolymerization, similar to Stu2. 

 

Kinetochore copy number increase is predicted to improve chromosome 

attachment 

In anaphase, the kinetochore must persistently track the rapidly depolymerizing microtubule. 

Hill’s model for kinetochore-microtubule interaction has been extensively used to 

mathematically describe kinetochore movement. The number of proximal coupler microtubule 

attachments can change based on microtubule dynamics, with depolymerization favoring 

motion and polymerization favoring a stable attachment (Hill 1985; Joglekar et al. 2006; 

Asbury, Tien, and Davis 2011; Joglekar and Hunt 2002). Polymerization of the microtubule 

changes the kinetochore binding site from N to N+1, promoted by random thermal motion, 

while depolymerization promotes the movement of the microtubule out of the kinetochore 

“sleeve” (Fig.2.12A)(Joglekar and Hunt 2002). Given our experimental observations, we 

simulated kinetochore-microtubule attachment during prolonged depolymerization with 

different numbers of couplers, with the speculation that more couplers might prevent 

detachment of the kinetochore from the disassembling microtubule. Our simulation studies 

using Hill’s equation show that the addition of couplers decreases the probability of detachment 

exponentially in a given anaphase time (Fig. 2.12B). If we simulate a 10 min anaphase, addition 

of a single coupler decreases the probability of a lost attachment by ~4 fold (Fig.2.12C). Based 
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on our experimental evidence, the coupler that could be added to prevent a lost attachment is 

the Ndc80 submodule. The simulations demonstrate that adding even a single coupler is 

predicted to have a significant effect on persistence of attachment.  

 

Figure 2.12. Simulations using Hill’s biased diffusion model 

(a) Hill’s equation for the microtubule-kinetochore interaction is shown with a cartoon to depict each 

variable. During microtubule polymerization, the microtubule moves inside the kinetochore sleeve from 

𝑀𝑀 − 1 to 𝑀𝑀, for calculating the 𝑘𝑘𝑖𝑖𝑖𝑖. During depolymerization of the microtubule, interactions are 

broken and reformed in a new position by moving from 𝑀𝑀 to 𝑀𝑀 − 1, for calculating the 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜. (b) The 

number of couplers is plotted against the probability of detachment (shown by heat map) as a function 

of anaphase length. Addition of each coupler increases the probability of remaining attached 

exponentially. (c) The probability of an attachment breaking is plotted against the number of couplers 

for a 10-min anaphase, revealing that the addition of each coupler exponentially decreases the loss of 

kinetochore-microtubule interaction. 

Kinetochore intensity increase during anaphase is evolutionarily conserved 

Budding yeast and fission yeast diverged ~600 million years ago from a common ancestor 

(Hedges 2002). Fission yeast has a regional centromere but forms a sub-diffraction-limited 
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kinetochore cluster like budding yeast (Liu et al. 2005) and the kinetochore-microtubule 

architecture is also conserved (Joglekar et al. 2008). We tagged kinetochore proteins with eGFP 

to study their intensity during the cell cycle in S. pombe. Dsn1-eGFP and Ndc80-eGFP 

intensities increase in anaphase compared to G2 (Fig.2.13A, B), similar to our observations in 

budding yeast (Fig.2.2, 3). We used the kinetochore distance to identify the cell cycle stages. 

For technical reasons, it was easier to quantify the intensity in G2 (rather than metaphase) and 

anaphase and normalize for the number of chromosomes. The intensity of the kinetochore 

cluster drops as the cell transitions from G2 to metaphase and then increases again during 

anaphase (Fig. 2.13C). Anaphase cells have higher fluorescence intensity per chromosome for 

subunits of the MIND and Ndc80 subcomplexes, suggesting more copies per chromosome in 

anaphase (Fig.2.13a-d; Fig.2.14b, c). The Dam1 complex in S. pombe localizes along the 

microtubule with multiple puncta (Gao et al. 2010), making it difficult to assess kinetochore-

associated Dam1. Altogether, our data suggests that the Ndc80 and MIND subcomplexes also 

increase during anaphase in fission yeast, suggesting that plasticity of the kinetochore structure 

may be evolutionarily conserved.  
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Figure 2.13. Ndc80 increase during anaphase is observed in S. pombe. 

(a) Quantification of intensity of SpDsn1-GFP (MIND/MIS12 complex) from metaphase to anaphase 

shows an increase during anaphase. Quantification (b) and snapshots (c) showing an increase in 
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intensity of SpNdc80-GFP from metaphase to anaphase in fission yeast. Scale bar, 5µm. (d) 

Quantification of kinetochore protein intensity per chromosome in G2 and anaphase is represented as a 

violin plot. Kinetochore clusters in anaphase have significantly higher intensity than kinetochore 

clusters in G2. 50-130 clusters were used for the violin plot. A two-tailed t-test was used to test for statistical 

significance. 

 

Figure 2.14. Quantification of kinetochore proteins in stu2-11, cnn1Δ mutants (S. cerevisiae) and 

in S. pombe. 
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(a) Additional FRAP quantification graphs of Nuf2-GFP during metaphase to anaphase in the stu2-11 

mutant background are shown. FRAP was performed as described in Figure 3 at 25°C. Nuf2 recovers 

less in the stu2-11 mutant compared to the wildtype strain. (b) Kinetochore clusters with SpNuf2-GFP 

were followed from G2 to anaphase in S. pombe. The intensity of SpNuf2 increased from metaphase to 

anaphase. (c) A similar experiment using SpNdc80 also shows an increase in intensity during the 

metaphase to anaphase transition. The intensity increase in anaphase is similar to that observed for the 

budding yeast kinetochore, suggesting the structural change might be conserved through evolution. (d) 

Calibrated imaging was used to calculate and compare the copy number for Nuf2 in WT and cnn1∆ 

strains in G1 and anaphase. Deletion of CNN1 does not affect the copy number of Nuf2 in either G1 or 

anaphase. 
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Discussion 

Error-free chromosome segregation is essential for successful progression of life. Experiments 

using purified yeast kinetochores have revealed that microtubule depolymerization makes 

kinetochores highly susceptible to detachment (Akiyoshi et al. 2010) which in turn could be 

deleterious for chromosome transmission. Our work suggests that the kinetochore structure, 

particularly the MIND and Ndc80 subcomplexes, but not the Dam1 subcomplex, is modified 

during the rapid microtubule depolymerization of anaphase in living cells (Graphical abstract-

model 2.15). The increase in Ndc80 copies has the potential to increase contacts between the 

microtubule and the kinetochore during anaphase, presumably to facilitate efficient tracking. 

We speculate that fewer copies of the Ndc80 submodule during G1 and metaphase relative to 

anaphase could facilitate correction of errors in microtubule attachment. Our results suggest 

that the kinetochore is an adjustable structure, which may contribute to robust functionality. 

Kinetochore submodules are adjustable and stoichiometric during anaphase 

The kinetochore interacts with the assembling and disassembling microtubule tip throughout 

the cell cycle. During anaphase, however, the kinetochore must track on a rapidly 

disassembling microtubule without losing the attachment. The Ndc80 complex makes this 

connection to the microtubule tip through its N-terminal unstructured finger-like projections. 

The Ndc80 complexes align parallel to each other with highest FRET in anaphase 

(Aravamudhan et al. 2014). As a microtubule disassembles, it is proposed that the Ndc80 

complex breaks the interaction with the microtubule near the tip and forms a new more internal 

interaction (as reviewed in (Asbury, Tien, and Davis 2011; Foley and Kapoor 2013)). 

Oligomerization of the Ndc80 complex is necessary for it to track the microtubule in vitro. 

Dam1, an essential complex for kinetochore function in budding yeast, forms a ring-like 

structure and tracks the disassembling microtubule. The presence of these two different types 

of microtubule contacts may facilitate robust attachment. However, the type of attachments 
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made by the Ndc80 submodule may be more amenable to adjustment. We observe that the 

Ndc80 complex gradually adds copies as the spindle pole bodies separate during anaphase, and 

this addition is accompanied by the addition of copies of the MIND complex and the Okp1 and 

Ame1 subunits of the COMA complex (Hornung et al. 2014), which anchors the MIND 

complex to the centromere. Together Okp1/Ame1-MIND-Ndc80 may form a working 

structural module, stretching from the inner kinetochore to the microtubule. The addition of 

Okp1/Ame1-MIND-Ndc80 kinetochore submodules could promote chromosome attachment 

to microtubules as chromosomes move to opposite poles during anaphase. 

The relative stoichiometry of proteins within Ndc80 and MIND submodules remains 

similar in G1 and anaphase, reinforcing the idea that they function as structural submodules 

within the kinetochore. Because there are more copies of Ndc80 than MIND, and more copies 

of MIND than Okp1/Ame1, our results would suggest a single Okp1-Ame1 submodule may 

associate with more than one MIND submodule, and one MIND submodule may associate with 

more than one Ndc80 submodule. Although Okp1 and Ame1 may exist in the COMA 

submodule with Ctf19, they have significantly higher copy number than Ctf19. However, 

overall stoichiometry of the COMA submodule is roughly maintained from G1 to anaphase. In 

contrast to the subunits of the MIND and Ndc80 submodules, which all exhibit similar behavior 

in FRAP and photoconversion experiments, Okp1 and Ame1 show more recovery than Ctf19 

after photobleaching, suggesting different structural dynamics for the subunits of this 

submodule. Cnn1 has been reported to function as a receptor for the Ndc80 complex in 

anaphase (Schleiffer et al. 2012; Malvezzi et al. 2013), and may associate with added copies of 

the Ndc80 subcomplex. However, deletion of CNN1 did not affect the copy number or addition 

of Ndc80 in our hands, suggesting it is not required for recruitment of Ndc80 (Fig. S6D). 

Overall, our results start to reveal the behavior of subunits and submodules within the structure 

of the living kinetochore. 

The Dam1 subcomplex tends to form an oligomeric structure and at high protein 

concentrations forms a complete ring with 16-fold symmetry in vitro (Miranda, King, & 
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Harrison, 2007; Ramey et al., 2011; Wang et al., 2007; Westermann et al., 2005). The Dam1 

subcomplex can interact with the microtubule as a monomer, partial ring, complete ring or 

double ring in vitro (Gestaut et al. 2008; Miranda, King, and Harrison 2007; Kim et al. 2017), 

suggesting multiple modalities of interaction are possible. All forms of the Dam1 subcomplex 

form a load bearing contact with the microtubule and track the depolymerizing microtubule 

processively (Umbreit et al. 2014; Gestaut et al. 2008). Previous imaging estimated the Dam1 

subcomplex at 10-20 copies per kinetochore in vivo (Joglekar et al., 2006), similar to our 

estimate of 12±4 copies. A partial Dam1 ring has been observed by tomography (McIntosh et 

al., 2013), suggesting that the Dam1 complex could form an incomplete ring in vivo. Our data 

are consistent with the speculation that the Dam1 subcomplex can exist as an incomplete ring 

in vivo. 

Previous studies on kinetochore protein copy number specifically focused on 

metaphase or anaphase and typically used centromeric histone protein Cse4 as a reference 

(Joglekar et al. 2006; Joglekar et al. 2008). The relative copy number of kinetochore proteins 

was given in metaphase and anaphase relative to Cse4 in metaphase, and Cse4 in anaphase, 

respectively, with Cse4 unchanged over the cell cycle. However, a later study argued that Cse4 

fluorescence changes between metaphase and anaphase (Shivaraju et al. 2012), suggesting 

these previous measurements may be reinterpreted. With the unchanging Cse4 reference used 

in the previous study, the anaphase values calculated relative to metaphase showed a slight 

relative decrease in copy number for the MIND complex member Mtw1p, a slight relative 

decrease for COMA complex member Ctf19p, and a large (~ factor of 2) relative decrease in 

copy number for Dam1 complex member Ask1p (Joglekar et al. 2006). Based on our collection 

of calibrating imaging, FRAP, and photoconversion data, we instead argue that subunits of the 

Dam1 subcomplex remain constant from metaphase to anaphase, while subunits of the MIND 

and COMA submodules are added during anaphase. Our data is therefore consistent with the 

previous report, but simply differs in the calibration reference. In fact, if we use Cse4 as a 

reference at 2 copies/kinetochore in anaphase, our anaphase numbers are strikingly similar to 
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the previous report (Table 2. S2). Our FRAP results are also consistent with prior reports. 

Previous FRAP experiments were performed on a handful of kinetochore proteins for ~5 mins 

(300s) and did not reveal any recovery (Joglekar, Salmon, and Bloom 2008; Joglekar et al. 

2006; Suzuki et al. 2016). However, these experiments differed from ours in that they were 

performed either in metaphase or in anaphase. In contrast, we followed recovery from 

metaphase to anaphase, and typically for a longer period. Furthermore, the critique that 

compaction of the cluster can affect the intensity of the spot by 40%, and therefore may explain 

the differences we observe in anaphase, is refuted by both the FRAP and photoconversion data, 

where intensity changes are not the readout – but rather the absence (Dam1 complex) or 

presence (Ndc80 complex, for example) of intensity in anaphase following photobleaching or 

photoconversion in metaphase. In sum, our results are compatible with the published literature.  

Kinetochore plasticity may be influenced by microtubule dynamics and may be 

evolutionarily conserved 

MAPs can influence the rate of microtubule assembly and disassembly during the cell cycle 

(Kosco et al. 2001). The Stu2/XMAP215 family is important for spindle elongation and 

kinetochore-microtubule interaction (Usui et al. 2003; Miller, Asbury, and Biggins 2016). Loss 

of Stu2 severely reduces the microtubule dynamics, makes spindles shorter and arrests cells in 

metaphase (Pearson et al. 2003; Kosco et al. 2001). The reduced microtubule dynamics 

reported in a stu2 mutant (McAinsh, Tytell, and Sorger 2003) is associated with less addition 

of Ndc80 subunits in our experiments, revealing a correlation between a lower disassembly 

rate and the number of Ndc80 submodules added. Stu2 may help to directly recruit or stabilize 

additional Ndc80 complexes via its interaction with Ndc80. Given that Stu2 is evolutionarily 

conserved (human ortholog ch-TOG) and its interaction with Ndc80 is evolutionarily 

conserved (Miller, Asbury, and Biggins 2016), this protein could play a similar role in higher 

eukaryotes. In contrast, the Dam1 complex was unaffected by compromising MAP function. 

We speculate that the Ndc80 complex may be able to sense the rate of microtubule 
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depolymerization and adjust the number of copies added for attachment while the Dam1 

subcomplex may not vary its attachment by depolymerization rate. The kinetochore structure 

in the stu2-11 mutant during anaphase is an intermediate between the normal G1 and anaphase 

state, suggesting fewer microtubule couplers are present under conditions of reduced 

depolymerization speed and reinforcing the idea of structural plasticity. 

A purified kinetochore complex detaches from a disassembling microtubule ~100-fold 

faster than a polymerizing microtubule in vitro (Akiyoshi et al. 2010; Sarangapani et al. 2014); 

detachment in a cell could result in aneuploidy. Our results suggest that the living kinetochore 

enhances its interaction with the depolymerizing microtubule by increasing the copy number 

of the Ndc80 subcomplex. These structural changes would be difficult to observe in vitro since 

they depend on a soluble pool of subunits. Simulation of kinetochore interactions with 

microtubules predicts that the addition of each coupler decreases the probability of losing the 

microtubule attachment by 4-fold. We propose that the addition of the Ndc80-MIND-Okp1-

Ame1 modules could serve this role. In yeast, as each chromosome is attached to a single 

microtubule, this addition may be especially important for faithful completion of chromosome 

segregation. Our results in fission yeast support addition of Ndc80 subcomplexes during 

anaphase as a conserved feature of a living kinetochore structure. 

How might structural plasticity promote chromosome segregation? 

The structural plasticity of the kinetochore may contribute to its functionality. We speculate 

that in metaphase, fewer copies of Ndc80 might facilitate error-correction by Aurora B kinase 

(Biggins et al. 1999; Cheeseman et al. 2002; Tanaka et al. 2002). Increased Ndc80 levels, as 

reported in cancer, may compromise error correction, leading to the increased aneuploidy 

observed (Meng et al. 2015; Yuen, Montpetit, and Hieter 2005; Pfau and Amon 2012). Once 

chromosomes start moving to the poles during anaphase, the addition of Ndc80-MIND-Okp1-

Ame1 submodules may provide extra attachments that facilitate robust microtubule tracking. 

Interestingly, kinetochores revert to the lower copy structure in G1. Many kinases and 
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phosphatases regulate mitosis, and the kinetochore in particular. We speculate that one or more 

of these kinases and/or phosphatases may contribute to the regulation of the kinetochore 

structure. In the future, it will be important to pursue how the living kinetochore structure is 

regulated, and how the structural plasticity contributes to its functionality. 

Experimental Procedures  

Yeast Strains  

The S. cerevisiae and S. pombe strains used in this study are listed in Table 2.S1. Karyotyping 

by qPCR was done as previously described (Pavelka et al., 2010) to examine the ploidy level 

of strains used in microscopy studies. Briefly, genomic DNA was isolated from saturated 

culture qPCR primers were designed from the non-coding region on each arm of the 16 

chromosomes. 500 bp fragment is chosen near the centromeric sequence, avoiding repetitive 

sequences. Standard qPCR protocol was followed and analysis for copy number was followed 

as in (Pavelka et al.,2010) 

Microscopic Techniques  

All microscope data for GFP counting, FCS, and FRAP were acquired as previously described 

(Shivaraju et al. 2012) by using Carl Zeiss LSM-510 Confocal microscope (Jena, Germany), 

outfitted with a ConfoCor 3 module and two single-photon counting avalanche photodiodes 

(APD’s). A C-Apochromat 40x 1.2 NA water objective was used. A HFT 488/561 main 

dichroic allowed excitation of GFP (488 nm laser line) and mCherry (561 nm laser). A 

secondary NFT 565 beam splitter was used as an emission dichroic. After passage through a 

505–550 nm BP or LP 580 filter for GFP and mCherry, respectively, photon counts were 

collected on APDs in single-photon counting mode. Pinhole was set to 1 airy unit.  
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Fluorescence correlation Spectroscopy (FSC) with image calibration 

Fluorescence Correlation Spectroscopy and image calibration were done as previously 

described. For details see (Shivaraju et al. 2012). Briefly, using the FCS module of the Zeiss 

confocor 3, FCS of an endogenously expressed monomeric-GFP in live cells was used to 

calculate the intensity of a single GFP. As with imaging, the 488 nm laser line was used to 

excite GFP, and emission was collected through a 505-550 nm BP filter. Pinhole was set to 1 

airy unit. To calculate the copy number of a kinetochore protein, a Z series was taken with 0.4 

µM step size and 6.4 µs pixel dwell time. The kinetochore cluster was fit to a 2-dimensional 

Gaussian, and peak amplitude of the fit was divided by single GFP intensity, after correcting 

for differences in laser power. For integrated intensity, we followed the protocol as previously 

described (Joglekar, Bloom, and Salmon 2009). We multiplied the spot intensity amplitude by 

(standard deviation)2 to calculate the normalized intensity.  

A Python script with matplotlib was used to plot the kinetochore copy number as a violin plot. 

Origin 9.1 was used for box plots and statistical analysis. 

Fluorescence Recovery after Photobleaching  

 FRAP measurements were performed to examine recovery of kinetochore protein during 

anaphase. Yeast cells expressing kinetochore proteins tagged with eGFP were grown to mid-

log phase in synthetic complete media, harvested, and sandwiched between a slide and 

coverslip in a 1% agarose solution made with medium. Long-time lapse imaging demonstrated 

yeast cells were alive and divided at a normal rate in the agar pad for up to 4 hr. We took time 

points with 5 minute intervals to minimize bleaching. Prior to photobleaching, a Z series was 

taken with 0.4 µM step size and 6.4 µs pixel dwell time. Acquisition of a Z stack was essential 

due to the mobility of the kinetochore cluster in living yeast cells and to ensure proper 

quantitation of kinetochore intensity. After the initial acquisition, a kinetochore cluster labeled 

with eGFP was irreversibly photobleached by 4 rapid scans with high 488 nm laser power. The 
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ability of the cells to continue to grow and divide ensured that photobleaching did not grossly 

damage the cells. After photobleaching, movies were acquired to examine recovery of the 

kinetochore cluster during anaphase. In most cases, cells were used that also expressed Spc42-

mCherry from a centromeric plasmid to mark the cell cycle. Recovery of kinetochore proteins 

was observed as the reappearance of a punctate spot centered in the nucleus. ImageJ software 

(https:imagej.nih.gov/ij/) with custom written plugins was used to calculate the intensity and 

distance between the kinetochore clusters.  

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
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� ∗ 100 

Photoconversion of kinetochore proteins at metaphase 

For cell cycle time series and photoconversion studies, a Perkin Elmer Ultraview VoX spinning 

disc system with a Yokagawa CSU-10 spinning disc was used. The system was attached to a 

Carl Zeiss 200m inverted microscope. Images were acquired with a 100x 1.46 -plan 

Apochromat oil objective, onto an EMCCD, using Volocity software. GFP and mcherry, or the 

green and red forms of tdEos, were excited with the 488 nm and 561 nm laser lines, 

respectively, using a 405/488/561/640 dichroic. Emission filter for green was a 500-550 nm 

BP, and for red it was a 415-475 nm / 580-650 nm dual BP filter. Data was acquired with 

alternative excitation, and was verified to be free of spectral cross-talk.  

Photoconversion experiments were used to measure the addition of new protein at the 

kinetochore cluster in anaphase. Yeast cells expressing tdEos or mEos were grown and the 

experiment proceeded as in FRAP – with the exception that the kinetochore cluster was 

photoconversion with four iterations of 405 nm laser and subsequently imaged with the 488nm 

(Green)/561 nm (Red) laser line with spinning disk microscopy, using the system detailed 

above. 
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(𝑃𝑃𝑃𝑃𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
� ∗ 100   

For cell-cycle series/movies the cells were maintained on 2% agar pads at room temperature. 

Simulation of kinetochore-microtubule interaction with Hill’s equation  

Simulations of kinetochore microtubule tracking for depolymerizing microtubules were 

performed according to the Hill model (Hill 1985) as described by Joglekar and Hunt (Joglekar 

and Hunt 2002). A full derivation is provided in supplementary information. Briefly, the rate 

of transition from position N-1 to position N (out of the kinetochore sleeve composed of M 

binding sites or couplers) is described by the following equation: 

      𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆 �Ƙ 𝑟𝑟𝑀𝑀−𝑁𝑁

ƒ(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
+  𝛽𝛽� (Microtubule depolymerization) 

Here Ƙ is the constant describing the sleeve thermal motion between tubulin binding sites, s is 

the exponent incorporating the loss of free energy due to movement out of the sleeve, r is the 

potential barrier associated with bond breaking in the sleeve, β is the rate of microtubule 

depolymerization, and f is the Boltzmann load factor coupling the tension force (F) on the 

chromosome to the distance traveled, l, as follows: 

𝑓𝑓 = 𝑒𝑒−𝐹𝐹∙𝑙𝑙 2𝑘𝑘𝑘𝑘�  

Likewise the transition from position N to N-1 is described as follows: 

   𝑘𝑘𝑖𝑖𝑖𝑖 = Ƙ 𝑟𝑟𝑀𝑀−𝑁𝑁 ƒ
𝑆𝑆

   (Microtubule polymerization) 

We used a tension value of 20 pN for all simulations reported here. We used the recommended 

values from Joglekar and Hunt for all other parameters except in the case of the number of 

couplers, M, which we vary to observe the changes in dynamics of kinetochore loss. 
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Simulations of kinetochore tracking were initiated with the microtubule fully inserted in the 

kinetochore sleeve(𝑁𝑁 =  𝑀𝑀). Simulations were run with a time step of 10 µs and for a 

maximum length of 10000 s. At each time step, a random number was generated between 0 

and 1. If that random number was less than kin (scaled to the time step increment) the 

microtubule was inserted one binding site further into the sleeve with a maximum insertion of 

M binding sites. Otherwise if the random number was greater than 1-kout, the microtubule was 

pulled out of the sleeve by one binding site. If at any time this resulted in N = 0, the kinetochore 

was considered lost by the microtubule. 1000 simulations were performed, and the average loss 

time was found for each set of coupler number. The time required to lose the kinetochore was 

exponentially distributed for all parameter sets studied here. Therefore, the probability of loss 

within a particular anaphase could be estimated by integrating the exponential distribution up 

to the anaphase length time: 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝑒𝑒
−𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎�  

We mapped the average kinetochore loss time as a function of the number of couplers up to 9 

couplers. Above that value, the simulations become prohibitively long, but the trend of average 

loss time is perfectly exponential, following the equation:   𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑒𝑒−13.1789+1.6331∙𝑀𝑀.  We then 

used this formula to extrapolate loss times (and probabilities) for higher numbers of couplers. 

Author Contributions 

 KD, MS and BS conducted the experiments. BR and JU conducted simulations. JU, JL, and 

BS assisted KD with image quantification. KD and JG designed the experiments and wrote the 

paper. 
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Table 2.S1: Strains used in this study 

Figure Strain Name Genotype 

 
Budding yeast 

(Saccharomyces 
cerevisiae) 

 

1B, 2B,2D,3E,S2C KDH363 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ndc80-GFP::URA3 

1C,2C,2D,3E,5B,S2C,S3D KDH362 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Dam1-GFP::URA3 

1D,1F.3A,2B,5A,S1A,S2C,S6D KDH180.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nuf2-GFP::URA3 

1E,1G,3C,3D,S1D,S2C KDH233 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ask1-GFP::HIS3 

2A,2D,S2C KDH181.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Cse4-GFP::URA3 

2A,2D,3E,S2C,S3A KDH364 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Mif2-GFP::HIS3 

2A,2D,S2C KDH368 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ctf3-GFP::HIS3 

2A,2D,S2C KDH370 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Chl4-GFP::HIS3 

2A,2D,S2C,S3A KDH366 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ctf19-GFP::HIS3 

2A,2D,3E,S2C,S3A KDH324 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ame1-GFP::HIS3 

2A,2D,3E,S2C,S3A KDH325 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Okp1-GFP::HIS3 

2A,2D,3E,S2C,S3A KDH367 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Spc105-GFP::HIS3 

2A,2D,S2C,S3A KDH318 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Cnn1-GFP::URA3 

2B,2D,3E,S2C,S3B KDH235 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Mtw1-GFP::HIS3 

2B,2D,3E,S2C,S3B KDH371 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nnf1-GFP::HIS3 

2B,2D,3E,S2C,S3B KDH372 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nsl1-GFP::HIS3 

2B,2D,3E,S1B,S1C,S2A,S2C KDH179.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Dsn1-GFP::URA3 

2B,2D,3E,S2C,S3C KDH374 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Spc24-GFP::HIS3 

2B,2D,3E,S2C,S3C KDH373 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Spc25-GFP::HIS3 

2B,2D,3E,S2C,S3C KDH180.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nuf2-GFP::URA3 

2C,2D,3E,S2C,S3D KDH233 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ask1-GFP::HIS3 
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2C,2D,3E,S2C,S3D KDH375 MATa his3∆1 leu2∆0 met15∆0 
ura3∆0 Dad1-GFP:HIS3 

4A,4B,4E,4F,5F KDH199.1 MATa his3∆1 leu2∆0 met15∆0 
ura3∆0 Ndc80-tdEos::URA3 

4C,4D,4E,4F KDH226.1 MATa his3∆1 leu2∆0 met15∆0 
ura3∆0 Ask1-tdEos::URA3 

4E,4F,S4E KDH229.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Dam1-tdEos::URA3 

4E,4F,S4C,S5A,S5B,S5C KDH407.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Dsn1-tdEos::URA3 

4E,4F,S4C KDH220.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Mtw1-tdEos::URA3 

S4D KDH277 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Spc24-tdEos::URA3 

4E,4F,S4D KDH223.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Spc25-tdEos::URA3 

4E,4F,S4C KDH198.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nsl1-tdEos::URA3 

4E,4F,S4B KDH404.1 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Spc105-tdEos::URA3 

S4B KDH217 MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Cnn1-tdEos::URA3 

5A KDH189.1 
MATa  his3∆1 leu2∆0 met15∆0 

ura3∆0 Nuf2-
GFP::URA3,bik1∆:: KANMX6 

5A MMA196 

MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nuf2-

GFP::URA3,bim1∆:: 
KANMX6 

5A,5C,5D,S6 KDH193.1 

MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Nuf2-

GFP::URA3,stu2-10:: 
KANMX6 

5B KDH538 
MATa  his3∆1 leu2∆0 met15∆0 

ura3∆0 Ask1-
GFP::URA3,bik1∆:: KANMX6 

5B KDH537 

MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ask1-

GFP::URA3,bim1∆:: 
KANMX6 

5B KDH399.1 

MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Dam1-

GFP::URA3,stu2-10:: 
KANMX6 

5E,5F KDH323.1 

MATa  his3∆1 leu2∆0 met15∆0 
ura3∆0 Ndc80-

tdEos::URA3,stu2-10:: 
KANMX6 

S6D KDH143.1 
MATa  his3∆1 leu2∆0 met15∆0 

ura3∆0 Nuf2-
GFP::URA3,cnn1∆:: KANMX6 

 
Fission yeast 

(Schizosaccharomyces 
pombe) 
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7D KDH384 
h+ ade6-M210 leu1-32 ura4-

D18 his3-D1 Cnp1-
GFP::NATMX6 

7C,7D KDH385 
h+ ade6-M210 leu1-32 ura4-

D18 his3-D1 Dsn1-
GFP::NATMX6 

7A,7B,7D,S6C KDH386 
h+ ade6-M210 leu1-32 ura4-

D18 his3-D1 Ndc80-
GFP::NATMX6 

7D,S6B KDH387 
h+ ade6-M210 leu1-32 ura4-

D18 his3-D1 Nuf2-
GFP::NATMX6 

 

Table 2.S2: Comparison of kinetochore copy number in anaphase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex Protein 
Anaphase 
number(Joglekar et 
al. 2006) 

Anaphase 
number (this 
study) 

Nucleosome Cse4p 2 2 
Cbf3 Ndc10p 2-3 3 
 Mif2p 1-2 2 
COMA Ctf19p 2 3 
 Spc105 5 5 
MIND Mtw1p 4-5 7 
NDC80 Nuf2p 7 10 
DAM-DASH Ask1p 10-11 10 
CTF3 Ctf3p 1 1 
CHL4-IML3 Chl4p <1 <1 

Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S., & Salmon, E. D. (2006). Molecular 
architecture of a kinetochore-microtubule attachment site. Nat Cell Biol, 8(6), 581-585. doi: 
10.1038/ncb1414 
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Supplemental method 

Simulation of microtubule depolymerization on kinetochore structure predicts the 

requirement of additional couplers for kinetochore-microtubule interaction in 

anaphase. 

 

 

 

 

 

 

 

 

 

The model follows the derivation of Hill (Hill 1985) and Joglekar and Hunt (Joglekar and Hunt 

2002) with some minor modifications outlined below. The Microtubule (Mt) movement inside 

the sleeve is performed by discrete steps of the size 𝐿𝐿 =  0.615 𝑛𝑛𝑛𝑛, and the size of the sleeve 

is 𝑀𝑀 ∗ 𝐿𝐿. The position 𝑁𝑁 of Mt is determined by its left tip 1≤ 𝑁𝑁 ≤ 𝑀𝑀 (see Fig. 6A) 

The following physical mechanism are incorporated into the model: 

1. Random thermal motion of the sleeve at a rate 𝜅𝜅. 

2. Loss of tubulin monomers at the Mt tip. 

Each additional interaction of Mt with the tubulin binding site (corresponding to the increasing 

𝑁𝑁) reduces the free energy by 𝑊𝑊 (it has negative value), so that the insertion of the Mt into the 

sleeve is promoted. This movement requires first to break all existing binding between Mt and 

binding sites, which creates a potential energy barrier B for each occupied binding site, so that 

this barrier is equal to 𝑁𝑁 ∗ 𝐵𝐵. 

Kinetochore sleeve 

C
hr

om
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e 

Mt 

M M-1… N …      2    1 

L 
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We set free energy equal to zero when the Mt detaches from the sleeve. Thus, at position 𝑁𝑁 =

1, we have it equal to 𝑊𝑊 < 0, at 𝑁𝑁 = 2, it is 2𝑊𝑊, and at arbitrary 𝑁𝑁, this value is 𝑁𝑁 ∗𝑊𝑊. 

Consider first the transition from 𝑁𝑁 to (𝑁𝑁 − 1) corresponding to outward movement. It can 

happen by both reasons mentioned above. 

The first contribution to the rate 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 reads Ƙ ∗ 𝑒𝑒�
𝑊𝑊
𝑘𝑘∗𝑇𝑇� ∗ 𝑒𝑒�

−(𝑀𝑀−𝑁𝑁)∗𝐵𝐵
𝑘𝑘∗𝑇𝑇 �/𝑓𝑓, where k is the Boltzman 

constant, 𝑇𝑇 = 300𝐾𝐾 is the temperature, and 𝑓𝑓 is the Boltzman factor representing the effect of 

the load on the kinetics. 𝑓𝑓 = 𝑒𝑒
−𝐹𝐹∗𝐿𝐿
2𝑘𝑘𝑘𝑘∗𝑇𝑇 , where the numerator represents the mechanical work 

performed in shifting the sleeve against the tension 𝐹𝐹. We use 𝑓𝑓 < 1, corresponding to the case 

when the tension pulls the Mt out of the sleeve. 

The second contribution due to tubulin loss is estimated as 𝛽𝛽 ∗ 𝑒𝑒[𝑊𝑊/(𝑘𝑘∗𝑇𝑇) , where 𝛽𝛽 is the rate 

of tubulin depolymerization. 

The reverse transition from (𝑁𝑁 − 1) to 𝑁𝑁 corresponding to inward movement is due to the 

sleeve motion only and its rate 𝑘𝑘𝑖𝑖𝑖𝑖 = Ƙ ∗ (𝑒𝑒[−𝑊𝑊/(𝑘𝑘∗𝑇𝑇)) ∗ (𝑒𝑒
−(𝑀𝑀−𝑁𝑁)∗𝐵𝐵

(𝑘𝑘∗𝑇𝑇) ) ∗ 𝑓𝑓. 

Now we introduce the quantities  𝑠𝑠 = 𝑒𝑒�
𝑊𝑊
𝑘𝑘∗𝑇𝑇� < 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟 = 𝑒𝑒[(−𝐵𝐵)

𝑘𝑘∗𝑇𝑇 ] < 1. Using them we find 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜅𝜅 ∗ 𝑠𝑠 ∗ 𝑟𝑟𝑀𝑀−𝑁𝑁
𝑓𝑓� + 𝛽𝛽 ∗ 𝑠𝑠 and 𝑘𝑘𝑖𝑖𝑖𝑖 = 𝜅𝜅 ∗ 𝑟𝑟𝑀𝑀−𝑁𝑁 ∗ 𝑓𝑓

𝑠𝑠� . Note that the factor of s in the 

denominator of the kin term is different from previous derivations.  This does not change the 

overall behavior of the system except to scale the tension required for tracking upwards by a 

factor of approximately 5. 

Hill, T.L. (1985). Theoretical problems related to the attachment of microtubules to kinetochores. 
Proceedings of the National Academy of Sciences of the United States of America 82, 4404-4408. 
Joglekar, A.P., and Hunt, A.J. (2002). A simple, mechanistic model for directional instability during 
mitotic chromosome movements. Biophysical journal 83, 42-58. 
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Graphical abstract: 

 

 

Model 2.15: Kinetochore plasticity during cell cycle. 

The kinetochore in G1 has minimal-number of MIND and Ndc80 complexes. The kinetochore persists 
in the same structure until metaphase and during anaphase it gradually adds inner and outer 
kinetochore complexes except Dam1 complex. The anaphase kinetochore drops the copies added in 
telophase. 
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Abstract  

Accurate segregation of chromosomes during mitosis depends on regulation of multiple 

proteins. The kinetochore is a multi-protein complex that connects chromosome to dynamic 

microtubule. In the previous chapter I demonstrated that part of the kinetochore is a plastic 

structure which adapts minimal copy number state or ‘G1-state’ from G1 to metaphase and 

high copy number state or ‘anaphase-state’ in anaphase. The G1-state kinetochore persists until 

metaphase and transitions gradually to anaphase-state during anaphase. However, this 

kinetochore structural transition is regulated not known. Many regulators of the metaphase-

anaphase transition and anaphase have been described. Spindle assembly checkpoint (SAC) 

and Cdc Fourteen Early Anaphase Release (FEAR) is activated in the beginning metaphase-

anaphase transition. Cdc14 modulates the kinetochore and spindle associated factors to execute 

faithful segregation. The anaphase promoting complex/Cyclosome (APC/C) initiates anaphase 

by releasing separase. Mitotic Exit Network regulates mitotic exit and cytokinesis. I 

investigated the role of these known regulators in the kinetochore structural transition using 

imaging methods. The APC/C is critical for the increase in copies during anaphase while MEN 

and FEAR might be important for the transition back to the G1-state kinetochore in telophase. 

Therefore, the structural transitions of the kinetochore are coupled to known regulators of the 

cell cycle.  
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Introduction 

Equal segregation of chromosomes into two daughters is essential for survival and 

propagation. Missegregation results in aneuploidy which leads to birth defects and cancer 

(Weaver and Cleveland 2006; Pfau and Amon 2012). Cell cycle is precisely controlled to make 

sure accurate segregation happens. During cell division chromosomes interact with 

microtubule through a multi-protein complex called the kinetochore. The kinetochore structure 

is dynamic with structural transitions occurring in the COMA, MIND and Ndc80 complexes. 

During anaphase, the kinetochore gradually adds copies important for kinetochore-microtubule 

interaction that are then lost to recreate the G1-state kinetochore. The anaphase structural 

transition depends on Stu2 controlled microtubule dynamics. However, how this structural 

transition regulated is unknown and what regulators affect the kinetochore directly or indirectly 

is also not clear. 

There are a number of pathways involved in metaphase-anaphase transition, anaphase 

entry and mitotic exit to G1. Metaphase-anaphase transition is mainly controlled by spindle 

assembly checkpoint (SAC), anaphase promoting complex/Cyclosome (APC/Cdc20) and 

cyclin activity. After the cell enters anaphase, the MEN and FEAR pathways regulate the 

spindle alignment and initiate cytokinesis. COMA, MIND and Ndc80 complexes are added 

copies during anaphase and then lost in telophase. The kinetochore regulation in metaphase-

anaphase transition and in anaphase is not known. However, these pathways have known 

kinetochore protein targets, making them potential regulators of the kinetochore structure. The 

Cdc28 is a solo Cdk1 that controls the whole cell cycle, including MEN and FEAR pathways 

(Surana et al. 1991). Before entering the next cell cycle, all the cyclins must be degraded. 

APC/C, one the cyclin regulator, interacts with two activators to degrade the cyclins. 

Cohesin, a ring-like structure, is loaded onto the chromosome during G1 to hold the 

sister chromatids together (Losada 2014). During late S-phase, microtubules from the newly 

duplicated SPB attach to the sister chromatids (Tanaka 2010). In metaphase, sister chromatids 



  Chapter 3 

138 
 

attach to the SPBs from opposite pole to make a ‘bi-orientated’ interaction. Bi-orientation 

creates tension between sister centromeres, which is important for proper segregation 

(Goshima and Yanagida 2000). During metaphase, kinetochore microtubule dynamic 

instability pulls the centromere towards SPB. Recoiling nature of peri-centromeric chromatin 

pulls the kinetochore towards the centromere and promotes microtubule polymerization, these 

movements creates a centromere oscillation which is important for error-free attachment to the 

kinetochore (Pearson et al. 2004). Tension at the centromere from microtubule pulling on sister 

chromatids produces enough force to evict nucleosomes from the peri-centromeric region 

(Verdaasdonk et al. 2012). During metaphase-anaphase transition, separase cleaves the cohesin 

ring to release the sister chromatids for them to segregate to opposite poles (Uhlmann et al. 

2000). Condensin, another ring-like structure, condenses chromosomes before metaphase (Vas 

et al. 2007).  Even though most of the cohesins are cleaved during metaphase, residual cohesins 

and condensins localized on the chromosome arms may enable recoil the rest of the 

chromosomes (Renshaw et al. 2010). Theknetochore can withstand metaphase tension without 

losing the grip with the microtubule. Whether tension modulates kinetochore structure is 

unknown. 

In budding yeast, metaphase-anaphase transition is controlled by the SAC. Unattached 

kinetochore and/or lack of tension at the sister chromatids activates the SAC and delays 

anaphase entry (Gillett, Espelin, and Sorger 2004). Ipl1/aurora B kinase, an essential kinase, 

localizes near the inner kinetochore to detect the tension-less kinetochore and reduces the 

affinity of the Ndc80 complex for microtubule through Ndc80 phosphorylation (Kudalkar et 

al. 2015). Syntelic, monotelic and merotelic attachments all are detected by Ipl1 (Pinsky et al. 

2006). On anaphase entry, Ipl1 binds inter-polar microtubules of the spindle (Kotwaliwale et 

al. 2007). Mad1-mediated SAC detects the errors which are not sensed by the Ipl1 kinase 

(Pinsky and Biggins 2005). Mad1 specifically binds to the unattached kinetochore, suggesting 

its role in the spindle assembly checkpoint. Glc7, phosphatase reverses the Ipl1-mediated 

phosphorylation and promotes the kinetochore attachment to microtubule. Proper bi-



  Chapter 3 

139 
 

orientation satisfies the SAC and signals anaphase entry. The kinetochore has known 

Ipl1/Aurora B targets which regulates their interaction with microtubule. However, Ipl1/Aurora 

B function on kinetochore transition is not known. 

Anaphase promoting complex/Cyclosome (APC/C) is an E3 ubiquitin ligase that 

controls the anaphase entry by tagging securin/Pds1 for degradation and releasing 

separase/Esp1(Peters 2006; Zachariae et al. 1998; Yu et al. 1996). Cdc20 and Cdh1 are adapters 

for APC/C depending on the cell cycle. Cdc20, an essential factor, associates with APC/C for 

the metaphase-anaphase transition and Cdh1 binds to Cdc20 during anaphase. APC/C Cdh1
 gets 

degraded in mitotic exit /G1. APC/C Cdc20 targets the securin/Pds1, Clb5 and other cyclins for 

the degradation. Inviability of pds1∆ and clb5∆ strains is rescued by the deletion of CDC20, 

suggesting that Clb5 and Pds1 are the unique substrates that control the metaphase-anaphase 

transition. APC/CCdh1 is activated on anaphase entry. Cdh1 is a non-essential substrate as the 

Cdc28 activity is antagonized by Clb-CDK inhibitor Sic1. Degradation of the Cyclins triggers 

the mitotic exit and subsequent cell cycle. The APC/C is another pathway which controls the 

metaphase-anaphase transition and has downstream regulators like Cdc14 with known 

kinetochore targets. APC/C might be a potential pathway which regulates the kinetochore 

addition of subcomplexes to the kinetochore during anaphase.  

The FEAR network component, Cdc14 is released by the APC/CCdc20 to trigger the 

downstream pathway. A cdc14-1 strain at non-permissive temperature has rDNA segregation 

problem and arrest cells, with elongated spindle (D'Amours, Stegmeier, and Amon 2004). 

Cdc14 also affects the microtubule dynamics at the beginning of anaphase (Higuchi and 

Uhlmann 2005). Cdc14 dephosphorylates the substrates that are phosphorylated by Cdks. 

Cdc14 also plays a role in Mitotic Exit Network pathway (MEN). MEN is only activated when 

the spindle enters the daughter cell and are aligned properly. Bub2-Bfa1 is a MEN inhibitor 

that gets inactivated on a perfectly aligned spindle by Cdc14 dephosphorylation and activation 

of Lte1 (Ras-GTPase) (Seshan, Bardin, and Amon 2002; Caydasi and Pereira 2009). Cdc15, a 
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kinase of the MEN pathway, phosphorylates downstream targets for initiating the exit and 

cytokinesis. Since Cdc14 and Cdc15 regulate other anaphase events, these proteins are 

potential regulators of the kinetochore structure during anaphase. 

 In this chapter I elucidate the functions of these pathways in regulation of kinetochore 

structural transitions. The results presented are preliminary. One or two mutants are used for 

each pathway to study their role. APC/C, one of the metaphase-anaphase transition regulators 

is required for initiating the kinetochore structural transition. However Ipl1 and SAC are not 

required for anaphase kinetochore transition from metaphase to anaphase. After the initial 

additions, MEN and FEAR mutants arrest with the kinetochore in a high copy number state. 

My results suggest that the kinetochore loses COMA, MIND and Ndc80 copies after MEN 

activation and before cytokinesis. 

Results  

Tension between sister chromatids is not required for the addition of Ndc80 

complex. 

Tension at the centromere during metaphase pulls the kinetochore towards the centromere by 

promoting microtubule polymerization. This process fails when cohesin is cleaved and starts 

the segregation of sister chromatids during anaphase. Condensin and cohesin along with 

microtubule are the major factors that create tension between sisters during metaphase. To 

investigate whether tension plays a major role in transition to the anaphase kinetochore 

structure, I used temperature sensitive cohesin and condensin mutants to study the addition of 

Nuf2-GFP, a subunit of Ndc80 complex. Mcd1 (cohesin), Smc2 and Ycg1 (condensin) mutants 

showed similar intensity increase as in wild-type (Fig.3.1C), suggesting tension is not required 

for the copy number increase in anaphase. 

Deletion of MCM21, an inner kinetochore protein, reduces cohesin at the centromere and peri-

centromeric region (Ng et al. 2009). In mcm21∆ strain, the spindle is longer, and the 
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kinetochore cluster has reduced oscillation as compared to wild-type in metaphase (Stephens 

et al. 2011). MIND and Ndc80 complexes have similar copy number as in wild-type (Fig.3.1A), 

suggesting reduced tension does not affect the kinetochore structural transitions. Cdc6 is a 

replication-licensing factor for DNA replication initiation. In the absence of Cdc6, cell fails to 

replicate the DNA. By deleting MAD2, the cell enters anaphase without the sister chromatids, 

creating a tension-less condition (Stern and Murray 2001). In this context, the MIND complex 

still showed an increase as the cell entered anaphase (Fig.3.1B), albeit attenuated, suggesting 

that tension is not required for addition of the MIND subcomplex to the kinetochore. 
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 Figure 3.1: Metaphase tension does not affect the kinetochore copy number. 

(A) Deletion of Mcm21 reduces the cohesin concentration at the centromere and affect the tension 
during metaphase.  MIND and Ndc80 complexes are not affected in mcm21∆, suggesting that tension 
does not affect the Ndc80 addition in the kinetochore. (B) Absence of sister chromatid creates 
tension-less environment in Gal-Cdc6 mutant (in YPD) and still shows addition of the MIND 
complex during anaphase. (C) Cohesin (mcd1-73) and condensin (smc2-8 and ycg1-2) mutants show 
intensity increase from metaphase to anaphase at non-permissive temperature, suggesting that tension 
provided by these chromosomal proteins is not required for kinetochore copy number change. A two-
tailed t-test was used to test for statistical significance. 
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Kinetochore copy number is not controlled by Ipl1/Aurora kinase or SAC. 

To study whether Ipl1/Aurora B is required for structural transition in the kinetochore, I tagged 

Nuf2 of the Ndc80 complex in a temperature sensitive mutant (ipl1-2). Alpha-factor arrested 

cells were washed with warm media and placed on an agar pad for live-cell imaging at 37°C. 

Mutant cells were mixed with wild-type cells (also having mCherry tag on another kinetochore 

subunit) to monitor whether this condition affects the wild-type. Based on their bud 

morphology and kinetochore clustering, both mutant and wild-type cells went through the cell 

cycle normally. As cells entered anaphase, mutant cells increased Ndc80 intensity gradually 

(Fig.3.2A). As reported before, ipl1-2 showed severe chromosome loss and lagging 

chromosome defects. However, the intensity of the chromosome cluster increased during 

anaphase (Fig.3.2B).  Dsn1 of the MIND complex is one of the targets for Ipl1-mediated 

phosphorylation. I used phosphomimetic (dsn1-S240D, S250D, S264D) and phosphodeficient 

(dsn1-S240A, S250A, S264A) (Akiyoshi, Nelson, and Biggins 2013) mutants; both showed 

increase in Dsn1 intensity similar to wild-type, suggesting that Ipl1 is not required for the 

structural changes in the kinetochore. To investigate the spindle assembly checkpoint protein, 

I used deletion of MAD1 to check whether the addition of Nuf2-GFP was affected. The mad1∆ 
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strain showed increased copy number of Nuf2-GFP during anaphase, suggesting the spindle 

assembly checkpoint to achieve the anaphase kinetochore structure.  

Figure 3.2: Ipl1 is important for chromosome segregation but it does not affect the Ndc80 copy 

number addition in anaphase. 

(A) Live cell imaging of Nuf2-GFP is used quantify the intensity. Mutation in Ipl1 (ipl1-2) exhibits 

>95% of the cells with missegregated chromosomes. (B) Intensity of Nuf2-GFP in wild-type and ipl1-

2 mutant strain shows ipl1-2 mutant has unequal segregation of the kinetochore (white arrow-head) 

(C) α-factor arrested ipl1-2 mutant cell released from G1 for live-cell microscopy. Intensity of Nuf2-

GFP was quantified as cell entered metaphase. The quantification shows addition of the Ndc80 

complex as the cell enters anaphase (indicated by kinetochore-kinetochore distance). (D) Similar 

experiment on glc7-12 (phosphatase), an antagonist of Ipl1 shows increase in intensity from 

metaphase to anaphase. This indicates Glc7 is not required for kinetochore structural transition. 
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APC is required for initiating the Ndc80 addition during metaphase-anaphase 

transition 

To investigate kinetochore regulation by APC/C, I deleted a gene encoding one of the non-

essential subunits called CDH1 and tagged Nuf2 with GFP.  I arrested the cells using alpha-

factor and released them at 37°C to aggravate the phenotype. Cells proceeded through the cell 

cycle normally, but after metaphase took longer to finish anaphase. The intensity of Nuf2-GFP 

indicates that Ndc80 copies were not added in anaphase (Fig.3.3A). The APC/C targets 

securin/Pds1 for proteolysis and release of separase/Esp1. A strain bearing a temperature 

sensitive mutation in PDS1 does not add Nuf2-GFP in anaphase, suggesting that the APC/C is 

required for initiating the addition of Ndc80 complexes to the kinetochore (Fig.3.3B). Most of 

the APC components are essential and mutant strains arrest at metaphase, making it difficult to 

study kinetochore structure in these mutant backgrounds. However, the lack of structural 

transition in CDH1 and PDS1, suggests APC/C is required to achieve the anaphase kinetochore 

structure.  

Figure 3.3:  Anaphase promoting complex does affect the Ndc80 addition in metaphase-

anaphase transition. 



  Chapter 3 

146 
 

(A) Cells having deletion of CDH1, a component of APC, takes longer to finish anaphase at 37°C. It 

fails to add Ndc80 copies in metaphase. (B) Deletion of downstream APC component PDS1 interrupts 

the APC-mediated signaling. G1 arrested cells were released for live-cell microscopy at 37°C. Similar 

to cdh1∆ strain, a mutation in PDS1 (pds1-128) shows defect in Ndc80 addition at non-permissive 

temperature. 

 

Inactivation of MEN and FEAR arrest cells with anaphase-state kinetochore. 

Next, I checked the pathways involved in reducing the copy number during telophase. I used a 

number of FEAR network components. At restrictive temperature a cdc14-3 strain is arrested 

in anaphase with the anaphase-state kinetochore. The intensity of the Ndc80 complex was 

similar to the intensity in a wild-type strain in anaphase. Other FEAR pathway mutations do 

not affect the copy number of the Ndc80 complex. After FEAR network activation, MEN is 

activated for the exit from cell cycle. Hence, I used mutations in MEN pathway components, 

cdc15-1 and tem1-3, to check whether Ndc80 addition or reduction is affected by these 

mutations. The tem1-3 and cdc15-1 strains arrest with the anaphase-state kinetochore 

(Fig.3.4A-C). Cdc5, a common effector molecule of FEAR and MEN, activates the MEN 

pathway in the absence of Cdc14. Overexpression of Cdc5 does not require Cdc15 to execute 

the MEN. A similar arrest and release experiment in a strain bearing a mutation in Cdc5, a gene 

encoding a polo-like kinase, shows cells are arrested with an anaphase-state kinetochore, like 

the FEAR and MEN mutants. Together these experiments demonstrate that without the FEAR 

or MEN pathways, the kinetochore cannot transition back to the G1-state. 
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Figure 3.4: FEAR and MEN pathways arrest the kinetochore in anaphase-state (high copy 

number) 

(A, B) α-factor arrested cells were released from G1 at 37° C for live-cell microscopy.  FEAR mutant 

cdc14-3 arrests at early anaphase with the anaphase kinetochore. Similar experiment on MEN mutants, 

cdc15-1 and tem1-3, also exhibit an anaphase arrested kinetochore. (D) Cdc5, a common component of 

FEAR and MEN, arrest the cell cycle in late anaphase. At non-permissive temperature, cdc5-1 released 
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from G1 arrest showed Nuf2 intensity increase in anaphase, suggesting that Cdc5 does not control the 

Ndc80 addition in anaphase (Fig.3.4D). 

Cytokinesis is not required for reducing the Ndc80 copy number. 

Cytokinesis is marked by septum formation and acto-myosin contraction. Cdc11, Cdc12 and 

Cdc13 are septins which are important for proper cytokinesis (Juanes and Piatti 2016). A 

cdc11-1 strain is used to study the kinetochore copy number addition. Temperature sensitive 

mutation in CDC12 or CDC13 allow cells to proceed to next the G1 without cytokinesis. In 

these mutants, the Ndc80 copy number goes back to the G1-state after anaphase (Fig.3.5A, B). 

These results suggest that mitotic exit pathways have role in bringing the copy number back to 

G1 state, but the structural transition is not coupled to cytokinesis per se. I speculate that Cdc14 

mediated dephosphorylation and Cdc15- mediated phosphorylation are important for bringing 

the kinetochore back to the G1 state. In the future, it will be informative to know the specific 

targets of these kinases in the kinetochore. 

 Figure 3.5: Cytokinesis is not required for the anaphase-state kinetochore. 

(A, B) Temperature sensitive cdc10-1 and cdc11-4 mutants fail to complete cytokinesis at non-

permissive temperature. The Ndc80 complex is added during anaphase and the copy number drops after 

the cell finishes anaphase, even without cytokinesis. 
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Discussion 

Metaphase-anaphase transition plays a crucial role for the proper chromosome segregation. 

Before entering anaphase, a cell has to make sure that each chromosome has attached to the 

microtubule in a proper orientation. The kinetochore complex gradually adds COMA, MIND 

and Ndc80 complexes during anaphase. The metaphase-anaphase transition is controlled by a 

number of pathways including the spindle assembly checkpoint (SAC) and anaphase promoting 

complex/Cyclosome (APC/C). After finishing anaphase, cell initiates the exit pathway to 

complete cytokinesis.  Our result suggests APC/C promotes the addition of the Ndc80 complex 

at the metaphase-anaphase transition and MEN is required for the transition back to the G1-

state in telophase. This kinetochore structural transition occurs independently of tension and 

SAC.  

Tension between the sister chromatids at metaphase is not required for the 

anaphase kinetochore addition. 

Spindle assembly checkpoint proteins check the kinetochore-microtubule attachment and bi-

orientation. Mutations in the spindle assembly checkpoint cause increased chromosome loss. I 

tried multiple approaches to check the role of tension in kinetochore structural transition. First, 

I utilized cohesin and condensin temperature sensitive mutants to inactivate these complexes 

and found that the kinetochore still adds the Ndc80 complex during anaphase. Second, I used 

image calibration method on a deletion of MCM21, an inner kinetochore protein which depletes 

cohesin at the centromere, to demonstrate normal Ndc80 increase in anaphase. Finally, I used 

imaging method to calculate the intensity of the MIND complex in a strain which lacks sister 

chromatid to create a tension-less condition during cell cycle. In the absence of tension, the 

MIND complex is still added during anaphase. Taken together, my results suggest tension is 

not required for the kinetochore transition during anaphase. SAC proteins mainly detect 
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unattached kinetochores and loss of tension at the centromere. Results from the calibrated 

imaging on the SAC mutants also suggests that tension is not required for kinetochore transition 

in anaphase.  Even though SAC mutants are not required for the anaphase kinetochore 

transition, SAC mutants show increased chromosome loss phenotype, suggesting that 

kinetochore structural transition and error-correction mechanisms might be working 

independently. 

Mitotic Exit Pathway mutants arrest the cells in an anaphase-state kinetochore 

The APC/C activates the FEAR by releasing the Cdc14 and released Cdc14 subsequently 

activates the downstream proteins, particularly Cdc15. In late anaphase, MEN is initiated by 

the correct alignment of spindle between mother and daughter cell. Activated MEN further 

activates the downstream cytokinesis pathway. FEAR network mutants except Cdc14 have 

similar intensity profile of the kinetochore over the cell cycle like wild-type. However, lack of 

Cdc14 function results in arrest the kinetochore in the anaphase-state in late anaphase. Loss of 

MEN pathway function similar results in late anaphase arrest with the anaphase-state 

kinetochore. It is not clear whether cell is stuck with the high copy number because of cell 

cycle arrest or these enzymes are need for direct kinetochore regulation. Cdc5 and Cdc15 

localizes on the kinetochore during anaphase and on the other hand, Cdc14 localizes on SPB 

(Faust et al. 2013). Cdc14 is a known phosphatase, dephosphorylates Dsn1 of the MIND 

complex (Akiyoshi and Biggins 2010) and possibly more targets. Cdc14, apart from 

dephosphorylating its targets, also affects the microtubule dynamics in anaphase (Higuchi and 

Uhlmann 2005).The kinetochore might be regulated directly or indirectly by these pathways. 

Kinetochore targets of Cdc15 are unknown and MudPIT analysis of affinity purified 

kinetochore complexes from cdc15-1 strain could be used to find potential targets.  
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MEN might be required for reducing the copy number of the kinetochore. 

Activation of MEN and Cdc5 leads to signal the cytokinesis pathway. Copies of the Ndc80 

complex are added to the kinetochore in anaphase and then dropped prior to cytokinesis. This 

process is unaffected in the absence of cytokinesis, suggesting is not tethered directly to 

septation, but rather other cell cycle regulation. The mutants which affect the MEN pathway 

cause arrest with the anaphase-state kinetochore while mutations that affect cytokinesis have a 

normal Ndc80 profile, suggesting MEN could be an upstream pathway for the telophase drop 

of Ndc80 complex. 

Higher eukaryotes lack Cdc15. however, Cdc15-like kinase plays similar function. 

Cdc5 (Plk1), a polo-like kinase, is evolutionarily conserved and have similar function as in 

yeast, suggesting these proteins might have a similar function in higher eukaryotes.  

In conclusion, APC/C-mediated pathway initiates the Ndc80 addition in metaphase-anaphase 

transition and MEN might be helping to reduce the added Ndc80 copies in telophase 

(Model.3.6). The added Ndc80 copies enable the kinetochore to track on the depolymerizing 

microtubule. Reducing the Ndc80 complex copy number in telophase might be essential for 

error correction in the subsequent cell cycle. In late anaphase, most of the cyclins are degraded 

to start a new cycle(Endicott and Noble 1998). APC/C and MEN play major role in degrading 

the cyclins and activating the CDKs. In many cancers, APC and kinetochore proteins are mis-

regulated, suggesting their role in cancer development (McKinley and Cheeseman 2017). 
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Model 3.6: Regulation of kinetochore structure by APC and MEN. 

APC initiates the kinetochore complex addition during metaphase-anaphase transition. The 

anaphase-state of the kinetochore facilitates the kinetochore tracking on depolymerizing 

microtubule. Mutation in MEN pathway arrest the kinetochore in anaphase-state. Activation of 

MEN promotes cytokinesis. Before cytokinesis, the kinetochore loses the copied added during 

anaphase and goes back to G1-state. Cdc28/Cdk1 is the prime kinase that controls the most of 

the pathways involved in metaphase-anaphase transition and MEN (Modified from [33]).  
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Experimental Procedures  

Yeast Strains  

The S. cerevisiae and S. pombe strains used in this study are listed in Table 3.1. Karyotyping 

by qPCR was done as previously described (Pavelka et al., 2010) to examine the ploidy level 

of strains used in microscopy studies.  

 

Microscopic Techniques  

All microscope data were acquired as previously described (Shivaraju et al. 2012) by using 

Carl Zeiss LSM-510 Confocal microscope (Jena, Germany), outfitted with a ConfoCor 3 

module and two single-photon counting avalanche photodiodes (APD’s). A C-Apochromat 40x 

1.2 NA water objective was used. A HFT 488/561 main dichroic allowed excitation of GFP 

(488 nm laser line) and mCherry (561 nm laser). A secondary NFT 565 beam splitter was used 

as an emission dichroic. After passage through a 505–550 nm BP or LP 580 filter for GFP and 

mCherry, respectively, photon counts were collected on APDs in single-photon counting mode. 

Pinhole was set to 1 airy unit.  

Yeast cells expressing kinetochore proteins tagged with eGFP were grown to mid-log phase 

in synthetic complete media, harvested, and sandwiched between a slide and coverslip in a 

1% agarose solution made with medium. Long-time lapse imaging demonstrated yeast cells 

were alive and divided at a normal rate in the agar pad for up to 4 hr. We took time points 

with 5 minute intervals to minimize bleaching.  
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Table: 3.1: Strains used in this study 

Strain Name Genotype 
Budding yeast 

(Saccharomyces 
cerevisiae) 

 

KDH23 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 Nuf2-GFP::HIS3,Mtw1-
mcherry::HYG 

KDH313 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 Gal-
cdc6::URA3,mad1∆ :: KANMX6,Nuf2-GFP::His3 

KDH377 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 cdc14-3:: KANMX6,Nuf2-
GFP::URA3 

KDH381 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 glc7-14:: KANMX6,Nuf2-
GFP::URA3 

KDH383 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 cdc15-1:: KANMX6,Nuf2-
GFP::URA3 

KDH477 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 tem1-1:: KANMX6,Nuf2-
GFP::URA3 

KDH485 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 cdc5-1:: KANMX6,Nuf2-
GFP::URA3 

KDH503 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 smc2-8:: KANMX6,Nuf2-
GFP::URA3 

KDH504 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 mcd1-73:: 
KANMX6,Nuf2-GFP::URA3 

KDH505 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 ycg1-2::KANMX6,Nuf2-
GFP::URA3 

KDH641 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 Nuf2-
GFP::URA3,cdh1∆:: KANMX6 

KDH701 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 cdc11-4:: 
KANMX6,,Nuf2-GFP::URA3 

KDH702 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 cdc10-5:: KANMX6,Nuf2-
GFP::URA3 

KDH736 MATa  his3∆1 leu2∆0 met15∆0 ura3∆0 pds1-128:: 
KANMX6,Nuf2-GFP::URA3 

 

Table 3.2: List of mutants screened for kinetochore structural transition defects. 

 

  

 

 

 

 

 

slk19Δ (normal transition) kip1Δ (normal transition) 

bub1Δ (normal transition) cin8Δ (normal transition) 

cdc20-3(metaphase arrest) mps1-1 

cks1-35 esp1-1(metaphase arrest) 

ask1-2(metaphase arrest) spc105-15(normal transition) 

mad2Δ (normal transition) ydr532/kre28Δ 

kar3Δ (normal transition) clb2Δ (normal transition) 

dyn1Δ (normal transition) bub2Δ 

cdc23-4 cdc15-2, gal-Spo12 
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Abstract 

Accurately duplicated sister chromatids are equally segregated into two daughter cells in each 

division. Error in this process leads to aneuploidy and ultimately results in cancer development, 

birth defects. For proper segregation, chromosome must interact with a DNA-protein complex 

called the kinetochore. The iknetochore recognizes a specialized region on chromosome called 

centromere. The unique composition of nucleosome present at the centromere marks the future 

assembly of the kinetochore. Scm3, a centromere nucleosome specific chaperone, assembles 

and deposits Cse4 containing nucleosome at the centromere in budding yeast (Shivaraju et al. 

2011; Camahort et al. 2007). In humans, HJURP, orthologue of Scm3, deposits Cse4 equivalent 

CENP-A nucleosome to its megabases long centromere. Centromeric nucleosome, depending 

on the cell cycle stages can adopt two different structure, hemisome and octasome in human 

and budding yeast (Shivaraju et al. 2012; Bui et al. 2012). CENP-A is mislocalized on 

chromosome arm in many human cancers and alters the chromatin structure which leads to 

defect in DNA replication, transcription and chromosome stability (Lacoste et al. 2014). 

Factors involved in deposition of centromeric histone variant on non-centromeric region is not 

clear. Here we show that CAF-1 interacts with Cse4 in vivo and loss of yCAF-1 can rescue the 

growth defects. Loss of yCAF-1 with overexpression of Scm3 delays the Cse4 transition to 2 

copies/centromere in anaphase. Furthermore, reconstitution of purified yCAF-1–mediated 

nucleosome assembly on a plasmid showed that yCAF-1 can assemble Cse4 nucleosome on 

centromeric and non-centromeric sequence in vitro. Our results show that Cse4 nucleosomes 

can be assembled by CAF-1. The CAF-1 could be a potential Cse4 chaperone and might be 

responsible for the ectopic localization by Cse4. 
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Introduction 

One of the unique features of eukaryotic centromeres is a specific histone H3 variant, CenH3. 

CenH3 is known as CENP-A in human and Cse4 in budding yeast. Nucleosomes containing 

this histone variant serve as the foundation for kinetochore assembly and attachment of 

chromosomes to spindle microtubules for faithful segregation. Eukaryotes have evolved 

stringent regulatory mechanisms to promote exclusive centromeric localization of 

CenH3/Cse4 (Choy et al. 2012).  

 Histone chaperones are indispensable for their role in regulation of histone deposition 

into chromatin. They facilitate proper nucleosome assembly as well as nucleosome 

disassembly (Das, Tyler, and Churchill 2010). In addition, histone chaperones play roles in 

nuclear import, storage, and stability of histones. Many chaperones regulate the canonical 

histones, creating functional redundancy. Most histone variants have dedicated chaperones 

(Das, Tyler, and Churchill 2010). CenH3 assembly into centromeric nucleosomes is regulated 

by the evolutionarily conserved histone chaperone known as Scm3 in budding yeast 

(Mizuguchi et al. 2007; Stoler et al. 2007; Camahort et al. 2007; Shivaraju et al. 2011), and 

HJURP in humans (Dunleavy et al. 2009; Foltz et al. 2009).  

Regulating the deposition of Cse4 is critical to prevent mislocalization of Cse4 to 

non-centromeric regions. In addition to being regulated by the Cse4-specific chaperone 

Scm3, Cse4 levels are controlled by multiple mechanisms, including ubiquitin mediated 

proteolysis (Collins, Furuyama, and Biggins 2004). An E3 ubiquitin ligase Psh1 in 

conjunction with Casein Kinase 2 (CK2) facilitates ubiquitylation and proteasomal 

degradation of Cse4 (Hewawasam et al. 2010; Ranjitkar et al. 2010; Hewawasam et al. 2014). 

In addition, several other factors play roles in ubiquitin-mediated proteolysis of Cse4 (Au et 

al. 2013; Cheng, Bao, and Rao 2016; Ohkuni et al. 2016; Ohkuni, Abdulle, and Kitagawa 

2014; Mishra et al. 2015; Canzonetta et al. 2016). Additional chromatin regulating proteins, 
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including remodelers, have been identified that assist in efficient removal of mislocalized 

Cse4 nucleosomes (Deyter and Biggins 2014; Choi et al. 2012; Gkikopoulos et al. 2011).  

Chaperones aside from Scm3 may play a role in the dynamics of Cse4 deposition, 

especially under conditions of overexpression when the balance of H3 and Cse4 levels is 

dramatically altered. Elevated expression and misincorporation of CenH3/CENP-A is 

reported in many human cancers (Zink and Hake 2016; Athwal et al. 2015; Tomonaga et al. 

2003; Li et al. 2011; Lacoste et al. 2014). In human cells the transcription-coupled histone 

H3.3 chaperones DAXX/ATRX target CENP-A to ectopic locations (Lacoste et al. 2014; 

Athwal et al. 2015). Mislocalization of CenH3 could disrupt chromatin structure and lead to 

ectopic centromere/kinetochore formation, chromosome instability and missegregation (Au et 

al. 2008; Amato et al. 2009; Collins et al. 2007). Mislocalized CenH3 could also affect 

chromatin-based processes like DNA replication and transcription (Hildebrand and Biggins 

2016). Therefore, it is important to identify and characterize factors that regulate promiscuous 

CenH3 localization.  

Centromeric Cse4 nucleosome can adapt different nucleosome structure; hemisome- 

where Cse4/H4/H2A/H2B forms a nucleosome, octasome-where two copies of 

H4/H4/H2A/H2B forms a nucleosome. In budding yeast, Cse4 has one copy per centromere 

in interphase and 2 copies in anaphase. Scm3, Cse4 chaperone associates with Cse4. Scm3 

assembled Cse4 favors the hemisome (Unpublished data). However, the chaperone which 

favors the octasome in anaphase is not known. 

 We present evidence that the evolutionarily conserved histone H3/H4 chaperone 

Chromatin Assembly Factor-1 (CAF-1) can function as a Cse4 chaperone in budding yeast. 

CAF-1 had previously been reported to be important for building functional kinetochores 

(Sharp et al. 2002) and in regulating Cse4/H3 exchange kinetics (Lopes da Rosa et al. 2011). 

We report that recombinant CAF-1 can assemble Cse4 nucleosomes in vitro and binds to 

Cse4 in vivo. Absence of Scm3 with CAC2 deletion results in poor growth and 

overexpression of Scm3 in cac2∆ strain delays the Cse4 transition in anaphase. Overall our 
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findings help to establish how the histone H3/H4 chaperone CAF-1 binds and assembles the 

nucleosome with Cse4.  

Results  

CAF-1 subunits interact with Cse4 

We took a candidate approach to identify potential chaperones for Cse4. Known histone 

chaperones Vps75, Nap1, and the Cac2 subunit of CAF-1 were GFP tagged. Whole cell 

extracts were used to perform co-immunoprecipitation (co-IP) with anti-GFP antibody 

followed by detection of Cse4 in Western blots with anti-Cse4 antibody (Figure 1A, left 

panel). Scm3, the chaperone that targets Cse4 to the centromere, was a positive control. Of 

these three candidates, only Cac2 pulled down Cse4. Hir1 (Histone regulator 1) is another 

histone H3/H4 chaperone whose biological role significantly overlaps with CAF-1 (Lopes da 

Rosa et al. 2011). Hir1-FLAG was also tested for interaction with Cse4. Cac2-FLAG served 

as a control.Hir1-FLAG did not pull down Cse4, suggesting Hir1 does not associate with 

Cse4 in vivo, Cac2-FLAG pulled down Cse4-Myc, further confirming the interaction between 

Cac2 and Cse4 (Fig.4.1A, right panel). 

 CAF-1 is a heterotrimeric protein complex. In human, the three subunits are p150, 

p60 and p48 (also named RbAp48). The budding yeast subunits are named Cac1 (p90), Cac2 

(p60) and Msi1/Cac3 (p50) (Ramirez-Parra and Gutierrez 2007). The Cac3 ortholog RbAp48 

(also named p55) in Drosophila co-purified with CenH3/CID and assembled CID 

nucleosomes in vitro (Furuyama, Dalal, and Henikoff 2006; Furuyama and Henikoff 2006). 

The human CAF-1 subunits p48/RbAp48 and p150 also co-purified with CENP-A (Dunleavy 

et al. 2009; Foltz et al. 2009). Taken together, these findings suggest CAF-1 may serve as an 

evolutionarily conserved CenH3 chaperone.  

 To identify the subunits of CAF-1 important for physical interaction with Cse4, WT 

and cac1Δ, cac2Δ or cac3Δ strains carrying epitope tagged Cse4-Myc/Cac1-FLAG, Cse4-

Myc/Cac2-FLAG and Cse4-Myc/Cac3-FLAG were used to perform co-immunoprecipitation 
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and Western blotting (Figure 4.1B). All three subunits of CAF-1 pulled down Cse4-Myc. 

However, Cac1 and Cac3 subunits pulled down noticeably more Cse4-Myc (Figure 4.1B, 

upper panel). Furthermore, the interaction between Cse4 and Cac3, and to a lesser extent 

Cac1, was dependent on CAC2. Cse4 interaction with Cac2 was completely abolished 

without CAC1 or CAC3 (Figure 4.1B, lower panel). These observations suggest that Cac1 and 

Cac3 subunits are required for Cse4-CAF-1 interaction, while loss of Cac2 reduces the 

interaction. Cse4 likely interacts with the entire CAF-1 complex in budding yeast.  

 CAF-1 deposits histone H3/H4 into nucleosomes during DNA synthesis, although a 

previous report argued that the exchange of Cse4 for H3 mediated by CAF-1 was replication 

independent (Lopes da Rosa et al. 2011). We investigated whether the Cse4-CAF-1 

interaction was cell cycle dependent using co-immunoprecipitation and Western blotting. 

Whole cell extracts were prepared from cells growing asynchronously or arrested in G2/M 

(nocodazole treated). Scm3 was used as a positive control. Similar to Scm3, Cac2 interacted 

with Cse4 in extracts generated from both asynchronously grown cells as well as G2/M-

arrested cells, suggesting the interaction between Cse4 and CAF-1 is not confined to S phase 

(Figure 4.1C). Together, these experiments suggest that CAF-1 can interact with Cse4 outside 

of S phase and may therefore be able to assemble and disassemble Cse4 nucleosomes outside 

of S phase. 
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Figure 4.1: CAF-1 subunits interact with Cse4.  

Whole cell extracts were used to carry out co-IPs in A, B and C. A. Left panel; Strains carrying GFP 

tagged chaperones, Scm3, Vps75, Nap1 and Cac2 subunit of CAF-1 were used in co-IP. Only Cac2-

GFP pulled down Cse4.  A control IP was performed from a strain lacking the GFP tag. Scm3-GFP IP 



  Chapter 4 

168 
 

was the positive control. Right panel; Affinity tagged strains (Cse4-Myc/Cac2-FLAG and Cse4-

Myc/Hir1-FLAG) were used in co-IP. Control IP was performed from a strain lacking the FLAG tag. 

In anti-FLAG co-IP, Hir1-FLAG did not pull down Cse4, only Cac2-FLAG pulled down Cse4-Myc. B. 

Cac1 and Cac3 subunits of CAF-1 are required for interaction with Cse4. Upper panel; WT or cac2∆ 

strains carrying FLAG tagged Cac1 or Cac3 were used in co-IP. A strain lacking the tag on Cac1 and 

Cac3 was used as the negative control. In anti-FLAG co-IP, both Cac1 and Cac3 pulled down noticeably 

more Cse4-Myc. These interactions became weaker with deletion of CAC2. Lower panel; WT, cac1∆ 

or cac3∆ strains carrying FLAG tagged Cac2 were used in anti-FLAG co-IP. A strain lacking the tag 

was used as the control. Cac2/Cse4 interaction was completely abolished in cac1∆ or cac3∆ strains. C. 

CAF-1 can interact with Cse4 outside of S phase. Affinity tagged strains (Cse4-Myc/Cac2-FLAG and 

Cse4-Myc/Scm3-FLAG) were used in anti-FLAG co-IP using asynchronously grown cells and G2/M-

arrested cells. A strain lacking the FLAG tag served as a negative control. Scm3 was used as a positive 

control. Cac2 interacted with Cse4 in both asynchronously grown cells as well as G2/M-arrested cells. 

 

CAF-1 can assemble Cse4 nucleosomes in vitro 

The Cac3 ortholog of RbAp48 in Drosophila can assemble CID nucleosomes in vitro 

(Furuyama, Dalal, and Henikoff 2006; Furuyama and Henikoff 2006). We tested whether 

recombinant budding yeast CAF-1 could facilitate the assembly of Cse4 nucleosomes in vitro 

using a plasmid supercoiling assay (Shivaraju et al. 2011). In this assay, wrapping of DNA 

around the histone core particle induces supercoiling in relaxed, closed, plasmid DNA. 

Following the assembly reaction, DNA is deproteinized, and plasmid topoisomers are 

resolved by agarose gel electrophoresis. We tested nucleosome assembly using a plasmid 

containing 10 copies of a 5S nucleosome positioning sequence (pG5E4-5S) as well as one 

containing 10 tandem copies of a yeast centromere 1 (CEN1) repeat unit (pCEN1-10X). 

Incubation of purified CAF-1 (Winkler et al. 2012) and Cse4 octamers with either pG5E4-5S 

or pCEN1-10X resulted in the induction of supercoiling in a dose dependent manner (Figure 

4.2), demonstrating that CAF-1 can assemble Cse4 containing nucleosomes on both plasmids. 

Nap1 was used as a positive control. Although Nap1 does not co-immunoprecipitate with 

Cse4 in whole cell extracts, the high concentrations of purified proteins used in the assembly 

assay in vitro, combined with the absence of H3, may allow Nap1 to promote the assembly of 
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Cse4 nucleosomes. These experiments demonstrate that CAF-1 can assemble Cse4 

nucleosomes irrespective of DNA sequence.  

 

 

Figure 4.2: CAF-1 can assemble Cse4 nucleosomes in vitro. Nucleosome assembly activity of CAF-

1 was studied using a plasmid supercoiling assay. Supercoiled plasmids were purified from E. coli and 

relaxed by addition of topoisomerase I. supercoiled plasmid, relaxed plasmids and no chaperone 

samples were included as controls for each assembly experiment. Chromatin assembly was performed 

by incubating the relaxed plasmids with increasing amounts of purified CAF-1 and Cse4 octamers. 

DNA and Cse4 octamer amounts are held constant. Nucleosome assembly was performed using a 

plasmid (pCEN1-10X) containing 10 tandem copies of a yeast centromere 1 (CEN1) repeat unit (left 

side), as well as a plasmid (pG5E4-5S) containing 10 copies of a 5S nucleosome positioning sequence 

(right side). Histone chaperone Nap1 was used as a control. CAF-1 resulted in the induction of 

supercoiling on both plasmids in a dose dependent manner. 

 

CAF-1 – a potential histone chaperone for Cse4 in anaphase. 

In yeast, centromeric region has conserved ~125bp sequence divided into 3 regions: CDEI, 

CDEII and CDEIII(Carbon 1984).  The canonical nucleosome is containing around by ~147 

bp of DNA which is longer than the centromeric sequence. Initial in vitro MNase digestion and 

FRET (Forster resonance energy transfer) studies on yeast centromeric nucleosomes suggests 

that it can form a hemisome (Furuyama, Codomo, and Henikoff 2013). Our lab used image 
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calibration method to study the centromeric Cse4 nucleosome in vivo and found that 

centromeric nucleosome can have 2 different structures depending on the cell cycle stage. 

FRAP (Fluorescence recovery after photobleaching), FRET and immunoprecipitation studies 

eloquently show that in anaphase the centromeric Cse4 nucleosome has 2 copies of Cse4 per 

nucleosome (Shivaraju et al. 2012). But speculations from the FRAP recovery data suggested 

that it could happens in G1(Biggins 2013). To eliminate that possibility, I used the FRAP 

technique with telophase specific bud-neck marker (Myo1-mCherry) and confirmed that the 

switch to 2 Cse4 per centromere happens in anaphase, prior to cytokinesis.  

CAF-1 and centromeric localization of Cse4   

Previous findings suggest that CAF-1 may facilitate centromeric localization of CenH3. The 

Cac3 orthologs, Mis16 in fission yeast and RbAp46/RbAp48 in human, are required for 

efficient Cnp1 and CENP-A loading at centromeres, respectively (Hayashi et al. 2004; 

Mouysset et al. 2015). Interestingly, HJURP (human ortholog of Scm3) contains five highly 

conserved tryptophan residues resembling the tryptophan-aspartate (WD40) repeats found in 

CAF-1 subunits p60 and RbAp48/RbAp46 (Foltz et al. 2009). In budding yeast CAF-1 

subunits are recruited to centromeres and CAF-1 and Hir1 are required for proper 

centromere/kinetochore structure and function (Sharp et al. 2002). We tested whether the 

localization of CAF-1 at centromeres is cell-cycle-dependent. We used asynchronously 

growing cells and also G1, S and G2/M arrested cells to perform Cac1 ChIP followed by 

qPCR to detect CEN3 enrichment (Fig.4.3A). We detected CEN3 enrichment in all four 

samples, indicating that CAF-1 localizes to centromeres regardless of the phase of the cell 

cycle.  

 Although Scm3 is the main chaperone responsible for assembly of Cse4 nucleosomes 

at centromeres in budding yeast, we wondered whether CAF-1 could in principle facilitate the 

assembly of Cse4 at centromeres. CAF-1 can assemble Cse4 nucleosomes in vitro on a 

plasmid containing centromere sequence (Fig.4.2B). Although deletion of Scm3 is lethal, 
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Scm3 can be deleted or turned off (Scm3off) if Cse4 is overexpressed, and Cse4 still localizes 

to the centromere (Camahort et al. 2009), arguing other chaperones can mediate the assembly 

of Cse4 nucleosomes. To test whether CAF-1 might be able to assemble Cse4 at centromeres, 

we used the Scm3on/off strain, which can be toggled by galactose, along with copper-inducible 

Cse4 overexpression. The level of Cse4 can be controlled by the concentration of copper. In 

this strain background we deleted a number of different chaperones, including CAC2. A 

growth assay was performed to compare growth under Scm3on and Scm3off conditions 

(Fig.4.3B). Three independent transformants with CAC2 deletion were examined for growth. 

When Scm3 is on (Scm3on), there is no difference in growth between WT and cac2∆ strains. 

However, when CAC2 is deleted and Scm3 is turned off, the rescue of growth by Cse4 

overexpression is poor (Fig.4.3B, compare WT+CSE4 and cac2∆+CSE4). Deletion of CAC2 

from the Scm3off strain does not completely abolish growth when Cse4 is overexpressed, 

suggesting either a partially functioning CAF-1 complex or some other chaperone might 

target Cse4 to centromeres under these conditions. Deletion of the chaperones Nap1, Vps75, 

Rtt106, and Hir1 did not compromise growth in Scm3off conditions (Fig.4.3C). These results 

suggest that when Scm3 is absent and Cse4 levels are high, CAF-1 may be the primary 

chaperone targeting Cse4 to the centromere.  

Scm3 localizes on the centromere throughout the cell cycle and is important for 

kinetochore assembly (Camahort et al. 2007; Luconi et al. 2011). Over expression of Scm3 or 

the orthologue HJURP have increased chromosome loss with reduced level of Cse4 at the 

centromere (Mishra et al. 2011). Overexpression of Scm3 also changes its association with 

centromere during different cell cycle stages (Mishra et al. 2011). Reduction of Cse4 at 

centromere in Scm3 overexpression can be correlated with the Cse4 transition delay in our 

experiment (Fig.4.4 A). Overexperssion of Scm3 has reduced Cse4 at the centromere. However 

image calibration on kinetochore protein shows that Scm3 overexpression does not affect the 

kinetochore assembly (Fig.4.4 B). The CAF-1 complex localizes on centromere,assembles 

centormeric nucleosome and pulls down with CENP-A; suggesting that the CAF-1 complex 
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might be a secondary histone chaperone for Cse4. We speculate that Scm3 favours the 

hemisome structure as evident from Cse4 transition delay in Scm3 overepression and 

association of CAF-1 with centromere inhibits the Scm3 chaprone activity to promote 

octasome structure (Model.4.5). 

 

Figure 4.3: When Scm3 is absent and Cse4 levels are high, CAF-1 may help target Cse4 to the 

centromere. A. Cac1 localization to centromeres is cell-cycle-independent. ChIP was performed for 

Cac1 using a FLAG tagged strain using asynchronously growing cells and also G1, S and G2/M 

arrested cells. qPCR was used to detect Cac1 levels at CEN3. The y axis indicates arbitrary units 

representing the Cac1 enrichment at CEN3 from ChIP performed with and without antibody, with 

respect to the signal for total chromatin for each sample. The error bars represent the standard 
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deviation for ChIP performed in triplicate. B. Rescue of Scm3off strain by overexpression of Cse4 is 

less efficient when CAC2 is deleted. Strains with a single copy of Scm3 under the control of the gal 

promoter, allowing the expression of Scm3 to be controlled with glucose/galactose, were used in the 

spotting assay. Cse4 was under the control of a copper-inducible promoter on a plasmid. “EV” 

indicates empty vector. When Scm3 is expressed (Scm3on), no growth differences are observed in 10-

fold serial dilutions. Induction of Cse4 does not efficiently rescue Scm3off strain when CAC2 is 

deleted as compared to WT. Three independent isolates of the cac2∆ strain (1, 2 and 3) were tested. 

C. Growth of the Scm3off strain is compromised by deletion of CAC2 but not genes encoding other 

chaperones. A growth assay similar to figure 4.3 B was performed using gal inducible Scm3 strains. 

Cse4 was under the control of a copper-inducible promoter on a plasmid. “EV” indicates empty 

vector. When Scm3 is expressed (Scm3on) no growth differences are observed in 10-fold serial 

dilutions. Induction of Cse4 does not efficiently rescue Scm3off strain when CAC2 is deleted (cac2∆) 

as compared to WT. Deletion of genes encoding other chaperones (NAP1, RTT106, VPS75, HIR1) did 

not compromise growth.  

 

 
Figure 4.4: CAF-1 complex could be a potential chaperone for Cse4 in anaphase. 

(A) Strains containing a single copy of Scm3 under the control of the gal promoter, allowing the 
expression of Scm3 to be controlled with glucose/galactose. Image calibration of Cse4-GFP on Scm3 
overexpression strain (Gal-Scm3) shows the Cse4-GFP increase in anaphase is delayed. In cac1∆ strain, 
overexpression of Scm3 further delays the Cse4 transition in anaphase. (B) However, Scm3 
overexpression does not impact the kinetochore transition in anaphase. A two-tailed t-test was used to 
test for statistical significance. * indicates statistical significance (p<0.005). 
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Discussion 

Our data are consistent with CAF-1 being the main H3 chaperone in yeast that can interact 

with Cse4. CAF-1 deposits Cse4 at promoter nucleosomes experiencing high rates of 

turnover. We examined multiple other chaperones for physical interaction with Cse4 and for 

growth effects under Cse4 overexpression conditions and in both respects CAF-1 was unique. 

Although Cse4 is misincorporated into chromatin in the absence of CAF-1 when Cse4 is 

overexpressed, suggesting other chaperones can incorporate Cse4 when Cse4 levels are high, 

CAF-1 still may be special with respect to Cse4 deposition, eviction, and proteolysis. We 

speculate that the ability of Cse4/CenH3 to physically interact with CAF-1 in yeast, flies, and 

human is unlikely to be an evolutionary accident, and that CAF-1 plays an evolutionarily 

conserved role in Cse4 biology that has been difficult to discern since CAF-1 is also an 

H3/H4 chaperone. 

Misregulation of CENP-A and the factors that regulate CENP-A localization are 

hallmarks of many human cancers (Zink and Hake 2016). Proper stoichiometric balance 

between CenH3 and its canonical counterparts is critical for exclusive centromere targeting of 

CenH3 by chaperones. Overexpressed CenH3 may lead to the unintended deposition of 

CenH3 by H3 chaperones with deleterious consequences. Chaperones that misincorporate 

CenH3 into non-centromeric sites are beginning to be identified. In human cancer cells, 

overexpressed CENP-A occupies transcription factor binding sites and subtelomeric 

locations, potentially chaperoned in part by the transcriptionally coupled histone variant H3.3 

chaperones DAXX and ATRX (Athwal et al. 2015; Lacoste et al. 2014).  

 In this study we present evidence that the evolutionarily conserved histone H3/H4 

chaperone CAF-1 physically interacts with Cse4 and can assemble Cse4 nucleosomes in 

vitro. Under normal cellular conditions, histone H3 is present in large excess over Cse4. 

CAF-1 is normally a replication and repair coupled histone H3 chaperone. 
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 Analysis of ectopic CENP-A nucleosomes from colorectal cancer cells reveals a 

subpopulation of structurally distinct hybrid nucleosomes containing CENP-A and H3.3 

(Athwal et al. 2015; Lacoste et al. 2014). This CENP-A/H3.3 nucleosome forms a highly 

stable structure compared to CENP-A nucleosomes (Arimura et al. 2014). In budding yeast 

Cse4 nucleosomes are highly enriched at sites of high nucleosome turnover genome-wide 

(Krassovsky, Henikoff, and Henikoff 2012). We speculate CAF-1 may facilitate assembly of 

heterotypic (Cse4/H3) octasomes at gene promoters and active subtelomeric regions when 

Cse4 levels are high and proteolytic removal of Cse4 by Psh1 is compromised. These unusual 

nucleosomes might pose difficulties for expression or replication.  

  

 Consistent with a recent report (Hildebrand and Biggins 2016), our work indicates 

that one means by which Cse4 misincorporation can negatively affect cellular function is 

altered gene expression. We highlight one molecular mechanism by which this can occur by 

identifying and characterizing an evolutionarily conserved histone chaperone CAF-1 that can 

incorporate Cse4 into non-centromeric region. 

 

 

 

 

 

 

 

 

 

 



  Chapter 4 

176 
 

Graphical abstract: 

 

Model 4.5: CAF-1 complex assembles centromeric nucleosome without any sequence specificity. 

The CAF-1 complex is a secondary chaperone which interacts with Cse4 in vivo and 

assembles centromeric nucleosome on non-centromeric region in vitro (Modified from 

(Hammond et al. 2017; McKinley and Cheeseman 2016)). 
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 Proposed model for CAF-1 role on centromeric nucleosome. 

 

Model 4.6: Proposed model for the CAF-1 complex in centromeric nucleosome assembly. 

Scm3, binds to the centromeric region in anaphase. We speculate association of Scm3 to 
centromere converts the octasome to hemisome in G1. From G1 to metaphase, Scm3 
association keeps the centromeric nucleosome in hemisome-structure. During metaphase-
anaphase transition, the CAF-1 complex might be associated with Cse4 to assemble 
octasome. Overexpression of Scm3 delays Cse4 transition and deletion of CAC1 (CAF-1 
complex) further delays the transition, supports our hypothesis (Modified from (McKinley 
and Cheeseman 2016; Hammond et al. 2017)). 
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Experimental Procedures  

Yeast strains 

All the yeast strains are listed in Table 4.S1. 

Whole cell extract Co-IP 

Cultures grown to mid-log phase in appropriate media were used to prepare cell extracts in lysis 

buffer (50mM Tris (pH 7.5), 150mM NaCl, 0.1% NP-40, 1mM DTT, 10% glycerol and protease 

inhibitors). Protein concentration was determined using Bradford assay. Cell extracts were diluted 

with dilution/wash buffer (50mM Tris (pH 7.5), 150mM NaCl, 0.1% NP-40). Diluted cell extracts 

were incubated with the antibody overnight followed by 2h with protein G dynabeads (Invitrogen-

10004D) at 4°C. Some co-IPs was performed using antibody conjugated beads. The beads were 

washed three times with dilution/wash buffer and proteins were eluted with SDS buffer (10mM Tris 

pH 7.5, 1mM EDTA and 1% SDS). Immunoprecipitates were subjected to SDS-PAGE and Western 

blotting.  

CAF-1 complex purification: 

CAF-1 complex expression and purification was performed as described previously (Winkler 

et al. 2012). Briefly, optimum level of Cac1, Cac2 and Cac3 viruses were used to infect the 

sf9 cells for 72hrs. After infection, cells were collected for the nuclei isolation and 

subsequent purification. The extraction buffer (15mM Tris-HCl, pH 7.5, 400mM NaCl, 10% 

sucrose, 1mM EDTA ,1mM DTT, 0.1Mm PMSF) was used to resuspend the nuclear pellet. 

Supernatant with the CAF-1 complex was collected after spinning at 33000rpm for 40min 

and 15% of ammonium sulfate was added to precipitate the protein. After the clarification at 

12,000rpm for 30min, the supernatant was adjusted to 65% saturation with ammonium sulfate 

to precipitate the remaining proteins. After spinning at 12,000rpm for 30min, the precipitated 

proteins containing CAF-1 complex, were dissolved in buffer B0 (20mM HEPES, pH7.5, 

10% glycerol, 1mM EDTA, 1mM DTT, 0.01% Triton X-100). After final clarification, the 

supernatant was loaded onto a HiTrap SP HP column and proteins were eluted between 

gradient of B100 to B1000. Fractions with the CAF-1 complex were detected by western and 
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pooled for the overnight binding with the M2-FLAG agarose beads. Elution buffer 

(B100+1mg/mL 3X FLAG) was added to elute the CAF-1 complex. Purified CAF-1 complex 

was analyzed by silver staining and dialyzed against a storage buffer (20mM HEPES, pH7.5, 

1mM EDTA, 1mM DTT, 10% glycerol, 25mM NaCl). 

In vitro chromatin assembly with purified CAF-1 complex 

Purified CAF-1 complex with Cse4-containing histone octamer was used for the in vitro 

nucleosome assembly. Briefly, Topoisomerase I relaxed 200ng of plasmid was incubated 

with CAF-1 complex or Nap1 for 2hr at 30⁰C in the presence of Topoisomerase I with 8.3 

mM HEPES pH7.4, 0.5 mM EGTA, 0.65 mM MgCl2, 1.7% glycerol, 0.005% NP-40, 33 mM 

KCl, 0.33 mM DTT and 0.02 mg/mL BSA. Topoisomers of the plasmids were deproteinized 

and isolated by standard protocol and resolved in 0.8% agarose gel. Topoisomerase I was a 

kind gift from S. Venkatesh, Stowers Institute. Two plasmids were used: 1) pG5E4-5S 

containing five repeats of 5S flanking each side of an E4 core promoter downstream of five 

Gal4- binding sites (gift from the Workman lab, Stowers Institute) and 2) pCEN1-10X 

containing 10 tandem repeats of the centromere 1 sequence. 

Table: 4.S1: Strains used in this study 

Strain Genotype Used in Figure 
GH329 Cac1-FLAG::KANMX6/cac2Δ:: NATMX6 4.1B 
GH330 Cac3-FLAG:: KANMX6/cac2Δ:: NATMX6 4.1B 
GH358 Cac2-FLAG:: KANMX6/cac1Δ:: NATMX6 4.1B 
GH359 Cac2-FLAG:: KANMX6/cac3Δ:: NATMX6 4.1B 
JG1924 Cac2-FLAG:: KANMX6 4.1A, 1B, 1C, 
JG1925 Hir1-FLAG:: KANMX6 4.1A 
JG1999 Cac1-FLAG:: KANMX6 4.1B 
JG2000 Cac3-FLAG:: KANMX6 4.1B 
JG2001 Cac1-FLAG:: KANMX6 4.8A 
JG595 Scm3-FLAG:: KANMX6 4.1C 
MS210 Cac2-GFP 4.1A 
MS227 Vps75-GFP 4.1A 
MS228 Nap1-GFP 4.1A 
RC122 Scm3-GFP 4.1A 

SBY617 MATa ura3-1 leu2,3-112 his3-11 trp1-1 ade2-1 can1-100 
bar1Δ CSE4::CSE4-12myc::URA3 

4.1A,4. 1B, 
4.1C 
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Key conclusions 

The kinetochore is a molecular machine that connects chromosome to microtubule. 

Proper kinetochore-microtubule interaction is essential for the faithful segregation of 

chromosomes. When I started my thesis work, the yeast kinetochore had been purified and 

mechanically studied in vitro (Akiyoshi et al. 2010). But our knowledge about its function in 

vivo was not fully understood. Advancement of fluorescence microscopy had started being used 

in biological systems. I took advantage of this to study the kinetochore function in vivo.  

In my thesis work, I have utilized in-house developed quantitative microscopy to study 

the structure of the kinetochore (Shivaraju et al. 2012). I have used a combination of 

quantitative microscopy, genetic techniques and mathematical simulation to understand the 

kinetochore structural dynamics and elucidate their structural transition in cell cycle stages.  

Furthermore, I have studied the regulation of kinetochore structure during the cell cycle. In the 

later part of the thesis, I have focused on a new Cse4 chaperone, CAF-1 which might be a 

potential chaperone for Cse4 in anaphase. CAF-1 can interact with Cse4 in vivo and assembles 

Cse4 nucleosome in vitro. In addition, the CAF-1 complex can assemble the Cse4 nucleosome 

on non-centromeric region. Overexpression of Scm3 with deletion of CAC1 has delayed the 

Cse4 transition in anaphase in vivo. 

Kinetochore is a highly dynamic structure in anaphase. 

The kinetochore is a multi-protein complex that connects the chromosome to the 

microtubule and the structure is highly dynamic during anaphase. Part of the kinetochore 

gradually adds copies during metaphase-anaphase transition and some of the subcomplexes 

stably associate with the kinetochore. The sub-complexes that change during anaphase, 

particularly the Ndc80 complex, have shown to diffuse along the microtubule in vitro. On the 

other hand, the stable complex, the Dam1 complex, slides along the microtubule in vitro. Taken 

together, the in vitro studies suggest the kinetochore depends on different mode of microtubule-
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interacting sub-complexes for their function. How the kinetochore uses these two modes 

interaction to achieve this kinetochore structural transition is not known. In my thesis work I 

have addressed the kinetochore structural transition and factors that influences their dynamics 

in a living cell.  

Ndc80 complex adds more copies during anaphase. 

The Ndc80 complex attaches to the negatively charged microtubule through its positively 

charged N-terminal unstructured calponin-domain. Mutation in NDC80 prevents microtubule-

kinetochore attachment and activates the checkpoint. However, mutation in Spc24 and Spc25, 

lacks Bub1, Bub3 and Mad1 association and prevents attachment of the kinetochore without 

activating the spindle assembly checkpoint (Janke et al. 2001; Wigge and Kilmartin 2001; 

Gillett, Espelin, and Sorger 2004). Intensity analysis on GFP tagged proteins from Ndc80 and 

MIND/Mis12 complexes revealed unique dynamics of the kinetochore in anaphase. As 

discussed in Chapter 2, Ndc80 and MIND complexes show increase in intensity in anaphase. 

To study the intensity change, I used image calibration to count their copy numbers in G1 and 

anaphase. The analyses of these intensities showed that kinetochores approximately double the 

copy number of Ndc80 and MIND/Mis12 complexes in anaphase. Our method can reproduce 

the near stoichiometry of proteins from these complexes. The increase in Ndc80 and MIND 

complexes reflect addition of more complexes in near stoichiometry. In anaphase, microtubule 

shows prolonged depolymerization (Koshland, Mitchison, and Kirschner 1988) and makes the 

purified kinetochore to detach frequently (Akiyoshi et al. 2010). Increase in the Ndc80 complex 

might be crucial for the kinetochore attachment during prolonged microtubule 

depolymerization. Ndc80 is essential for Dam1 and Stu2 localization on the kinetochore (He 

et al. 2001; Janke et al. 2002). However, the importance of Dam1 complex for Ndc80 addition 

is unknown.  
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Dam1 complex is a stable complex in anaphase. 

The Ndc80 complex localizes the Dam1 complex on the kinetochore. Mutations in Dam1 

complex arrest cells in metaphase with monopolar spindle (He et al. 2001; Janke et al. 2002). 

Cell cycle analysis of a GFP tagged Dam1 complex showed similar intensity profile across the 

cell cycle, suggesting Dam1 complexes have same amount of protein at the kinetochore at all 

times. This claim is further supported by the FRAP, where the Dam1 complex does not recover 

in anaphase, and by photoactivation, where the kinetochore does not add any new copies during 

anaphase. The Dam1 complex forms a ring-like structure around the microtubule, but our 

studies show that kinetochore can have a non-ring oligomeric form and still it could be 

functional. Purified recombinant Dam1 complex can form a complete ring or partial ring and 

still can track the depolymerizing microtubule in vitro, further supporting our result that the 

Dam1 complex could function in all forms. 

Microtubule dynamics affect the kinetochore copy number. 

Microtubule, tubulin dimer of α and β tubulin, stochastically switch between polymerization 

and depolymerization. Mutation in tubulin subunits arrest with large budded cell, making it 

difficult to study their role on kinetochore attachment directly (Oakley et al. 1985). MAPs can 

influence the microtubule dynamics, particularly, Stu2 which interacts with the Ndc80 complex 

and localizes on the microtubule (Miller, Asbury, and Biggins 2016). Temperature sensitive 

Stu2 mutant has reduced the Ndc80 complex and the unaffected Dam1 complex (Chapter 2), 

suggesting that reduced microtubule depolymerization might reduce the Ndc80 complex 

requirement.  Stu2 is the prime target for Cdc28 (Cdk1) and might be regulated during anaphase 

to sense the depolymerization to add the Ndc80 complex (Holt et al. 2009). 

Biased diffusion to explain kinetochore function. 

Conformational wave model and biased diffusion model gained popularity to explain the 

kinetochore function. In conformation wave model, curved protofilament favors kinetochore 
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movement. In biased diffusion model, transition interaction along the microtubule is favored 

by Brownian motion (Asbury, Tien, and Davis 2011). Recent studies on the purified Ndc80 

complex favored the biased diffusion model (Powers et al. 2009).  Simulation of biased 

diffusion model shows that increase in coupler or attachment increase the attachment with 

microtubule by 4 fold in a given anaphase time (10 mins).  

 In conformational wave model, microtubule protofilament curling pulls the kinetochore 

by releasing the energy stored in the microtubule lattice. The purified Dam1 complex slides or 

diffuses along the depolymerizing microtubule (Gestaut et al. 2008; Cheeseman et al. 2002; 

Tien et al. 2010), favors the conformational wave model. The Dam1 complex can enhance the 

binding of the Ndc80 complex on the microtubule, promotes their tracking distance and forms 

a load-bearing attachment (Tien et al. 2010). In vitro studies on microtubule interacting 

kinetochore proteins suggest that part of the kinetochore sub-complexes favor biased diffusion 

(Ndc80, MIND/Mis12)(Powers et al. 2009; Kudalkar et al. 2015) and the Dam1 complex favors 

both the models(Asbury et al. 2006; Westermann et al. 2006). Based on our study and published 

results, we propose that the kinetochore might be rely on both type of interactions to function. 

Regulation of the kinetochore structure.  

Before the cell enters anaphase, the metaphase-anaphase transition is highly regulated. APC 

ubiquitinylates and activates a number of targets for degradation and further activation, 

respectively. By inactivating the number of APC components through deletion or temperature 

sensitive mutants, we observe a failure to add the Ndc80 complex with prolonged anaphase. 

This might be due to longer anaphase that does not require to add more copies in anaphase or 

difficulty in Ndc80 addition might signal to slow-down the depolymerization. Association of 

APC on the kinetochore is not known yet. We speculate that APC indirectly control the 

kinetochore transition in metaphase. APC releases the separase and promotes the Cdk1/Cdc28 

targets for degradation. APC controls the anaphase-G1 transition by inhibiting Clb2. From our 

experiments, we cannot rule out the possibility of APC effect on the kinetochore in anaphase.  
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Mitotic exit pathway mutants arrest with the kinetochore in the anaphase state. 

However, without cytokinesis, the kinetochore still converts back to the G1-state. We speculate 

that MEN might have a direct and indirect targets on the kinetochore. It might be possible that 

APC along with MEN transitions anaphase-state kinetochore to G1-state kinetochore. MEN 

prepares the cell to complete the cell cycle. MEN might be a potential pathway, important for 

transitioning the anaphase-state kinetochore to G1-state.  

Recent bioinformatics studies on cancer samples from patients showed that kinetochore 

proteins are mis-regulated as a complex than a single protein. Overexpression of theNdc80 

complex is also found in pancreatic cancer. If overexpression of Ndc80 promotes the anaphase-

state kinetochore, then kinetochores might be stably attached to microtubule and less-prone to 

SAC-mediated detachment for error-correction. Tension at metaphase can increase the number 

of microtubules attached to the kinetochore in higher organism (King and Nicklas 2000). 

However, number of microtubule has an upper limit. Further supporting our result that there is 

a variation in microtubule attachment. Reduced copy number of the kinetochore complex might 

reduce tracking and attachment, leading to lost attachment and chromosome loss.  My thesis 

work suggest that kinetochore structure is regulated by these known pathways but kinetochore-

specific targets are unknown. 

Evolutionary conservation of kinetochore complex. 

In higher eukaryotes, the centromeric sequence is not conserved as in yeast and is mainly 

marked epigenetically with CENP-A nucleosome. Most of the yeast kinetochore proteins, 

organization, and their regulators are evolutionarily conserved. Studies on vertebrate 

kinetochore with multiple microtubule attachment indicate that number of simple identical 

units are spread along the centromere to construct the kinetochore (Zinkowski, Meyne, and 

Brinkley 1991). This multi-identical-subunit structure may be constructed by replicating 

individual attachment sites, similar to what found in budding yeast. The human kinetochore 

region has ~24 microtubules (Takeuchi and Fukagawa 2012) ,interacting with possibly ~24 
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individual unit (similar to yeast kinetochore) kinetochores. Quantitative measurement studies 

using budding yeast, fission yeast and chicken cell line DT40 show similar copy number per 

microtubule per kinetochore, suggesting basic structural conservation of kinetochore 

organization.  Interestingly, my work shows kinetochore structural transitions found in budding 

yeast are also conserved in S. pombe, suggesting a possibility that kinetochore dynamics is 

evolutionarily conserved at the level of individual microtubule attachment site. 

Future direction: 

Part of the yeast kinetochore is highly dynamic in anaphase and this dynamic nature may be 

controlled by microtubule dynamics. But there are number questions which are not clear like 

how does the kinetochore add more copies during anaphase? What are the direct targets 

signaling the kinetochore to add more copies? And how does the kinetochore drop these copies 

at the end of anaphase and why? How the anaphase kinetochore is different from the G1 

kinetochore?  

How does kinetochore add more copies during anaphase? 

Copy number increase of the kinetochore in anaphase is reflected by the increase of the inner 

and outer kinetochore. Cnn1 /CENP-T is proposed to be anaphase-specific receptor which 

anchors the Ndc80 complex (Schleiffer et al. 2012; Bock et al. 2012) and the anaphase specific 

addition of the Ndc80 complex could be explained by Cnn1. However, deletion of it does not 

affect the copy number change in anaphase. One future focus will be to find anaphase-specific 

receptor by finding proteins only enriched in an anaphase-purified kinetochore in MudPIT 

analysis. Preliminary studies indicate that the inner and outer kinetochores add copies 

simultaneously. Mif2, COMA and MIND/Mis12 complexes rely on number of metaphase 

kinases and phosphatases for their interaction with other proteins. In future, contribution from 

these pathways on kinetochore regulation are necessary to understand the chromosome 

segregation. 
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What are the direct targets signaling the kinetochore to add copies? 

Cdk1, Ipl1 and Mps1 have different targets on the kinetochore, particularly inner, MIND, 

Ndc80, Dam1 complexes and MAPs (Jones et al. 1999; Shimogawa et al. 2006; Vigneron et 

al. 2004; Cheeseman et al. 2002; Pinsky et al. 2003; Pinsky et al. 2006; Akiyoshi et al. 2009). 

N-terminal of Ndc80 is highly phosphorylated by Ipl1 for microtubule detachment (Akiyoshi 

et al. 2009). Cdc14 phosphatase dephosphorylate Dsn1 on anaphase entry.  Mps1 also 

phosphorylates outer kinetochore proteins. Stu2 has number of sites for Cdk1-mediated 

phosphorylation. Even though we know the sites of modification, the function of these 

modification is not known and might be important for kinetochore regulation. 

How the anaphase kinetochore is different from the G1 kinetochore 

The G1-state kinetochore has fewer copies whereas the anaphase-state kinetochore has a high-

copy number state. The kinetochore drops the added copies from the anaphase-state 

kinetochore back to G1 state. This process happens after telophase. We reasoned that by 

purifying kinetochore complexes from mutants that arrest in anaphase and G1 cells will shed 

light on copy number addition and reduction. I used α-factor arrested cell and cdc15-1 strain to 

purify G1 and anaphase kinetochores respectively (Fig.5.1), for MudPIT mass spectrometry 

and I am analyzing the data to identify the stoichiometry and phosphorylation sites of different 

associated proteins. 

 A number of kinases and phosphatase target kinetochore and regulate the protein-

protein interaction. Phosphorylation of the Ndc80 complex and the Dam1 complex reduces the 

affinity for the microtubule and the Ndc80 complex respectively. By comparing the protein 

abundance in G1 and the Ndc80 complex will elucidate their stable interaction with other 

kinetochore complexes.  Anaphase-specific protein might be found which might have a role in 

kinetochore transition. Purification of cell cycle specific purification has not been done before. 

Stability of these complexes in solution is not known.  
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Figure 5.1: Anaphase kinetochore purification from cdc15-1. 

(A) Intensity quantification of Nuf2-GFP in G1 arrested cell and cdc15-1 (bottom) with images (Top) 

show that anaphase arrested cells have higher intensity than G1 arrested cell. (B) Flag-tag affinity 

immunoprecipitation of kinetochore proteins using Dsn1-his-flag protein. Silver stained gel showing 

the purified kinetochore complex. 

Centromeric Cse4 nucleosome: 

Cse4, a H3 variant containing nucleosome presents at the centromeric region. Quantitative 

microscopy of GFP tagged Cse4 has revealed that centromeric Cse4 nucleosome can adapt hemisome 

during interphase and octasome in anaphase. Scm3, a Cse4-specific chaperone is important for Cse4 

assembly. Size exclusion chromatography of Scm3 assembled Cse4 nucleosome is smaller than the 

H3 containing nucleosome. Nucleosome assembly with fluorescent dye conjugated-H4 by Scm3 

shows presence of single copy of Cse4 per nucleosome. Taken together, Scm3 might be favoring the 

hemisome structure of Cse4 nucleosome.  

 We found that Cse4 can interact with the CAF-1 complex in vivo. The CAF-1 complex can 

mediate the Cse4 nucleosome assemble in vitro. The CAF-1 complex is a H3/H4 chaperone 

predominately assembles octameric nucleosome.  Quantitative microscopy on Cse4-GFP in Scm3 
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overexpression strain shows delay in Cse4 transition in anaphase. This transition is further delayed in 

deletion of CAC1. Taken together, CAF-1 could be a potential chaperone for Cse4 in anaphase. 

Whether CAF-1-mediated Cse4 nucleosome forms a hemisome or octasome is not known. To further 

characterize the Cse4 nucleosome structure, we can use size-exclusion chromatography, cryo-EM and 

fluorescent dye conjugated H4 assembled Cse4 nucleosome.  
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Summary: 

In summary, the data presented in this thesis provide evidence for a novel structural change of 

the kinetochore complex. This structural plasticity is cell cycle-specific particularly in 

anaphase and is essential for kinetochore-microtubule attachment. The structure of centromeric 

Cse4 nucleosome also transition in anaphase but is not coupled with kinetochore transition. I 

have helped to identify a new Cse4 chaperone, CAF-1 which mediates Cse4 nucleosome 

assembly on centromeric and non-centromeric regions. The Kinetochore adds the Ndc80 

complex in anaphase and loses it in telophase. MAPs control the microtubule dynamics in turn 

microtubule dynamics control the copy number addition. I also present data for the regulation 

of kinetochore addition in metaphase and drop in telophase. This novel structural dynamics is 

new to biology and will extend our knowledge in chromosome biology. 

 

 

 

 

 

 

 

 

 

 



        Chapter 5 

197 
 

REFERENCES: 

Akiyoshi, B., C. R. Nelson, J. A. Ranish, and S. Biggins. 2009. Analysis of Ipl1-mediated 
phosphorylation of the Ndc80 kinetochore protein in Saccharomyces cerevisiae. Genetics 183 
(4):1591-5. 

Akiyoshi, B., K. K. Sarangapani, A. F. Powers, C. R. Nelson, S. L. Reichow, H. Arellano-Santoyo, T. 
Gonen, J. A. Ranish, C. L. Asbury, and S. Biggins. 2010. Tension directly stabilizes 
reconstituted kinetochore-microtubule attachments. Nature 468 (7323):576-9. 

Asbury, C. L., D. R. Gestaut, A. F. Powers, A. D. Franck, and T. N. Davis. 2006. The Dam1 
kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc 
Natl Acad Sci U S A 103 (26):9873-8. 

Asbury, C. L., J. F. Tien, and T. N. Davis. 2011. Kinetochores' gripping feat: conformational wave or 
biased diffusion? Trends Cell Biol 21 (1):38-46. 

Bock, L. J., C. Pagliuca, N. Kobayashi, R. A. Grove, Y. Oku, K. Shrestha, C. Alfieri, C. Golfieri, A. 
Oldani, M. Dal Maschio, R. Bermejo, T. R. Hazbun, T. U. Tanaka, and P. De Wulf. 2012. 
Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell 
Biol 14 (6):614-24. 

Cheeseman, I. M., S. Anderson, M. Jwa, E. M. Green, Js Kang, J. R. Yates, 3rd, C. S. Chan, D. G. 
Drubin, and G. Barnes. 2002. Phospho-regulation of kinetochore-microtubule attachments by 
the Aurora kinase Ipl1p. Cell 111 (2):163-72. 

Gestaut, D. R., B. Graczyk, J. Cooper, P. O. Widlund, A. Zelter, L. Wordeman, C. L. Asbury, and T. 
N. Davis. 2008. Phosphoregulation and depolymerization-driven movement of the Dam1 
complex do not require ring formation. Nat Cell Biol 10 (4):407-14. 

Gillett, E. S., C. W. Espelin, and P. K. Sorger. 2004. Spindle checkpoint proteins and chromosome-
microtubule attachment in budding yeast. J Cell Biol 164 (4):535-46. 

He, X., D. R. Rines, C. W. Espelin, and P. K. Sorger. 2001. Molecular analysis of kinetochore-
microtubule attachment in budding yeast. Cell 106 (2):195-206. 

Holt, L. J., B. B. Tuch, J. Villen, A. D. Johnson, S. P. Gygi, and D. O. Morgan. 2009. Global analysis 
of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325 
(5948):1682-6. 

Janke, C., J. Ortiz, J. Lechner, A. Shevchenko, A. Shevchenko, M. M. Magiera, C. Schramm, and E. 
Schiebel. 2001. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and 
Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. 
EMBO J 20 (4):777-91. 

Janke, C., J. Ortiz, T. U. Tanaka, J. Lechner, and E. Schiebel. 2002. Four new subunits of the Dam1-
Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J 21 (1-
2):181-93. 

Jones, M. H., J. B. Bachant, A. R. Castillo, T. H. Giddings, Jr., and M. Winey. 1999. Yeast Dam1p is 
required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol 
Biol Cell 10 (7):2377-91. 

King, J. M., and R. B. Nicklas. 2000. Tension on chromosomes increases the number of kinetochore 
microtubules but only within limits. J Cell Sci 113 Pt 21:3815-23. 

Koshland, D. E., T. J. Mitchison, and M. W. Kirschner. 1988. Polewards chromosome movement 
driven by microtubule depolymerization in vitro. Nature 331 (6156):499-504. 

Kudalkar, E. M., E. A. Scarborough, N. T. Umbreit, A. Zelter, D. R. Gestaut, M. Riffle, R. S. 
Johnson, M. J. MacCoss, C. L. Asbury, and T. N. Davis. 2015. Regulation of outer 
kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore 
Mis12/MIND complex. Proc Natl Acad Sci U S A 112 (41):E5583-9. 

Miller, M. P., C. L. Asbury, and S. Biggins. 2016. A TOG Protein Confers Tension Sensitivity to 
Kinetochore-Microtubule Attachments. Cell 165 (6):1428-39. 

Oakley, B. R., C. E. Oakley, K. S. Kniepkamp, and J. E. Rinehart. 1985. Isolation and 
characterization of cold-sensitive mutations at the benA, beta-tubulin, locus of Aspergillus 
nidulans. Mol Gen Genet 201 (1):56-64. 

Pinsky, B. A., C. Kung, K. M. Shokat, and S. Biggins. 2006. The Ipl1-Aurora protein kinase activates 
the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8 (1):78-83. 



        Chapter 5 

198 
 

Pinsky, B. A., S. Y. Tatsutani, K. A. Collins, and S. Biggins. 2003. An Mtw1 complex promotes 
kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev Cell 5 
(5):735-45. 

Powers, A. F., A. D. Franck, D. R. Gestaut, J. Cooper, B. Gracyzk, R. R. Wei, L. Wordeman, T. N. 
Davis, and C. L. Asbury. 2009. The Ndc80 kinetochore complex forms load-bearing 
attachments to dynamic microtubule tips via biased diffusion. Cell 136 (5):865-75. 

Schleiffer, A., M. Maier, G. Litos, F. Lampert, P. Hornung, K. Mechtler, and S. Westermann. 2012. 
CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14 
(6):604-13. 

Shimogawa, M. M., B. Graczyk, M. K. Gardner, S. E. Francis, E. A. White, M. Ess, J. N. Molk, C. 
Ruse, S. Niessen, J. R. Yates, 3rd, E. G. Muller, K. Bloom, D. J. Odde, and T. N. Davis. 
2006. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at 
metaphase. Curr Biol 16 (15):1489-501. 

Shivaraju, M., J. R. Unruh, B. D. Slaughter, M. Mattingly, J. Berman, and J. L. Gerton. 2012. Cell-
cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell 150 (2):304-16. 

Takeuchi, K., and T. Fukagawa. 2012. Molecular architecture of vertebrate kinetochores. Exp Cell Res 
318 (12):1367-74. 

Tien, J. F., N. T. Umbreit, D. R. Gestaut, A. D. Franck, J. Cooper, L. Wordeman, T. Gonen, C. L. 
Asbury, and T. N. Davis. 2010. Cooperation of the Dam1 and Ndc80 kinetochore complexes 
enhances microtubule coupling and is regulated by aurora B. J Cell Biol 189 (4):713-23. 

Vigneron, S., S. Prieto, C. Bernis, J. C. Labbe, A. Castro, and T. Lorca. 2004. Kinetochore 
localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15 (10):4584-
96. 

Westermann, S., H. W. Wang, A. Avila-Sakar, D. G. Drubin, E. Nogales, and G. Barnes. 2006. The 
Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. 
Nature 440 (7083):565-9. 

Wigge, P. A., and J. V. Kilmartin. 2001. The Ndc80p complex from Saccharomyces cerevisiae 
contains conserved centromere components and has a function in chromosome segregation. J 
Cell Biol 152 (2):349-60. 

Zinkowski, R. P., J. Meyne, and B. R. Brinkley. 1991. The centromere-kinetochore complex: a repeat 
subunit model. J Cell Biol 113 (5):1091-110. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-- The End -- 


	Chapters
	List of Figures
	List of Tables
	Chapter 1
	Introduction to yeast kinetochore structure, function, and regulation in cell cycle.
	Introduction
	Cell cycle
	G1
	S phase
	Metaphase
	Ipl1/Aurora B
	Spindle Assemble Checkpoint
	Anaphase Promoting Complex (APC)

	Anaphase/Telophase
	Mitotic exit
	Cdc Fourteen Early Anaphase Release (FEAR)
	Mitotic Exit Network

	Cytokinesis

	Cell cycle and kinetochore
	Kinetochore
	Centromeric region
	Cse4
	Cse4 chaperone

	Budding yeast kinetochore complex
	Table 1.1: Evolutionary conservation of budding yeast kinetochore

	Inner kinetochore sub-modules
	Outer kinetochore
	Spc105 complex
	Mis12/Mtw1/MIND complex
	Ndc80 complex
	DAM1/DASH/DDD complex
	+TIPs
	Kinesins


	Kinetochore dynamics
	Microtubule
	Mode of kinetochore-microtubule interaction
	Conformational wave model
	Biased diffusion model


	Kinetochore architecture:
	Table.1.2. Copy number of kinetochore complex proteins per attachment (kinetochore).

	Summary
	REFERENCES:

	Chapter 2
	Structural plasticity of the living kinetochore
	Abstract
	Introduction
	Results
	Sub-modules of the yeast kinetochore increase in intensity during anaphase
	Some kinetochore subcomplexes increase during anaphase
	MIND and Ndc80 complexes recover in FRAP but the Dam1 complex does not
	MIND and Ndc80 complexes add copies during anaphase while the Dam1 complex remains stable
	MAPs affect kinetochore copy number
	Motor proteins affect the kinetochore copy number.
	Kinetochore copy number increase is predicted to improve chromosome attachment
	Kinetochore intensity increase during anaphase is evolutionarily conserved

	Discussion
	Kinetochore submodules are adjustable and stoichiometric during anaphase
	Kinetochore plasticity may be influenced by microtubule dynamics and may be evolutionarily conserved
	How might structural plasticity promote chromosome segregation?

	Experimental Procedures
	Yeast Strains
	Microscopic Techniques
	Fluorescence correlation Spectroscopy (FSC) with image calibration
	Fluorescence Recovery after Photobleaching
	Photoconversion of kinetochore proteins at metaphase
	Simulation of kinetochore-microtubule interaction with Hill’s equation

	Author Contributions
	Table 2.S1: Strains used in this study
	Table 2.S2: Comparison of kinetochore copy number in anaphase.

	Supplemental method
	Simulation of microtubule depolymerization on kinetochore structure predicts the requirement of additional couplers for kinetochore-microtubule interaction in anaphase.

	Graphical abstract:
	REFERENCES:

	Chapter 3
	Regulation of kinetochore structural transitions
	Abstract
	Introduction
	Results
	Tension between sister chromatids is not required for the addition of Ndc80 complex.
	Kinetochore copy number is not controlled by Ipl1/Aurora kinase or SAC.
	APC is required for initiating the Ndc80 addition during metaphase-anaphase transition
	Inactivation of MEN and FEAR arrest cells with anaphase-state kinetochore.
	Cytokinesis is not required for reducing the Ndc80 copy number.

	Discussion
	Tension between the sister chromatids at metaphase is not required for the anaphase kinetochore addition.
	Mitotic Exit Pathway mutants arrest the cells in an anaphase-state kinetochore
	MEN might be required for reducing the copy number of the kinetochore.

	Experimental Procedures
	Yeast Strains
	Microscopic Techniques
	Table: 3.1: Strains used in this study

	REFERENCES:


	Chapter 4
	Sequence-independent centromeric nucleosome assembly by CAF-1 complex
	Abstract
	Introduction
	Results
	CAF-1 subunits interact with Cse4
	CAF-1 can assemble Cse4 nucleosomes in vitro
	CAF-1 – a potential histone chaperone for Cse4 in anaphase.
	CAF-1 and centromeric localization of Cse4

	Discussion
	Graphical abstract:
	Proposed model for CAF-1 role on centromeric nucleosome.

	Experimental Procedures
	Table: 4.S1: Strains used in this study
	REFERENCES:


	Chapter 5
	Conclusion and future directions
	Key conclusions
	Kinetochore is a highly dynamic structure in anaphase.
	Ndc80 complex adds more copies during anaphase.
	Dam1 complex is a stable complex in anaphase.
	Microtubule dynamics affect the kinetochore copy number.
	Biased diffusion to explain kinetochore function.
	Regulation of the kinetochore structure.
	Evolutionary conservation of kinetochore complex.

	Future direction:
	How does kinetochore add more copies during anaphase?
	What are the direct targets signaling the kinetochore to add copies?
	How the anaphase kinetochore is different from the G1 kinetochore
	Centromeric Cse4 nucleosome:

	Summary:
	REFERENCES:



