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Abstract. Biosciences have been revolutionized by next generation se-
quencing (NGS) technologies in last years, leading to new perspectives
in medical, industrial and environmental applications. And although our
motivation comes from biosciences, the following is true for many ar-
eas of science: published results are usually hard to reproduce either
because data is not available or tools are not readily available, which
delays the adoption of new methodologies and hinders innovation. Our
focus is on tool readiness and pipelines availability. Even though most
tools are freely available, pipelines are in general barely described and
their configuration is far from trivial, with many parameters to be tuned.
In this paper we discuss how to effectively build and use pipelines, relying
on state of the art computing technologies to execute them without users
need to configure, install and manage tools, servers and complex work-
flow management systems. A framework is also proposed showing that we
can have public pipelines ready to process and analyse very high volume
experimental data, produced for instance by high-throughput technolo-
gies, and that can be executed by users without effort. The NGSPipes
framework and underlying architecture provides a major step towards
open science and true collaboration in what concerns tools and pipelines
among computational biology researchers and practitioners, which may
share and replicate results in an easier and transparent way. It is freely
available at http://ngspipes.github.io/.

1 Introduction

Nowadays most scientific experiments that employ next-generation sequencing
(NGS) rely on running and refining a series of intertwined computational anal-
ysis and visualization tasks on large amounts of data. These so called analyses
pipelines, or more generally workflows, start with voluminous raw sequences and
end with detailed structural, functional, and evolutionary results. Pipelines in-
volve the use of multiple software tools and data resources in a staged fashion,
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with the output of one tool being passed as input to the next one. A person-
alized medicine pipeline based on NGS technology can start for instance with
short DNA sequences (reads) of an individual human genome and end with a
diagnostic and prognostic report [13,25]. It can even end with a treatment plan
if clinical data are available. This kind of pipelines depends on the use of mul-
tiple software tools to assess the quality of reads, to map them to a reference
human genome, to identify sequence variations, to query databases for the sake
of associating variations to diseases, and to check for novel variants. All these
tools must be parametrized, a task that is in general far from trivial.

The data made available and the description of NGS scientific and indus-
trial experiment analyses that is kept, sometimes in publications or database
records, are also almost never sufficient to repeat those analyses or even to ver-
ify and assess results [11]. At the same time, the amount of data generated in
scientific experiments is outpacing enhancements in computational power and
storage capabilities. This is especially true for life sciences, where new technolo-
gies increased the sequencing throughput from kilobytes to terabytes per day.
Experiments that employ NGS lead in general to challenges in reproducibility
due to a lack of standards, exceedingly large dataset sizes, and increasingly com-
plex computational tools. The usage of multiple data sources and computational
tools in these studies further complicate reproducibility.

To simplify the design and execution of biomedical workflows by end users,
especially those that use multiple software tools and data resources, a number of
scientific workflow systems have been developed over the past decade. Scientific
workflows correspond to series of structured activities and computations that
arise in scientific problem solving. They involve the invocation of a number and
variety of analysis tools. Therefore, one of the main purposes of these systems
is to overcome the problem of accessibility of computation tools and multiple
data sources to the end users without programming expertise. Examples include
Taverna [22], Kepler [18], Galaxy [10], Conveyor [17], Pegasus [8], Gene Pat-
tern [23], Tavaxy [1], and Swift [26]. Such workflow systems have an abstract
representation of a workflow in the form of a directed acyclic graph (DAG),
where nodes represent tasks to be executed and edges represent either data flow
or execution dependencies between different tasks. Thus, the workflow system
maps the edges and nodes in the graph to real data and software components.
The workflow engine is responsible for executing the software components either
locally on the user machine or remotely, for instance using cloud services. Some
of these scientific workflow systems may use high performance computing facili-
ties, if available, for processing large volumes of data concurrently. But most of
these scientific workflow systems cannot be easily installed and configured, being
most of the times only available to users with access to some kind of specialized
IT support.

We propose here a framework architecture and an implementation that relies
on: a flow-based executable language for the specification of pipelines, reposito-
ries for tools, a virtual environment assembler, and a standalone execution en-



Fig. 1. Component diagram that describes the architecture of the overall NGSPipes
framework.

gine. We developed also an user-friendly editor prototype for specifying pipelines
as a proof of concept.

These components allow us to have an ubiquitous open system aiming to
meet the above requirements. Namely, one of our main contributions is a pipeline
specification language, with a clear separation between the language and the ex-
ecution engine. This language is suitable for end users with or without program-
ming expertise, and without compromising the expressive power for describing
pipelines (or more generally data flow processing within a directed acyclic graph
model). Moreover, by being system independent, we believe that the proposed
language will allow pipelines to be transparently exported and reused within
different systems in use.

The proposed framework aims also for the decoupling of concrete data and
tools from workflows/pipelines specification. This is particularly important if we
take into account data privacy and tools licensing, essential issues for the scien-
tific and industry communities. The architecture of the proposed framework was
designed to support the execution of pipelines without users need to configure,
install and manage tools, servers and complex workflow management systems.
Moreover, given a pipeline to execute (described through the specification lan-
guage), all the execution environment is automatically setup and the pipeline is
executed.

The remaining paper is organized in three main parts: framework architecture
and implementation description, an illustrative case study, and discussion. The
framework and related prototypes are open source and readily available online.

2 Implementation

Let us introduce the NGSPipes framework as proof of concept. As shown in
Figure 1, the framework architecture comprises three main components:

– The specification language, a domain specific language (DSL) for describing
pipelines with the just enough expressive power.

– Repositories of tools that contain the description of each tool available for
integrating within pipelines. We note that new tools can be easily added and
new repositories can be made available independently.



– The execution engine which given a pipeline to execute (described using
above language), automatically sets up all the execution environment and
executes the pipeline.

All these components are independent, easily extensible and reusable, allowing
a seamless integration of new tools for data analysis and processing. Note that
decoupling pipeline and tools specifications from data sources and real tools
leads to a more flexible framework. We can for instance run the pipeline using
different, but compatible, versions of the same tool. As we will discuss later,
we would only need to change the repository of tools being referenced by the
pipeline specification.

2.1 Tools Repository

Each repository of tools contains all the information related to a set of available
tools for constructing pipelines (see Figure 1). Such information includes details
such as what is necessary to install and/or execute a given tool, and where we
can fetch it. Thus, the pipeline definition does not need to include these details
and, on the other hand, we are able to automatically assemble the execution
environment.

For each available tool, the repository should include a tool descriptor and at
least a tool configurator. The tool descriptor is the entity responsible for supply-
ing all the information on how to run a given tool, such as available commands
and arguments, processor options and memory requirements. This information
should be described according to the specification documentation [7] and dis-
cussed below. Let us take as an example the tool Velvet [27]. It includes the
commands velvetg and velveth, and a fragment of its descriptor is shown in
Figure 2. A descriptor must include at least: the tool name, the tool version,
memory requirements (requiredMemory), setup scripts to be executed on execu-
tion environment setup, and available commands. Each command is described
following a similar approach: the command name, the (real) command to be ex-
ecuted, the priority of the command, arguments and outputs generated, and the
argument composer (argumentComposer) for specifying how to link arguments
to values.

A tool configurator includes the information needed to define the execution
context for a given tool: the name of the file where the execution context is
defined, the name of the execution context (the builder), the setup scripts that
must be executed for assembling the execution context, and the uri that identifies
and allows to fetch the tool. Figure 3 shows an example where the tool is provided
by a docker image and, thus, it is necessary to install docker in the execution
context [20].

2.2 Specification Language

The specification language is a DSL for describing pipelines. It contains prim-
itive building blocks with the enough expressiveness to define data processing



"name" : "Velvet",
"version" : "0.7.01",
"setup" : [ "make" ],
"requiredMemory": 12288,
"commands" :[

{ "name" : "velveth",
"command" : "velveth",
"priority" : 2,
"arguments" : [
{ "name" : "output_directory",
"outputType" : "outputDir",
"isRequired" : "true",
...

},
...

}
...

Fig. 2. Partial descriptor for Velvet tool.

{ "name" : "DockerConfig",
"builder" : "Docker",
"uri" : "ngspipes/velvet0.7",
"setup" : [
"wget -qO- https://get.docker.com/ | sh"

]
}

Fig. 3. An example of a configurator for the Velvet tool.

pipelines, namely when data processing can be modelled as a directed acyclic
graph. Figure 4 depicts partially the syntax of this language, given by a gram-
mar. The full syntax of the language can be found in DSL documentation [5],
using an EBNF notation alike. The primitives of the language are Pipeline, tool,
command, argument and chain. Since a Pipeline implies the execution of one
or more tools, its specification must reference the tools repository that is being
used.

The reference to the repository found in the specification of a pipeline must
identify not only where to find the repository, but also the type of repository:
local or remote, like Github. As shown in Figures 4 and 5, the first line in a
pipeline specification specifies the type of repository (Github) and where the
repository can be found. Each tool used in a pipeline is then specified by provid-
ing its name, its configurator and the list of tool commands that will be executed
within this pipeline. For instance, in the pipeline of Figure 5 the second tool is
the Velvet tool, and DockerConfig is the chosen configurator. This information
together with the repository information specifies the environment for executing
Velvet commands. Note that the same command for a given tool may be exe-
cuted several times and with different parameters, being listed more than once.
Note also that the commands within different tools may be interleaved.

As mentioned before, each command in the pipeline appears in the context
of a tool. For executing each command, it is necessary to identify its name,
which is unique in the tool context, and to set the arguments for each required



pipeline ::= Pipeline repositoryType repositoryLocation { ( tool) + };
tool ::= tool toolName configurationName { (command)+ };
command ::= command commandName { (argument — chain) + };
argument ::= argument argumentName argumentValue;

chain ::= chain argumentName ((toolName)? commandName)? outputName;

Fig. 4. Partial grammar for the specification language using EBNF notation.

Pipeline "Github" "https://github.com/ngspipes/Repository" {
tool "Trimmomatic" "DockerConfig" {
command "trimmomatic" {
argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "ERR406040.fastq"
argument "outputFile" "ERR406040.filtered.fastq"
argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
argument "seed mismatches" "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality" "3"
argument "trailing quality" "3"
argument "minlen length" "36"

}
}
tool "Velvet" "DockerConfig" {
command "velveth" {
argument "output_directory" "velvetdir"
argument "hash_length" "21"
argument "file_format" "-fastq"
chain "filename" "outputFile"

}
command "velvetg" {
argument "output_directory" "velvetdir"
argument "-cov_cutoff" "5"

}
}
tool "Blast" "DockerConfig" {
command "makeblastdb" {
argument "-dbtype" "prot"
argument "-out" "allrefs"
argument "-title" "allrefs"
argument "-in" "allrefs.fna.pro"

}
command "blastx" {
chain "-db" "-out"
chain "-query" "Velvet" "velvetg" "contigs_fa"
argument "-out" "blast.out"

}
}

}

Fig. 5. Example of a pipeline specification. See Section 3 for details concerning this
pipeline and related case study.

parameters. For instance, in the pipeline of Figure 5, the argument file_format
for command velveth has as argument “-fastq”, i.e., the input file for this
command must be in FASTQ format.



Fig. 6. Components diagram of the excution engine.

The specification language also includes the chain primitive for linking out-
puts into inputs. With this primitive we can define as an argument of a command
an output file of other command. This primitive is used to specify execution
flows. The output from each command may be files named internally by the
command or named through command arguments. In both situations it is com-
mon that other commands use these output files for keep processing the pipeline.
For instance, in command blastx, the argument -query receives as value the
file “contigs fa”, which is an output of the command velvetg of tool velvet.
The chain primitive has a simplified version, which can be used when the output
is from the previous command in the pipeline specification. In this case, we only
specify the name of the output file to chain with the given argument. As an
example, we can see in Figure 5 the argument filename of velveth command
chained with the output file, named as “outputFile”, of command trimmomatic.

2.3 Engine

The engine is responsible for: the analysis of the pipeline description and trans-
formation to an executable format, the setup of tools used in the pipeline de-
scription, and for the execution of the tools in an isolated context.

The pipeline description is transformed to an executable format. Because
the pipeline can be specified outside the editor, language consistency checks
must be applied. For the setup of the execution environment, the engine relies
on information collected from the repository of tools referred in the pipeline
specification. The orchestration and planning of execution is delegated to the
language library. It checks the correct execution of the pipeline steps and outputs
the relevant information to the user.

Figure 6 shows the main components of the engine and their interaction. The
engine receives the pipeline description, the input path and the output path.
Internally, the engine is divided in four components. The parser transforms a
pipeline (described in the language presented in Section 2.2) to a representation
in the Java language. Any grammatical errors are detected in this phase. The
second component is the compiler, which will produce an executable pipeline
with the correct invocation sequence. Note that no tools are embedded in this
executable pipeline. They will be dynamically downloaded and executed only by
the executor. The third component is the configurator, which is responsible for
the configuration of the executor and for booting the pipeline execution phase.



The configuration data consists of the computational resources that will be
available during execution (i.e. amount of memory and number of CPU cores)
as well as input and output paths. Part of the configuration data is obtained
automatically by looking at the executable pipeline and the repository of tools.
By looking at the pipeline, the configurator determines which tools where used
and, by looking at the repository, it determines the memory required to run each
tool. The amount of memory set by the configurator will be the highest value
among all the included tools.

The fourth component of the engine is the executor and it relies on two layers
of virtualization. The first layer is a system-level type of virtual machine (VM).
The current framework implementation relies on a widely used hypervisor to run
this VM – the VirtualBox system, as described in engine documentation [6]. This
allows the engine to be installed on any type of main stream operating system
(e.g. OSX, Windows, Unix). Inside the virtual machine, a Linux-based operating
system is ready to be executed. On top of this, the engine uses a lightweight
virtualization technology to ensure proper installation, keep up-to-date, and run
each command of the pipeline. Currently, the framework uses Docker containers
technology [20]. Other solutions can be integrated in the future because both
the pipeline language and repositories of tools are not compromised with this
technology.

Before the actual steps of the pipeline are executed, the engine ensures that
the VM is ready to use the container technology by checking if necessary packages
are available. Once completed, the pipeline is executed, downloading and running
the correct tool/command. The download part is done only in the first execution.
After that, tools remain installed to favour speed and reproducibility. Because
each command is executed in a separated container, the executor must ensure
that the input files, located in the user environment, are made available to each
tool.

The engine is available in two versions: a command line application and a
graphical user interface (GUI) application. Both versions are functionally equiv-
alent and are packed as a regular Java application. The execution of a given
pipeline can be parametrized, including the input and output directories as well
as hardware resources made available to the pipeline execution. The amount of
memory can be limited, which overrides the value determined automatically by
the Configurator. However, doing so can result in an execution error if insuffi-
ciency memory is specified for the data to be processed. To change the amount
of memory is essential to know how much data is going to be processed. For
instance, although it is recommended having 12 GBytes of physical memory for
using the Velvet tool, in our case study we will only need 4 GBytes of memory
since for bacterial strain sequencing we can use less memory in general.

3 Case study

We consider a standard pipeline used on epidemiological surveillance using NGS
data. The aim is to characterize bacterial strains through allelic profiles [19].



When sequencing a bacterial strain by paired end methods with desired depth
coverage of 100x (in average each position in the genome will be covered by 100
reads), the output from the sequencer will be two FASTQ files containing the
reads. Each read typically will have 90-250 nucleotides length, using Illumina
technology. The first data processing step is to trim the reads for removing
the adapters used in the sequencing process and any tags used to identify the
experiment in a run.

From clean reads two approaches can be followed: de novo assembly or map-
ping to a reference genome.

In de novo assembly, software such as Velvet [27] or SPAdes [3] is used to
obtain a draft genome composed of contigs, longer DNA sequences resulting from
assembling multiple reads. Annotation software such as Prokka [24] can then take
contigs as input and determine the gene content and annotate it against multiple
databases. Alternatively, the draft genome can be compared to databases of gene
alleles for multiple loci using BLAST [2]. Given BLAST results we can create
an allelic profile characterizing the strain [19].

In mapping approaches, a reference genome is chosen and the reads are di-
rectly mapped against it using read mapping software such as BWA [15] or
Bowtie2 [14]. The output is a file containing the relative position of each read in
the reference genome. That file is then processed to determine the positions that
have single nucleotide polymorphisms (SNPs) when compared to the reference
genome [16]. The resulting SNPs are then analysed to determine if they might be
the result of recombination events [4], and filtered out if they are to be used in
phylogenetic analysis. Several allelic or SNP profiles for different strains result-
ing from both approaches can then be compared to determine their phylogenetic
relationships using different methods [12,9].

The pipeline in Figure 5 follows the de novo assembly approach and relies on
BLAST for comparing the draft genome to a database of gene alleles. We relied
on data from NCBI Sequence Read Archive for testing and evaluating the frame-
work, namely data on Streptococcus pneumoniae. See the use case documented
within engine documentation [6] for more details. Figure 7 shows execution times
when running this pipeline. The systems used to run the pipeline differ in hard-
ware and operating system, as presented in Figure 7.a). To evaluate the engine
performance we execute it assigning 2 cores (parameter -cpus 2) and 4 GBytes
of RAM (parameter -mem 4). The size of the FASTQ input file is 814 MBytes.
The pipeline (see Figure 5) and initial data was used a first time, which we call
cold execution. During this run, the engine automatically installs the necessary
tools and keeps them installed for the second and following executions, which
we call warm execution. Figure 7.b) depicts the results for these two scenarios
and the four systems described in Figure 7.a). Depending on the system, the
pipeline takes between 38 and 42 minutes to execute. We also note that keeping
the tools installed for new executions is a good option since the speedup of a
warm execution varies between 7% (system C) and 23% (system B).



System OS RAM Disk type
A Windows 10 8 GB SSD
B Windows 10 16 GB HDD
C OS X Yosemite 8 GB SSD
D Slackware 14.0 256 GB HDD
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Fig. 7. (a) Operating system and hardware of four different experimental setups (b)
Performance of cold and warm execution

4 Discussion

Although NGS data have being shared in recent years, we cannot yet talk about
open science. Even if tools are available, analyses pipelines are often not detailed
and clearly defined. This includes tools parametrization. Hence, it is almost
impossible to reproduce published results, or to use exactly the same approach
with different data, even with all data available.

NGSPipes framework is based on three principles. The first principle is to
completely avoid servers and services configuration. The second one is to auto-
matically get and configure only required tools. The third is to precisely describe
pipelines. These three principles allow us to address almost all points raised in
introduction. NGSPipes framework makes use of resources and environment iso-
lation for making tools available, avoiding servers and services manual configu-
ration.

This approach is well known in IT industry and is already being adapted for
life sciences [21]. Such ecosystem is of crucial importance for NGSPipes frame-
work and is being also adopted by traditional platforms, e.g., Galaxy [10] and
Nextflow. This is an important step since we can share resources among many
different systems and platforms. Note in particular that NGSPipes framework
is agnostic with respect to the job performed by each tool. A tool can invoke
remote Web services, fetch remote data, or even make use of cloud computing
resources either directly or through other workflow systems. The main aim and
novelty of NGSPipes framework is to provide a decoupled architecture for auto-
matically setup and run pipelines without requiring users to deal with low level
details of computer systems.

Still tools alone are not of much use, analyses pipelines must be made avail-
able, precisely defined, and platform independent. In this paper we propose a
simplified specification language and support library for this purpose, based on a
clear and straightforward syntax. Note that both language and library are com-
pletely independent from the execution engine. In particular it can be reused
by any other platform. More general specification languages exist for specifying
pipelines and workflows, being BPMN 2.0 the most well known. BPMN 2.0 is
however too much richer and possibly introduces another layer of complexity
for life sciences practitioners. Still we believe that the language proposed in this
paper would benefit from being mapped and aligned with a subset of BPMN
2.0.



Although in present version NGSPipes framework can be easily used and
integrated in cloud services since it relies on common cloud technologies, some
issues remain. As raised in introduction, deployment on cloud should be trans-
parent, in fact we would say that executing a pipeline should be as easy as
downloading a file from Web. There is however some work to be done as cloud
technologies mature and become commodity. Task parallelization and distribu-
tion is another issue. The heterogeneous nature of NGS data and analyses jobs,
relying on different tools, lead to rather different computational workloads. In
this context both task scheduling and resources provision planning should be
aware of workload patterns.
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