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Abstract.  This project involves investigation of the problem 

robot path planning using ant colony optimisation heuristics to 

construct the quickest path from the starting point to the 
end.1The project has developed a simulation that successfully 

simulates as well as demonstrates visually through a graphical 

user interface, robot path planning using ant colony optimisation. 

The simulation shows an ability to traverse an unknown 
environment from a start point to an end and successfully 

construct a route for others to follow both when the terrain is 

dynamic and static.  

1 INTRODUCTION 

To be able to prove that a solution to the problem was found and 

that a good level of success had been achieved, the graphical 
user interface (GUI) displays, the pheromone trail and the 

obstacles that occurred which the agents rerouted around, using a 

grid based output shows the path the agents are taking 

throughout the solution. This was comparable to other examples 
of solving the solution with ant colony optimisation (ACO) to 

see if improvements have been made and whether some ACO 

variations are better than others depending on the environment. 

Robot path planning (RPP) is used within many applications 
within the technological world, from helping unmanned vehicles 

to robotics. It is stated by (Cao, 2016) as ‘to find a path from the 

current point (or the start point) to the target point, which is a 

shortest or a minimum price path without barrier’. 
ACO is a heuristic based off the foraging behaviour of ants, 

originally created by Marco Dorigo and in 1991, and further 

expanded on in later years. It was originally the ‘Ant System’ as 

a basic heuristic for solving optimisation problems such as the 
Travelling salesman problem (TSP). However later became 

developed further and more optimised, becoming ACO. 

Within the field of artificial intelligence (AI), ACO is 

becoming increasingly useful. This is especially reinforced when 
Google, Uber and other companies are experimenting and testing 

the idea of self-driving cars and thus many career paths are 

becoming open in the field.   

2 BACKGROUND  

A literature search was conducted, the scope of which includes 

the different techniques that have been employed historically to 
achieve ACO and different variants and modifications that have 

been made to the algorithm to optimise it in most part to solve 

the TSP. Furthermore, investigation was made into the area of 
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RPP and the implementation methods that were used to solve 

this issue. 

As well as this, other areas of ACO were investigated such as 
the usage of artificial neural networks and genetic algorithm 

hybrid heuristics. 

There are some solutions already applied to this problem, 

such as the artificial potential field method, neural networks, 
genetic algorithms (GA) and A* searching method as stated by 

(Yu, Wei, Wang, Ding, & Wang, 2017). However, they went on 

to state that each of the current solutions does have problems 

associated to them. There has also been attempts at hybrid 
models too consisting of different swarm intelligences integrated 

together. 

There have been many different solutions created to try tackle 

this problem such as genetic algorithms which is the 
metaheuristic focussing on evolutionary algorithms that are 

inspired by natural selection and particle swarm optimization 

which iteratively searches for improvements to a candidate 

solution. However, the Swarm Intelligence this paper focussed 
on is ACO which although has proven to work effectively in 

solving the problem, still has improvements that could be made 

and investigated. 

Another variation of ACO that implements GA into it is 
smartPath, created by (Châari, Koubâa, Bennaceur, Trigui, & Al-

Shalfan, 2012). Within their work they proposed system they 

state that ‘ACO has a stronger local search capability and faster 

convergence but the algorithm can easily sink into a local 
optimum’ where as GA ‘belongs to random optimize processes, 

so the local convergence problem does not appear; however, this 

makes its convergence speed slower’. This therefore clearly 

shows that the shortcomings of one can be improved by the 
other.  

The way they therefore designed the algorithm was so that the 

initial path is created from using ACO to create a fast-converged 

optimal path, and the second phase which is using the GA as a 
way of post optimization to improve the quality of the solution. 

This is done by checking all the nodes and then attempting to 

mutate the nodes in the path if the length of a resulting new path 

is shorter. 
When tested against other heuristics such as their improved 

ACO (IACO) and classic ACO (CACO) and even GA it was 

found to outperform each of them in a varying number of 

environments in terms of both finding the shortest path and the 
efficiency with time. 

Another variation on ACO is AntFarm designed by (Collins 

& Jefferson, 1990). Their idea was to create a simulation of an 

evolving population of ant colonies, where the reproduction is 
based on the amount of food they can carry back to nest, thus 

promoting better foraging strategies. The colonies are made up 

of identical ants, however their behaviour is specified by an 

artificial neural network (ANN). 
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This approach is interesting as it implements a genetic 

algorithm (GA) within the ACO algorithm. With this they aimed 
to implement natural evolution using local competition and 

mating. The other main interest within this research is the use of 

an ANN to represent each ant’s behaviour. Through their use of 

GA, they can mutate the ANN allowing evolution of each colony 
of ants. The advantage of a technique such as this is that they can 

mutate and optimise many features of the ants such as 

pheromone density, how the optimal path is defined and other 

factors. 

3 HEURISTIC DEVELOPMENTS  

The way in which the heuristic functions is that the agents (ants) 
will go out from the start point (nest) and search for the end 

objective (food) when the ant reaches the food it will return to 

the nest and lay a track of pheromone. Until the path to the food 

is discovered the ants will decide on random directions, without 
any decision making. However, when a food source is 

discovered and they pick up a pheromone trail is increases the 

probability that future ants will then take this route. Overtime 

this trail will strengthen and most agents will follow this trail. 
As well as being able to handle single-objective optimization 

problems where only one food source is available, (Dehuri, 

Ghosh, & Cho, 2011) states that ACO also excels at multi-

objective optimization problems. These are problems where 
there may be conflicting objectives which solve the same 

solution. So, two food sources of equal value, and many ways 

are presented to solve this issue in their literature review. 

Improvements of ACO are also becoming more common as 
(Yu, Wei, Wang, Ding, & Wang, 2017) states the advantages of 

ACO are ‘its strong robustness’ and more importantly that it’s 

‘easy combination with other algorithms’. It was also 

investigated how much further it would optimise ACO with the 
addition of evolution within the algorithm brought over from 

GA. (Roach & Menezes, 2008) state this also, putting forward 

the evolutionary ant colony optimization (EACO). They further 

state that through using EACO, it’s possible to ‘give the 
individual ants a chance to evolve, and thus, the agents 

themselves can become more optimized’ and they further show 

in their paper that it is much more powerful in dynamic 

environments than ACO however ACO is more efficient in static 
environments. 

4 ROBOT PATH PLANNING ACO METHODS 

Cao (2016) puts forward an improved version of ACO for RPP. 

Within it they stated that the initial search time takes too long. 

This is the result of the randomness at which the ants initially 

search. Therefore (Cao, 2016) uses a pheromone which 
decreases with distance with the idea that the ant will have a 

clear motion direction during the initial search. 

Another criticism that (Cao, 2016) made is that the 

pheromone evaporation rate is unchanged throughout the 
running of the algorithm, which can lead to local convergence if 

too small, or slow convergence rate if too large. Therefore, they 

put forward the notion that a dynamic evaporation rate should be 

used. This is done with setting the evaporation rate high at the 
start to enhance the global search ability, then lowering it with 

the number of cycles so that local convergence can happen on an 

optimal solution quickly. (Yu, Wei, Wang, Ding, & Wang, 2017) 

also criticise the original ACO for this and suggest an ‘adaptive 
pheromone volatilization coefficient’ where they again suggest 

that evaporation rate should change with the number of cycles. 

The heuristic function in previous work was improved upon 

by (Cao, 2016). This is done by changing the heuristic function 
so that the distance between two grid points which is normally 

used is changed so that instead what is used is the distance 

between the next grid point the ant will move to and the target 

point if it is known. This idea is also supported by (Yu, Wei, 
Wang, Ding, & Wang, 2017) where they also improve the 

heuristic so that the point that is closer to the goal is chosen 

instead of blindly picking. The advantage of this is that the initial 

search speed will be greatly improved and give the agents some 
direction when searching out a path. 

However, (Cao, 2016) uses the ant-cycle algorithm described 

by (Dorigo, Maniezzo, & Colorni, 1996) after a cycle of 

movements made, optimal and worst solutions are calculated and 
some of the best solutions are used and the pheromone quantity 

is updated as a result.  

5 IMPLEMENTATION 

The methods aimed to optimise the ACO algorithm as much as 

possible, so the initial work focussed on an approach to firstly 

work on the core system methods and then expand to optimising 
performance, and creating a more complex GUI to control 

parameters. 

The system was created using the python programming 

language. The reasoning behind this choice was the ease to 
develop in a short space of time with its extensive library 

support, readable code and finally due to it being interpreted it is 

much easier to debug. Libraries used within the creation of the 

program include Matplotlib which aided in the creation of the 
graph / grid interface. Another package used is the Tkinter 

package which provides the GUI with the controls to modify the 

functionality of the simulator, and was the base GUI for the 

graph to be imbedded within. 
The project was also designed within the Pycharm IDE 

created by Jetbrains. The reasoning behind this decision was that 

the IDE provided all the tools and functionality required, 

especially ease of package management and syntax correction. 
The ideas presented in this paper have been successfully 

implemented as a proof-of-concept prototype as shown in Fig. 1. 

 

 
Figure 1. Ant Colony with two  



 

The ant colony simulation was then evaluated by comparison 
to results in literature. 

6 EVALUATION 

To evaluate the developed system the best possible way was to 

firstly run tests using the algorithm implemented and compare 

the values and outputs to competitors using ACO or other 

algorithms to solve RPP. It was also worth comparing how the 
programming language or changes to the metaheuristics are used 

as these could possible effect performance. A good starting 

comparison was to compare the results achieved to work 

presented by (Dorigo, Maniezzo, & Colorni, Ant System: 
Optimization by a Colony of Cooperating Agents, 1996) in his 

paper or results found by (Perumal, et al., 2016) and then 

furthermore to other more recent variations.  

7 CONCLUSIONS & FUTURE WORK 

In conclusion ACO shows many potential solutions to solve the 

problem of RPP. Although ACO does show great ability in 
solving optimization problems such as TSP and RPP it has 

shortcomings such as falling into local optimum or not 

converging quick enough. Many improvements can be made not 

only to the heuristics itself, but also by creating a hybrid solution 
using a combination with other heuristics. 

A further area of study within the field however would be to 

consider the problem of multi-objective ACO. As a problem that 

could occur is if two food sources or end points exist, not only 
would the shortest path to each must be found, but then these 

would have to be compared to find which is the optimal solution.  

Future work could include extending this to other platforms 

such as embedded systems. Furthermore looking into applying 
the algorithm with other languages such as C++ would be ideal 

as this would provide much greater time efficiency due to its 

compiled nature and also being a low level language. 

Finally another area of interest would be the implementation 
of evolutionary aspects of GA systems so that it further 

optimises route planning. 
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