
How effective is Ant Colony Optimisation

at Robot Path Planning

Aaron Wolfenden1, Neil Vaughan1

Abstract. This project involves investigation of the problem

robot path planning using ant colony optimisation heuristics to

construct the quickest path from the starting point to the
end.1The project has developed a simulation that successfully

simulates as well as demonstrates visually through a graphical

user interface, robot path planning using ant colony optimisation.

The simulation shows an ability to traverse an unknown
environment from a start point to an end and successfully

construct a route for others to follow both when the terrain is

dynamic and static.

1 INTRODUCTION

To be able to prove that a solution to the problem was found and

that a good level of success had been achieved, the graphical
user interface (GUI) displays, the pheromone trail and the

obstacles that occurred which the agents rerouted around, using a

grid based output shows the path the agents are taking

throughout the solution. This was comparable to other examples
of solving the solution with ant colony optimisation (ACO) to

see if improvements have been made and whether some ACO

variations are better than others depending on the environment.

Robot path planning (RPP) is used within many applications
within the technological world, from helping unmanned vehicles

to robotics. It is stated by (Cao, 2016) as ‘to find a path from the

current point (or the start point) to the target point, which is a

shortest or a minimum price path without barrier’.
ACO is a heuristic based off the foraging behaviour of ants,

originally created by Marco Dorigo and in 1991, and further

expanded on in later years. It was originally the ‘Ant System’ as

a basic heuristic for solving optimisation problems such as the
Travelling salesman problem (TSP). However later became

developed further and more optimised, becoming ACO.

Within the field of artificial intelligence (AI), ACO is

becoming increasingly useful. This is especially reinforced when
Google, Uber and other companies are experimenting and testing

the idea of self-driving cars and thus many career paths are

becoming open in the field.

2 BACKGROUND

A literature search was conducted, the scope of which includes

the different techniques that have been employed historically to
achieve ACO and different variants and modifications that have

been made to the algorithm to optimise it in most part to solve

the TSP. Furthermore, investigation was made into the area of

1 Dept. of Computer Science, Univ. of Chester, CH65 7AL, UK. Email:

{n.vaughan}@chester.ac.uk.

RPP and the implementation methods that were used to solve

this issue.

As well as this, other areas of ACO were investigated such as
the usage of artificial neural networks and genetic algorithm

hybrid heuristics.

There are some solutions already applied to this problem,

such as the artificial potential field method, neural networks,
genetic algorithms (GA) and A* searching method as stated by

(Yu, Wei, Wang, Ding, & Wang, 2017). However, they went on

to state that each of the current solutions does have problems

associated to them. There has also been attempts at hybrid
models too consisting of different swarm intelligences integrated

together.

There have been many different solutions created to try tackle

this problem such as genetic algorithms which is the
metaheuristic focussing on evolutionary algorithms that are

inspired by natural selection and particle swarm optimization

which iteratively searches for improvements to a candidate

solution. However, the Swarm Intelligence this paper focussed
on is ACO which although has proven to work effectively in

solving the problem, still has improvements that could be made

and investigated.

Another variation of ACO that implements GA into it is
smartPath, created by (Châari, Koubâa, Bennaceur, Trigui, & Al-

Shalfan, 2012). Within their work they proposed system they

state that ‘ACO has a stronger local search capability and faster

convergence but the algorithm can easily sink into a local
optimum’ where as GA ‘belongs to random optimize processes,

so the local convergence problem does not appear; however, this

makes its convergence speed slower’. This therefore clearly

shows that the shortcomings of one can be improved by the
other.

The way they therefore designed the algorithm was so that the

initial path is created from using ACO to create a fast-converged

optimal path, and the second phase which is using the GA as a
way of post optimization to improve the quality of the solution.

This is done by checking all the nodes and then attempting to

mutate the nodes in the path if the length of a resulting new path

is shorter.
When tested against other heuristics such as their improved

ACO (IACO) and classic ACO (CACO) and even GA it was

found to outperform each of them in a varying number of

environments in terms of both finding the shortest path and the
efficiency with time.

Another variation on ACO is AntFarm designed by (Collins

& Jefferson, 1990). Their idea was to create a simulation of an

evolving population of ant colonies, where the reproduction is
based on the amount of food they can carry back to nest, thus

promoting better foraging strategies. The colonies are made up

of identical ants, however their behaviour is specified by an

artificial neural network (ANN).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/153433046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This approach is interesting as it implements a genetic

algorithm (GA) within the ACO algorithm. With this they aimed
to implement natural evolution using local competition and

mating. The other main interest within this research is the use of

an ANN to represent each ant’s behaviour. Through their use of

GA, they can mutate the ANN allowing evolution of each colony
of ants. The advantage of a technique such as this is that they can

mutate and optimise many features of the ants such as

pheromone density, how the optimal path is defined and other

factors.

3 HEURISTIC DEVELOPMENTS

The way in which the heuristic functions is that the agents (ants)
will go out from the start point (nest) and search for the end

objective (food) when the ant reaches the food it will return to

the nest and lay a track of pheromone. Until the path to the food

is discovered the ants will decide on random directions, without
any decision making. However, when a food source is

discovered and they pick up a pheromone trail is increases the

probability that future ants will then take this route. Overtime

this trail will strengthen and most agents will follow this trail.
As well as being able to handle single-objective optimization

problems where only one food source is available, (Dehuri,

Ghosh, & Cho, 2011) states that ACO also excels at multi-

objective optimization problems. These are problems where
there may be conflicting objectives which solve the same

solution. So, two food sources of equal value, and many ways

are presented to solve this issue in their literature review.

Improvements of ACO are also becoming more common as
(Yu, Wei, Wang, Ding, & Wang, 2017) states the advantages of

ACO are ‘its strong robustness’ and more importantly that it’s

‘easy combination with other algorithms’. It was also

investigated how much further it would optimise ACO with the
addition of evolution within the algorithm brought over from

GA. (Roach & Menezes, 2008) state this also, putting forward

the evolutionary ant colony optimization (EACO). They further

state that through using EACO, it’s possible to ‘give the
individual ants a chance to evolve, and thus, the agents

themselves can become more optimized’ and they further show

in their paper that it is much more powerful in dynamic

environments than ACO however ACO is more efficient in static
environments.

4 ROBOT PATH PLANNING ACO METHODS

Cao (2016) puts forward an improved version of ACO for RPP.

Within it they stated that the initial search time takes too long.

This is the result of the randomness at which the ants initially

search. Therefore (Cao, 2016) uses a pheromone which
decreases with distance with the idea that the ant will have a

clear motion direction during the initial search.

Another criticism that (Cao, 2016) made is that the

pheromone evaporation rate is unchanged throughout the
running of the algorithm, which can lead to local convergence if

too small, or slow convergence rate if too large. Therefore, they

put forward the notion that a dynamic evaporation rate should be

used. This is done with setting the evaporation rate high at the
start to enhance the global search ability, then lowering it with

the number of cycles so that local convergence can happen on an

optimal solution quickly. (Yu, Wei, Wang, Ding, & Wang, 2017)

also criticise the original ACO for this and suggest an ‘adaptive
pheromone volatilization coefficient’ where they again suggest

that evaporation rate should change with the number of cycles.

The heuristic function in previous work was improved upon

by (Cao, 2016). This is done by changing the heuristic function
so that the distance between two grid points which is normally

used is changed so that instead what is used is the distance

between the next grid point the ant will move to and the target

point if it is known. This idea is also supported by (Yu, Wei,
Wang, Ding, & Wang, 2017) where they also improve the

heuristic so that the point that is closer to the goal is chosen

instead of blindly picking. The advantage of this is that the initial

search speed will be greatly improved and give the agents some
direction when searching out a path.

However, (Cao, 2016) uses the ant-cycle algorithm described

by (Dorigo, Maniezzo, & Colorni, 1996) after a cycle of

movements made, optimal and worst solutions are calculated and
some of the best solutions are used and the pheromone quantity

is updated as a result.

5 IMPLEMENTATION

The methods aimed to optimise the ACO algorithm as much as

possible, so the initial work focussed on an approach to firstly

work on the core system methods and then expand to optimising
performance, and creating a more complex GUI to control

parameters.

The system was created using the python programming

language. The reasoning behind this choice was the ease to
develop in a short space of time with its extensive library

support, readable code and finally due to it being interpreted it is

much easier to debug. Libraries used within the creation of the

program include Matplotlib which aided in the creation of the
graph / grid interface. Another package used is the Tkinter

package which provides the GUI with the controls to modify the

functionality of the simulator, and was the base GUI for the

graph to be imbedded within.
The project was also designed within the Pycharm IDE

created by Jetbrains. The reasoning behind this decision was that

the IDE provided all the tools and functionality required,

especially ease of package management and syntax correction.
The ideas presented in this paper have been successfully

implemented as a proof-of-concept prototype as shown in Fig. 1.

Figure 1. Ant Colony with two

The ant colony simulation was then evaluated by comparison
to results in literature.

6 EVALUATION

To evaluate the developed system the best possible way was to

firstly run tests using the algorithm implemented and compare

the values and outputs to competitors using ACO or other

algorithms to solve RPP. It was also worth comparing how the
programming language or changes to the metaheuristics are used

as these could possible effect performance. A good starting

comparison was to compare the results achieved to work

presented by (Dorigo, Maniezzo, & Colorni, Ant System:
Optimization by a Colony of Cooperating Agents, 1996) in his

paper or results found by (Perumal, et al., 2016) and then

furthermore to other more recent variations.

7 CONCLUSIONS & FUTURE WORK

In conclusion ACO shows many potential solutions to solve the

problem of RPP. Although ACO does show great ability in
solving optimization problems such as TSP and RPP it has

shortcomings such as falling into local optimum or not

converging quick enough. Many improvements can be made not

only to the heuristics itself, but also by creating a hybrid solution
using a combination with other heuristics.

A further area of study within the field however would be to

consider the problem of multi-objective ACO. As a problem that

could occur is if two food sources or end points exist, not only
would the shortest path to each must be found, but then these

would have to be compared to find which is the optimal solution.

Future work could include extending this to other platforms

such as embedded systems. Furthermore looking into applying
the algorithm with other languages such as C++ would be ideal

as this would provide much greater time efficiency due to its

compiled nature and also being a low level language.

Finally another area of interest would be the implementation
of evolutionary aspects of GA systems so that it further

optimises route planning.

REFERENCES

[1] Cao, J. (2016). Robot Global Path Planning Based on an Improved

Ant Colony Alogrithm. Journal of Computer and Communications,

4, 11-19. doi:http://dx.doi.org/10.4236/jcc.2016.42002

[2] Châari, I., Koubâa, A., Bennaceur, H., Trigui, S., & Al-Shalfan, K.

(2012). smartPath: A hybrid ACO-GA algorithm for robot path

planning. Evolutionary Computation (CEC), 2012 IEEE Congress

on (pp. 1-8). Brisbane, QLD, Australia: IEEE.

doi:10.1109/CEC.2012.6256142

[3] Collins, R. J., & Jefferson, D. R. (1990). AntFarm: Towards

Simulated Evolution. Los Angeles: University Of California.

Retrieved from

https://www.researchgate.net/profile/David_Jefferson/publication/2

551611_AntFarm_Towards_Simulated_Evolution/links/0fcfd5092

8f91e0fda000000.pdf

[4] Dehuri, S., Ghosh, S., & Cho, S.-B. (2011). Integration of swarm

intelligence and artificial neural network. World Scientific.

[5] Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new

meta-heuristic. Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (pp. 1470-1477). Washington: IEEE.

doi:10.1109/CEC.1999.782657

[6] Dorigo, M., Birattari, M., & Stutzle, T. (2006, November). Ant

colony optimization. IEEE Computational Intelligence Magazine,

I(4), 28-39. doi:10.1109/MCI.2006.329691

[7] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System:

Optimization by a Colony of Cooperating Agents. IEEE

Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436

[8] Perumal, N., Rashid, R., Elamvazuthi, I., Tageldeen, M. K., Khan,

M. K., & Parasuraman, S. (2016). Mobile robot path planning

using Ant Colony Optimization. 2016 2nd IEEE International

Symposium on Robotics and Manufacturing Automation (ROMA)

(pp. 1-6). Ipoh: IEEE. doi:10.1109/ROMA.2016.7847836

[9] Roach, C., & Menezes, R. (2008). Handling Dynamic Networks

Using Evolution in Ant-Colony Optimization. New Frontiers in

Applied Artificial Intelligence (pp. 795-804). Wroclaw: Springer.

doi:https://doi.org/10.1007/978-3-540-69052-8_83

[10] Yu, L., Wei, Z., Wang, H., Ding, Y., & Wang, Z. (2017). Path

planning for mobile robot based on fast convergence ant colony

algorithm. 2017 IEEE International Conference on Mechatronics

and Automation (ICMA) (pp. 1493-1497). Takamatsu: IEEE.

doi:10.1109/ICMA.2017.8016037

