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Abstract: Functional data analysis and artificial neural networks are the building blocks of
the proposed methodology that distinguishes the movement patterns among c’s patients on
different stages of the disease and classifies new patients to their appropriate stage of the disease.
The movement patterns are obtained by the accelerometer device of android smartphones that the
patients carry while moving freely. The proposed methodology is relevant in that it is flexible on the
type of data to which it is applied. To exemplify that, it is analyzed a novel real three-dimensional
functional dataset where each datum is observed in a different time domain. Not only is it observed
on a difference frequency but also the domain of each datum has different length. The obtained
classification success rate of 83% indicates the potential of the proposed methodology.

Keywords: Alzheimer; functional data analysis; healthcare; hypothesis testing; pattern recognition;
supervised classification; ubiquitous computing

1. Motivation and Research Context

Due to the impact of the ubiquitous computing paradigm, the desktop computer has given
way to smaller devices (smartphones, tablets, etc.), body computers (bracelets, spectacles for
augmented reality, etc.) and near field communication/radio frequency identification (NFC/RFID)
cards embedded in objects of the user’s environment [1]. Many of these new computers can collect
information about the user activity without having to make any interaction efforts (for example,
smartphones collect GPS information of the users, NFC/RFID technology identifies people who access
to restricted areas, etc.). This new paradigm has a great impact in the field of healthcare due to these
small computers can easily monitor the patient’s activity to know more in depth the effects of the
disease [2].

Several neurological disorders are accompanied by difficulties in performing movements.
In particular, dementia constitutes a progressive condition characterized by cognitive impairment and
frequently associated with movement disorders. Alzheimer’s disease, as the leading cause of dementia,
is a neurodegenerative disease that has become a major concern to public health due to the economic
and social burden that it means. The severity of the disease is usually established by clinical assessment
and based on the patient’s ability to perform activities of daily living (ADLs). In clinical practice,
the most used assessment tool is the Global Deterioration Scale [3], which includes different stages:
no objective cognitive impairment (GDS 1-2); mild cognitive impairment when there is no significant
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functional impact (GDS 3); and dementia when the cognitive impairment leads to some functional
impairment (mild dementia or GDS 4, moderate dementia or GDS 5, moderately severe dementia or
GDS 6 and severe dementia or GDS 7).

According to the current literature, Alzheimer’s disease is linked to specific walking patterns
which make possible to distinguish between these patients and healthy subjects. Additionally, some of
these motion abnormalities are present since very early stages of the disease, which means that their
analysis may have an important diagnostic value in prodromal stages, when the evolution of a patient
suffering from memory problems is still unknown. However, these abnormalities are not appreciable
by the human eye, so it can be necessary to use an instrumentalized assessment such as accelerometry
to provide detailed data of the movement features of the patients.

Moreover, patients who have already been diagnosed can be favored by devices that analyze
their movements (gyroscopes, accelerometers, GPS, etc.) to assess how the evolution of the pathology
affects their mobility. Several studies have analyzed the relationship between Alzheimer’s disease
and mobility problems by means of devices that automatically extract data on the user’s movements.
These studies have focused on very specific tasks such as walking a certain distance by subjects that
wear body computers. However, few works have researched whether an analysis of daily activities
using personal smartphones may have value for diagnosing and monitoring the pathology. This type
of analysis would involve processing a set of important data since the subject would be constantly
monitored performing tasks of different nature.

We propose and experiment with a methodology that studies the relationship between data
recorded by smartphone accelerometers in patients with Alzheimer’s disease and their daily
mobility patterns. Previously, several hypothesis tests from the functional data analysis determined
if there is a relationship between the stage of the disease and the patient’s mobility patterns.
Then, this methodology addresses the extraction of features that enable us to reduce the size of
the sample due to the smartphone records several data on the mobility of the subject by second (s).
A neuronal network is automatically learned from these significant features. The main purpose of this
neural network is classifying the stage of the patients’ pathology from their mobility data. Finally,
35 patients participate in a case study that put the methodology into action. The results of applying
methodology in this case study are compared with other machine learning classifiers. The methodology
proposed in this paper is novel in that it involves two agents:

• The patient and/or carer that turns on and off the accelerometer of the smartphone in order for it
to save and analyze the data.

• The doctor that receives the analysis of the data and that has to take the decision to whether make
a more thorough examination in a control ambient with other techniques.

Thus, what we propose here is a different type of analysis from what it is used at the present time
with Alzheimer’s patients, and that does not substitute it but amplifies it. Here, veridical real data are
analyzed. On the one hand, this implies that the data are recorded in an uncontrolled ambient and,
on the other hand, that the data are collected cheaply and therefore as frequently as desired. A further
implication is that the length of time during which each recording is made varies from one another.

The remainder of this article is organized as follows. Section 2 describes a case study in which
we record data of the mobility of 35 patients with Alzheimer’s disease. Section 3 presents a study
that uses functional data analysis to investigate the relationship between the mobility of patients with
Alzheimer’s disease and the stage of this disorder. Section 4 describes a methodology to analyze the
mobility patterns in patients with Alzheimer’s from data recorded by accelerometers of smartphones
and the diagnosis and evolution of this disorder. Section 5 reviews the main research contributions
related to our work. Section 6 analyzes the conclusions of this research work.
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2. Real Data

The real data studied in this paper consist of the recordings of the accelerations of a sample of
35 patients with Alzheimer’s disease while they move in a daycare center. The main goal of this work
is to apply a supervised learning process to determinate the stage of the disease from accelerometer
data. Supervised learning is the machine learning task that infers a function from labelled training data.
Therefore, the first step of this supervised learning process is to generate labelled data. The Global
Deterioration Scale is the tool used to establish each label as the the stage of dementia in each patient.
The assessment was conducted by the neuropsychologist of the daycare facility and it was based on
the medical reports provided, the patient’s clinical examination and a clinical interview with the main
carer to investigate the patient’s functional performance in his/her daily life, which altogether allowed
to establish the disease stage. The Global Deterioration Scale comprises seven stages (from 1—No
cognitive impairment to 7—Severe dementia). For methodological purposes, these levels were further
grouped into three categories: early stage (GDS 2 and 3), middle stage (GDS 4 and 5) and late stage
(GDS 6 and 7). The 35 patients were thereby categorized into three groups: early stage when they were
in GDS 2 and 3 (7 patients), middle stage when GDS 4 and 5 (18 patients) and late stage when GDS 6
and 7 (10 patients). No patient in GDS 1 was included as this stage corresponds to healthy subjects.

The recordings of accelerations were obtained by the use of the accelerometer device of an
Android smartphone that the patient carried in one of their pockets. The patients moved in a room of
the daycare center under the supervision of the neuropsychologist. Therefore, we introduce a more
flexible environment than previous works [4]. We have, however, a moderate degree of control and
supervision of the patients’ activities, due to the neuropsychologist was present during the activities
and all the patients were in the same room of the day-center facility, which is a context that reduces
the possibilities of performing a high variety of activities. The neuropsychologist was the person
responsible to place and orient the smartphone inside a small pocket of each patient. The variety of
the patients’ activities in addition to any mistake performed by the neuropsychologist, to orient and
place the smartphone in the pocket in the same way for all the patients, and an accidentally change
of the orientation of the accelerometer are part of the study and are acceptable in samples having a
meaningful size; so, we do not take any additional methodological indication for this purpose.

This type of accelerometer records the acceleration forces, of the patient carrying the smartphone,
on the three spatial axes (see Figure 1) in meter/second2 (m/s2, the International System of Units).
Note that these acceleration forces are the result of the gravity force together with the accelerations
forces applied by the patient to generate movements such as walking. The data are easily accessible
because the accelerometer device of an Android smartphone allows saving the measurements in a
text file. The accelerometer takes measures of the acceleration in a range of±3.27 g and uses a sampling
rate of 8 Hz. All participants of this case study used the same model of smartphone. Most current
smartphones with accelerometer enable us to use the same range of G and interpolate to a common
sampling rate. Therefore, the results of this experiment are not completely dependent on the model of
smartphone used by the participants.

The accelerations of the movements of each studied patient were recorded during separate
periods of time for approximately a week, with no more than a recording per day. Thus, number of
recordings per patient varies in the dataset from two to eight, with a total of 187 recordings among the
35 patients. In this paper, we denote by {o1, . . . , on} with n = 187 the set of measurements provided
by the accelerometer carried by the Alzheimer’s patients. There, oi := oi(t) for i = 1, . . . , n whith t
denoting the time. Accelerometers does not provide the measurements for each time t, not providing
the acceleration in a continuous manner. Thus, for each i = 1, . . . , n, oi(t) is recorded on a grid of
time-points {i1, . . . , iti}, which is natural when recording real data through time.
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(a) (b)

Figure 1. Representation of the three axes into which the accelerations are measured; and shown in
two different positions, panels (a) and (b).

This kind of data is known as functional data. However, the data studied in this paper have a
richer topology than the usual data studied in functional data analysis. One of the reasons is that the
length of the time each separate period was recorded, |iti − i1|, varies for each of the 187 recordings.

The reason for each of the time lengths to differ is that they solely depends on when the patient
and/or carer decide to turn the device on and off. Thus, the times to collect the data are not
previously selected; they are just set on the spur of the moment. Of course, there are two limits
for the time length: the limit of the battery of the used smartphone and the memory capacity of it,
as the data are saved in it as text file.

The difference of the time length can be observed from Figure 2, where the accelerations,
on the x-axis, measured on their respective recorded times are displayed for three of the 187 cases.
The time length on the left panel of the plot is clearly shorter than the other two. Additionally, the grid
in which the data were recorded varies for each of the 187 recordings and it also varies the frequency
of the measurements stored. However, each recording always contains several measurements per
s. In order for the 187 recordings to be comparable, a preprocess of the data is required. We do this
preprocess and the consecutive analysis of the data under two different frameworks: Functional Data
Analysis (Section 3) and Machine Learning (Section 4).
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Figure 2. Measured acceleration on the x-axis for the accelerations of the patients in m/s2 versus the
time in s, at different stages of the disease: early (left), middle (central) and late (right).
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Furthermore, in this paper, we additionally use the notation oi(t) := (xi(t), yi(t), zi(t)),
where xi(t), yi(t) and zi(t), respectively, are the accelerations at time t in each of the three spatial
coordinates axis. In particular, as mentioned above, in Figure 2 it is plotted the x coordinate for
three different patients during one of the period of times in which their accelerations are measured.
The accelerometer device of the Android smartphone also computes the euclidean norm of oi(t),
for t ∈ {i1, . . . , iti}. This is a redundant measure and, therefore, we do not include it in the
analysis explicitly. It is worth saying that the three patients corresponding to the accelerations shown
in the figure are at different stages of the disease, which is not not possible to depict by the eye.
To categorize the stage of the disease of the 35 patients, we divide them into those who are in the early
stage of the disease (seven patients), in the middle stage (18 patients) and in the late stage (10 patients).

Finally, we would like to focus on the fact that these real data are veridical real data recorded
by laypeople. As commented in Section 1, this implies that a further analysis has to be performed by
the doctor to provide an accurate diagnosis as, among other facts, the accelerometer in the smartphone
is not calibrated, different smartphones are used by different patients and, sometimes, even by
the same patient, and the coordinate axis of the accelerometer in the smartphone are not absolute.
More important, however, is that it has the great advantage that it can be cheaply recorded as much
data as desired providing high accuracy of the classification results.

Given a fixed external system of coordinates, a characteristic of the accelerometer of the
smartphone is that, when it is moved, the three spatial axis change with respect to the fixed
external system. Moreover, as each patient carries the smartphone in his/her pocket in a
different manner, the position of the axis of the smartphone also differs from the above mentioned
external axis in a different manner. In fact, not only do these differences exist among patients but also
among different recordings of the same patient. This fact enriches the study that is here performed
from the data analysis point of view in the sense that the three-coordinate axis are far from being three
independent variables.

3. Functional Data Analysis

In this section, we study the data under the framework of functional data analysis. As commented
in Section 2 these data need preprocessing, as each datum is measured in a different grid of time-points
and for a different time length. The first is an ordinary preprocess in functional data analysis but not
the second. For the first, we interpolate the data and record the resulting values at each s. That is,
for each i = 1, . . . , n, we record ai(t) := (xi(t), yi(t), zi(t)) for t the natural numbers until the round
of iti , which we denote by Ti.

The second preprocess step regards the issue that iti is different for each i = 1, . . . , n. This is not a
major issue here, however, due to this data fall into the framework of stationary processes. That is, it is
equivalent to start recording the data at any time t and therefore to obtain a set of curves measured
for the same time length it suffices to do the following. Setting l to be the length of the curve with
smallest time length amongst the n, we draw at random li with the discrete uniform distribution
in the set of integer numbers {0, . . . , Ti − l} for i = 1, . . . , n and apply our functional data analysis
to ai(t) := (xi(t), yi(t), zi(t)) for t = 1 + łi, . . . , l + li for i = 1, . . . , n. To obtain results that are not
influence by the random draw of the li’s, we repeat the analysis for 1000 times in Sections 3.1 and 3.2
and 10 time sin Section 3.3; denoting the random draws by li(j), i = 1, . . . , n and j = 1, . . . , 1000
(Sections 3.1 and 3.2) or j = 1, . . . , 10 (Section 3.3).

3.1. Functional Analysis of Variance

In this section, we propose to test the null hypothesis that the mean of the accelerations of the
early-stage patients is equal to the mean of the middle-stage patients and equal to the late-stage patients
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against the alternative that at least one of these means is different. Thus, given three populations,
Π1 (early-stage), Π2 (middle-stage) and Π3 (late-stage), this is a test of

H0 : µ1 = µ2 = µ3

versus Ha : there exist i and j such that µi 6= µj with i, j ∈ {1, 2, 3}. µ1, µ2 and µ3 denote the respective
means of the populations, i.e., µ1 denotes the mean acceleration of the early-stage patients, µ2 the
mean acceleration of the middle-stage patients and µ3 the mean acceleration of the late-stage patients.
The aim in performing this hypothesis test is to check whether the difference in means among the
three sets are significant. Having differences in mean gives grounds for the possibility of developing a
supervised classification procedure to assign patients to one of the three groups.

There are two main common statistics for testing one-dimensional ANOVA, one based on the L2

norm and another in what is known as F-statistic. First, we use here three different functional analysis
of variance tests, functional ANOVA, that are based on the one-dimensional F-test. Additionally, two of
these tests use random projections [5] and the other the maximum of the F-statistics [6]. We summarize
these tests in what follows. For that, let us assume we have three functional datasets, r := {r1, . . . , rn},
s := {s1, . . . , sn} and u := {u1, . . . , um}, respectively, from populations Π1, Π2 and Π3;, all of functions
supported on a compact interval I.

Functional ANOVA based on random projections. The idea here is to do k ≥ 1 random
projections of the functional data into one-dimensional data and apply the one-dimensional F-test to
each of those one-dimensional projections, obtaining k p-values. Those k p-values are combined either
using the Bonferroni correction or the false discovery rate (FDR). The F-test used in [5] is parametric
and assumes the Gaussianity and homoscedasticity of the random projections. Thus, we do so here,
although a non-parametric version of it can be obtained by doing bootstrap, as we do in the other tests
proposed in this section. Furthermore, we take k = 30 and the random functions in which to project
the functional data is generated using a uniform distribution in the sphere corresponding to a space
with dimension the number of elements in the grid in which the functional data are observed.

Functional ANOVA based on the F-statistics. The idea here is to apply the one-dimensional
F-test at the time coordinate in which there exists the largest difference in mean among the three
groups of patients. Denoting by F(r(t), s(t), u(t)) the one-dimensional statistic at time t, the test
statistic is T(r, s, u) := supt∈I F(r(t), s(t), u(t)). Here, we use a non-parametric test, using bootstrap
to emulate the distribution of the data. Thus, it is computed B bootstrap samples from r, s and
u independently. For b = 1, . . . , B, we denote these bootstrap samples by r∗b := {r∗b,1, . . . , r∗b,n},
s∗b := {s∗b,1, . . . , s∗b,n} and u∗b := {u∗b,1, . . . , u∗b,m} and the respective bootstrap statistic under the null
hypothesis is T(r∗b − r̄, s∗b − s̄, u∗b − ū), where r̄ denotes the sample mean of {r1, . . . , rn} and equivalently
for s̄ and ū. Then, the p-value of the test is computed as (1 + ∑B

b=1 I(T(r∗b − r̄, s∗b − s̄, u∗b − ū) ≥
T(r, s, u)))/(B+ 1) where I(·) is the indicator function that takes value one if T(r∗b − r̄, s∗b − s̄, u∗b − ū) ≥
T(r, s, u) and zero otherwise. Here, we use B = 999.

In the literature, there exist three major ways to construct a functional test of means as there are
three main manners of applying a one-dimensional statistic to a functional data: (i) using random
projections we reduce each functional datum to a one-dimensional datum by projecting it into a
random function; (ii) looking for the coordinate that provides more difference amongst the means
implies that we end up applying the one-dimensional statistic only on that coordinate, which leaves
in a one-dimensional space; and (iii) applying the one-dimensional statistic at each time point and
integrate those values over the time domain. We exemplify this third setting, using the hypothesis test
whose statistic is based on the difference on L2 norm of the means [7]. This test, however, only applies
when we have two groups. Thus, we apply it separately for testing H0 : µ1 = µ2 against Ha : µ1 6= µ2,
H0 : µ1 = µ3 against Ha : µ1 6= µ3 and H0 : µ2 = µ3 against Ha : µ2 6= µ3.

Test of equality of means based on the L2 norm. Given two populations Π1 and Π2, this is a test
of H0 : µ1 = µ2 versus Ha : µ1 6= µ2, where µ1 and µ2 denote the respective means of the populations.
Assume we have two functional datasets s := {s1, . . . , sn} and u := {u1, . . . , um} respectively from
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populations Π1 and Π2; both of functions supported on a compact interval I. The test uses the statistic
T :=

∫
I(s̄(t)− ū(t))2dt, where s̄ denotes the sample mean of {s1, . . . , sn} and equivalently for the ū.

Here we use a non-parametric test, using bootstrap to emulate the distribution of the data. Thus, it is
computed B bootstrap samples from s and independently from u. For b = 1, . . . , B, we denote these
bootstrap samples by {s∗b,1, . . . , s∗b,n} and {u∗b,1, . . . , u∗b,m} and the respective bootstrap statistic under
the null hypothesis by T∗b :=

∫
I(s̄
∗
b(t) − s̄(t) − ū∗b(t) + ū(t))2dt, where s̄∗b is the sample mean of

{s∗b,1, . . . , s∗b,n} and equivalently for ū∗b . Then, the p-value of the test is computed as (1 + ∑B
b=1 I(T∗b ≥

T))/(B + 1) where I(·) is the indicator function that takes value one if T∗b ≥ T and zero otherwise.
Here we use B = 999.

3.2. Results of Applying the Tests to the Real Data

We apply the hypothesis tests to the sample ai, i = 1, . . . , 187, assuming it is a simple
random sampling. Forty-one of these elements are accelerations belonging to the group of patients in
the early-stage of the disease, 100 to the middle-stage and 46 to the late-stage. We consider the different
curves as entities and not the patients due to only having a set of 35 patients (seven in early-stage, 18 in
the middle and 10 in the late) and therefore having a small sample size for the early-stage patients.
Having a sample size not large enough may result in not having evidence to reject the null hypothesis
when if it is not true. We do the study separately for the x, y and z-axis.

3.2.1. Results of Applying the ANOVA Tests

In Figure 3, we can observe the histograms of the p-values resulting from testing the null
hypothesis H0 : µ1 = µ2 = µ3 using the two functional ANOVA tests based on random projections
(the one that uses the Bonferroni correction in the first row and the one that uses the FDR in the second)
and the functional ANOVA based on the maximum of the F-statistic, in the third row. As we perform
each of the three tests separately for the x, y and z-axis, the figure has three columns corresponding
each to one of the three axis. If all the elements of the sample had been measured in the same time
domain, we would have computed a total of six p-values, one per test and coordinate axis. As explained
in the section above, however, we run each of the six cases for j = 1, . . . , 1000, applying for each j the
test to a data sample where each curve ai is recorded at times {1 + li(j), . . . , li(j) + l}, i = 1, . . . , n.

It is clear from the last row of Figure 3 that there is a rejection of the null hypothesis when
the functional ANOVA test based on the maximum of the F-statistic is applied on the x-axis and
when is applied on the y-axis, as all the p-values are below 0.03, which is below the significance
level of 0.05. On the contrary, it is observed from the first column of Figure 3 that there is little or
no rejection of the null hypothesis when the two tests based on random projections are applied to
the x-axis. To summarize the results of the p-values for a more detailed study, in the first three columns
of Table 1 it is displayed the mean and standard deviation of the p-values per each hypothesis test,
labeled as Bonferroni, FDR and F-statistic, and coordinate axis.

Furthermore, in Table 1, it is shown the proportion of p-values that are smaller or equal
than 0.05, among the 1000. To analyze these results, it should be noticed that, under some
independency assumptions, when a null hypothesis is true and it is tested a multiple number of times,
it is expected to be rejected 5% of those times, at significance level 0.05. The reason for this is that
the p-values follow a uniform distribution on [0 , 1] when the null hypothesis is true. Taking this
into account, it is clear that there exists no evidence to reject the null hypothesis when the two tests
based on random projections are applied to the x-axis (first two columns of Table 1: Bonferroni and
FDR) as the proportion of p-values smaller or equal than 0.05 is 0.004. On the contrary, when the test
based on the F-statistic is applied on the x and y coordinate axis, all the p-values are larger than 0.05.
In the other five cases, when restricted to the first three columns of the table, the proportion of p-values
smaller than, or equal to 0.05 is moderate, between the 6.5% and the 13.8% percentage. Although this
is higher than the 5% of the cases, it would be better to have a test-statistic that provides a much higher
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proportion of rejections of the null hypothesis, so that we are certain that the null hypothesis has to
be rejected. For a more detailed explanation, see below in the conclusions of the results.
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Figure 3. Histograms of 1000 p-values resulting from applying the two functional ANOVA tests based
on random projections: based on the Bonferroni correction (top row) and on the FDR (middle row)
and the functional ANOVA based on the F-statistic (bottom row).
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Table 1. Mean, standard deviation and proportion of values smaller or equal than 0.05 of 1000 p-values
resulting of applying separately for each coordinate axis, x, y and z, the hypothesis tests: functional
ANOVA tests based on random projections using the Bonferroni correction (first column) and the FDR
(second column), functional ANOVA test based on the F-statistic (third column) and functional test of
means based on the L2 norm for contrasting the acceleration curves corresponding to patients in the
early-stage of the disease against the middle (fourth column), the early against the late (fifth column)
and the middle against the late (sixth column).

Tests

Bonferroni FDR F-Statistic H0 : µ1 = µ2 H0 : µ1 = µ3 H0 : µ2 = µ3

x-axis
mean 0.9266 0.8957 0.0018 0.0013 0.7356 0.0020

stand. dev. 0.2027 0.2060 0.0011 0.0006 0.1256 0.0012
proportion 0.004 0.004 1 1 0 1

y-axis
mean 0.3603 0.1616 0.0066 0.0021 0.0492 0.2267

stand. dev. 0.3015 0.0931 0.0046 0.0012 0.0168 0.0381
proportion 0.128 0.138 1 1 0.588 0

z-axis
mean 0.2971 0.1282 0.1465 0.1733 0.0377 0.2702

stand. dev. 0.2145 0.0620 0.0762 0.0616 0.0139 0.0853
proportion 0.065 0.087 0.081 0.005 0.833 0

3.2.2. Results of Applying the Equality of Means Tests

In Figure 4, we have displayed the six histograms of 1000 p-values resulting from testing the
null hypothesis H0 : µ1 = µ2 (top row), H0 : µ1 = µ3 (middle row) and H0 : µ2 = µ3 (bottom row)
on the x-axis (left column), y-axis (middle column) and z-axis (right column). As when using the
ANOVA tests, we compute here 1000 p-values per test due to for all the curves to have the same time
domain we restrict at random the time domain of each curve to the one with smallest time domain. It is
clear from the histograms that the null hypothesis is rejected the 1000 times when testing H0 : µ1 = µ2

on the x and y-axis and when testing H0 : µ2 = µ3 on the x-axis. It is also clear that the null hypothesis
is rejected no time when testing H0 : µ1 = µ3 on the x-axis and when testing H0 : µ2 = µ3 on the y
and z-axis.

For three other cases, it is helpful to observe the last three columns of Table 1 where, as for
the previous tests, we have included a summary of the p-values for each of these six tests. There is
displayed the mean and standard deviation of the p-values and the proportion of p-values smaller
or equal than 0.05. For H0 : µ1 = µ2 on the z-axis we obtain that the proportion of rejections is 0.005.
As explained above, as this value is smaller than 0.05, we consider that there is no enough evidence to
reject H0 : µ1 = µ2 on the z-axis. On the contrary, when testing H0 : µ1 = µ3 we are able to reject 58.8%
of the times on the y-axis and 83.3% on the z-axis.
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Figure 4. Histograms of 1000 p-values resulting from applying the test of equality of means based on the
L2 norm for the null hypothesis: H0 : µ1 = µ2 (top row), H0 : µ1 = µ3 (middle row) and H0 : µ2 = µ3

(bottom row) on the x-axis (left column), y-axis (middle column) and z-axis (right column).

3.2.3. Conclusions on the Results of Applying the Tests

We consider that the no rejection of the null hypothesis when applying the tests based on random
projections happens because these tests assume the Gaussianity of the data. Furthermore, the no
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absolute rejection in any of the tests applied on the z-axis is due to the difference in accelerations
among the patients occur in the xy-plane, which is the plane in which they move. Note that no rejecting
the null hypothesis does not imply accepting it but that there is no evidence to reject it. Rejecting the
null hypothesis, however, does imply accepting the alternative.

The above analysis on the test of equality of means is relevant in the sense that explains that it is
relatively easy to distinguish:

• The patients in the early stage of their disease from the middle stage because of the x and y-axis.
• The patients in the middle stage of their disease from the late stage because of the x-axis.

Furthermore, it is harder, but possible, to distinguish:

• The patients in the early stage of their disease from the late stage because of the y and z-axis.

This analysis is consistent with our findings in Section 4 where using the neural network classifier
we misclassified a patient of the late-stage.

3.3. Functional Supervised Classification

The aim of this section is to apply a functional classifier to the Alzheimer data. A functional
classifier differs from a multivariate classifier in that it considers the given data as functional.
The classifier we apply here is proposed in [8] and is based on the functional statistical depth [9]
and a multivariate non-parametric kernel classifier. This multivariate classifier uses the euclidean
norm and performs a non-parametric estimation of the density function of each of the three stages of
the disease through the use of the well-known Nadaraya-Watson estimator. The functional statistical
depth of the data is computed with respect to each of the three groups (early, middle and late-stage),
living in a three-dimensional space. Thus, the functional data are reduced to R3 through the depth and
the multivariate classifier is applied to these three-dimensional depth values.

The functional statistical depth of an element of a space with respect to a distribution of
probability is, informally speaking, a measure that shows how deep is the element of the space
with respect to the distribution. The functional depth we use here is the h-mode depth [10] and has the
characteristic of giving a higher depth value to the mode of the distribution, assuming it is unique.
Other depth functions give a higher value to the median of the distribution. We use here the h-mode
depth because of the nice properties it satisfices according to [9].

As commented at the beginning of the section, a preprocess of the data is required before any
functional analysis is performed for all the curves to have the same length. This preprocess, which has
a random component, is perform 10 times; and in each of those 10 times the same below procedure is
undertaken. We run it here 10 times instead of the 1000 times of Sections 3.1 and 3.2 due to the high
computational cost of the functional supervised classification.

The data consist of a sample of 35 patients. Although it is common in a supervised classification
analysis to split it into a training and test sample with, for instance, a percentage of the data of
approximately 20–80%, here we consider as test sample only one patient and the remaining 34 patients
as training sample. We do it for each of the 35 elements of the sample. The reason for doing so here is
that this scenario should provide the best success rates. We like to be here under the best case scenario
because, as we see later in the paper, the functional classifier on the Alzheimer data can be improved
by other type of classifier.

When classifying a particular patient with respect to the other 34 patients, we classify all the
curves that entitle this test patient. Thus, the patient gets associated the group that the majority of
curves got associated. As the procedure is run for 10 times, we associate to the patient then, the majority
group over the 10 times. The results are illustrated in Table 2. We do it separately using only the
information on the x-axis and on the y-axis and then with the three axis altogether. The reason for that
is that the movement of the patients is on the xy-axis.
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Table 2. Misclassification and success rate obtained in the functional supervised classification when
applied to the data in the x-axis, y-axis and xyz-axis.

Missclassifications Success Rate

Early Middle Late Total Early Middle Late Total

x-axis 7 2 9 18 0% 89% 10% 49%
y-axis 7 4 8 19 0% 78% 20% 46%

xyz-axis 6 2 9 17 14% 89% 10% 51%

From the 35 patients, 7 belong to the early stage, 18 to the middle and 10 to the late stage.
Taking this into account, it can be observed from Table 2 the high misclassifications for each of the three
stages of the disease and its associated low success rate. Particularly, it is clear the impossibility of
this classifier of classifying correctly the patients in the early and late stage of the disease. It is straight
forward from the displayed of the success rates that it would have been almost equivalent to associate
the patients at random to a class. Therefore, a better classifier is required. We explore this option in the
next section.

4. Supervised Learning Classifiers

Supervised learning is a machine learning methodology whose goal is to infer a function from a
labeled data set commonly called the training set. The training data consist of a set of training examples.
Each example is a pair consisting of an input object (a vector of features) and an output value (the label).
A supervised learning algorithm takes as input the training data and produces as output the desired
function which can be used for predicting the labels on new examples. In this section, we train a neural
network that identifies movement patterns of Alzheimer’s patients relating these patterns with the
stage of the disease. For this purpose, we observe free movement of the patients not conditioned to
the performability of specific exercises or tasks using the accelerometer of the smartphone and no
other specific device. We also compare the performance of our neural network with other supervised
learning classifiers.

4.1. Filtering Features

We consider the lack of homogeneity of the time frames (see Section 2). For this reason,
we add separately the minutes and s to generate the data. This procedures is carried out as follows.
If we have oi, and si is the limit of iti to s and mi to min. For instance, given iti = 800.21 s,
then si = 801 s and mi = 14 min. This procedure is carried out with each of the three axis of oi
and each t ∈ {1, . . . , si}. The sum, median and mean of the accelerations are calculated at timestamps
{T ∈ {i1, . . . , iti} : t− 1 < T ≤ t}; and for each t ∈ {1, . . . , mi} the sum, median and mean of the
accelerations are also calculated at timestamps {T ∈ {i1, . . . , iti} : t− 1 < T/60 ≤ t}.

In general, the oi do not have the same time length and, in other words, they are in
different dimension. This involves an additional difficulty to use supervised classification techniques.
The classification techniques filter the features of the data that enable us to find differences among the
entities whose data should be classified (the stage of the disease in our case study). Therefore, our first
goal should be to identify discriminative features in the data and to perform the classification using
these features. As consequence of filtering the same features from each dataset, the classification
techniques process always sets of the same dimension. For this, each oi is processed to calculate the
sum, mean, median, minimum and maximum of the accelerations. A total of fifteen real random
variables are generated when s are added and other fifteen variables with minutes for each of the
dimensions of R3.

The curves that represent the acceleration also provides useful information by means of integrating
them along time, first, calculating the speed, and second, calculating the space. Thus, using the
trapezoidal integration method, we generate 90 real random variables for each of the dimension of R3.
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Therefore, we identify the data generated with this integration by O1, . . . On, where Oi := (Xi, Yi, Zi),
with Xi ∈ R90, Yi ∈ R90, Zi ∈ R90, for all i = 1, . . . , n.

4.2. Neural Networks Versus other Classifiers

Next, we use the dataset to build an artificial neural network. Additionally, we apply other
machine learning classifiers and show how the success rate obtained with the neural network has
no parallel. To this end, we divide the dataset into training and test. For the splitting, we propose
to divide the sample of 187 elements into approximately 80% for training and 20% for testing. It is
approximately because we have a total of 187 data and 35 patients. Thus, if an element of the sample
falls into the training sample, the rest of elements of the sample that belong to the same patient
automatically falls into the training sample. The split of the sample into training and test is performed
at random.

The split we study in this section consists of a test sample of size thirty-four, and six patients
(1 early-stage, 3 middle-stage and 2 late-stage), and a training sample of size 153, and 29 patients
(6 early-stage, 15 middle-stage and 8 late-stage). This is shown in Table 3 after the row named studied.
The notation used in what follows is Ot1 , . . . , Otr with r = 153 for the training sample and OT1 , . . . , OTe

with e = 34 for the test sample . In other to show how other splittings are possible. In Table 3 it is
displayed the obtained results of performing the splitting two more times. In the first of this cases,
the test sample, of size thirty-eight, is constituted by 7 patients (2 early-stage, 3 middle-stage and 2
late-stage) and the second is of size 39 and constituted by 8 patients (2 early-stage, 4 middle-stage and
2 late-stage).

A randomly procedure uses each training sample to generate one hundred neural networks
for eleven different layers [11]. These different layers are represented on the x-axis of the Figure 5.
Left panel of Figure 5 shows the rate of misclassifications that the neural networks generate when they
are applied to the test sample. Once each of the OT1 , . . . , OTe are classified in its corresponding stage,
we classify the patients associated to them using the majority vote rule.

Table 3. Stages of the patients selected in the training and test sample for each of the
performed splittings.

Training Sample Test Sample

Splitting Early Middle Late Total Early Middle Late Total

studied 6 15 8 29 1 3 2 6
1 5 15 8 28 2 3 2 7
2 5 14 8 27 2 4 2 8
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Figure 5. Boxplot of the ercentage of misclassified patients. The test data corresponding to the splitting,
on training and test sample, under study (left), to Splitting 1 (middle) and to Splitting 2 (right).
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According to the sample of this study, the most suitable network misclassifies 2 patients (included
in the test sample) for the third layer. However, only 1 patient is misclassified by this neural network
for the other layers, an 83% success rate. The results of these tests (83% success rate ) show that the
neural network is a suitable tool to recognize the stage of the disease in a context of variability in which
the participants have the ability to perform different actions and no specific protocol is used to avoid
accidentally changes on the orientation of the smartphone, including possible different placements
of the smartphone. Moreover, the box-plot (see left panel of Figure 5) shows that the most suitable
layers to reduce the misclassifications are the layers number six, ten and eleven. Table 4 specifies the
parameters of the neural network chosen. Note that here we do not need to directly focus on the
properties of the estimators such as using an uniformly minimum variance unbiased estimator, due to
the classification methodology performed is based on artificial neural networks, otherwise known as
a black-box.

Table 4. Configuration of the neural network selected.

Neural Network Parameters Values

Package neuralnet
Input neurons 90

Hidden neurons 175
Output neurons 1

Bias 1 per hidden layer
Max iterations 1000

Activation function logistic
Algorithm resilient back-propagation with weight backtracking (rprop+)

This study was complemented using two additional splittings. The most suitable neural network
misclassifies a patient with the layers number one and three in the Splitting 1. However, the other
layers do not generate any misclassifications (see the middle panel of Figure 5). Moreover, the most
suitable neural network generated by the Splitting 2 misclassifies patients in all the layers (see right
panel of Figure 5). The box-plots (see middle and left panel of Figure 5) evidence that the most suitable
layers to be selected are the number nine for Sample 1 and the number four or seven for Sample 2.

The R language has been used to implement the computational support that builds the neural
network (package neuralnet) and to experiment with three new machine-learning classifiers. Thus, we
can compare the results of the neural network with other machine-learning procedures. These new
classifiers are Support Vector Machines (package rpart of R), Random Forest (package randomForest of R)
and Random Trees (package rpart of R). Table 5 shows that an early-stage patient and two late-stage
patients are always misclassified in these new experiments. We can conclude that these new techniques
classify properly the middle-stage class that includes the highest number of patients and a larger
amount of accelerometry data. However, these new experiments evidence the problems to classify
patients of the other classes.

Table 5. Experiments with other methods for supervised classification. NN stands for neural networks,
RT for random trees, RF for randon forest, and SVM for support vector machine.

Missclassification Rate Success Rate

Technique Early-Stage Middle-Stage Late-Stage Total Early-Stage Middle-Stage Late-Stage Total

NN 0 0 1 1 100% 100% 50% 83%
RT 1 0 2 3 0% 100% 0% 50%
RF 1 0 2 3 0% 100% 0% 50%

SVM 1 0 2 3 0% 100% 0% 50%
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5. Related Work

In the healthcare field, the relationship between cognitive decline and movement disorders,
specially gait disorders, is well known. Distinctive impairments in gait parameters have been described
in patients with dementia, such as decreased walking speed, cadence, step-length and, more specifically,
increased stride-to-stride and stride time variability [4]. Current evidence suggests a close relationship
between gait and cognitive function, in particular executive function. Indeed, a gait study with
trunk-accelerometers in patients with dementia and healthy elderly subjects found moderate to high
correlations (r > 0.51) between executive tasks and gait parameters [4]. Brain imaging studies also
support this theory [12], as the work of Nakamura [13], who found a significant association between
decreased frontal lobe blood flow in patients with Alzheimer’s disease (AD) and increased stride
length variability.

Growing evidence also shows that patients with dementia exhibit gait abnormalities even since
early stages. A recent meta-analysis showed that poor gait performance predicted a subsequent
development of dementia even years before the onset of cognitive symptoms [14]. This work
gathered 12 articles including mostly healthy subjects, in addition to subgroups of patients with
mild cognitive impairment in two works and a subgroup of patients with Parkinson’s disease without
cognitive impairment in one work. These subjects underwent a gait assessment by clinical examination,
gait speed and, only in two works, an analysis of spatiotemporal gait parameters by a pressure-sensitive
electronic surface. After a follow-up of 3–9 years to determine the incidence of dementia, a pooled
hazard ratio of 1.53 (p < 0.001) was found for any kind of dementia. Likewise, gait disturbances were
also found to be a stronger predictor of non-AD dementia (as vascular dementia) than for AD dementia.

Furthermore, it has been proposed that a quantitative analysis of movement parameters may
offer more information than clinical examination alone. Another study published in 2016 [15] found
that abnormalities of gait worsened over time in parallel to the progression of cognitive decline.
1719 subjects, including healthy elderly volunteers and patients with mild cognitive impairment,
AD dementia and non-AD dementia were assessed by a GAITRite System, a pressure-sensitive
electronic surface which provides spatiotemporal gait parameters, such as stride length, stride time,
swing time, single support time, etc. The results showed a progressive impairment of the
spatiotemporal gait parameters from healthy elderly to moderate dementia, as well as a progressive
increase in the magnitude of the effect sizes of the various parameters. Again, a greater decline was
observed in patients with non-AD dementia than in patients with AD.

Thus, it is clear that patients with dementia show gait abnormalities since early stages and these
disturbances probably depend on the stage and the type of underlying disease. Therefore, a proper
evaluation can offer clinically relevant information in terms of diagnosis, early detection and
assessment of the stage of the disease. Several research works have been conducted regarding this issue
and the use of portable triaxial accelerometers. As an additional advantage, accelerometers allow the
conduction of field studies, as they are small devices that do not require continuous supervision.
This means that the study can be prolonged many hours or even days, which offer a greater
amount of available data. Likewise, they are carried out in non-supervised settings and by means of
unobtrusive devices, which helps the patient to pay less attention to the process and so to obtain a
more realistic behavior, given that the possibility of the explorer’s influence on the performance is
greater in supervised assessments.

On the other hand, the disadvantage of field studies is that the performance usually lacks an
external reference. Therefore, when an specific gait analysis is desired, an additional process to identify
gait episodes from the accelerometer data is required. An example of such methodology is described by
Gietzelt et al. [16] in a study that analyzed the data captured by a single waist-mounted accelerometer
in 10 patients with dementia and 10 active older people during seven days. Using the identified gait
parameters, it was possible to distinguish between demented patients and healthy older people with
an accuracy of 89.2% and most gait parameters (specially compensation movements and variance of
the accelerometric signal) showed high area under the curve values. Based on this system, the same



Sensors 2017, 17, 1679 16 of 18

authors conducted a longitudinal cohort study [17] to make a fall prognosis in patients with dementia.
Forty patients from a nursing home were included and each participant wore a triaxial accelerometer
for one week during four different visits. The falls occurred during the study were combined with gait
parameters for the construction of a decision tree to determine if the patient was at risk of suffering
a fall. It showed a rate of correctly classified gait episodes associated to fallers of 74.8% for a period of
4 months with acceptable sensitivity (78.2%) and specificity (71.2%), so the authors conclude that it is
possible to make a fall prognosis in patients with dementia by the use of accelerometry.

Accelerometry has also been employed with the aim of comparing movement disturbances
between cognitive disorders and other neurological diseases, as Parkinson’s disease (PD).
Yoneyama et al. [18] studied 13 healthy subjects, 26 PD patients, 13 patients with MCI and 13 patients
with dementia, who wore a single trunk-mounted accelerometer for 24 h in an unsupervised setting.
An analytical algorithm was applied to the provided data to develop a set of new parameters which
showed that each group of patients displayed a characteristic movement pattern that could differentiate
it from the other groups.

However, accelerometry has not only been used to analyse instrinsic movement features, but also
to study other dementia-related symptoms, as changes in motion behaviour. Kirste et al. [19] studied
everyday motion behaviour in 23 AD patients without major clinical behaviour abnormalities and
23 healthy partners by ankle-mounted three-axes accelerometers, with an average recording duration
of 53.4 h. They found differences in behavioural motion features that could correctly discriminate
between patients and healthy subjects with an accuracy of 91% and were significantly correlated with
CMAI (Cohen-Mansfield Agitation Inventory) scores, a widely used scale to assess behavioural changes.
Not too many studies based on the accelerometers integrated in smartphones have been carried out,
as the work of Capela [20], which studied human activity recognition in both able-bodied subjects and
patients who had suffered a stroke. To fill this gap, this work has experimented with a methodology
that takes as input data provided by accelerometers of smartphones of Alzheimer’s patients and
outputs an analysis of the relationship between movement disturbances and the stage of the disease.

6. Conclusions

This paper uses functional data analysis and machine learning techniques to perform an analysis
on three-dimensional functional data from Alzheimer’s patients. Functional data are regarded as
observations of continuous data measured on a grid. The studied functional data are the accelerations
recorded by an accelerometer device of android smartphones. These data are complex in certain ways:

1. There is a range of observed three-dimensional functional data per patient, which varies between
two and eight.

2. Each functional datum is observed in a different grid, with a different frequency of observations,
even when the data belong to the same patient.

3. Each functional datum is observed in a domain of different length.

To the best of our knowledge, this paper is the first one to handle data with this type of
complexity, particularly because of the domains of different length. We deal with it performing
a preprocess of the data, which differs when applying a functional data analysis and when machine
learning techniques.

The preprocess for the functional data analysis makes use of the fact that the set of data regarding
each patient is in essence a set of observations of a stationary random process. Thus, the observations
are equally distributed if they are translated in time. Considering this, we select at random a
section of each functional datum whose domain length is equal to the smallest. Then, we apply
the required technique:

• Hypothesis testing on the equality of the means of groups of patients on different stages of the
disease to find differences on the accelerations patterns among different stages of the disease.
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• Functional supervised classification to classify the patients according to their set of observed
acceleration curves into their stage of the disease.

The novel real data used in this paper consist of 187 three-dimensional functional data belonging
to a total of 35 patients. Making use of different functional hypothesis tests, we generally reject
the null hypothesis of equality of means of the accelerations for the different stages of the disease.
When functional classification procedures are applied to the data, however, we do not obtain a
triumphant success rate. We use then machine learning techniques.

Machine learning techniques require of a set of multivariate data. Thus, we preprocess the data so
that we summarize it into a series of random variables such as the mean, median, minimum, maximum,
etc., among a total of ninety random variables. Among the applied machine learning techniques,
the best obtained results are for the artificial neural network. We obtain a success rate of the 83%
percent, which is outstanding for this type of complex data.

We have conducted this study as a first approach to investigate whether the proposed
methodology possesses some potential ability to correctly classify patients with cognitive impairment
by means of their mobility patterns. The findings of our work lead us to conclude that it seems possible.
Here, this methodology has been employed to characterize the stage of the disease in patients with
Alzheimer’s disease, but it may be adapted to other multiple clinical applications, such as monitoring
nightly wandering or abnormal motor behaviour. It could also be applied with diagnostic aims
to contribute to differential diagnosis processes between different types of dementia, or in mild
cognitive impairment, a situation where it is uncertain whether it is going to evolve to dementia or it is
going to remain stable. This approach constitutes an inexpensive and easy-to-use resource which could
enable caregivers to provide medical useful information. Further research work is needed to replicate
these results in wider samples of patients and to test its utility for other clinical purposes. These future
works should be a set of comparative experiments that contrast the advantages and disadvantage
of our current approach against experiments with less degree of variability in which the patients
perform very controlled activities in a laboratory and the accelerometer is a device located on the
body of the patient, including the use of a variety of different types of smartphone with accelerometer.
In particular, our group would like to extend the proposed methodology to a sample of patients
with mild cognitive impairment to test whether it is possible to identify subjects with mild cognitive
impairment due to Alzheimer’s disease, which equals a pre-dementia stage and represents a major
medical challenge.
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