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Abstract—In this work it is reviewed the most novel advances
in the multipactor RF breakdown risk assessment devoted
to RF satellite microwave passive devices employed in space
telecommunication systems. On one side, it is studied the effect
of transmitting a single-carrier digital modulated signal in the
multipactor RF voltage threshold in a coaxial line. On the
other hand, an analysis of the multipactor phenomenon in a
parallel-plate waveguide containing a magnetized ferrite slab it
is presented.

Index Terms—Multipactor, digital modulations, ferrite mate-
rials.

I. INTRODUCTION

Multipactor breakdown is an high RF power phenomenon

that takes presence in vacuum environments when there is

a synchronism between the RF electric field and the free

electrons within the device [1]. Under certain conditions,

electrons impacting with the component walls are able to

release one or more secondary electrons from the surface,

thus starting a resonant chain that leads to an exponential

increase of the electron population within the device. When

the electron number is very high it appears an electric current

between the walls of the component that has several negative

effects that degrade the performance, such as increasing the

signal noise and reflected power, heating up the device walls,

outgassing, detuning of resonant cavities, and even resulting

in the total destruction of the component. The multipactor
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M. E. Dı́az is with Depto. de Informática, ETSE, Universidad de Valencia,
Spain, (email: elena.diaz@uv.es)

V. E. Boria is with Depto. Comunicaciones-iTEAM, Universidad
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discharge is present in many different environments such

as passive components of satellite communication payloads,

particle accelerators, and klystrons.

Focusing on telecommunication systems, special attention

must be paid to multipactor in satellite components, where

replacement of damaged devices is not possible. Therefore,

in order to ensure that the RF component will not suffer

this undesirable phenomenon during operation, it is extremely

important to take into account this effect in the design process.

This paper presents a short summary of some recent mul-

tipactor studies focusing on two different topics: the analysis

of the multipactor effect in a coaxial transmission line excited

with a single-carrier digital modulated signal, and the mul-

tipactor phenomenon in a parallel-plate waveguide partially

filled with a magnetized ferrite slab. In the next section, it is

described the theoretical frame in which is based the in-house

developed software for the multipactor numerical simulations.

Then, the most remarkable results of the aforementioned cases

are shown. Finally, the most relevant conclusions of both

studies are outlined.

II. THEORY

A Monte-Carlo software to analyze the multipactor effect

in microwave components has been developed. This algorithm

combines the advantages of the individual electron and ef-

fective electron models. At the beginning of the multipactor

simulation, individual electrons are considered; if during the

simulation the electron population exceeds a certain threshold,

then the individual electrons switch into effective ones. From

then on, these effective electrons start to accumulate charge

and mass instead of generating new particles. In this way, the

computational cost remains constant.

For each tracked particle, the 3-D trajectory is computed

by solving the non-relativistic differential equation of motion

using the Velocity-Verlet algorithm. The differential equation

of motion that governs the electron dynamics is derived from

the Lorentz Force, which depends on the total electric and

magnetic fields that experiences the electron. The total electro-

magnetic field is the superposition of the RF electromagnetic

field and the electric field due to the space charge effect that

takes into account the Coulomb repulsion among the electrons.

For the coaxial transmission line, the RF electromagnetic field

is the correspondent to the fundamental coaxial TEM mode
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carrying the digitally modulated signal. For the parallel-plate

waveguide loaded with the ferrite slab, the RF electromagnetic

field is those corresponding to the fundamental propagative

mode, which has been obtained with the aid of the Coupled

Mode Method (CMM) [2]. Besides, in the ferrite case, there

are an external static magnetic field which is the responsible

of the anisotropic behavior of the ferrite, and a static electric

field that arises from the dielectric polarization of the ferrite

slab when it absorbs or emits electrons. Both the electric

space charge and polarization fields are computed following

the procedure reported in [3].

At each integration step, the code checks if the electron

collides with any of the waveguide walls. The interactions

of electrons with surfaces are considered by means of the

Secondary Electron Yield (SEY) function. In this work, we

have been implemented such contributions according to the

Furman and Pivi formulas described in [4] in the case of the

digital modulations in the coaxial line. On the other hand,

a modification of the Vaughan’s model presented in [5] is

preferred for the ferrite waveguide case. After the collision,

the true secondary electrons depart from the impact point with

a random velocity following a Maxwellian distribution with

a mean average energy of 3 eV and an elevation angle that

follows the Cosine Law [6].

III. RESULTS

A. Digital modulated signal in a coaxial transmission line

This subsection presents the multipactor RF voltage thresh-

old results for the coaxial transmission line excited with the

single-carrier digital modulated signal. The dimensions of the

coaxial line used throughout this work are: a = 1.238 mm and

b = 2.850 mm, thus the gap length is d = b− a = 1.612 mm;

the coaxial characteristic impedance is 50 Ω. Both conductors

are made of copper. According to the model proposed in [4],

the fitting parameters for the true secondaries SEY contribu-

tion are: δm = 1.77, Wm = 277 eV, and s = 1.539. For all

considered modulation schemes, the RF carrier frequency is

f = 1.145 GHz, and the signal is filtered with a root-raised-

cosine filter with a roll-off factor of 0.2.

In addition to the results obtained from multipactor nu-

merical simulations, a coarse method based on the envelope

integration for a roughly estimation of the RF multipactor

voltage threshold with an arbitrary digitally modulated signal

was also employed. This method exclusively uses the results

obtained from numerical simulations with a non-modulated

single carrier signal, presenting the advantage of being much

faster than individual electron numerical simulations for the

digitally modulated signals.

In order to consider realistic signals, a random symbol

sequence has been generated for each of the following digital

modulations: Quadrature Phase-Shift Keying (QPSK), 16Am-

plitude and Phase-Shift Keying (16APSK), 32Amplitude and

Phase-Shift Keying (32APSK), and 16Quadrature (16QAM)1.

Besides the symbol sequence, the other modulation parameter

that most influences the multipactor phenomenon is the ξ

1Telecom signals of ESA Galileo constellation provided by ESA contract
no. 4000111147/14/NL/GLC.
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Fig. 1. RF multipactor voltage threshold in dB as a function of the ξ factor
for the random symbol sequences. From left to right and up to down: QPSK,
16APSK, 32APSK, and 16QAM. Results for the numerical simulations, the
coarse method, and the “20-gap-crossing” rule are shown.

factor, which is defined as the ratio between the symbol

duration Ts and the RF carrier period T = 1/f , i.e., ξ = Ts

T
.

The RF multipactor voltage threshold in dB for each of

the transmitted signals, as a function of the ξ factor, is

shown in Fig. 1. The RF multipactor voltage threshold of a

digitally modulated signal, expressed in dB, is defined taking

as Vth(dB) = 20 log(Vth/Vth,CW ), Vth,CW being the multi-

pactor RF voltage threshold for the CW signal at the carrier

frequency. The theoretical results provided by the numerical

simulations and the coarse method are also compared with the

“20-gap-crossing” rule used in the space standard document

ECSS-E20-1A.

An experimental test campaign to validate the theoretical

results was performed at the ESA-VSC European High Power

RF laboratory [7]; the experimental setup is similar to the

standard one for multipactor measurements described in [8].

The data obtained from the multipactor measurements have

been summarized in Fig. 2, where the theoretical results are

also included. On the one hand, it is observed good con-

cordance between the experimental results and the numerical

simulations, demonstrating the feasibility of the developed

code to predict the RF multipactor voltage threshold with

digitally modulated signals. In addition, it is found acceptable

agreement of the experimental data with the coarse method. On

the other hand, it is noticed the remarkable discrepancies found

between the results of the experiment and the predictions

provided by the “20-gap-crossing” rule.

B. Parallel-plate waveguide with a magnetized ferrite slab

In this subsection it is presented the study of the multipactor

effect in an ideal uniform parallel-plate waveguide of infinite

length along the x and z axis, z being the propagation direction

of the electromagnetic wave, thus resulting an electromag-

netic field which does not depend on the x-coordinate. The

waveguide contains a lossless ferrite slab which is magnetized
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Fig. 2. RF multipactor voltage threshold in dB for different digital modulated
signals. In both cases the number after the modulation name indicates the ξ

value.

along the direction perpendicular to the metallic walls. The

anisotropic magnetic permeability of the ferrite is given by

the Polder’s tensor (eq. 9.27 of [9]).

In order to compute the multipactor RF voltage thresh-

old for the parallel-plate ferrite loaded waveguide numerical

simulations have been performed. In all cases, the ferrite

thickness h and the vacuum gap d have been selected to

match with the height of a WR-90 rectangular waveguide, i.e.

b = d + h = 10.16 mm. The saturation magnetization of the

ferrite is 4πMs = 1806 G, its relative dielectric permittivity

εr = 15, and its SEY parameters according the modified

Vaughan’s model [5] are: W1 = 19 eV, δmax = 2.88, and

Wmax = 289 eV. For simplicity, the same SEY parameters

are selected for the top metallic wall. The external magnetic

field employed to magnetize the ferrite is H0 = 3000 Oe. The

considered fields are those corresponding to the fundamental

mode of the ferrite loaded waveguide.

In Fig. 3 the variation of the multipactor RF voltage

threshold as a function of the frequency gap value is shown for

several ferrite loaded parallel-plate waveguides. Note that for

each curve the gap remains fixed. Moreover, the results for

a classical metallic parallel-plate waveguide with no ferrite

slab, a gap of d = 0.2 mm and H0 = 0 (henceforth referred

as without ferrite case) has been included for comparison

purpose. From the results it is noticed that there is considerable

difference between the multipactor RF voltage threshold of the

ferrite loaded waveguides and the corresponding to the without

ferrite case. It is found that this discrepancy increases with the

gap value. In fact, the maximum difference in the multipactor

RF voltage threshold between the d = 0.2 mm waveguide and

the without ferrite case is of 6.5 dB, whilst in the d = 1 mm

and d = 2 mm the difference becomes of 26 dB and 37 dB,

respectively. It is also observed that the multipactor behavior of

the ferrite loaded waveguides remains very close to the without

ferrite case for low frequency gap values (below 2.5 GHzmm).

In general terms, the multipactor RF voltage threshold of the

ferrite loaded waveguide cases tends to be equal or below the

without ferrite multipactor threshold.
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Fig. 3. Multipactor RF voltage threshold as a function of the frequency gap
for the parallel-plate ferrite loaded waveguides with different gap lengths and
ferrite thicknesses (but maintaining the height of a WR-90 waveguide); and
also for a metallic parallel-plate waveguide (”without ferrite”).

IV. CONCLUSIONS

In this article it is presented a short summary of the most

recent advances in the multipactor RF breakdown studies

devoted to an accurate assessment of the discharge risk in

RF passive components. Particularly, two different cases are

examined. The first one it is related with the transmission

of single-carrier digital modulated signals in coaxial lines.

An in-house simulation code has been developed for such

purpose, finding good agreement when comparing these results

with experimental tests. The second topic is related to the

multipactor effect in devices containing magnetized ferrites.

The particular case of a parallel-plate waveguide containing

a ferrite slab magnetized along the gap direction has been

analyzed by means of multipactor simulations. The theoretical

results predicts noticeable variations in the multipactor RF

voltage threshold with regard to the case without ferrite.
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