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ON THE PERIOD OF THE IKEDA LIFT FOR U(m,m)

HIDENORI KATSURADA
MURORAN INSTITUTE OF TECHNOLOGY 27-1 MIZUMOTO MURORAN 050-8585,

JAPAN

Abstract. Let K = Q(
√
−D) be an imaginary quadratic field with discrimi-

nant −D, and χ the Dirichlet character corresponding to the extension K/Q.

Let m = 2n or 2n+ 1 with n a positive integer. Let f be a primitive form of
weight 2k + 1 and character χ for Γ0(D), or a primitive form of weight 2k for
SL2(Z) according as m = 2n, or m = 2n+ 1. For such an f let Im(f) be the

lift of f to the space of modular forms of weight 2k+2n and character det−k−n

for the Hermitian modular group Γ
(m)
K constructed by Ikeda. We then express

the period ⟨Im(f), Im(f)⟩ of Im(f) in terms of special values of the adjoint
L-function of f and its twist by the character χ. This proves the conjecture
concerning the period of the Hermitian Ikeda lift proposed by Ikeda. Period,
Hermitian Ikeda lift

1. Introduction

It is an important and interesting problem to consider the relation between the
period of an elliptic modular form and that of its lift. Here, we say that F is a lift
of an elliptic modular form f if F or the adelization of F is a Hecke eigenform in
the space of Siegel cusp forms or Hermitian cusp forms whose certain L-function is
expressed in terms of L-functions related to f. There are several results concerning
this problem in the Siegel modular form case (cf. [2], [19]). This type of period
relation sometimes gives rise to congruence between the lift and non-lift, and are
important also from the view point of arithmetic geometry (cf. [2], [4], [12]). In
[16], we proved a conjecture on the period of the Duke-Imamoglu-Ikeda lift (DII
lift) proposed by Ikeda [9]. As a result, in [13], we characterized prime ideals giving
congruence between the DII lift and non-DII lift. (See also [5].) Klosin [17] gave the
congruence between the Hermitian Maass lift and non-Hermitian Maass lift using
the period relation in [10]. In this paper we prove a result similar to [16] for the
period of the lift of an elliptic modular form to the space of Hermitian modular
forms constructed by Ikeda. This also proves Ikeda’s conjecture in [10] with some
modification.

Let K = Q(
√
−D) be an imaginary quadratic field with discriminant −D, and

χ the Kronecker character corresponding to the extension K/Q. Let k be a non-
negative integer. Then for a primitive form f ∈ S2k+1(Γ0(D), χ) Ikeda [10] con-
structed a lift I2n(f) of f to the space of modular forms of weight 2k + 2n and a

character det−k−n for the Hermitian group Γ
(2n)
K of degree m. This is a generaliza-

tion of the Maass lift considered by Kojima [18], Gritsenko [6], Krieg [20], Oda [21],
and Sugano [27]. Similarly for a primitive form f ∈ S2k(SL2(Z)) he constructed a
lift I2n+1(f) of f to the space of modular forms of weight 2k + 2n and a character

det−k−n for Γ
(2n+1)
K . For the rest of this section, let m = 2n or m = 2n + 1. We
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then call Im(f) the Ikeda lift of f for U(m,m) or the Hermitian Ikeda lift of degree
m. Then our main result (Theorem 2.1) can be stated as follows:

The period ⟨Im(f), Im(f)⟩ of Im(f) is expressed as

L(1, f,Ad)
m∏
i=2

L(i, f,Ad, χi−1)L(i, χi)

up to elementary factor, where L(s, f,Ad, χi−1) is the ”modified twist” of the adjoint
L-function of f by χi−1, and L(i, χi) is the Dirichlet L-function for χi.

This result was already obtained in the case m = 2, and was conjectured in
general case by Ikeda [10].

We note that Im(f) is not likely to be a theta lift except in the case m = 2,
and therefore the method in [22] cannot be applied to prove our main result. The
method we use is similar to that in the proof of the main result of [16] and to
give an explicit formula of the Dirichlet series of Rankin-Selberg type associated
to Im(f), and to compare its residue with ⟨Im(f), Im(f)⟩. We explain it more pre-
cisely. In Section 3, we consider the Dirichlet series R(s, Im(f)) of Rankin Selberg
type associated with Im(f). For the precise definition, see Section 3. This type
of Dirichlet series was studied by Shimura [25] for a classical Hermitian modular
form F of weight 2k + 2n. In particular we can express its residue at 2k + 2n in
terms of the period of F (cf. Proposition 3.1). Thus to prove Theorem 2.1, we
have to get an explicit formula of R(s, Im(f)) in terms of L(s, f,Ad, χi). To get it,
in Section 4, we reduce our computation to a computation of certain formal power
series Ĥm,p(d;X,Y, t) in t associated with local Siegel series similarly to [16] (cf.
Theorem 4.1).

Section 5 is devoted to the computation of them. This computation is similar
to that in [16], but we should be careful in dealing with the case where p is ram-
ified in K. After such an elaborate computation, we can get explicit formulas of
Ĥm,p(d;X,Y, t) for all prime numbers p (cf. Theorem 5.5.4). In Section 6, by us-

ing explicit formulas for Ĥm,p(d;X,Y, t), we immediately get an explicit formula of
R(s, Im(f)) (cf. Theorems 6 .1 and 6.2) and by taking the residue of it at 2k + 2n
we prove the Theorem 2.1.

We note that we can give a similar period relation for the adelic Ikeda lift, and we
can apply it to a problem concerning congruence between the adelic Ikeda lifts and
Hecke eigenforms not coming from the adelic Ikeda lifts. These will be discussed in
subsequent papers.

Notation. Let R be a commutative ring. We denote by R× and R∗ the
semigroup of non-zero elements of R and the unit group of R, respectively. For a
subset S of R we denote by Mmn(S) the set of (m,n)-matrices with entries in S.
In particular put Mn(S) = Mnn(S). Put GLm(R) = {A ∈ Mm(R) | detA ∈ R∗},
where detA denotes the determinant of a square matrix A. Let K0 be a field, and
K a quadratic extension of K0, or K = K0 ⊕ K0. In the latter case, we regard
K0 as a subring of K via the diagonal embedding. We also identify Mmn(K) with
Mmn(K0) ⊕Mmn(K0) in this case. If K is a quadratic extension of K0, let ρ be
the non-trivial automorphism of K over K0, and if K = K0 ⊕ K0, let ρ be the
automorphism of K defined by ρ(a, b) = (b, a) for (a, b) ∈ K0. We sometimes write
x instead of ρ(x) for x ∈ K in both cases. Let R be a subring of K. For an (m,n)-
matrix X = (xij)m×n write X = (xij)m×n and X∗ = tX, and for an (m,m)-matrix
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A, we write A[X] = X∗AX. Let Hern(R) denote the set of Hermitian matrices of
degree n with entries in R, that is the subset of Mn(R) consisting of matrices X
such that X∗ = X. Then a Hermitian matrix A of degree n with entries in K is
said to be semi-integral over R if tr(AB) ∈ K0 ∩ R for any B ∈ Hern(R), where

tr denotes the trace of a matrix. We denote by Ĥern(R) the set of semi-integral
matrices of degree n over R.

For a subset S of Mn(R) we denote by S× the subset of S consisting of non-
degenerate matrices. If S is a subset of Hern(C) with C the field of complex
numbers, we denote by S+ the subset of S consisting of positive definite matrices.
The group GLn(R) acts on the set Hern(R) from the right in the following way:

GLn(R)×Hern(R) ∋ (g,A) −→ g∗Ag ∈ Hern(R).

Let G be a subgroup of GLn(R). For a G-stable subset B of Hern(R) we denote by
B/G the set of equivalence classes of B under the action of G.We sometimes identify
B/G with a complete set of representatives of B/G. We abbreviate B/GLn(R) as
B/ ∼ if there is no fear of confusion. Two Hermitian matrices A and A′ with entries
in R are said to be G-equivalent and write A ∼G A′ if there is an element X of G

such that A′ = A[X]. For square matrices X and Y we write X⊥Y =

(
X O
O Y

)
.

We put e(x) = exp(2π
√
−1x) for x ∈ C, and for a prime number p we denote by

ep(∗) the continuous additive character ofQp such that ep(x) = e(x) for x ∈ Z[p−1].
For a prime number p we denote by ordp(∗) the additive valuation of Qp nor-

malized so that ordp(p) = 1, and put |x|p = p−ordp(x). Moreover we denote by |x|∞
the absolute value of x ∈ C.

2. Period of the Ikeda lift for U(m,m)

For a positive integer N let Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N}, and

for a Dirichlet character ψ mod N, we denote byMl(Γ0(N), ψ) the space of modular
forms of weight l for Γ0(N) and nebentype ψ, and by Sl(Γ0(N), ψ) its subspace
consisting of cusp forms. We simply write Ml(Γ0(N), ψ) (resp. Sl(Γ0(N), ψ)) as
Ml(Γ0(N)) (resp. as Sl(Γ0(N))) if ψ is the trivial character.

Throughout the paper, we fix an imaginary quadratic extension K of Q with
the discriminant −D, and denote by O the ring of integers in K. For a prime
number p put Kp = K ⊗Qp, and Op = O ⊗ Zp. Then Kp is a quadratic extension
of Qp or Kp

∼= Qp ⊕ Qp. In the former case, for x ∈ Kp, we denote by x the
conjugate of x over Qp. In the latter case, we identify Kp with Qp ⊕ Qp, and
for x = (x1, x2) ∈ Qp ⊕ Qp, we put x = (x2, x1). For x ∈ Kp we define the
norm NKp/Qp

(x) by NKp/Qp
(x) = xx, and put νKp

(x) = ordp(NKp/Qp
(x)), and

|x|Kp = |NKp/Qp
(x)|p. Moreover put |x|K∞ = |xx|∞ for x ∈ C.

For a non-degenerate Hermitian matrix or alternating matrix T with entries in
K, let UT be the unitary group defined over Q, whose group UT (R) of R-valued
points is given by

UT (R) = {g ∈ GLm(R⊗K) | tgTg = T}

for any Q-algebra R, where g 7→ g denotes the automorphism of Mn(R ⊗ K)
induced by the non-trivial automorphism of K over Q. We also define the special
unitary group SUT over Qp by SUT = UT ∩RK/Q(SLm), where RK/Q is the Weil
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restriction. In particular we write UJm as U (m) or U(m,m), where Jm =
(

O −1m
1m O

)
.

Then

U (m)(Q) = {M ∈ GL2m(K) | Jm[M ] = Jm}.
Put

Γ (m) = Γ
(m)
K = U (m)(Q) ∩GL2m(O).

Let Hm be the Hermitian upper half-space defined by

Hm = {Z ∈Mm(C) | 1

2
√
−1

(Z − Z∗) is positive definite}.

The group U (m)(R) acts on Hm by

g⟨Z⟩ = (AZ +B)(CZ +D)−1 for g = (A B
C D ) ∈ U (m)(R), Z ∈ Hm.

We also put j(g, Z) = det(CZ + D) for such Z and g. Let l be an integer. For a
subgroup Γ of U (m)(Q) which is commensurable with Γ (m) and a character ψ of
Γ, we denote by Ml(Γ, ψ) the space of holomorphic modular forms of weight l with
character ψ for Γ. We denote by Sl(Γ, ψ) the subspace of Ml(Γ, ψ) consisting of
cusp forms. In particular, if ψ is the character of Γ defined by ψ(γ) = (det γ)−l

for γ ∈ Γ, we write M2l(Γ, ψ) as M2l(Γ, det
−l), and so on. Write the variable Z

on Hm as Z = X +
√
−1Y with X,Y ∈ Herm(C). We can identify Herm(C) with

Rm2

through the map X = (xij) −→ (xii,Re(xij), Im(xij) (i < j)), and define a

measure dX on Herm(C) by pulling back the standard measure on Rm2

. Similarly
we define a measure dY on Herm(C) in the same way as above. For two cusp forms
F and G of weight l with respect to Γ (m) with character χ we define the Petersson
scalar product ⟨F,G⟩ by

⟨F,G⟩ =
∫
Γ (m)\Hm

F (Z)G(Z)(detY )l−2mdXdY,

where X = Z+tZ
2 , and Y = Z−tZ

2
√
−1
. We call ⟨F, F ⟩ the period of F. Similarly for two

elements f, g ∈ Sl(Γ0(N), ψ), we define the Petersson scalar product ⟨f, g⟩ by

⟨f, g⟩ = [SL2(Z) : Γ0(N)]−1

∫
Γ\H

f(z)g(z)yl−2dxdy,

where H is the complex upper half space.
Now we consider adelic modular forms. Let A be the adele ring of Q, and Af

the non-archimedian factor of A. Let h = hK be a class number of K. Let G(m) =
ResK/Q(GLm), and G(m)(A) be the adelization of G(m). Moreover put C(m) =∏

pGLm(Op). Let U (m)(A) be the adelization of U (m). We define the compact

subgroup K(m)
0 of U (m)(Af ) by U (m)(A) ∩

∏
pGL2m(Op), where p runs over all

rational primes. Then we have

U (m)(A) =
h⊔

i=1

U (m)(Q)γiK(m)
0 U (m)(R)

with some subset {γ1, ..., γh} of U (m)(Af ). We can take γi as

γi =

(
ti 0
0 t∗−1

i

)
,
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where {ti}hi=1 = {(ti,p)}hi=1 is a certain subset of G(m)(Af ) such that t1 = 1, and

G(m)(A) =
h⊔

i=1

G(m)(Q)tiG
(m)(R)C(m).

Put Γi = U (m)(Q)∩γiK0γ
−1
i U (m)(R). Then for an element (F1, ..., Fh) ∈

⊕h
i=1 M2l(Γi, det

−l),
we define (F1, ..., Fh)

♯ by

(F1, ..., Fh)
♯(g) = Fi(x⟨i⟩)j(x, i)−2l(detx)l

for g = uγixκ with u ∈ U (m)(Q), x ∈ U (m)(R), κ ∈ K0.We denote byMl(U (m)(Q)\U (m)(A), det−l)
the space of automorphic forms obtained in this way. We also put

S2l(U (m)(Q)\U (m)(A),det−l) = {(F1, ..., Fh)
♯ | Fi ∈ S2l(Γi, det

−l)}.
We can define the Hecke operators which act on the space
M2l(U (m)(Q)\U (m)(A),det−l). For the precise definition of them, see [10].

Let Ĥerm(O) be the set of semi-integral Hermitian matrices over O of degree m

as in the Notation. We note that A ∈ Herm(K) belongs to Ĥerm(O) if and only if
its diagonal components are rational integers and

√
−DA ∈Mm(O).

For a non-degenerate Hermitian matrix B with entries in Kp of degree m, put

γ(B) = (−D)[m/2] detB. Let Ĥerm(Op) be the set of semi-integral matrices over Op

of degree m as in the Notation. We put ξp = 1,−1, or 0 according as Kp = Qp ⊕
Qp,Kp is an unramified quadratic extension of Qp, or Kp is a ramified quadratic

extension of Qp. For T ∈ Ĥerm(Op)
× we define the local Siegel series bp(T, s) by

bp(T, s) =
∑

R∈Hern(Kp)/Hern(Op)

ep(tr(TR))p
−ordp(µp(R))s,

where µp(R) = [ROm
p +Om

p : Om
p ]1/2.

Remark. In [14], we defined µp(R) as µp(R) = [ROm
p + Om

p : Om
p ]. However, it

should be defined as above.
We remark that there exists a unique polynomial Fp(T,X) in X such that

bp(T, s) = Fp(T, p
−s)

[(m−1)/2]∏
i=0

(1− p2i−s)

[m/2]∏
i=1

(1− ξpp
2i−1−s)

(cf. Shimura [24]). We then define a Laurent polynomial F̃p(T,X) as

F̃p(T,X) = X−ordp(γ(T ))Fp(T, p
−mX2).

We remark that we have

F̃p(T,X
−1) = (−D, γ(T ))pF̃p(T,X) if m is even,

F̃p(T, ξpX
−1) = F̃p(T,X) if m is even and p ∤ D,

and

F̃p(T,X
−1) = F̃p(T,X) if m is odd

(cf. [10]). Here (a, b)p is the Hilbert symbol of a, b ∈ Q×
p . Hence we have

F̃p(T,X) = (−D, γ(B))m−1
p Xordp(γ(T ))Fp(T, p

−mX−2).

Now we put

Ĥerm(O)+i = {T ∈ Herm(K)+ | t∗i,pTti,p ∈ Ĥerm(Op) for any p}.
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Let k be a non-negative integer. First let m = 2n be a positive even integer and
let

f(z) =
∞∑

N=1

a(N)e(Nz)

be a primitive form in S2k+1(Γ0(D), χ). For a prime number p not dividing D let
αp ∈ C such that αp + χ(p)α−1

p = p−ka(p), and for p | D put αp = p−ka(p). We
note that αp ̸= 0 even if p|D. Then for the Kronecker character χ we define Hecke’s
L-function L(s, f, χi) twisted by χi as

L(s, f, χi) =
∏
p∤D

{(1− αpp
−s+kχ(p)i)(1− α−1

p p−s+kχ(p)i+1)}−1

×
{ ∏

p|D(1− αpp
−s+k)−1 if i is even∏

p|D(1− α−1
p p−s+k)−1 if i is odd.

In particular, if i is even, we sometimes write L(s, f, χi) as L(s, f) as usual. More-
over we define a Fourier series

Im(f)(Z) =
∑

T∈Ĥerm(O)+

aIm(f)(T )e(tr(TZ)),

where

aI2n(f)(T ) = |γ(T )|k
∏
p

F̃p(T, α
−1
p ).

Next let m = 2n+ 1 be a positive odd integer and let

f(z) =
∞∑

N=1

a(N)e(Nz)

be a primitive form in S2k(SL2(Z)). For a prime number p let αp ∈ C such that

αp + α−1
p = p−k+1/2a(p). Then we define Hecke’s L-function L(s, f, χi) twisted by

χi as

L(s, f, χi)

=
∏
p

{(1− αpp
−s+k−1/2χ(p)i)(1− α−1

p p−s+k−1/2χ(p)i)}−1.

In particular, if i is even we write L(s, f, χi) as L(s, f) as usual. We define a Fourier
series

I2n+1(f)(Z) =
∑

T∈Ĥer2n+1(O)+

aI2n+1(f)(T )e(tr(TZ)),

where

aI2n+1(f)(T ) = |γ(T )|k−1/2
∏
p

F̃p(T, α
−1
p ).

Remark. In [10], Ikeda defined F̃p(T,X) as

F̃p(T,X) = Xordp(γ(T ))Fp(T, p
−mX−2),

and we define it by replacing X with X−1 in this paper. This change does not
affect the results.

Then Ikeda [10] showed the following:
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Let m = 2n or 2n + 1. Let f be a primitive form in S2k+1(Γ0(D), χ) or in
S2k(SL2(Z)) according as m = 2n or m = 2n + 1. Then Im(f)(Z) is an element

of S2k+2n(Γ
(m),det−k−n).

To state our main result, put

ΓR(s) = π−s/2Γ(s/2)

and

ΓC(s) = ΓR(s)ΓR(s+ 1).

We note that

ΓC(s) = 2(2π)−sΓ(s).

For an integer i let L(s, χi) = ζ(s) or L(s, χ) according as i is even or odd, where
ζ(s) and L(s, χ) are Riemann’s zeta function, and Dirichlet L-function for χ, re-
spectively, and put

Λ̃(s, χi) = ΓC(s)L(s, χ
i).

For a primitive form f inS2k+1(Γ0(D), χ), we define the adjoint L-function L(s, f, Ad)
and its twist L(s, f, Ad, χ) by χ as

L(s, f,Ad) =
∏
p∤D

{(1− α2
pχ(p)p

−s)(1− α−2
p χ(p)p−s)(1− p−s)}−1

∏
p|D

(1− p−s)−1,

and

L(s, f,Ad, χ) =
∏
p∤D

{(1− α2
pp

−s)(1− α−2
p p−s)(1− χ(p)p−s)}−1

×
∏
p|D

{(1− α2
pp

−s)(1− α−2
p p−s)}−1.

For a primitive form f inS2k(SL2(Z)), we define the adjoint L-function L(s, f, Ad)
and its twist L(s, f, Ad, χ) by χ as

L(s, f,Ad) =
∏
p

{(1− α2
pp

−s)(1− α−2
p p−s)(1− p−s)}−1,

and

L(s, f,Ad, χ) =
∏
p

{(1− α2
pχ(p)p

−s)(1− α−2
p χ(p)p−s)(1− χ(p)p−s)}−1.

Let f be a primitive form in S2k+1(Γ0(D), χ) or in S2k(SL2(Z)) according as
m = 2n or m = 2n+ 1. We then put

L(s, f, Ad, χi) =

{
L(s, f,Ad) if i is even
L(s, f,Ad, χ) if i is odd

Moreover put

Λ̃(s, f, Ad, χi) = ΓC(s)ΓC(s+ l − 1)L(s, f, Ad, χi),

where l = 2k+ 1 or l = 2k according as f ∈ S2k+1(Γ0(D), χ) or f ∈ S2k(SL2(Z)).
Let QD be the set of prime divisors ofD. For each prime q ∈ QD, putDq = qordq(D).
We define a Dirichlet character χq by

χq(a) =

{
χ(a′) if (a, q) = 1

0 if q|a
,
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where a′ is an integer such that

a′ ≡ a mod Dq and a′ ≡ 1 mod DD−1
q .

For a subset Q of QD put χQ =
∏

q∈Q χq and χ′
Q =

∏
q∈QD,q ̸∈Q χq. Here we make

the convention that χQ = 1 and χ′
Q = χ if Q is the empty set. Let

f(z) =

∞∑
N=1

cf (N)e(Nz)

be a primitive form in S2k+1(Γ0(D), χ). Then there exists a primitive form

fQ(z) =
∞∑

N=1

cfQ(N)e(Nz)

such that
cfQ(p) = χQ(p)cf (p) for p ̸∈ Q

and
cfQ(p) = χ′

Q(p)cf (p) for p ∈ Q.

Then our main result in this paper is:

Theorem 2.1. (1) Let m = 2n be a positive even integer. For a primitive form f
in S2k+1(Γ0(D), χ), we have

⟨I2n(f), I2n(f)⟩

= 2−4nk−4n2−4n+2D2nk+5n2−3n/2−1/2ηn(f)
2n∏
i=1

Λ̃(i, f, Ad, χi−1)
2n∏
i=2

Λ̃(i, χi),

where
ηn(f) =

∑
Q⊂QD
fQ=f

χQ((−1)n).

(2) Letm = 2n+1 be a positive odd integer. For a primitive form f in S2k(SL2(Z)),
we have

⟨I2n+1(f), I2n+1(f)⟩

= 2−2(2n+1)k−4n2−6nD2nk+5n2+5n/2
2n+1∏
i=1

Λ̃(i, f, Ad, χi−1)

2n+1∏
i=2

Λ̃(i, χi).

Remark. In [10] Ikeda showed that Im(f) is identically zero if and only if m =
2n and ηn(f) = 0. Therefore the above theorem remains valid even if Im(f) is
identically zero.

This type of result was conjectured by Ikeda [10]. When m = 2, by using the
result of Sugano [27], Ikeda [10] has been already proved that

⟨I2(f), I2(f)⟩ = η1(f)2
−4k−6D2k+3Λ̃(2)Λ̃(1, f,Ad)Λ̃(2, f,Ad, χ).

His conjecture holds true up to a power of D. In fact, he conjectured that integer
powers of D should appear on the right-hand sides of the above formulas. However,
half-integer powers of D appear in some cases as shown in the above theorem.

Now put

L(i, f,Ad, χi−1) =
Λ̃(i, f, Ad, χi−1)

⟨f, f⟩
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for i = 1, ...,m

L(2i, χ2i) = Λ̃(2i, χ2i),

and

L(2i+ 1, χ2i+1) = Λ̃(2i+ 1, χ2i+1)D2i+1/2

for an integer i ≥ 1. We note that

L(1, f,Ad) =

{
22k+1

∏
q|D(1 + q−1) if f ∈ S2k+1(Γ0(D), χ)

22k if f ∈ S2k(SL2(Z)).

Hence we obtain the following:

Theorem 2.2. Let the notation be as above. Then we have

⟨Im(f), Im(f)⟩
⟨f, f⟩m

= 2βn,k

m∏
i=2

L(i, f, Ad, χi−1)L(i, χi)

×

{
ηn(f)D

2nk+4n2−n
∏

q|D(1 + q−1) if m = 2n

D2nk+4n2+n if m = 2n+ 1,

where βn,k is an integer depending on n and k.

It is well known that L(i, χi) is a rational number for any positive integer i.
Moreover L(i, f,Ad, χi−1) is an algebraic number and belongs to the Hecke field
Q(f) for i = 2, ...., k′ where k′ = 2k or 2k − 1 according as if m is even or odd (cf.
Shimura [24], [25]). Thus we have

Theorem 2.3. In addition to the above notation and the assumption, suppose that

m ≤ 2k or m ≤ 2k − 1 according as m is even or odd. Then
⟨Im(f), Im(f)⟩

⟨f, f⟩m
is

algebraic, and in particular it belongs to Q(f).

3. Rankin-Selberg convolution product

To prove Theorem 2.1, we rewrite it in terms of the residue of the Rankin-Selberg
convolution product of Im(f). Let

F (z) =
∑

A∈Ĥerm(O)+

aF (A)e(tr(Az)

be an element ofS2l(Γ
(m),det−l).We then define the Rankin-Selberg series R(s, F )

for F by

R(s, F ) =
∑

A∈Ĥerm(O)
+
/SLm(O)

aF (A)aF (A)

(detA)se∗(A)
,

where e∗(A) = #({g ∈ SLm(O) | g∗Ag = A}).

Proposition 3.1. Put

Rm =
22lm+m−1

∏m
i=2 L(i, χ

i+1)

Dm(m−1)/2
∏m−1

i=0 L(2m− i, χi)
∏m

i=1 ΓC(i)ΓC(2l − i+ 1)
.



10HIDENORI KATSURADA MURORAN INSTITUTE OF TECHNOLOGY 27-1 MIZUMOTO MURORAN 050-8585, JAPAN

Let F ∈ S2l(Γ
(m),det−l). Then R(s, F ) is holomorphic in s for Re(s) > 2l. More-

over it can be continued to a meromorphic function on the whole s-plane, and has
a simple pole at s = 2l with the residue Rm⟨F, F ⟩.

Proof. The assertion can be proved by a careful analysis of the proof of [[25], Propo-
sition 22.2]. However, for the convenience of the readers we here give an outline of

the proof. We define another Rankin-Selberg series R̃(s, F ) for F by

R̃(s, F ) =
∑

A∈Ĥerm(O)
+
/GLm(O)

aF (A)aF (A)

(detA)se(A)
,

where e(A) = #({g ∈ GLm(O) | g∗Ag = A}). Remark that

R(s, F ) = #(O∗)R̃(s, F ).

We define the non-holomorphic Eisenstein series E(Z, s) for Γ (m) by

E(Z, s) = (detY )s
∑

M∈Γ
(m)
∞ \Γ (m)

|j(M,Z)|−2s,

where Γ
(m)
∞ = {

(
A B
0 D

)
∈ Γ (m)}. Then by using the same argument as in Page

179 of [25], we obtain

R̃(s, F ) =
1

#(O∗)vol(Herm(C)/Herm(O))Γ̃m(s)(4π)−ms

×
∫
Γ (m)\Hm

F (Z)F (Z)E(Z, s̄− 2l +m)(detY )2l−2mdXdY,

where vol(Herm(C)/Herm(O)) is the volume of Herm(C)/Herm(O) with respect to
the measure dX, and

Γ̃m(s) = πm(m−1)/2
m−1∏
i=0

Γ(s− i).

By [[24],Theorem 19.7], E(Z, s−2l+m) is holomorphic in s for Re(s) > 2l.Moreover
it has a meromorphic continuation to the whole s-plane, and has a simple pole at
s = 2l with the residue of the following form:

πm2

Γ̃m(m)−1 2m(1−m)−1
∏m

i=2 L(i, χ
i+1)

vol(Herm(C)/Herm(O))
∏m−1

i=0 L(2m− i, χi)
.

We note that

vol(Herm(C)/Herm(O)) = 2m(1−m)/2Dm(m−1)/4.

Thus we prove the assertion. □
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4. Reduction to local computations

To prove our main result, we give an explicit formula for R(s, Im(f)). To do this,
we reduce the problem to local computations. Let Kp and Op be as in Notation.
Then Kp is a quadratic extension of Qp or Kp = Qp ⊕Qp. In the former case let
Op be the ring of integers in Kp, and fp the exponent of the conductor of Kp/Qp. If
Kp is ramified over Qp, put ep = fp − δ2,p, where δ2,p is Kronecker’s delta. If Kp is
unramified over Qp, put ep = 0. In the latter case, put Op = Zp⊕Zp, and ep = fp =

0.Moreover put H̃erm(Op) = pepĤerm(Op).We note that H̃erm(Op) = Herm(Op) if
Kp is not ramified over Qp. Let K be an imaginary quadratic extension of Q with

the discriminant −D. We then put D̃ =
∏

p|D p
ep , and H̃erm(O) = D̃Ĥerm(O).

Now let m and l be positive integers such that m ≥ l. Then for an integer a and

A ∈ H̃erm(Op), B ∈ H̃erl(Op) put

Aa(A,B) = {X ∈Mml(Op)/p
aMml(Op) | A[X]−B ∈ paH̃erl(Op)},

and

Ba(A,B) = {X ∈ Aa(A,B) | rankOp/pOp
X = l}.

Suppose that A andB are non-degenerate. Then the number pa(−2ml+l2)#Aa(A,B)
is independent of a if a is sufficiently large. Hence we define the local density
αp(A,B) representing B by A as

αp(A,B) = lim
a→∞

pa(−2ml+l2)#Aa(A,B).

Similarly we can define the primitive local density βp(A,B) as

βp(A,B) = lim
a→∞

pa(−2ml+l2)#Ba(A,B)

if A is non-degenerate. We remark that the primitive local density βp(A,B) can be
defined even if B is not non-degenerate. In particular we write αp(A) = αp(A,A).

Let U1 be the unitary group defined in Section 1. Namely let

U1 = {u ∈ RK/Q(GL1) | uu = 1}.

For an element T ∈ Herm(Op), let

Ũp,T = {detX | X ∈ UT (Kp) ∩GLm(Op))}.

Then Ũp,T is a subgroup of U1,p of finite index. We then put

lp,T = [U1,p : Ũp,T )]. We also put

up =

 (1 + p−1)−1 if Kp/Qp is unramified
(1− p−1)−1 if Kp = Qp ⊕Qp

2−1 if Kp/Qp is ramified.

For a subset T of Op put

Herm(T ) = Herm(Op) ∩Mm(T ),

and for a subset S of Op put

Herm(S, T ) = {A ∈ Herm(T ) | detA ∈ S},
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and H̃erm(S, T ) = Herm(S, T ) ∩ H̃erm(Op). In particular if S consists of a single
element d we write Herm(S, T ) as Herm(d, T ), and so on. For d ∈ Z>0 we also

define the set Herm(d,O)+ in a similar way. For each T ∈ H̃erm(Op)
× put

F (0)
p (T,X) = Fp(p

−epT,X)

and

F̃ (0)
p (T,X) = F̃p(p

−epT,X).

We remark that

F̃ (0)
p (T,X) = X−ordp(detT )Xepm−fp[m/2]F (0)

p (T, p−mX2).

For d ∈ Z×
p put

λm,p(d,X, Y ) =
∑

A∈H̃erm(d,Op)/SLm(Op)

F̃
(0)
p (A,X−1)F̃

(0)
p (A, Y −1)

uplp,Aαp(A)
.

An explicit formula for λm,p(p
id0, X, Y ) will be given in the next section for d0 ∈ Z∗

p

and i ≥ 0.
Theorem 4.1. Let f be a primitive form in S2k+1(Γ0(D), χ) or in S2k(SL2(Z))
according as m = 2n or 2n+ 1. For such an f and a positive integer d0 put

am(f ; d0) =
∏
p

λm,p(d0, αp, αp),

where αp is the Satake p-parameter of f. Moreover put

µm,k,D = Dm(s−2k+l0)+(2k−l0)[m/2]−m(m+1)/4−1/2

×2−cDm(s−2k−2n)−m+1
m∏
i=2

ΓC(i),

where l0 = 0 or 1 according as m is even or odd, and cD = 1 or 0 according as 2
divides D or not. Then for Re(s) >> 0, we have

R(s, Im(f)) = µm,k,D

∞∑
d0=1

am(f ; d0)d
−s+2k+2n
0 .

Proof. We note that R(s, Im(f)) can be rewritten as

R(s, Im(f)) = D̃ms
∑

T∈H̃erm(O)+/SLm(O)

aIm(f)(D̃
−1T )aIm(f)(D̃−1T )

e∗(T )(detT )s
.

For T ∈ H̃erm(O)+ the Fourier coefficient aIm(f)(D̃
−1T ) of Im(f) is uniquely de-

termined by the genus to which T belongs, and can be expressed as

|aIm(f)(D̃
−1T )|2 = (D[m/2]D̃−m detT )2k−l0

∏
p

F̃ (0)
p (T, αp)F̃

(0)
p (T, αp).

Thus the assertion follows from [[14], Corollary to Proposition 3.2 and Proposition
3.3]. (See also the proof of [[14], Theorem 3.4].) □
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5. Formal power series associated with local Siegel series

Let Kp be a quadratic extension of Qp, and ϖ = ϖp and π = πp be prime
elements of Kp and Qp, respectively. If Kp is unramified over Qp, we take ϖ = π =
p. If Kp is ramified over Qp, we take π so that π = NKp/Qp

(ϖ). Let Kp = Qp⊕Qp.

Then put ϖ = π = p. For d0 ∈ Z×
p put

Ĥm,p(d0, X, Y, t) =
∞∑
i=0

λ∗m,p(p
id0, X, Y )ti,

where for d ∈ Z×
p we define λ∗m,p(p

id0, X, Y ) as

λ∗m,p(d,X, Y ) =
∑

A∈H̃erm(dNKp/Qp (O∗
p),Op)/GLm(Op)

F̃
(0)
p (A,X−1)F̃

(0)
p (A, Y −1)

αp(A)
.

We note that

λ∗m,p(d,X, Y ) =
∑

A∈H̃erm(dNKp/Qp (O∗
p),Op)/GLm(Op)

F̃
(0)
p (A,X)F̃

(0)
p (A, Y )

αp(A)
.

In Proposition 5.5.1 we will show that we have

λ∗m,p(d,X, Y ) = upλm,p(d,X, Y )

for d ∈ Z×
p and therefore

Ĥm,p(d0, X, Y, t) = up

∞∑
i=0

λm,p(p
id0, X, Y )ti.

We also define Hm,p(d0, X, Y, t) as

Hm,p(d0, X, Y, t) =
∞∑
i=0

λ∗m,p(π
id0, X, Y )ti.

We note that Hm,p(d0, X, Y, t) = Ĥm,p(d0, X, Y, t) if Kp is unramified over Qp or
Kp = Qp ⊕Qp, but it is not necessarily the case if Kp is ramified over Qp. In this
section, we give explicit formulas of Hm,p(d0, X, Y, t) for all prime numbers p (cf.

Theorems 5.5.2 and 5.5.3), and therefore explicit formulas for Ĥm,p(d0, X, Y, t) (cf.
Theorem 5.5.4).

From now on we fix a prime number p. Throughout this section we simply write
ordp as ord and so on if the prime number p is clear from the context. We also

write νKp as ν. We also simply write H̃erm,p instead of H̃erm(Op), and so on.
For a GLm(Op)-stable subset B of Herm(Kp) we simply write

∑
T∈B instead of∑

T∈B/GLm(Op)
if there is no fear of confusion.

5.1. Preliminaries.

Let m be a positive integer. For a non-negative integer i ≤ m let

Dm,i = GLm(Op)

(
1m−i 0
0 ϖ1i

)
GLm(Op),
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and for W ∈ Dm,i, put Πp(W ) = (−1)ipi(i−1)a/2, where a = 2 or 1 according as
Kp is unramified over Qp or not. Let Kp = Qp ⊕Qp. Then for a pair i = (i1, i2) of
non-negative integers such that i1, i2 ≤ m, let

Dm,i = GLm(Op)

((
1m−i1 0

0 p1i1

)
,

(
1m−i2 0

0 p1i2

))
GLm(Op),

and for W ∈ Dm,i put Πp(W ) = (−1)i1+i2pi1(i1−1)/2+i2(i2−1)/2. In either case
Kp is a quadratic extension of Qp, or Kp = Qp ⊕ Qp, we put Πp(W ) = 0 for
W ∈Mn(O×

p ) \
∪m

i=0 Dm,i.
For non-degenerate Hermitian matrices S and T of degree m, we put

αp(S, T ; i) = lim
e−→∞

p−m2eAe(S, T ; i),

where

Ae(S, T ; i) = {X̄ ∈Mm(Op)/p
eMm(Op) ∈ Ae(S, T ) | X ∈ Dm,i}.

For two elements A,A′ ∈ Herm(Op) we simply write A ∼GLm(Op) A
′ as A ∼ A′

if there is no fear of confusion. For a variables U and q put

(U, q)m =

m∏
i−1

(1− qi−1U), ϕm(q) = (q, q)m.

We note that ϕm(q) =
∏m

i=1(1− qi). Moreover for a prime number p put

ϕm,p(q) =

 ϕm(q2) if Kp/Qp is unramified
ϕm(q)2 if Kp = Qp ⊕Qp

ϕm(q) if Kp/Qp is ramified

Lemma 5.1.1. (1) Let Ω(S, T ) = {w ∈ Mm(Op) | S[w] ∼ T}, and Ω(S, T ; i) =
Ω(S, T ) ∩ Dm,i. Then we have

αp(S, T )

αp(T )
= #(Ω(S, T )/GLm(Op))p

−m(ord(detT )−ord(detS)),

and
αp(S, T ; i)

αp(T )
= #(Ω(S, T ; i)/GLm(Op))p

−m(ord(detT )−ord(detS)).

(2) Let Ω̃(S, T ) = {w ∈Mm(Op) | S ∼ T [w−1]}, and Ω̃(S, T ; i) = Ω̃(S, T )∩Dm,i.
Then we have

αp(S, T )

αp(S)
= #(GLm(Op)\Ω̃(S, T )),

and
αp(S, T ; i)

αp(S)
= #(GLm(Op)\Ω̃(S, T ; i)).

Proof. The assertions for
αp(S,T )
αp(T ) and

αp(S,T )
αp(S) have been proved in [[14], Lemma

4.1.3]. The assertions for
αp(S,T ;i)
αp(T ) and

αp(S,T ;i)
αp(S) can also be proved in a similar

way. □
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We define a reduced matrix. A non-degenerate square matrix W = (dij)m×m

with entries in Zp is said to be reduced if dii = pei with ei a non-negative integer,
dij is a non-negative integer such that dij ≤ pej − 1 for i < j, and dij = 0 for i > j.
Let Kp = Qp ⊕Qp. Then an element W = (W1,W2) of Mm(Op)

× with W1,W2 ∈
Mm(Zp)

× is said to be reduced ifW1 andW2 are reduced. Let Kp be an unramified
quadratic extension of Qp, and θ be an element of Op such that Op = Zp + Zpθ.
Then a non-degenerate square matrix W = (dij)m×m with entries in Op is said

to be reduced if dii = pei with ei a non-negative integer, dij = d
(1)
ij + d

(2)
ij θ with

d
(1)
ij , d

(2)
ij non-negative integers such that d

(1)
ij , d

(2)
ij ≤ pej −1 for i < j, and dij = 0 for

i > j. Let Kp be a ramified quadratic extension of Qp, and ϖ be a prime element of
Kp. Then a non-degenerate square matrix W = (dij)m×m with entries in Op is said

to be reduced if dii = ϖei with ei a non-negative integer, dij = d
(1)
ij + d

(2)
ij ϖ with

d
(1)
ij , d

(2)
ij non-negative integers such that d

(1)
ij ≤ p[(ej+1)/2] − 1, 0 ≤ d

(2)
ij ≤ p[ej/2] − 1

for i < j, and dij = 0 for i > j. In any case, we can take the set of all reduced
matrices as a complete set of representatives of GLm(Op)\Mm(Op)

×. Let m be an

integer. For B ∈ H̃erm(Op) put

Ω̃(B) = {W ∈ GLm(Kp) ∩Mm(Op) | B[W−1] ∈ H̃erm(Op)}.

Moreover put Ω̃(B, i) = Ω̃(B) ∩ Dm.i. Let r ≤ m, and ψr,m be the mapping from
GLr(Kp) into GLm(Kp) defined by ψr,m(W ) = 1m−r⊥W.

For a subset T of Op, we put

Herm(T )k = {A = (aij) ∈ Herm(T ) | aii ∈ πkZp}.

From now on put

Herm,∗(Op) =

 Herm(Op)1 if p = 2 and fp = 3,
Herm(ϖOp)1 if p = 2 and fp = 2
Herm(Op) otherwise,

where ϖ is a prime element of Kp. Moreover put ip = 0, or 1 according as p = 2
and f2 = 2, or not. Suppose that Kp/Qp is unramified or Kp = Qp ⊕ Qp. Then

an element B of H̃erm(Op) can be expressed as B ∼GLm(Op) 1r⊥pB2 with some
integer r and B2 ∈ Herm−r,∗(Op). Suppose that Kp/Qp is ramified. For an even
positive integer r define Θr by

Θr =

r/2︷ ︸︸ ︷(
0 ϖip

ϖip 0

)
⊥...⊥

(
0 ϖip

ϖip 0

)
,

whereϖ is the conjugate ofϖ overQp. Then an element B of H̃erm(Op) is expressed
as B ∼GLm(Op) Θr⊥πipB2 with some even integer r and B2 ∈ Herm−r,∗(Op). For
these results, see Jacobowitz [11].

Lemma 5.1.2.
(1) Suppose that Kp is unramified over Qp or Kp = Qp ⊕ Qp. Let B1 ∈

Herm−n0(Op). Then ψm−n0,m induces a bijection from GLm−n0(Op)\Ω̃(pB1) to

GLm(Op)\Ω̃(1n0⊥pB1), which will be also denoted by ψm−n0,m.
(2) Suppose that Kp is ramified over Qp and that n0 is even. Let B1 ∈ Herm−n0(Op).

Then ψm−n0,m induces a bijection from GLm−n0(Op)\Ω̃(πipB1) to GLm(Op)\Ω̃(Θn0⊥πipB1),
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which will be also denoted by ψm−n0,m. Here ip is the integer defined above.

(3) The assertions remain valid if we replace Ω̃(B) with Ω̃(B, i).

Proof. The assertions (1) and (2) are due to [[14], Lemma 4.1.4]. We prove (3).
Assume that Kp is unramified over Qp or Kp = Qp ⊕ Qp. Clearly ψm−n0,m is
injective. To prove the surjectivity, take a representative W of an element of

GLm(Op)\Ω̃(1n0⊥B1). Without loss of generality we may assume that W is a re-
duced matrix with diagonal elements pr (0 ≤ r ≤ 1). Since we have (1n0⊥B1)[W

−1] ∈

H̃erm(Op), we have W =

(
1n0 0
0 W1

)
with W1 ∈ Ω̃(B1, i). This proves the as-

sertion. Similarly the assertion holds in the case Kp is ramified over Qp.
□

5.2. Formal power series of Andrianov type.

For an element T ∈ H̃erm(Op), we define a polynomial G̃p(T,X, t) in X and t
by

G̃p(T,X, t) =

m∑
i=0

∑
W∈GLm(Op)\Dm,i

Πp(W )tν(detW )F̃ (0)
p (T [W−1], X).

We also define a polynomial Gp(T,X) in X by

Gp(T,X) =
m∑
i=0

∑
W∈GLm(Op)\Dm,i

(Xpm)ν(detW )Πp(W )F (0)
p (T [W−1], X).

Moreover for an element T ∈ H̃erm,p we define a polynomial Bp(T, t) in t by

Bp(T, t) =

∏m−1
i=0 (1− τm+i

p pm+it2)

Gp(T, t2)
,

where τ jp = 1 or ξp according as j is even or odd. We note that

G̃p(T,X, 1) = X−ord(detT )Xepm−fp[m/2]Gp(T,Xp
−m).

Now we recall several results in [[14]].

Lemma 5.2.1. [[14], Corollary to Lemma 4.2.2] (1) Suppose that Kp is unramified
over Qp or Kp = Qp⊕Qp. Let T = 1m−r⊥pB1 with B1 ∈ Herr(Op). Then we have

Gp(T, Y ) =

r−1∏
i=0

(1− (ξpp)
m+iY ).

(2) Suppose that Kp is ramified over Qp. Let T = Θm−r⊥πipB1 with B1 ∈ Herr,∗(Op).
Suppose that m− r is even. Then

Gp(T, Y ) =

[(r−2)/2]∏
i=0

(1− p2i+2[(m+1)/2]Y ).

Lemma 5.2.2. [[14], Lemma 4.2.3] Let B ∈ H̃erm(Op). Then we have

F (0)
p (B,X) =

∑
W∈GLm(Op)\Ω̃(B)

Gp(B[W−1], X)(pmX)ν(detW ).
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Corollary. [[14], Corollary to Lemma 4.2.3] Let B ∈ H̃erm(Op). Then we have

F̃ (0)
p (B,X) = Xepm−fp[m/2]

∑
B′∈H̃erm(Op)/GLm(Op)

X−ord(detB′)αp(B
′, B)

αp(B′)

×Gp(B
′, p−mX2)Xord(detB)−ord(detB′).

By Lemma 5.2.1, we easily obtain:

Lemma 5.2.3. (1) Suppose that Kp is unramified over Qp or Kp = Qp ⊕Qp. Let
T = 1m−r⊥pB1 with B1 ∈ Herr(Op). Then we have

Bp(T, t) =

m−1∏
i=r

(1− (ξpp)
m+it2).

(2) Suppose that Kp is ramified over Qp. Let T = Θm−r⊥pipB1 with B1 ∈
Herr,∗(Op). Then

Bp(T, t) =

[(m−2)/2]∏
i=[(r−1)/2]+1

(1− p2i+2[(m+1)/2]t2).

For a non-degenerate semi-integral matrix T over Op of degree n, put

Sp(T,X, t) =
∑

W∈Mm(Op)×/GLm(Op)

F̃ (0)
p (T [W ], X)tν(detW ).

This type of formal power series was first introduced by Andrianov [A] to study
the standard L-functions of Siegel modular forms of integral weight. Thus we call
it the formal power series of Andrianov type. (See also [3], [15]). The following
proposition can easily be proved by (1) of Lemma 5.1.1.

Proposition 5.2.4. Let T ∈ H̃erm(Op). Then we have∑
B∈H̃erm(Op)

F̃
(0)
p (B,X)αp(T,B)

αp(B)
tord(detB) = tord(detT )Sp(T,X, p

−mt).

Put K(m) = K(m)
0 U (m)(R). Let H(U (m)(A),K(m)) be the Hecke ring associated

with the Hecke pair (U (m)(A),K(m)). Then H(U (m)(A),K(m)) acts on

M2l(U (m)(Q)\U (m)(A),det−l) as in [10]. We call an element F of

M2l(U (m)(Q)\U (m)(A),det−l) a Hecke eigenform if it is a common eigenfunction
of all Hecke operators T in H(U (m)(A),K(m)). Then for each element

r ∈ GLm(A)∩
∏

pMm(Op), let λF (r) be the eigenvalue of K(m)

(
r−1 0
0 r∗

)
K(m)

with respect to F, and define a Dirichlet series T(s, F ) by

T(s, F ) =
∑

r∈K(m)\(GLm(A)∩
∏

p Mm(Op))/K(m)

λF (r)| det r|sA,
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where |det r|A =
∏

p | det rp|Kp for r = (rp) ∈ GLm(A) ∩
∏

pMm(Op). Then there

exists an Euler product Z(s, F ) such that

T(s, F ) =
m∏
i=1

L(2s− i+ 1, χi−1)Z(s, F ).

We then put

L(s, F, st) = Z(s+m− 1/2, F ),

and call it the standard L-function of F in the sense of Shimura. We note that
our standard L-function coincides with that in [10] up to Euler factors at ramified
primes.

Now we define the Eisenstein series on U (m)(A) and consider its standard L-
function in the sense of Shimura. Let P be the maximal parabolic subgroup of
U (m,m) defined by

P(R) = {γ =
(
a b
0 d

)
∈ U (m,m)(R)}

for any Q-algebra R. Write an element g = (gv) ∈ U (m)(A) as

(gp)p<∞ =
((

ap bp
0 dp

))
p<∞

(κp)p<∞

with
((

ap bp
0 dp

))
p<∞

∈
∏

p<∞ P(Qp) and (κp)p<∞ ∈ K0, and define the function

on U (m)(A) by

f2l(g) =
∏
p

|det(dpdp)|−l
p j(g∞, i)

−2l(det g∞)l.

Let l be a integer such that l > m. We then define the normalized Eisenstein series
as

E
(m)
2l (g) = 2−m

m∏
i=1

L(i− 2l, χi−1)
∑

γ∈P(Q)\U(m)(Q)

f2l(γg).

Put

E(i)
2l,m(Z) = 2−m

m∏
j=1

L(j − 2l, χj−1)

×
∏
p

|det(ti,p) det(ti,p)|lp
∑

g∈(Γi∩P(Q))\Γi

(det g)lj(g, Z)−2l

for i = 1, . . . , h, where (ti,p) be the element of G(m)(Af ) defined in Section 2. Then

E
(m)
2l is written as

E
(m)
2l = (E(1)

2l,m, E
(2)
2l,m, . . . , E

(h)
2l,m)♯.

Now put

Lm,p(X, t)

=



m∏
i=1

{(1− p−m+2i−1X2t2)(1− p−m+2i−1X−2t2)}−1 if Kp/Qp is unramified

m∏
i=1

{(1− p−m/2+i−1/2Xt)2(1− p−m/2+i−1/2X−1t)2}−1 if Kp = Qp ⊕Qp

m∏
i=1

{(1− p−m/2+i−1/2Xt)(1− p−m/2+i−1/2X−1t)}−1 if Kp/Qp is ramified.
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Proposition 5.2.5. E
(m)
2l is a Hecke eigenform in M2l(U (m)(Q)\U (m)(A),det−l),

and its standard L-function L(s,E(m)
2l , st) in the sense of Shimura is given by

L(s,E(m)
2l , st) =

∏
p

Lm,p(p
−l+m/2, p−s).

Proof. The assertion is more or less well known (cf. [[10], Proposition 13.5]). But
for the sake of completeness, we here give an outline of the proof. For each prime

number p let K(m)
p = Um(Qp) ∩ GL2m(Op). Moreover, for each η ∈ Um(Qp) we

write η =

(
aη bη
cη dη

)
with aη, bη, cη and dη ∈ Mm(Kp). First assume that Kp is a

field. Then for any u ∈ Um(Qp), we can write the coset K(m)
p uK(m)

p as

K(m)
p uK(m)

p =
⊔
η

K(m)
p

(
aη bη
0 dη

)
,

where dη is an upper triangular matrix whose diagonal components areϖe1(η), . . . , ϖem(η)

with e1(η), . . . , em(η) ∈ Z. Then, by a simple computation we have

E
(m)
2l |K(m)

p uK(m)
p =

∑
η

q−l(e1(η)+···+em(η))E
(m)
2l ,

where q = p2 or p according as Kp/Qp is unramified or ramified. We note that

q−l(e1(η)+···+em(η)) =
∏m

i=1(q
−iq−l+i)ei(η). Thus, by [[24], (16.1.3)], [[25], Theorem

19.8] and [[25], 20.6], we can prove that the Euler factor of L(s,E(m)
2l , st) at p is

Lm,p(p
−l+m/2, p−s). Next assume that Kp = Qp ⊕Qp. Then, by [[25], p. 163], for

any u ∈ Um(Qp), we can write the coset K(m)
p uK(m)

p as

K(m)
p uK(m)

p =
⊔
η

K(m)
p

(
aη bη
0 dη

)
,

where dη is a pair of upper triangular matrices whose diagonal components are

pe1(η), . . . , pem(η) with e1(η), . . . , em(η) ∈ Z and pem+1(η), . . . , pe2m(η) with em+1(η), . . . , e2m(η) ∈
Z, respectively. Then, by a simple computation we have

E
(m)
2l |K(m)

p uK(m)
p =

∑
η

p−l(e1(η)+···+e2m(η))E
(m)
2l .

We note that p−l(e1(η)+···+e2m(η)) =
∏m

i=1(p
−ip−l+i)ei(η)(p−ip−l+i)em+i(η). Thus,

by [[25], p. 163], [[25], Theorem 19.8] and [[25], 20.6], we can also prove that the

Euler factor of L(s,E(m)
2l , st) at p is Lm,p(p

−l+m/2, p−s). This completes the proof.
□

For an element x = (xv) ∈ A put eA(x) = e(x∞)
∏

p<∞ ep(−xp). We also denote

by HERm the algebraic group defined over Q such that HERm(S) = Herm(S⊗K)
for any Q-algebra S. Then for any u ∈ Gm(A) and s ∈ HERm(A) we have the
following Fourier expansion:

E
(m)
2l

((
u (u∗)−1s

0 (u∗)−1

))
= (detu detu)l

∑
T∈Herm(K)

c
(m)
2l (T ;u)e(

√
−1tr(u∗Tu))eA(tr(As)),
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where c
(m)
2l (T ;u) is a complex number depending only on E

(m)
2l , T, (up)p<∞ and

(uu∗)∞ (cf. [[24], Proposition 18.3). Here we have c
(m)
2l (T ;u) ̸= 0 only if T is

semi-positive definite.

Remark. For any T ∈ Herm(K)+, the T -th Fourier coefficient c
(i)
2l,m(T ) of E(i)

2l,m(Z)

is equal to c
(m)
2l (T, (ti,p)) (cf. [[25], (20.9f)]), and it is given by

Am|γ(T )|l−m/2
∏
p

| det(ti,p)|m/2
Kp

F̃p(t
∗
i,pTti,p, p

−l+m/2),

where Am = (−1)m or 1 according as m = 2n or m = 2n + 1 (cf. [9], pages 1134-
1135). We notice that Am appears in the above formula because the definition of

F̃p(∗, X) is a slightly different from that in [9] as remarked in Section 2. In general,

for any T ∈ Herm(K)+ and u = (up) ∈ G(m)(Af ) we have

c
(m)
2l (T ;u) = Am|γ(T )|l−m/2

∏
p

| detup|m/2
Kp

F̃p(u
∗
pTup, p

−l+m/2).

This can be proved in the same way as above.

Theorem 5.2.6. Let T be an element of H̃erm(Op)
×. Then we have

Sp(T,X, t) = Bp(T, p
−m/2t)G̃p(T,X, t)Lm,p(X, p

m/2−1/2t).

Proof. Take an element T̃ ∈ H̃erm(O)+ such that T̃ ∼GLm(Op) T. Then we have

Sp(T̃ ,X, t) = Sp(T,X, t)

and
Bp(T̃ , p

−m/2t)G̃p(T̃ ,X, t) = Bp(T, p
−m/2t)G̃p(T,X, t).

Write Sp(T̃ ,X, t) and Bp(T̃ , p
−m/2t)G̃p(T̃ ,X, t)Lm,p(X, p

m/2−1/2t) as

Sp(T̃ ,X, t) =
∞∑
i=0

ri(X)ti,

and

Bp(T̃ , p
−m/2t)G̃p(T̃ ,X, t)Lm,p(X, p

m/2−1/2t) =

∞∑
i=0

si(X)ti.

Then ri(X) and si(X) are polynomials in X and X−1. For a positive integer l and

A ∈ Ĥerm(O)+, put

Dp(s,A,E
(m)
2l ) =

∑
W∈Mm(Op)×/GLm(Op)

| detW |−m
Kp

c
(m)
2l (A, W̃ )p−sνKp (detW ),

and

G̃2l,m(A, s) =
∑

W∈GLm(Op)\Mm(Op)×

Πp(W )c
(m)
2l (A, W̃−1)p−sνKp (detW ),

where for V ∈ Mm(Kp)
× we denote by Ṽ = (Vq) the element of G(m)(Af ) such

that Vp = V and Vq = 1m for any q ̸= p. Then by Proposition 5.2.5 and by using
the same argument as in the proof of [[25], Theorem 20.7], we obtain

Dp(s+m/2, D̃−1T̃ ,E
(m)
2l )

= G̃2l,m(D̃−1T̃ , s+m/2)Bp(T̃ , p
−s−m/2)Lm,p(p

−l+m/2, pm/2−1/2−s)
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for any positive integer l > m. By the above remark, for any A ∈ Herm(K)+ and
V ∈Mm(Kp)

× we have

c
(m)
2l (A, Ṽ ) = d(l,m;A)| detV |m/2

Kp
F̃p(V

∗AV, p−l+m/2),

where d(l,m;A) = Am|γ(A)|l−m/2
∏

q ̸=p F̃q(A, q
−l+m/2). Hence we have

Dp(s+m/2, D̃−1T̃ ,E
(m)
2l ) = d(l,m; D̃−1T̃ )Sp(T̃ , p

−l+m/2, p−s),

and
G̃2l,m(D̃−1T̃ , s+m/2) = d(l,m; D̃−1T̃ )G̃p(T̃ , p

−l+m/2, p−s),

and therefore
d(l,m; D̃−1T̃ )Sp(T̃ , p

−l+m/2, p−s)

= d(l,m; D̃−1T̃ )Bp(T̃ , p
−s−m/2)G̃p(T̃ , p

−l+m/2, p−s)Lm,p(p
−l+m/2, pm/2−1/2−s)

for any positive integer l > m. We note that d(l,m; D̃−1T̃ ) ̸= 0 for l > m. Hence
we have

Sp(T̃ , p
−l+m/2, t) = Bp(T̃ , p

−m/2t)G̃p(T̃ , p
−l+m/2, t)Lm,p(p

−l+m/2, pm/2−1/2t)

for any integer l > m. This implies that ri(p
−l+m/2) = si(p

−l+m/2) for infinitely
many positive integers l. Hence we have ri(X) = si(X). □

Now by Theorem 5.2.6, we can rewriteHm,p(d0, X, Y, t) in terms ofGp(B
′, Y ), Bp(T, t)

and G̃p(T,X, t) in the following way: For d0 ∈ Z×
p put

F̃m,p(d0) =

∞∪
i=0

H̃erm(πid0NKp/Qp
(O∗

p),Op),

and define a formal power series Rm(d0, X, Y, t) in t by

Rm(d0, X, Y, t) =
∑

B′∈F̃m,p(d0)

G̃p(B
′, X, p−mY t)

αp(B′)

×(tY −1)ord(detB
′)Bp(B

′, p−3m/2Y t)Gp(B
′, p−mY 2).

Theorem 5.2.7. We have

Hm,p(d0, X, Y, t) = Y epm−fp[m/2]Rm,p(d0, X, Y, t)Lm,p(X, tY p
−m/2−1/2)

for d0 ∈ Z×
p .

Proof. We note that Hm,p(d0, X, Y, t) can be written as

Hm,p(d0, X, Y, t) =
∑

B∈F̃m,p(d0)

tord(detB) F̃
(0)
p (B,X)F̃

(0)
p (B, Y )

αp(B)
.

Hence by Corollary to Lemma 5.2.2, we have

Hm,p(d0, X, Y, t) = Y epm−fp[m/2]
∑

B∈F̃m,p(d0)

tord(detB)F̃
(0)
p (B,X)

αp(B)

×
∑

B′∈H̃erm(Op)

Y −ord(detB′)Gp(B
′, p−mY 2)αp(B

′, B)

αp(B′)
Y ord(detB)−ord(detB′).
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Let B,B′ ∈ H̃erm(Op), and suppose that αp(B
′, B) ̸= 0. Then we note that B ∈

F̃m,p(d0) if and only if B′ ∈ F̃m,p(d0). Hence by Proposition 5.2.4 and Theorem
5.2.6 we have

Y −epm+fp[m/2]Hm,p(d0, X, Y, t) =
∑

B′∈F̃m,p(d0)

Gp(B
′, p−mY 2)Y −2ord(detB′)

αp(B′)

×
∑

B∈H̃erm(Op)

F̃
(0)
p (B,X)αp(B

′, B)

αp(B)
(tY )ord(detB)

=
∑

B′∈F̃m,p(d0)

Gp(B
′, p−mY 2)Y −2ord(detB′)

αp(B′)
(tY )ord(detB

′)Sp(B
′, X, tY p−m)

=
∑

B′∈F̃m,p(d0)

G̃p(B
′, X, p−mY t)

αp(B′)
(tY −1)ord(detB

′)

×Bp(B
′, p−3m/2Y t)Gp(B

′, p−mY 2)Lm,p(X, tY p
−m/2−1/2).

□

5.3. Formal power series of modified Koecher-Maass type.

Let r be a positive integer, and d0 ∈ Z∗
p. We then define a formal power series

Pr(d0, X, t) in t by

Pr(d0, X, t) =
∑

B∈F̃r,p(d0)

F̃
(0)
p (B,X)

αp(B)
tord(detB).

This type of formal power series appears in an explicit formula of the Koecher-
Maass series associated with the Siegel Eisenstein series and the Ikeda lift (cf. [7],
[8]). Thus we call this the formal power series of Koecher-Maass type. To prove
Theorems 5.5.1 and 5.5.2, the main results of Section 5, we define a formal power

series P̃r(d0, X, Y, t) in t by

P̃r(d0, X, Y, t) =
∑

B′∈F̃r,p(d0)

G̃p(B
′, X, tY )

αp(B′)
(tY −1)ord(detB

′).

The relation between P̃r(d0, X, Y, t) and Pr(d0, X, t) will be given in the following
proposition:

Proposition 5.3.1.
(1) Suppose that Kp is unramified over Qp. Then

P̃r(d0, X, Y, t) = Pr(d0, X, tY
−1)

r∏
i=1

(1− t4p−2r−2+2i).

(2) Suppose that Kp = Qp ⊕Qp. Then

P̃r(d0, X, Y, t) = Pr(d0, X, tY
−1)

r∏
i=1

(1− t2p−r−1+i)2.
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(3) Suppose that Kp is ramified over Qp. Then

P̃r(d0, X, Y, t) = Pr(d0, X, tY
−1)

r∏
i=1

(1− t2p−r−1+i).

Proof. First suppose that Kp is a quadratic extension of Qp. For each non-negative
integer i ≤ r put

Pr,i(d0, X, t) =
∑

B∈F̃r,p(d0)

∑
W∈GLr(Op)\Dr,i

F̃
(0)
p (B[W−1], X)

αp(B)
tord(detB).

Then by (2) of Lemma 5.1.1 we have

Pr,i(d0, X, t) =
∑

B∈F̃r,p(d0)

1

αp(B)

∑
B′∈H̃err(Op)

F̃
(0)
p (B′, X)αp(B

′, B; i)

αp(B′)
tord(detB).

Let B,B′ ∈ H̃err(Op), and suppose that αp(B
′, B; i) ̸= 0. Then we note that

B ∈ F̃r,p(d0) if and only if B′ ∈ F̃r,p(d0). Thus by (1) of Lemma 5.1.1 we have

Pr,i(d0, X, t)

=
∑

B′∈F̃r,p(d0)

F̃
(0)
p (B′, X)

αp(B′)

∑
B∈H̃err(Op)

tord(detB)αp(B
′, B; i)

αp(B)

=
∑

B′∈F̃r,p(d0)

F̃
(0)
p (B′, X)

αp(B′)
tord(detB

′)#(Dr,i/GLr(Op))(tp
−r)ei,

where e = 2 or 1 according as Kp/Qp is unramified or ramified. By using the same
argument as in the proof of Lemma 3.2.18 of Andrianov [1], we have

#(Dr,i/GLr(Op)) =
ϕr(p

e)

ϕi(pe)ϕr−i(pe)
.

Hence we have

Pr,i(d0, X, t)

=
∑

B′∈F̃r,p(d0)

F̃
(0)
p (B′, X)

αp(B′)
tord(detB

′) ϕr(p
e)

ϕi(pe)ϕr−i(pe)
(tp−r)ei

=
ϕr(p

e)

ϕi(pe)ϕr−i(pe)
Pr(d0, X, t)(tp

−r)ei.

Then we have

P̃r(d0, X, Y, t) =
r∑

i=0

(−1)ipi(i−1)e/2(tY )eiPr,i(d0, X, tY
−1).
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Hence we have

P̃r(d0, X, Y, t) =

r∑
i=0

(−1)ipi(i+1)e/2(pe(−r−1)t2e)i
ϕr(p

e)

ϕi(pe)ϕr−i(pe)
Pr(d0, X, tY

−1)

= Pr(d0, X, tY
−1)

r∏
i=1

(1− t2epe(−r−1+i)).

Next suppose that Kp = Qp ⊕Qp. For a pair i = (i1, i2) of non-negative integers
such that i1, i2 ≤ r, put

Pr,i(d0, X, t) =
∑

B∈F̃r,p(d0)

∑
W∈GLr(Op)\Dr,i

F̃
(0)
p (B[W−1], X)

αp(B)
tord(detB).

Then by using the same argument as above we can prove that

Pr,i(d0, X, t) =
ϕr(p)

ϕi1(p)ϕr−i1(p)

ϕr(p)

ϕi2(p)ϕr−i2(p)
Pr(d0, X, t)(tp

−r)i1+i2 .

Hence we have

P̃r(d0, X, Y, t)

=
r∑

i1=0

r∑
i2=0

(−1)i1+i2pi1(i1+1)/2+i2(i2+1)/2(p−r−1t2)i1+i2

× ϕr(p)

ϕi1(p)ϕr−i1(p)

ϕr(p)

ϕi2(p)ϕr−i2(p)
Pr(d0, X, tY

−1)

= Pr(d0, X, tY
−1)

r∏
i=1

(1− t2p−r−1+i)2.

This proves the assertion.
□

Now we consider a partial series of P̃r(d0, X, Y, t). For d0 ∈ Z∗
p, we put

Qr(d0, X, Y, t)

=
∑

B′∈π−ip F̃r,p(d0)∩Herr,∗(Op)

G̃p(π
ipB′, X, tY )

αp(πipB′)
(tY −1)ord(detπ

ipB′).

To consider the relation between P̃r(d0, X, Y, t) and Qr(d0, X, Y, t), and to express

Rm(d0, X, Y, t) in terms of P̃r(d0, X, Y, t), we provide some more preliminary results.
Let X be a variable. First suppose that Kp is unramified over Qp or Kp =

Qp ⊕Qp. Put ξ̂p =
√
−1 or 1 according as Kp is unramified over Qp or not. Let

Hm = Hm(·, X) be a function on Herm(Op)
× with values in C[X,X−1] satisfying

the following condition:

Hm(1m−r⊥pB,X) = ξ̂(m−r)ord(det(pB))
p Hr(pB, ξ̂

m−r
p X) for any B ∈ Herr(Op).

Let d0 ∈ Z∗
p. Then we put

Q(d0,Hm, r,X, t) =
∑

B∈p−1Fr,p(d0)∩Herr(Op)

Hm(1m−r⊥pB,X)

αp(1m−r⊥pB)
tord(det(pB)).
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Next suppose that Kp is ramified over Qp. Let Hm = Hm(·, X) be a function on
Herm(Op)

× with values in C[X,X−1] satisfying the following condition:

Hm(Θm−r⊥πipB,X) = Hr(π
ipB,X) for any B ∈ Herr,∗(Op) if m− r is even.

Let d0 ∈ Z∗
p and m− r be even. Then we put

Q(d0,Hm, r,X, t) =
∑

B∈π−ip F̃r,p(d0)∩Herr,∗(Op)

Hm(Θm−r⊥πipB,X)

αp(Θm−r⊥πipB)
tord(det(π

ipB)).

Then we have the following (cf. [[14], Proposition 4.2.4]).

Proposition 5.3.2.
(1) Suppose that Kp is unramified over Qp or Kp = Qp⊕Qp. Then for any d0 ∈ Z∗

p

and a non-negative integer r we have

Q(d0,Hm, r,X, t) =
Q(d0,Hr, r, ξ̂

m−r
p X, ξ̂m−r

p t)

ϕm−r(ξpp−1)
.

(2) Suppose that Kp is ramified over Qp. Then for any d0 ∈ Z∗
p and a non-negative

integer r such that m− r is even, we have

Q(d0, Hm, r,X, t) =
Q(d0,Hr, r,X, t)

ϕ(m−r)/2(p−2)
.

Now to apply Proposition 5.3.2 to the formal power series Rm(d0, X, Y, t) and
Qr(d0, X, Y, t) we give the following lemma.
Lemma 5.3.3. Let m be an integer.
(1) Suppose that Kp is unramified over Qp or Kp = Qp⊕Qp. Then for any integer
such that r ≤ m, and B′ ∈ Herr(Op) we have

G̃p(1m−r⊥pB′, X, t) = G̃p(pB
′, ξ̂m−r

p X, ξ̂m−r
p t).

(2) Suppose that Kp is ramified over Qp. Then for any non-negative integer r such
that m− r is even, and B′ ∈ Herr,∗(Op), we have

G̃p(Θm−r⊥πipB′, X, t) = G̃p(π
ipB′, X, t).

Proof. By Lemma 5.2.1 (1), we have

Gp(1m−r⊥pB′, X) = Gp(pB
′, ξm−r

p pm−rX)

for B′ ∈ Herr(Op). Hence by Corollary to Lemma 5.2.2 we have

F̃ (0)
p (1m−r⊥pB′, X) = ξ̂(m−r)ord(det(pB′))

p F̃ (0)
p (pB′, ξ̂m−r

p X)

for B′ ∈ Herr(Op). Thus the assertion (1) follows from (3) of Lemma 5.1.2. The
assertion (2) can be proved in a similar way. □

Let Rm(d0, X, Y, t) be the formal power series defined at the beginning of Section
5. We express Rm(d0, X, Y, t) in terms of Qr(d0, X, Y, t).
Theorem 5.3.4. Let d0 ∈ Z∗

p.
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(1) Suppose that Kp is unramified over Qp. Then

Rm(d0, X, Y, t) =

m∑
r=0

∏r−1
i=0 (1− (−1)m(−p)iY 2)

∏m−1
i=r (1− (−1)m(−p)−2m+iY 2t2)

ϕm−r(−p−1)

×Qr(d0, ξ̂
m−r
p X, p−m/2Y, ξ̂m−r

p p−m/2t).

(2) Suppose that Kp = Qp ⊕Qp. Then

Rm(d0, X, Y, t) =

m∑
r=0

∏r−1
i=0 (1− piY 2)

∏m−1
i=r (1− p−2m+iY 2t2)

ϕm−r(p−1)

×Qr(d0, X, p
−m/2Y, p−m/2t).

Throughout (1) and (2), we understand that Q0(d0, X, Y, t) = 1.
(3) Suppose that Kp is ramified over Qp. Let ip = 0, or 1 according as p = 2 and
f2 = 2, or not as defined in Section 5.1.

(3.1) Let m be odd. Then

Rm(d0, X, Y, t) =

(m−1)/2∑
r=0

∏r−1
i=0 (1− p2i+1Y 2)

∏(m−3)/2
i=r (1− p−2m+2i+1Y 2t2)

ϕ(m−2r−1)/2(p−2)

× (tY −1)(m−2r−1)ip/2Q2r+1((−1)(m−2r−1)/2d0, X, p
−m/2Y, p−m/2t).

(3.2) Let m be even. Then

Rm(d0, X, Y, t) =

m/2∑
r=0

∏r−1
i=0 (1− p2iY 2)

∏(m−2)/2
i=r (1− p−2m+2iY 2t2)

ϕ(m−2r)/2(p−2)

× (tY −1)(m−2r)ip/2Q2r((−1)(m−2r)/2d0, X, p
−m/2Y, p−m/2t).

Here, for u ∈ Z∗
p we understand that Q0(u,X, Y, t) = 1 or 0 according as

u ∈ NKp/qp
(O∗

p) or not.

Proof. First suppose that Kp is unramified over Qp or Kp = Qp ⊕Qp. Let B be

an element of H̃err(Op). Then we note that 1m−r⊥pB belongs to F̃m,p(d0) if and

only if B ∈ p−1F̃r,p(d0) ∩ H̃err(Op). Thus the assertions (1) and (2) follow from
Lemmas 5.2.1, 5.2.3, and 5.3.3, and Proposition 5.3.2.

Next suppose that Kp is ramified over Qp. Let B be an element of H̃err(Op). Let

m−r be even. Then we note that Θm−r⊥πipB belongs to F̃m,p(d0) if and only ifB ∈
π−ipF̃r,p((−1)(m−r)/2d0)∩Herr,∗(Op).Moreover we note that ord(det(Θm−r⊥πipB)) =
(m − r)ip/2 + ord(det(πipB)). Thus the assertion (3) can be proved similarly to
above.

□

Now to rewrite the above theorem, first we express P̃m(d0, X, Y, t) in terms of
Qr(d0, X, Y, t).
Proposition 5.3.5. Let d0 ∈ Z∗

p.
(1) Suppose that Kp is unramified over Qp or Kp = Qp ⊕Qp. Then

P̃m(d0, ξ̂
m
p X,Y, ξ̂

m
p t) =

m∑
r=0

1

ϕm−r(ξpp−1)
Qr(d0, ξ̂

r
pX,Y, ξ̂

r
pt).

(2) Suppose that Kp is ramified over Qp.
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(2.1) Let m be odd. Then

(tY −1)(1−m)ip/2P̃m((−1)(m−1)/2d0, X, Y, t) =

(m−1)/2∑
r=0

1

ϕ(m−2r−1)/2(p−2)

× (tY −1)−ripQ2r+1((−1)rd0, X, Y, t).

(2.2) Let m be even. Then

(tY −1)−mip/2P̃m((−1)m/2d0, X, Y, t) =

m/2∑
r=0

1

ϕ(m−2r)/2(p−2)

× (tY −1)−ripQ2r((−1)rd0, X, Y, t).

Proof. The assertion can be proved in the same argument as in the proof of Theorem
5.3.4. □

Corollary. Let d0 be an element of Z∗
p.

(1) Suppose that Kp is unramified over Qp or Kp = Qp ⊕Qp. Then

Qr(d0, ξ̂
r
pX,Y, ξ̂

r
pt) =

r∑
m=0

(−1)m(ξpp)
(m−m2)/2

ϕm(ξpp−1)
P̃r−m(d0, ξ̂

r−m
p X,Y, ξ̂r−m

p t).

Here we understand that P̃0(d0, X, Y, t) = 1.
(2) Suppose that Kp is ramified over Qp. Then

(tY −1)−ripQ2r+1((−1)rd0, X, Y, t) =
r∑

m=0

(−1)mpm−m2

ϕm(p−2)
(tY −1)(m−r)ip P̃2r+1−2m((−1)r−md0, X, Y, t),

and

(tY −1)−ripQ2r((−1)rd0, X, Y, t) =

r∑
m=0

(−1)mpm−m2

ϕm(p−2)
(tY −1)(m−r)ip P̃2r−2m((−1)r−md0, X, Y, t).

Here, for u ∈ Z∗
p we understand that P̃0(u,X, Y, t) = 1 or 0 according as u ∈

NKp/Qp
(O∗

p) or not.

Proof. We can prove the assertions by induction on r (cf. [[16], Corollary 5.1.2]).
□

The following lemma follows from [[8], Lemma 3.4].

Lemma 5.3.6. Let l be a positive integer. Then we have the following identity on
the three variables q, U and Q :

l∏
i=1

(1− U−1Qq−i+1)U l

=

l∑
m=0

ϕl(q
−1)

ϕl−m(q−1)ϕm(q−1)

l−m∏
i=1

(1−Qq−i+1)

m∏
i=1

(1− Uqi−1)(−1)mq(m−m2)/2.

Theorem 5.3.7. Let the notation be as in Theorem 5.3.5.
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(1) Suppose that Kp is unramified over Qp or Kp = Qp ⊕Qp. Then

Rm(d0, X, Y, t) =

m∑
l=0

((plξpY
2)m−lP̃l(d0, ξ̂

m−l
p X, p−m/2Y, ξ̂m−l

p p−m/2t)

×
∏m−l

i=1 (1− (ξpp)
−l−m−it2)

∏l−1
i=0(1− ξmp (ξpp)

iY 2)

ϕm−l(ξpp−1)
.

(2) Suppose that Kp is ramified over Qp.
(2.1) Let m be odd. Then

Rm(d0, X, Y, t) =

(m−1)/2∑
l=0

(tY −1)(m−2l−1)ip/2P̃2l+1((−1)(m−2l−1)/2d0, X, p
−m/2Y, p−m/2t)

×
(p2l+1Y 2)(m−2l−1)/2

∏l−1
i=0(1− p2i+1Y 2)

∏(m−2l−1)/2
i=1 (1− p−2l−m−2i−1t2)

ϕ(m−2l−1)/2(p−2)
.

(2.2) Let m be even. Then

Rm(d0, X, Y, t) =

m/2∑
l=0

(tY −1)(m−2l)ip/2P̃2l((−1)(m−2l)/2d0, X, p
−m/2Y, p−m/2t)

×
(p2lY 2)(m−2l)/2

∏l−1
i=0(1− p2iY 2)

∏(m−2l)/2
i=1 (1− p−2l−m−2it2)

ϕ(m−2l)/2(p−2)
.

Proof. (1) By Theorem 5.3.4 and Corollary to Proposition 5.3.5, we have

Rm(d0, X, Y, t)

=
m∑
r=0

∏r−1
i=0 (1− ξmp (ξpp)

iY 2)
∏m−r−1

i=0 (1− (ξpp)
−m+i+rp−mY 2t2)

ϕm−r((ξpp)−1)

×
r∑

j=0

(−1)j(ξpp)
(j−j2)/2

ϕj((ξpp)−1)
P̃r−j(d0, ξ̂

m−r+j
p X, p−m/2Y, ξ̂m−r+j

p p−m/2t)

=
m∑
l=0

P̃l(d0, ξ̂
m−l
p X, p−m/2Y, ξ̂m−l

p p−m/2t)

×
m−l∑
j=0

(−1)j(ξpp)
(j−j2)/2

∏l+j−1
i=0 (1− ξmp (ξpp)

iY 2)
∏m−l−j−1

i=0 (1− (ξpp)
−m+i+l+jp−mY 2t2)

ϕj(ξpp−1)ϕm−j−l(ξpp−1)
.

Then the assertion (1) follows from Lemma 5.3.6.
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(2) Let m be odd. Then, again by Theorem 5.3.4 and Corollary to Proposition
5.3.5,

Rm(d0, X, Y, t)

=

(m−1)/2∑
r=0

∏r−1
i=0 (1− p2i+1Y 2)

∏(m−1)/2−r−1
i=0 (1− p−2m+2i+2r+1Y 2t2)

ϕ(m−2r−1)/2(p−2)

× (tY −1)(m−1)ip/2
r∑

j=0

(−1)jpj−j2

ϕj(p−2)
(tY −1)(j−r)ip

× P̃2r+1−2j((−1)(m−1−2r+2j)/2d0, X, p
−m/2Y, p−m/2t)

= (tY −1)(m−1)ip/2

(m−1)/2∑
l=0

(tY −1)−lip P̃2l+1((−1)(m−1−2l)/2d0, X, Y
−m/2Y, p−m/2t)

×
(m−1)/2−l∑

j=0

(−1)jpj−j2
∏l+j−1

i=0 (1− p2i+1Y 2)
∏(m−1)/2−l−j−1

i=0 (1− p−2m+2i+2l+2j+1Y 2t2)

ϕj(p−2)ϕ(m−1)/2−j−l(p−2)
.

Hence the assertion (2.1) follows from Lemma 5.3.6. The assertion (2.2) can be
proved in the same manner as above. □

By Proposition 5.3.1 we obtain:
Corollary. (1) Suppose that Kp is unramified over Qp or Kp = Qp ⊕Qp. Then

Rm(d0, X, Y, t) =

m∏
i=1

(1− p−2m(ξpp)
i−1t2)

×
m∑
l=0

(plξpY
2)m−lPl(d0, ξ̂

m−l
p X, ξ̂m−l

p tY −1)

∏l
i=1(1− ξp(ξpp)

−l−m+i−1t2)
∏l−1

i=0(1− ξmp (ξpp)
iY 2)

ϕm−l(ξpp−1)
.

Here we understand that P0(d0, X, t) = 1.
(2) Suppose that Kp is ramified over Qp.
(2.1) Let m be odd. Then

Rm(d0, X, Y, t) =

(m+1)/2∏
i=1

(1− p−2m+2i−2t2)

×
(m−1)/2∑

l=0

(tY −1)(m−2l−1)ip/2P2l+1((−1)(m−2l−1)/2d0, X, tY
−1)

×
(p2l+1Y 2)(m−2l−1)/2

∏l−1
i=0(1− p2i+1Y 2)

∏l
i=1(1− p−2l−2+2i−mt2)

ϕ(m−2l−1)/2(p−2)
.
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(2.2) Let m be even. Then

Rm(d0, X, Y, t) =

m/2∏
i=1

(1− p−2m+2i−2t2)

×
m/2∑
l=0

(tY −1)(m−2l)ip/2P2l((−1)(m−2l)/2d0, X, tY
−1)

×
(p2lY 2)(m−2l)/2

∏l−1
i=0(1− p2iY 2)

∏l
i=1(1− p−2l−1+2i−mt2)

ϕ(m−2l)/2(p−2)
.

Here, for u ∈ Z∗
p we understand that P0(u,X, t) = 1 or 0 according as u ∈

NKp/Qp
(O∗

p) or not.

5.4. Explicit formulas of formal power series of Koecher-Maass type.

In this section we review explicit formulas for Pm(d0, X, t).
Theorem 5.4.1. [[14], Theorem 4.3.1] Let m be even, and d0 ∈ Z∗

p.
(1) Suppose that Kp is unramified over Qp. Then

Pm(d0, X, t) =
1

ϕm(−p−1)
∏m

i=1(1− t(−p)−iX)(1 + t(−p)−iX−1)
.

(2) Suppose that Kp = Qp ⊕Qp. Then

Pm(d0, X, t) =
1

ϕm(p−1)
∏m

i=1(1− tp−iX)(1− tp−iX−1)
.

(3) Suppose that Kp is ramified over Qp. Let χKp be the character of Q:
p defined

by χKp(a) = (−D, a) for a ∈ Q∗
p. Then

Pm(d0, X, t) =
tmip/2

2ϕm/2(p−2)

×

{
1∏m/2

i=1 (1− tp−2i+1X)(1− tp−2iX−1)
+

χKp((−1)m/2d0)∏m/2
i=1 (1− tp−2iX)(1− tp−2i+1X−1)

}
.

Theorem 5.4.2. [[14], Theorem 4.3.2] Let m be odd, and d0 ∈ Z∗
p.

(1) Suppose that Kp is unramified over Qp. Then

Pm(d0, X, t) =
1

ϕm(−p−1)
∏m

i=1(1 + t(−p)−iX)(1 + t(−p)−iX−1)
.

(2) Suppose that Kp = Qp ⊕Qp. Then

Pm(d0, X, t) =
1

ϕm(p−1)
∏m

i=1(1− tp−iX)(1− tp−iX−1)
.

(3) Suppose that Kp is ramified over Qp. Then

Pm(d0, X, t) =
t(m+1)ip/2+δ2p

2ϕ(m−1)/2(p−2)
∏(m+1)/2

i=1 (1− tp−2i+1X)(1− tp−2i+1X−1)
.
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5.5. Explicit formulas of formal power series of Rankin-Selberg type.

We give an explicit formula for Hm(d,X, Y, t). First we remark the following.
Proposition 5.5.1. Let d ∈ Z×

p . Then we have

λ∗m,p(d,X, Y ) = upλm,p(d,X, Y ).

Proof. This can be proved in the same way as [[14], Proposition 4.3.7] □

It is well known that #(Z∗
p/NKp/Qp

(O∗
p)) = 2 ifKp/Qp is ramified. Hence we can

take a complete set Np of representatives of Z∗
p/NKp/Qp

(O∗
p) so that Np = {1, ξ0}

with χKp(ξ0) = −1.

Theorem 5.5.2. Let m = 2n be even, and d0 ∈ Z∗
p.

(1) Suppose that Kp is unramified over Qp. Then

H2n(d0, X, Y, t) =

∏2n
i=1(1− p−4n(−p)i−1t2)

ϕ2n(−p−1)

× 1∏2n
i=1(1 + (−p)−2n+i−1XY t)(1− (−p)−2n+i−1XY −1t)

× 1∏2n
i=1(1− (−p)−2n+i−1X−1Y t)(1 + (−p)−2n+i−1X−1Y −1t)

.

(2) Suppose that Kp = Qp ⊕Qp. Then

H2n(d0, X, Y, t) =

∏2n
i=1(1− p−4npi−1t2)

ϕ2n(p−1)

× 1∏2n
i=1(1− p−2n+i−1XY t)(1− p−2n+i−1XY −1t)

× 1∏2n
i=1(1− p−2n+i−1X−1Y t)(1− p−2n+i−1X−1Y −1t)

.

(3) Suppose that Kp is ramified over Qp. For l = 0, 1 put

H
(l)
2n (X,Y, t) =

∑
d∈Np

χKp((−1)nd)lH2n(d,X, Y, t).

Then we have

H2n(d0, X, Y, t) =
1

2
(H

(0)
2n (X,Y, t) + χKp

((−1)nd0)H
(1)
2n (X,Y, t)),

and

H
(0)
2n (X,Y, t) = tnip

∏n
i=1(1− p−4np2i−2t2)

ϕn(p−2)

× 1∏n
i=1(1− p−2n+2i−1XY t)(1− p−2n+2i−1X−1Y −1t)

× 1∏n
i=1(1− p−2n+2i−2X−1Y t)(1− p−2n+2i−2XY −1t)

,
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and

H
(1)
2n (X,Y, t) = tnip

∏n
i=1(1− p−4np2i−2t2)

ϕn(p−2)

× 1∏n
i=1(1− p−2n+2i−1X−1Y t)(1− p−2n+2i−1XY −1t)

× 1∏n
i=1(1− p−2n+2i−2XY t)(1− p−2n+2i−2X−1Y −1t)

}.

Proof. First we prove (1). By Theorems 5.4.1and 5.4.2, we have

Pl(d0, ξ̂
m−l
p X, ξ̂m−l

p X) = Pl(d0, X, t)

if l is even, and

Pl(d0, ξ̂
m−l
p X, ξ̂m−l

p X) =
1

ϕm(−p−1)
∏l

i=1(1− t(−p)−iX)(1 + t(−p)−iX−1)

if l is odd. Hence, by Corollary to Theorem 5.3.7, R2n(d0, X, Y, t) can be expressed
as

R2n(d0, X, Y, t)

=

∏2n
i=1(1− p−4n(−p)i−1t2)S(X,Y, t)

ϕ2n(−p)
∏2n

i=1(1− t(−p)−2n+i−1XY −1)(1 + t(−p)−2n+i−1X−1Y −1)
,

where S(X,Y, t) is a polynomial in t of degree at most 4n. Then by Theorem 5.2.8,
we have

H2n(d0, X, Y, t)

=

∏2n
i=1(1− p−4n(−p)i−1t2)S(X,Y, t)

ϕ2n(−p)
∏2n

i=1(1− t(−p)−2n+i−1XY −1)(1 + t(−p)−2n+i−1X−1Y −1)

× 1∏2n
i=1(1− t2p−4n+2i−2X2Y 2)(1− t2p−4n+2i−2X−2Y 2)

.

Recall that we have the following functional equation

H2n(d0, X, Y
−1, t) = H2n(d0, X,−Y, t).

Hence the reduced denominator of the rational function H2n(d0, X, Y
−1, t) in t is

at most
2n∏
i=1

{(1− t(−p)−2n+i−1XY −1)(1 + t(−p)−2n+i−1X−1Y −1)

× (1 + t(−p)−2n+i−1XY )(1− t(−p)−2n+i−1X−1Y )},

and therefore we have

H2n(d0, X, Y, t) =
c
∏2n

i=1(1− (−p)−2n−it2)

ϕ2n(−p)

× 1∏2n
i=1(1− t(−p)−2n+iXY −1)(1 + t(−p)−2n+iX−1Y −1)

× 1∏2n
i=1(1 + t(−p)−2n+i−1XY )(1− t(−p)−2n+i−1X−1Y )
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with some constant c. We easily see that we have c = 1. This proves the assertion
(1). Similarly the assertions (2) and (3) can be proved. □

Similarly to Theorem 5.5.2, we have

Theorem 5.5.3. Let m = 2n+ 1 be odd, and d0 ∈ Z∗
p.

(1) Suppose that Kp is unramified over Qp. Then

H2n+1(d0, X, Y, t) =

∏2n+1
i=1 (1− p−4n−2(−p)i−1t2)

ϕ2n+1(−p−1)

× 1∏2n+1
i=1 (1 + (−p)−2n+i−2XY t)(1 + (−p)−2n+i−2XY −1t)

× 1∏2n
i=1(1 + (−p)−2n+i−2X−1Y t)(1 + (−p)−2n+i−2X−1Y −1t)

.

(2) Suppose that Kp = Qp ⊕Qp. Then

H2n+1(d0, X, Y, t) =

∏2n+1
i=1 (1− p−4n−2pi−1t2)

ϕ2n+1(p−1)

× 1∏2n+1
i=1 (1− p−2n+i−2XY t)(1− p−2n+i−2XY −1t)

× 1∏2n+1
i=1 (1− p−2n+i−2X−1Y t)(1− p−2n+i−2X−1Y −1t)

.

(3) Suppose that Kp is ramified over Qp. Then

H2n+1(d0, X, Y, t) = t(n+1)ip+δ2p

∏n+1
i=1 (1− p−4n−2p2i−2t2)

2ϕn(p−2)

× 1∏n+1
i=1 (1− p−2n+2i−3XY t)(1− p−2n+2i−3X−1Y −1t)

× 1

(1− p−2n+2i−3X−1Y t)(1− p−2n+2i−3XY −1t)
.

By using the same argument as in the proof of [[14],Theorem 4.3.6 and its corol-
lary] we obtain the following:

Theorem 5.5.4. Let d0 ∈ Z∗
p.

(1) Suppose that Kp is unramified over Qp or that Kp = Qp ⊕Qp. Then

Ĥm(d0, X, Y, t) = Hm(d0, X, Y, t)

for any m > 0.
(2) Suppose that Kp is ramified over Qp.
(2.1) For l = 0, 1 put

Ĥ
(l)
2n (X,Y, t) =

∑
d∈Np

χKp
((−1)nd)lĤm(d,X, Y, t).

Then we have

Ĥ2n(d0, X, Y, t) =
1

2
(Ĥ

(0)
2n (X,Y, t) + χKp((−1)nd0)Ĥ

(1)
2n (X,Y, t)),
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and
Ĥ

(0)
2n (X,Y, t) = H

(0)
2n (X,Y, t),

and
Ĥ

(1)
2n (X,Y, t) = H

(1)
2n (X,Y, χKp(p)t).

(2.2) We have

Ĥ2n+1(d0, X, Y, t) = H2n+1(d0, X, Y, t)

6. Proof of the main theorem

Theorem 6.1. Let k and n be positive integers. Let f be a primitive form in
S2k+1(Γ0(D), χ). For a subset Q of QD and a Dirichlet character η = χi−1 with a
positive integer i put

M(s, f,Ad, η, χQ)

= {
∏
p̸∈Q

(1− α2
pχ(p)

iχQ(p)p
−s)(1− α−2

p χ(p)iχQ(p)p
−s)(1− χi−1(p)χQ(p)p

−s)2

×
∏
p∈Q

(1− α2
pχ

′
Q(p)χ

i−1(p)p−s)(1− α−2
p χ′

Q(p)χ
i−1(p)p−s)(1− χ′

Q(p)χ(p)
ip−s)2}−1,

where for ψ = χQ or ψ = χ′
Q we make the convention ψ(p)χj(p) = ψ(p) or 0

according as j is even or odd. Then, we have

R(s, I2n(f)) = Dns+n2−n/2−1/22−2n+1

×
2n∏
i=2

Λ̃(i, χi)
2n−1∏
i=0

L(2s− 4k − i, χi)−1

×
∑

Q⊂QD

χQ((−1)n)
2n∏
i=1

M(s− 2k − 2n+ i, f,Ad, χi−1, χQ).

Proof. The assertion can be proved by using Theorems 4.1, 5.5.2 and 5.5.4 similarly
to [[14], Theorem 2.3].

□

Theorem 6.2. Let k and n be positive integers. Given a primitive form f ∈
S2k(SL2(Z)). Then, we have

R(s, I2n+1(f)) = Dns+n2+3n/2+1/22−2n

×
2n+1∏
i=2

Λ̃(i, χi)

2n∏
i=0

L(2s− 4k − i+ 2, χi)−1

×
2n+1∏
i=1

L(s− 2k − 2n+ i, f,Ad, χi−1)L(s− 2k − 2n+ i, χi−1).

Proof. The assertion follows directly from Theorems 4.1 and 5.5.3. □

Lemma 6.3. Let f be a primitive form in S2k+1(Γ0(D), χ). Suppose that fQ = f
for Q ⊂ QD. Then for a positive integer i we have

M(s, f,Ad, χi−1, χQ) = L(s, f,Ad, χi−1)L(s, χi−1).
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Proof. For a prime number p letMp(s) and Lp(s) be the p-Euler factor ofM(s, f,Ad, χi−1, χQ)
and L(s, f,Ad, χi−1)L(s, χi−1), respectively. We have Mp(s) = Lp(s) if p ̸∈ Q and
χQ(p) = 1. By the assumption we have

χQ(p)cf (p) = cf (p).

Since f is a primitive form, we have cf (p) ̸= 0 for p|D. Hence we haveMp(s) = Lp(s)
if p ̸∈ Q and p|D. Suppose p ∤ D and χQ(p) = −1. Then cf (p) = 0 and hence
αp + χ(p)α−1

p = 0. Then by a simple computation we have

Mp(s) = (1− p−2s)−2.

Similarly we have
Lp(s) = (1− p−2s)−2.

Suppose that p ∈ Q. Then |αp| = |cf (p)| = 1, and χ′
Q(p)cf (p) = cf (p). Hence αp is

a real number or a purely imaginary number according as χ′
Q(p) = 1 or −1. Hence

χ′
Q(p)α

2
p = χ′

Q(p)α
−2
p = 1, and

Mp(s) = Lp(s).

This completes the assertion. □

Proposition 6.4. (1) Let f be a primitive form in S2k+1(Γ0(D), χ), and Q
be a subset of QD. Then for a positive integer i ≥ 2 the Euler product M(s +
i − 1, f,Ad, χi−1, χQ) is holomorphic at s = 1. Moreover M(s, f,Ad, 1, χQ) has
a non-zero residue at s = 1 if and only if f = fQ. In this case the residue of
M(s, f,Ad, 1, χQ) at s = 1 is L(1, f,Ad).

(2) Let f be a primitive form in S2k(SL2(Z)) and χ be a primitive quadratic
odd character. Then for a positive integer i ≥ 2 the Euler product L(s + i −
1, f,Ad, χi−1)L(s + i − 1, χi−1) is holomorphic at s = 1, and L(s, f,Ad, 1)L(s, 1)
has a simple pole at s = 1 with the residue L(1, f,Ad).

Proof. (1) Clearly M(s + i − 1, f,Ad, χi−1, χQ) is holomorphic at s = 1 if i ≥ 2.
To prove the latter half of the assertion, let R(s, fQ ⊗ fρ) be the tensor product
L-function of fQ and fρ, where

fρ(z) =

∞∑
e=1

cf (e)e(ez).

We note that cf (e) = χ(e)cf (n) and cfQ(e) = χQ(e)cf (n) if (e,D) = 1. Hence we
have

M(s, f,Ad, 1, χQ) = R(s, fQ ⊗ fρ)×
∏
p|D

Mp(s, f,Ad, 1, χQ)

Rp(s, fQ ⊗ fρ)
,

whereMp(s, f,Ad, 1, χQ) andRp(s, fQ⊗fρ) are the p-Euler factors ofM(s, f,Ad, 1, χQ)

and R(s, fQ ⊗ fρ), respectively. We note
∏

p|D
Mp(s,f,Ad,1,χQ)

Rp(s,fQ⊗fρ)
is holomorphic and

nonzero at s = 1. Hence we have

Ress=1M(s, f,Ad, 1, χQ) = c(fQ, f)

with c a nonzero complex numbers (cf. [[23], p. 788] and [[26], p. 831]). Hence
M(s, f,Ad, 1, χQ) has a non-zero residue at s = 1 if and only if (f, fQ) ̸= 0. Since
f and fQ are primitive forms, this is equivalent to say that f = fQ. In this case,
we have

M(s, f,Ad, 1, χQ) = L(s, f,Ad)ζ(s),
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and hence the last assertion holds.
(2) The assertion can easily be proved.

□

Proof of Theorem 2.1.
(1) By Theorem 6.1 and Lemma 6.3, we have

R(s, Im(f)) = Dns+n2−n/2−1/22−2n+1
2n∏
i=1

Λ̃(i, χi)

2n−1∏
i=0

L(2s− 4k − i, χi)−1

× {ηm(f)

2n∏
i=1

L(s− 2k − 2n+ i, f,Ad, χi−1)L(s− 2k − 2n+ i, χi−1)

+
∑

Q∈QD
fQ ̸=f

χQ((−1)n)

2n∏
i=1

M(s− 2k − 2n+ i, f,Ad, χi−1, χQ)}.

By (1) of Lemma 6.4, the term

2n−1∏
i=0

L(2s− 4k − i, χi)−1
2n∏
i=1

M(2s− 2k + i, f,Ad, χi−1, χQ)

is holomorphic at s = 2k + 2n if fQ ̸= f. On the other hand, the term

2n−1∏
i=0

L(2s− 4k − i, χi)−1
2n∏
i=1

L(s− 2k − 2n+ i, f,Ad, χi−1)L(s− 2k − 2n+ i, χi−1)

has a simple pole at s = 2k + 2n with the residue

2n−1∏
i=0

L(4n− i, χi)−1
2n∏
i=1

L(i, f,Ad, χi−1)
2n∏
i=2

L(i, χi−1).

Hence R(s, Im(f)) has a simple at s = 2k + 2n with the residue

Dn(2k+2n)+n2−n/2−1/22−2n+1

× ηm(f)
2n∏
i=2

Λ̃(i, χi)
2n−1∏
i=0

L(4n− i, χi)−1
2n∏
i=1

L(i, f,Ad, χi−1)
2n∏
i=2

L(i, χi−1).

Thus the assertion can be proved by comparing the above result with Proposition
3.1.

(2) The assertion holds if m = 1. In the case m ≥ 3, the assertion can be proved
by Theorem 6.2, (2) of Lemma 6.4, and Proposition 3.1 in the same manner as
above.
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