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ABSTRACT

Zika virus has affected the world as a long-term threat. Modeling its transmission is important in order to facilitate forecasts and
control measures. We propose a novel node-based interconnected population model to simulate both vectored and sexual
transmission of Zika virus. Using a sexual contact network, we incorporate heterogeneous mixing in the host population
with stochastic transmission for realistic predictions. We also incorporate climatic variations in our model, which affect the
mosquito vector population and consequently the arbovirus transmission. We perform extensive simulations to understand the
effects of sexual transmission rate and network topology on the spreading of infections. Sexual transmission contributes to the
epidemic spread and under certain conditions, can sustain it up to several months without vectors. This can potentially lead to
recurrences once the mosquitoes overwinter. We also find that sexual transmission can have a stronger effect when vectored
transmission is relatively weaker due to climatic conditions. Our results show that vectored and sexual transmission affect the
disease dynamics differently.

Introduction

Zika virus (ZIKV) is a positive-sense single-stranded RNA virus of the Flaviviridae family1. It is related to other flaviviruses such
as Dengue, Yellow fever, West Nile and Japanese Encephalitis. ZIKV infection symptoms include acute fever, maculopapular
rash, arthralgia and conjunctivitis. However, only 20% of the cases show symptoms2, which poses a major problem in the
timing of response measures. ZIKA infection in pregnant women can result into congenital microcephaly; a severe birth defect
that causes underdeveloped brain in the newborns3. The transmission occurs primarily by infected mosquito vectors such as
Aedes aegypti and Aedes albopictus. However, it can also spread via semen and blood4.

In 2015, an outbreak was confirmed in Brazil. The infection quickly spread into many South American territories by the end
of that year. The WHO declared Zika outbreak as a Public Health Emergency of International Concern (PHEIC) in February
2016. The first autochthonous case of Zika in the mainland US was reported in July 2016, in Miami, Florida. As of February
21st 2018, 5658 cases have been reported in the US States. In 2016, 228 autochthonous cases have been reported where the
state of Florida itself is responsible for 97% of those cases, and the remaining 3% cases occurred in Texas5. There is very little
knowledge about the spread of ZIKV in the Americas prior to WHO’s declaration. Many parameters regarding the epidemic are
still unknown. Recent studies assume those parameters using the estimates from Dengue outbreak data6789.

As the disease is predominantly vector-borne, the outbreaks are strongly dependent on Aedes mosquito vector density
and the climatic conditions6. The mosquito lifespan and extrinsic incubation period is dependent on temperature8. For these
reasons, outbreaks occur only in those places where the vectors are abundant. Even in those locations, ZIKV outbreaks show
strong seasonal variation due to the fluctuations in temperature and precipitations7. Not all people are equally susceptible to the
infection. The availability of air-conditioning, mosquito repellents, situational awareness etc. affect the exposure to arboviruses.
Socio-economic condition introduces another dimension of heterogeneity in the susceptible population6. ZIKV epidemics have
slow growth rates6; however, it is still difficult to control due to low reporting rates and relatively slow screening process10.
International travel has contributed to the spreading across continents5.

There have been several attempts in modeling the outbreak of ZIKV. Kucharski et al. used the classical compartmental
model to simulate the 2013-14 outbreak in French Polynesia11. The model assumed spatial homogeneity and no effect of
seasonality. Castro et al. performed a risk assessment for Zika in Texas7. They estimated county level importation risks from
socioeconomic and demographic data and used those to estimate ZIKV imports and the subsequent probabilities of triggering
large outbreaks. Their work incorporated a multi-compartment model for the host alone (humans) in a stochastic branching
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process. They fitted the Exposed class to consider the effects of vector-borne transmission7. Perkins et al. estimated epidemic
attack rates for highly spatially resolved data8 using the classical formulation of epidemic burnout12. This work projected a
revised upper limit of at risk population taking advantage of the herd immunity. Zhang et at. used a global spatiotemporal
model to project the spread of ZIKV in the Americas6. They estimated the posterior probabilities for time and place of ZIKV
introduction in Brazil. Their work however, did not consider the effects of sexual transmission. Another work by Gao et al.
incorporated both mosquito-borne and sexual transmission to investigate the spread in a deterministic manner. They concluded
that sexual transmission contributes about 3.044% of the total transmission9.

The individual-based (i.e., node-based) network model is different from basic compartmental models because it features
heterogeneous mixing. An individual (i.e., a node) is only connected to a few other individuals, not the entire population. In
the context of real world sexual contact networks, this is realistic. The vector population is usually very large. Therefore, it
is unnecessary to use node–based models in this case. We use a homogeneous population model for the vector population.
We interconnect these two populations (hosts and vectors) via the use of infection rate parameters where the infection of one
population depends on the number of infected in the other population. There has been several works on epidemic spreading in
interconnected networks13. However, due to the multi–host (one being the vector) scenario, our model is built differently from
conventional interconnected networks. Our goal is to incorporate heterogeneity in the host population but reduce unnecessary
computational overhead by interconnecting with the homogeneous vector population. In the host network sub-model, each host
node can have either one of the four SEIR states (Susceptible, Exposed, Infected and Recovered). In the vector population sub-
model, the population is modeled into three compartments: SEI (Susceptible, Exposed and Infected). We only use demography
for the vector model and, the climatic variation is incorporated into the vector birth rate. This birth rate is dependent on the
time/season of the year and is based on real world data collected in Miami, FL and Phoenix, AZ. The simulation model is
based on Gillespie’s Stochastic Simulation Algorithm (SSA)14. However, we have variable rate parameters in our model, which
prompted us to use the non-Markovian Gillespie Algorithm (n-MGA)15 to simulate our model which we implement using the
modified version of the GEMF16 tool.

The remainder of this paper is organized as follows. In the model formulation section we describe our model, formulate
the seasonal variations, and discuss our simulation tool. The results section is divided into three subsections. In the input
Data subsection, we describe the characteristics of our host contact network. In the seasonal analysis subsection, we perform
several outbreak analyses using different disease starting seasons and show temporal behaviors of the disease spread and
its dynamics in both host and vector populations. In the survival analysis subsection we perform extensive simulations to
estimate pathogen survival due to solely sexual transmission once vector population dies out. We also compare how sexual
and vectored transmission affect the epidemic lengths and epidemic sizes. The discussion section contains the summary of
this paper including our key findings. Finally, in the methods section, we elaborate on our model, explain the mathematical
equations of the disease model, simulation model, and the network generation process.

Model Formulation

Vector Interconnected Model
We propose a coupled network model to investigate the spread of ZIKV among human host and mosquito vector population. A
small example of a coupled network is shown in Figure 1. The sexual contact network of the host population is constructed
based on the sexual behavior of the human community. We use a preferential attachment model to generate that. The mosquito
population is homogeneous and separate from the network; however, it is coupled to the sexual contact network and has
infection paths to every host node, as any infectious vector can infect a susceptible host in its vicinity.

Each host node has four states, Susceptible (S), Exposed (E), Infected (I) and Recovered (R). The vector population is
homogeneously distributed into the following three compartments, Susceptible (SV ), Exposed (EV ) and Infected (IV ). The host
states are defined as probabilities and the vector compartments are defined as populations. A sum over the probabilities of being
in a particular state for all the host nodes gives the total number of hosts in that state. A host node can get infected via two
mechanisms, i) Bites from infected mosquitoes (at the rate λHV ) or ii) Sexual contact with infected hosts (at the rate β ). The
elements of the adjacency matrix, ai j indicates if there is a link (sexual relationship) between the nodes i and j. The parameters
used in our model formulation are listed in Table 1.

Sexual Contact Network
One of the most important input to our simulation tool is the host contact network. It has been seen that sexual contact networks
are not random. The degree distributions of such networks follow the scale-free structure18. In such networks, there are large
variations in the number of sexual partners while a small group of highly active people form the core18. Core groups are
important in sustaining pathogen transmission specially if the duration of infection, (1/γ) is short19.
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Figure 1. Vector Coupled network model for ZIKV. The solid circles indicate host nodes and the cloud shape above indicates
the vector population. The solid edges connecting the nodes indicate the sexual contact network and the dashed edges indicate
coupling of the vector population to all host nodes. Each host node has four states (SEIR) and the entire vector population is
divided into three compartments (SV EV IV ).

Seasonal Variations
We intend to incorporate temporal variations in climate and the effects of season on the mosquito vectors. To simplify this
task, we take the mosquito vector abundance data expressed as a fraction in the range [0,1] and multiply this with the constant
mosquito birth rate. These abundance data were used in the work of Monaghan et. al.20 which they extracted from the works of
Reiskind et. al21. We use the data from two separate locations, Miami, FL and Phoenix, AZ. The mosquito abundance factors
for these two locations over the course of 12 months are plotted in 2. The data originally had 12 sample points (monthly values).
As our model requires the abundance factor on a daily basis, we use linear interpolations between data points of adjacent
months.

Simulation Tool
If the transition rate parameters are kept constant, the state transitions of the host nodes are Markov processes. A stochastic
algorithm such as the Gillespie SSA14 can be used to perform simulations in most cases. The well-developed GEMFsim16

can be used to solve such stochastic spreading processes in the networks. However, our model requires a few changes before
simulations can be performed.

In our model, the transition rate parameters are not constant. The mosquito birth rate is a seasonally dependent parameter
that varies according to the given vector abundance input data. The mosquito vector population is also simulated independently
in parallel to the SSA transitions of the host nodes. So, the infection rates due to mosquito bites constitute a set of exogenously
varying parameters. Due to these parameters, the processes become non-homogeneous Poisson. To avail this issue, we use the
non-Markovian generalized Gillespie Algorithm (nMGA)15 which assumes general renewal processes that allows exogenous
variations of parameters. We modified the existing GEMFsim16 accordingly and added a deterministic vector model ODE
solver. We coupled the vector solver with the nMGA simulator to facilitate the exchanges of parameters during a simulation run.
The parameters are updated after each event as the nMGA is an event-based simulation. The accuracy of this implementation
depends on the time between events. The time steps should be small in order to keep the parameter discrepancy between the
two coupled system at a minimum. Fortunately, it is indeed the case when infection is present in the population.
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Symbol Parameter Description Range Nominal Value Reference
NH Total human host population - 1,000 Assumed
NV Total mosquito vector population - 2,000 Assumed
λHV Vector to host pathogen transmission rate - rTHV -
λV H Host to vector pathogen transmission rate - rTV H -
β Host to host sexual transmission rate 0.00 - 0.05 0.005 Assumed
δ Intrinsic incubation rate in hosts (day−1) 1/2 - 1/9 1/7 Zhang et. al.6

σ Extrinsic incubation rate in vectors (day−1) 1/7 - 1/10 1/8 Zhang et. al.6

γ Host recovery rate (day−1) 1/3 - 1/7 1/7 Caminade et. al.17

A(t) Mosquito abundance factor 0 - 1 See Fig 2 -
F(t) Mosquito birth rate (day−1vector−1) - (1/12)×A(t) As defined
ε Mosquito mortality rate (day−1) 1/4 - 1/35 1/12 Gao et. al.9

THV Vector to host pathogen transmission probability 0.214 - 0.8 0.634 Castro et. al.7

TV H Host to vector pathogen transmission probability 0.6 - 0.95 0.770 Castro et. al.7

r Mosquito bite rate (host−1vector−1day−1) - b/NH -
b Mosquito bite rate (vector−1day−1) 0.4 - 0.8 0.63 Castro et. al.7

m Barabási-Albert attachment parameter 1 - 10 2 Assumed
Tend Simulation termination time / Max run-time (day) - 250 Assumed
Mstart Simulation start month / Pathogen introduction month 1-12 11 Assumed

Table 1. Epidemic model parameters.

Results
The Input Data
The simulation tool takes as input all the parameters listed in Table 1, the initial conditions, the seasonal variation data and the
contact network representation. As an initial condition, we infect (I) a single vector and assume the remaining vector population
and the entire host population to be in the susceptible state (S). We specify the geographic location (either Miami or Phoenix),
the starting month and the maximum run time of the simulation. For example, if we start the simulation from 1st May and run it
for a maximum of 100 days for the location of Miami, the simulation will run up to 2nd week of August and it will use the
abundance data of Miami, FL as input. A simulation ends before completing the maximum run-time if the epidemic dies out.
As we are running stochastic simulations, we smooth out our results by averaging over 500 realizations.

An important input is the network representation of the host population. Based on human sexual behaviors, we choose the
Barabási-Albert preferential attachment mechanism22 to generate the networks. We start with a seed graph and then add nodes
to it. Each new node gets connected to m existing nodes. The probability of an existing node being picked for a new connection
is proportional to its current node degree. The generated network has the property that it contains a few high degree nodes that
form the core group and many low degree nodes. Two such examples of scale-free networks are depicted in Figure 3.

Seasonal Analysis
We first explore the effect of seasonal variations on the epidemic progression. We use all the nominal parameter values defined
in Table 1 and run simulations for both locations (Miami and Phoenix) for three distinct starting times. Taking some cues from
seasonal patterns observed in the Figure 2, we choose to run independent scenarios starting on 1st of April, 1st of August and
1st of October. The maximum simulation run time, Tend is chosen to be 250 days. The initial condition is set as a single infected
vector with everything else being susceptible. The averaged results of 500 simulations are shown in Figures 4 and 5.

We observe a large epidemic in Miami if pathogen is introduced on 1st August. In Phoenix, large epidemics occur if
pathogen is introduced on both 1st August and 1st October. For all other cases, the epidemic sizes are quite small. This can
be explained by comparing with the seasonal variations of Figure 2. In Miami, the mosquito abundance is high during the
beginning of August. This contributes to sustaining the mosquito population longer than the other two dates in the same location
(i.e. Miami). Similar arguments can be given for the two large outbreaks observed in Phoenix as well.

We also notice an interesting behavior. Despite having large positive slope in vector abundance of Miami on the month of
April and large negative slope in vector abundance of Phoenix on the month of October, Miami suffers a small outbreak whereas
Phoenix suffers a large one. Figure 5 shows that the infected vectors die out soon for the April epidemic in Miami although the
upcoming summer sustains healthy vectors for a long time. In case of the October epidemic in Phoenix, the infected vectors
rise rapidly in the first 50 days. Although after 50 days, vector population declines rapidly as well due to unsuitable climates of
the upcoming winter, the initial surge in infected mosquitoes causes a large outbreak. The results indicate that the suitability of
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Figure 2. Variation in mosquito abundance with time. Due to changing temperature, rainfall and other climatic factors,
mosquito abundance varies throughout the year. The blue dotted lines with squares show the variations in Palm Beach, FL and
the orange dot-dashed lines with diamonds show the variations in Phoenix, AZ. Vector abundance peaks during June-July in
Florida and during September-October in Phoenix. The Miami plot was constructed from data observed in Palm Beach, FL
over 27 four-week periods from 2006-20082021. The Phoenix plot was constructed from data observed in Phoenix, AZ over 10
years from 2006-2015.2021.

Figure 3. Barabási-Albert preferential attachment networks with 100 nodes both. We start with a Gilbert graph of 10 nodes
with the edge probability p = 0.001. We use it as the seed and add the remaining nodes according to the preferential attachment
mechanism with parameter m. The left graph is constructed for, m = 1 and the right graph is constructed for m = 2. The details
of the generation process are included in the Methods section. The nodes are coded with the color spectrum from green to red
which marks the nodes from low degree to high degree. Both of the graphs have scale free node degree distributions with
average degree values of 1.814 (left) and 3.48 (right). The edge densities (ratio of edge count with respect to fully connected
graphs) of graphs are 0.002 (left) and 0.004 (right).

the climate during pathogen introduction plays a major role in determining the size of the outbreak. The effects of changes in
suitability in the following months are minimal.

Survival Analysis
Next, we explore the survival characteristics of ZIKV. To analyze survival we will be looking at epidemic attack rates, epidemic
length and the pathogen survival period.
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Figure 4. The time series plots of a ZIKV epidemic in the host population. Based on vector abundance data, the left column
contains the results obtained for Miami and the right column contains the results obtained for Phoenix. The three rows indicate
starting times of the epidemic on 1st April, 1st August and 1st October respectively. The hosts in different states are expressed
as the fractions of the total population. The four states (SEIR) are marked by colors as indicated by the legend box in the
bottom. The above plots are the averages of 500 independent stochastic simulations.

Epidemic Attack Rate (AR)
The epidemic attack rate (AR) is defined as,

AR =
Number of hosts who experience infection throughout the epidemic

Total number of hosts, NH
(1)

The value of AR is in the range [0,1]. We sometimes also express this quantity as a percentage instead of fraction. For example,
an AR of 0.3 means 30% of the population were infected during the epidemic and the remaining 70% never experienced any
infection.
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Figure 5. The time series plots of a ZIKV epidemic in the vector population. Based on vector abundance data, the left column
contains the results obtained for Miami and the right column contains the results obtained for Phoenix. The three rows indicate
starting times of the epidemic on 1st April, 1st August and 1st October respectively. The number of vectors in different
compartments are expressed in a log scaled y-axis with respect to time. The three compartments (SEI) are marked by the colors
as indicated by the legend box in the bottom. The above plots are the averages of 500 independent stochastic simulations.

Host Epidemic Length (THL)

The host epidemic length is defined as,

THL = The last time instant between 0 and Tend where there is at least one infected host left (2)

It is the last day on the epidemic time-line an infected host can be found. In this work, when we use the term ”epidemic length”,
we imply host epidemic length THL unless otherwise mentioned.
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Vector Epidemic Length (TV L)
The vector epidemic length is defined as,

TV L = The last time instant between 0 and Tend where there is at least one infected vector left (3)

It is the last day on the epidemic time-line an infected vector can be found. In typical outbreak situations, infected vectors die
out before the all the infected hosts has recovered.

Pathogen Survival Period, (TPS)
The vector free pathogen survival period is defined as,

TPS = THL−TV L (4)

It is a measure of how long pathogen can survive in the host population without the presence of vectors.
To see how some of the above mentioned quantities relate to our host contact network, we vary the preferential attachment

parameter, m. This parameter specifies the number of connections an incoming node will create with the existing nodes during
the Barabási-Albert network generation process. Effectively, this parameter controls the network density. A higher value of m
will produce a well connected network with more edges, whereas a lower value will produce a sparse network. This signifies
how people are engaged in sexual relationships in a community. The results obtained by varying m are shown in the top row of
Figure 6. Figure 6a shows that the epidemic lengths in both Miami and Phoenix increase with the increase in network density.
The pathogen survivals in both the regions also increase as evident in Figure 6b. Figure 6c shows a slow increasing trend in
epidemic attack rate with the increased network density. We also see that, the attack rate in Miami is lower than Phoenix but the
situation is opposite for pathogen survival. This is due to the fact that, Phoenix has a more suitable climate for mosquito vectors
compared to Miami, which is reflected by the high AR found for Phoenix. Although, the pathogen survivals in both places
are affected with positive correlation by m, this parameter affects Miami more than Phoenix. Relatively smaller epidemics of
Miami are aided by increased sexual transmissibility resulting from higher values of m. This effect is also evident when we
observe the effect of β on the same quantities.

We now focus into the effects of sexual transmission rate, β , on the epidemic length, pathogen survival, and attack rate.
Increased β has a boosting effect on all three of them as evident in Figure 6 middle row. However, both the epidemic length
and pathogen survival values tend to saturate after approximately β = 0.035 in Figures 6d and 6e. There are a few data points
where these two quantities can even decrease with an increased value of β . This counter-intuitive behavior can be attributed to
faster epidemic burnouts. The attack rate increases monotonically as expected (Figure 6f). So, even though we have a higher
transmission rate, which causes a higher proportion of hosts to get infected, the epidemic peaks sooner than before and dies out
faster. This is the reason why we see sudden drops in epidemic length and pathogen survival. In Figure 6e, we see a pattern
similar to the one we observed before (Figure 6b) while varying m: higher sexual transmission rate extends the epidemic length
in Miami more compared to Phoenix. This is due to comparatively more suitable climate of Phoenix which increases the vector
epidemic length.

We now study the impact of the pathogen introduction time–i.e., the starting time of the epidemic (Mstart). ZIKV is
predominantly vector-borne which means it is heavily affected by the vector availability that changes with time. We have
already shown in Figure 2 how the vector abundance can vary throughout the year. We run simulations for 12 ZIKV introduction
dates (i.e., simulations start date, Mstart ) consisting of 1st day of each month of the year to evaluate how those dates affect the
epidemic. The results are shown in the bottom row of Figure 6. The epidemic attack rates are directly correlated to the vector
abundance as the plots (Figure 6i) closely resembles the abundance plots (Figure 2). The epidemic length plots (Figure 6g) also
show somewhat positive correlation with respect to the abundance plots. We can see that epidemics have longer duration when
started on the month of May in Miami and July-August in Phoenix. Notice, these peaks in the duration plots are associated
with the points with maximum positive slope in the abundance plots. In accordance to our findings in the seasonal analysis,
larger epidemics are also longer in general. This behavior is quite opposite to the behavior observed for higher values of the
sexual transmission rate (β ) where we saw that larger epidemics can die out faster. The fact is that, vectored transmission and
sexual transmission affect the disease progression differently. If we analyze the pathogen survival plots (Figure 6h) we see that
survival remains unchanged except for the introduction months when we have large epidemics (refer to the AR plot in Figure
6i). In those large outbreak cases (attack rate above 0.8), pathogen survival becomes negative. The negative values indicate
that the simulations run out of the susceptible host pool but there are infected vectors still alive after that. The high attack rate
scenarios are not realistic, as in the real world situation there will almost always be some sort of control measures in place. A
proportion of the population will be alert and careful enough to avoid mosquito bites and vectored transmission. Hence, in a
real world, we may never see such high attack rates.

If we consider how epidemic size (i.e., the attack rate, AR) is affected by the three parameters: m, β , and Mstart , we see that
it is least sensitive to the Barabási-Albert parameter, m (Figure 6c) compared to the other two quantities (the sexual transmission
rate, β and the pathogen introduction month, Mstart ) we have varied in this analysis (Figures 6f and 6i).
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Figure 6. The plots depicting the results of pathogen survival analysis. The 1st row shows the results obtained by varying the
Barabási-Albert parameter m, the 2nd row shows the results obtained by varying the sexual transmission rate β , and the 3rd row
shows the results obtained by varying Mstart , the month when the pathogen is first introduced into the population. Each data
point given in the above plots is an average of 500 independent stochastic simulations.

Discussion
In this paper we have proposed a novel individual based interconnected model for ZIKV which can be used to accurately
simulate vector-borne diseases which also have contact based direct transmission paths. We use heterogeneous mixing modeled
by a host contact network which is interconnected to a vector population based compartmental model. We take advantage of the
approximation of Non-Markovian Gillespie algorithm to simulate disease outbreaks. Once we develop the model, we use it to
analyze ZIKV spreading dynamics in a population under several scenarios. First, we explore the effects of seasonal variation
on the epidemic spread of ZIKV. Next, we investigate the survival potential of the ZIKA virus in the host population without
vectors. In the later step we also analyze how variations of the sexual activity in a community and the transmission rate affect
the disease outcome and the pathogen survival.

In our seasonal analysis, we find that epidemics are highly influenced by the environmental conditions that persist during
the time of pathogen introduction. Even if climatic suitability of mosquito vectors decline rapidly after the first couple of weeks,
the vectors manage to spread the pathogen in the host population rapidly and cause large outbreaks. This suggests that a ZIKV
epidemic can go rapidly out of control if it is not effectively contained in the first few days.
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The survival analysis provides us with a more detailed picture of the disease dynamics compared to the seasonal analysis.
It is obvious from the Figures 6c, 6f, 6i and other previous works9 that sexual transmission affects ZIKV epidemics weakly
compared to the vectored transmission. However, we also see that these two transmission mechanisms affect the disease spread
differently. Pathogens can survive longer due to sexual transmission when vectored transmission is relatively weak during
other seasons (compared to summer). In those months, we also see that sexual transmission has a more profound effect on
epidemic size. This suggests that sexual transmission could be an important aspect to consider for regions with low vector
abundance. We find that with increased sexual transmission, the overall size of the epidemic will increase. However, the length
of the epidemic and the pathogen survival start to saturate at some point and no longer increase monotonically. These are the
scenarios where larger epidemics can also have faster burn-outs.

The conclusions drawn from our results can be useful in evaluating potential endemic scenarios for ZIKA virus disease in
temperate regions. The unavailability of data on model parameters of ZIKA requires further efforts on estimation of those
parameters. This model can be readily used for other vector-borne diseases with secondary transmission paths. Although Dengue
virus (DENV) and Chkungunya virus (CHIKV) have not been reported to transmit sexually, the conclusions drawn in our
seasonal analysis should also hold for the epidemic spreads of those diseases due to the similarities in vectored-transmission23.
The network model used in our paper is based on sexual behavioral patterns. However, real world data on sexual contact
networks, if available, can be used to generate even better predictions. Activity driven network (ADN) approach is also an
effective method to model real world networks that have temporal variations. The non-Markovian Gillespie Algorithm (nMGA)
which is used in this work can be readily extended to incorporate disease and vector control measures as this model supports
temporally varying parameters.

Methods
Host Characterization
We use the mean-field approach developed by Sahneh et al.24 to model spreading of pathogen among the human hosts in the
sexual contact network. Our model has one single layer (L = 1) contact network. We define four states (M = 4) for a node:
Susceptible (S), Exposed (E), Infected (I) and Recovered (R). We also define the probability of node i being in a state v at
time t as vi(t) where v can be either S, E, I or R. For example, Ii(t) is the probability that node i is infected at time t. We use
the generalized epidemic mean-field simulator (GEMFsim) developed by Sahneh et. al.16 to run our simulations. For this
framework, we define the transition rate graphs in Figure 7.

The adjacency matrices corresponding to these two graphs are,

Aδ =


0 λHV IV 0 0
0 0 δ 0
0 0 0 γ

0 0 0 0

 , Aβ =


0 β 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (5)

Here Aδ is the nodal transition rate matrix and Aβ is the edge-based transition rate matrix. The corresponding Laplacian
matrices are given by,

Qδ =


λHV IV −λHV IV 0 0

0 δ −δ 0
0 0 γ −γ

0 0 0 0

 , Qβ =


β −β 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (6)

We can derive the differential equations according to the formula developed in GEMF,

dvi

dt
=−QT

δ
vi−

NH

∑
j=1

ai jv j,3QT
β

vi (7)

Where ai j’s are the elements of the adjacency matrix of the sexual contact network. If there is a connection between node i
and node j then ai j = 1, otherwise it is 0. Using the appropriate symbols of the compartments we get,


Ṡi
Ėi
İi
Ṙi

=−


λHV IV 0 0 0
−λHV IV δ 0 0

0 −δ γ 0
0 0 −γ 0




Si
Ei
Ii
Ri

− (
NH

∑
j=1

ai jI j)


β 0 0 0
−β 0 0 0
0 0 0 0
0 0 0 0




Si
Ei
Ii
Ri

 (8)
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Figure 7. State transition graphs of the host SEIR model. The labeled nodes represent the four compartments, Susceptible,
Exposed, Infected and Recovered. (a) The nodal transition rates graph. Directed link from S to E represents the infection
process via mosquito bites. The rate is the product of the vector-to-host transmission rate, λHV and total number of infected
vectors IV . Directed link from E to I is the transition from the exposed to the infected state based on the intrinsic incubation
period, 1/δ . Directed link from I to R is the curing process weighted by the recovery rate, γ . (b) Edge-based transition rate
graph for the sexual contact network. Directed link from S to E represent the infection process weighted by the sexual
transmission rate, β .

Our four differential equations are the following,

Ṡi =−λHV IV Si− (
NH

∑
j=1

ai jI j)βSi

Ėi = λHV IV Si−δEi +(
NH

∑
j=1

ai jI j)βSiA

İi = δEi− γIi

Ṙi = γIi

(9)

We also have an additional equation since the sum of all probabilities would be equal to 1,

Si +Ei + Ii +Ri = 1 (10)

Therefore, we can eliminate one variable from Equation 9 and we will have to solve only the remaining three.

Vector Characterization

The mosquito vectors are modeled as homogeneous population and we use the classical Ross-Macdonald approach used by
Keeling et. al. in their book12. We divide the vector population into three compartments, Susceptible (SV ), Exposed (EV )
and Infected (IV ). The transitions between the three compartments are showed in Figure 1. Table 1 describes the different
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parameters that were used for the model. The equations for disease dynamics in mosquito vectors are given below,

ṠV = F(t)NV −λV HNH(
NH

∑
j=1

I j)SV − ε1SV

ĖV = λV HNH(
NH

∑
j=1

I j)SV −σEV − ε2EV

İV = σEV − ε2IV

(11)

We incorporate seasonality into this model by using a time dependent mosquito recruitment rate, F(t). This rate depends on
the time (day) of the year. The transmission parameters, the λ ’s are computed from the mosquito bite rate, r and transmission
probability, T . The formula are given in Table 1.

Non-Markovian Gillespie Algorithm
We first describe the exact Gillespie Algorithm first for renewal processes. Then we proceed on to the nMGA (Non-Markovian
Gillespie Algorithm) by Boguná et. al15. The following was also described on the work of Masuda et. a.25.

We first consider N renewal processes running in parallel. Let ti be The time elapsed since the last event of the ith process.
We denote ψi(τ) as the probability density function of inter-event times for the ith process. The survival function of the ith
process (i.e., the probability that the inter-event time is larger than ti) is,

Ψi(ti) =
∫

∞

ti
ψi(τ)dτ (12)

Now, the probability that no process generates an event for time ∆t is,

Φ(∆t|{t j}) =
N

∏
j=1

Ψ j(t j +∆t)
Ψ j(t j)

(13)

To determine the time until the next event, ∆t, we take a sample u from uniform distribution over [0,1] and solve
Φ(∆t|{t j}) = u. This step is computationally expensive when N is large. To improve performance, we approximate this step as
proposed by Boguná et. al15. This approximation is exact as N→ ∞. When ∆t is small (N is large), Equation 13 becomes25,

Φ(∆t|{t j})≈ exp
[
−∆t

( N

∑
j=1

λ j(t j)

)]
(14)

Now, the instantaneous (hazard) rate of the ith process, which is generally assumed to be a function of time since the last
event is determined by,

λi(ti)≡
ψi(ti)
Ψi(ti)

(15)

With the above equations in hand, we can run the Non-Markovian Gillespie algorithm as follows,

1. Initialize t j for all (1≤ j ≤ N).

2. Determine the time until next event from,

∆t =
− lnu

∑
N
j=1 λ j(t j)

(16)

3. Select the process i that has generated the event with probability,

Πi ≡
λi(ti)

∑
N
j=1 λ j(t j)

(17)

4. Update the time since the last event, t j = t j +∆t for all j 6= i. Set ti = 0.

5. Repeat steps 2-4.

The original Gillespie Algorithm can be recovered from this nMGA using λi(ti) = λi. This is the case for all the parameters
that are constant.
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