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Abstract. The dynamics of the THF molecule encapsulated in the type II clathrate hydrate matches the MD-QENS 

observation time (typically 0.1-10 ps) between 100K and 270K. Spatial and time characteristics of the THF molecule’s 

dynamics obtained by means of MD simulations are in agreement with those experimentally determined by means of 

quasielastic neutron scattering. A detailed model of the THF dynamics is then proposed through the calculations of MD-

derived properties. Reorientational relaxation has been observed on a timescale of 0.7 ± 0.1 ps at 270K with activation energy 

of 3.0 ± 0.3 kJ/mol in addition to a highly damped rotational excitation occurring in the plane of the THF molecule with a 

period of ca. 2 ps. Moreover, the anisotropic cage energy landscape of the THF clathrate hydrate is revealed through a 

comprehensive investigation of THF orientational distribution functions, revealing the occurrence of preferred orientation of 

the THF molecule within the cage.  
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I. INTRODUCTION 

Clathrates hydrates consist in a crystalline water network forming cages encapsulating foreign molecules [1]. The natural 

existence of large quantities of hydrocarbon hydrates in deep oceans and permafrost is probably at the origin of numerous 

applications in the broad areas of energy and environmental sciences [2-4]. At a fundamental level, extensive studies have 

been done on their thermodynamics and equilibrium properties [2,3] and numerous studies are devoted to the formation, 

inhibition and decomposition of gas hydrates [5], to their anomalous thermal conductivities [6] or to the properties of ionic 

clathrate hydrates [7]. 

The tetrahydrofuran (THF) molecule is probably one of the most widely used guest molecule to form clathrate hydrate. It is 

used as promoter for forming gas hydrates since it permits relaxing the formation condition (e.g. decreased of the formation 

pressure). The solubility of THF within water and the formation conditions closed to room temperature (277 K at 1 bar) 

provide clear advantages compared with other gas hydrates, making the THF clathrate hydrate commonly studied and used as 

analogue hydrate. THF hydrate is commonly studied as a substitute for natural gas hydrates [8-11], used as an additive to 

reduce the formation pressures for flow assurance [1], hydrogen storage [12,13], gas separation schemes [14,15] or 

refrigeration applications [16]. There have been numerous fundamental studies on the THF clathrate hydrate. The 

thermodynamics properties have been the subject of various investigations going from the precise determination of its 

pressure-temperature phase diagram [17-19] to the formation kinetics and mechanisms [20-23]. The vibrational signatures of 

the THF clathrate hydrate have been worked over by means of Raman scattering [24-28] and IR absorption [29,30]. By 

means of X-ray [31], and neutron diffraction [32,33], it has been showed that the THF clathrate hydrate crystallizes in the 

type II structure with only the large cages filled with THF molecules (leading to the stoichiometric compound THF-17H2O). 

Moreover, the two hydrogen atoms of the water molecules occupied four equiprobable positions around each oxygen atom. 

This disorder of the H-bond network in the water substructure has been revealed by means of dielectric spectroscopy [34-36], 

of 1H NMR [37] and of solid state ²H NMR [38-42]. The timescale of the water dynamics ranges from the microsecond to the 

millisecond above 193K. The impact of acidic additives - known to increase host proton mobility in the host substructure [43-

45] - has been investigated on its thermodynamical, vibrational and structural properties [46]. Finally, the THF dynamics has 

been explored by means of dielectric spectroscopy [34], of 1H NMR [37,47-49], of ²H NMR [39-42,48] and of MD 

simulations [50,51]. From the ²H NMR investigation, the THF dynamics occur in the rapid regime (i.e with characteristic 

time shorter than the nanosecond) at temperatures above ca. 100K. Moreover, the NMR results suggest that the THF 

reorientations within the cage are not isotropic: it may exist an anisotropic character of the THF dynamics induced by a 

distribution of the local environment. Neutron powder diffraction study reveals the existence of preferred orientations of the 
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THF within the cages [32], thus confirming the NMR conclusions. Finally, MD simulations show the existence of H-bond 

between the oxygen atoms of THF molecules and the hydrogen atoms of the water molecule with a lifetime of less than 1 ps 

[50]. Such hydrogen bonding is particularly relevant in the understanding of the mechanism of clathrate formation [52]. 

The aim of this paper is to investigate the THF dynamics encapsulated within the cages of its type II clathrate, by combining 

quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations. Such combined methodology is 

particularly appropriated for investigating guest dynamics in clathrate hydrates [53,54]. This investigation provides new 

insight onto the THF dynamics with complementary timescale with respect to previous investigations by means of NMR [37- 

42, 47-49], such information is essential to understand guest-water interactions in view of the extended timescale met in the 

clathrate hydrates [54]. Moreover, MD-QENS combined analyzis consists in a “direct showdown” of experimental and 

theoretical results through the comparison of QENS-measured and MD-derived scattering laws, leading to the validation of 

the potential used in the MD simulations. Molecular dynamics simulations of the THF clathrate hydrate are then used to 

guide the interpretation of the experimental QENS spectra. Thus, such a combined approach has been used for the first time 

in this system and yields unique information about the THF molecule dynamics and its orientational distribution within the 

cages. 

 

II. NEUTRON SCATTERING AND MOLECULAR DYNAMICS DETAILS 

A. QENS experiments 

The samples have been prepared by mixing deuterated water (99.5 % deuterated) and tetrahydrofuran (noted THF) in 

stoechiometric proportion (17:1 mol). The prepared solution has been stirred in a thermal bath at a constant temperature of 

274 K (the melting point of the THF clathrate hydrate is 277K) until crystallization occurs (in about one day). Under cold 

nitrogen atmosphere, the resulting THF clathrate hydrate has been grounded to form a fine powder and filled into flat 

aluminium containers sealed with indium wire to perform the QENS experiments.  

QENS experiments with the THF - 17D2O sample have been performed using the time-of-flight (denoted ToF) spectrometer 

IN5 [55] at the Institut Laue Langevin (Grenoble, France). The scattering angles covered by this instrument are in the range 

14° to 132° and the energy resolution was ΔE ~ 90 µeV for an incident wavelength λo = 5Å. The samples have been cold-

transferred into the cryostat of the spectrometer and the angle between the incoming neutron beam and the plane of the 

sample holder was 135°. Minimization of the multiple scattering effects is reached by using a sample thickness less than 

0.2mm, so that the effective transmitted beam corresponds to about 97% of the incident beam. QENS spectra of the THF 
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clathrate hydrate have been recorded at 50 K, 100 K, 150 K, 200 K and 270 K with acquisition time of 1 hour per 

temperature. Background corrections have been performed by recording empty cell spectra and a vanadium spectrum has 

been used to correct for detector efficiency and to determine the experimental resolution function. Two sets of data have been 

extracted from the neutron scattering experiments. For the structural analyzis, only elastic scattering has been extracted from 

the experimental data at each scattering angle. For QENS analyzis, several detectors were grouped together to improve the 

statistical accuracy and Bragg peaks were removed from experimental data. The QENS data analyzis has been done by using 

the NEMO program [56]. 

The sample integrity has been checked with the help of the diffraction patterns of the THF clathrate hydrate recorded with 

IN5 (Figure 1). In the studied temperature range, no structural phase transition has been observed and all Bragg peaks have 

been indexed with the unit cell characteristic of the type II clathrate structure (i.e. cubic unit cell with a ≈ 17.2 Å and space 

group Fd3m).  

 

B. MD details 

To reproduce the interaction between all particles in the systems, the rigid and pairwise additive potential function used in 

these simulations is constituted of a Lennard-Jones type potential combined with an electrostatic point charge potential. The 

interaction energy between two molecules in the system is thus expressed as a sum of interactions between atoms α of 

molecule A and atoms β of molecule B separated by the distance !!", 

! !! , !! = 4!!"
!!"
!!"

!"
− !!"

!!"

!
+ !!!!

!∝!!∈!!∈! , 
(1) 

In this equation, !!"  and !!"   are the Lennard-Jones parameters computed according to the geometric mixing rules and qα is 

the partial charge located on atom α. The SPC/E model of Berendsen et al is used to describe water [57], as in previous MD 

simulations of THF clathrate hydrate [50]. For the THF molecule, a rigid five sites model has been used by considering CH2 

groups as single sites. The structure of the THF molecule has been determined by electronic structure calculations with the 

Gaussian 98 program package [58]. In order to compare with a previous work [50], geometry optimization have been 

performed using the DFT method with the B3LYP functional and the 6-311++G(d,p) basis set [59]. The atomic charges have 

been fitted to reproduce the electrostatic potential of the molecule obtained from ab initio at the same level of calculation by 

means of the CHELPG method [60]. To obtain the charges of single CH2 groups, the hydrogen charges have been added to 
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the corresponding carbon atom. The Lennard-Jones parameters have been taken from the general AMBER force field [61]. 

The values of these parameters are given in the Table 1 and the numbering of carbon atoms is shown in Figure 2. 

The initial type II clathrate structure has been generated by using the fractional coordinates determined by means of X-ray 

diffraction experiments [31]. The primary cell has been duplicated in the three directions of the space to give a cubic 

simulation box with an edge of 34 Å and containing 1088 deuterated water molecules and 64 THF molecules (located in large 

cages). The center of mass of the THF molecules was originally placed at the center of mass of the large cages with random 

orientation. Usual periodic boundary conditions have been used and a molecular cut off distance of 16 Å has been applied. 

The simulations were carried out using the MDpol package [62], particularly appropriated for combined MD-QENS analyzis 

of organic nanoporous systems [63-65]. The calculations have been performed in the NPT ensemble by using the Nosé-

Andersen algorithm (with coupling constants of 4.0 ps-1 and 0.9 ps-1 for the heat bath and the piston, respectively) [66,67] 

modified to take into account the necessary constraints that maintain rigid the molecules. The equations of motion were 

integrated with a time step of 1 fs using the Verlet leapfrog scheme [68]. Each system has been equilibrated for a time of 500 

ps used for temperature and pressure scaled equilibration. In order to be consistent with the QENS investigations, trajectories 

have been produced during runs of 500 ps at temperatures between 50K and 270K and at a pressure of 1 bar. 

The integrity of the simulated system has been checked through the calculations of various radial pair distribution functions, 

confirming the inclusion of THF molecules exhibiting no long range translational diffusion and located within the large cages 

formed by means of a tetrahedral H-bond network of water molecules (see supplementary material). Among the radial pair 

distribution functions, the one calculated according to the distance between the oxygen atom of the THF molecule and the 

water hydrogen atoms (Figure 3) exhibits a small peak at ca. 1.75Å. As analyzed in previous MD analyzis [50,51], such a 

peak is a direct signature of the known formation of host-guest hydrogen bonding. 

 

III. RESULTS AND DISCUSSION 

By performing a neutron scattering experiment, the measurement of the probability to find a neutron leaving the sample is 

done in a given direction within a solid angle element and with a given energy [69]. This double differential scattering cross 

section can be reduced to an experimental scattering law, !!"# !,! , recorded as a function of momentum transfer ℏ! and of 

the energy transfer ℏ!. This law consists into the superimposition (weighted by the incoherent and coherent scattering cross 

sections of the scatterers) of the incoherent scattering (related to auto-correlation) providing information about the motion of 

individual atoms and of the coherent scattering (related to crossed correlation) providing information about concerted or 
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correlated motions. The present sample has been prepared by deuterating the host water substructure, the THF being 

hydrogenated. The incoherent cross section of deuterium is 40 times less than the one of hydrogen. The incoherent scattering 

of the water cages is then minimized and the coherent contributions can be neglected, since Bragg peaks were removed from 

the experimental data and coherent inelastic scattering is well separated from the quasielastic region of the spectra. It follows 

that the present QENS experiments give access to the incoherent signal arising from the THF molecules and thus to the THF 

dynamics. 

In order to develop a comprehensive model of the THF dynamics, we will combine the MD and QENS results. In this 

purpose, the MD simulations results will be first compared to the QENS results by computing the MD-derived incoherent 

neutron scattering laws with the help of the atomic MD trajectories. Once this validation step will be done, a model 

reproducing the THF dynamics will be developed with the help of the MD trajectories.  

 

A. Comparison of the experimental and MD-derived neutron scattering laws 

In the quasi-elastic region (i.e. for energy transfer of ± 3 meV), the relationship between the measured QENS spectra, 

!!"# !,! , and the clathrate hydrate scattering law, ! !,! , is given by [69,70], 

!!"# !,! = ! ! !!ℏ!/!!!! !,! ⨂! !,! + ! ! , (2) 

where F(Q) is the scaling factor depending on the momentum transfer Q through the Debye-Waller factor (!!!² !² where !²  

is the mean square displacement), T is the temperature and kB is the Boltzmann constant. ! ! !is the background term 

reproducing the inelastic contributions in the quasi-elastic region. The function ! !,! !represents the experimental energy 

resolution. The width of the energy resolution function (ΔE = 90 µeV in the present experiment) gives the observation 

timescale (of the order of picosecond in the present case) on which a given motion will be observed on the experimental 

spectra. Any dynamical process, occurring on a timescale significantly longer than the observation time, will give rise to a 

QENS broadening narrower than the instrumental resolution function and the experimental scattering law reduces to a purely 

elastic component. The incoherent scattering law due to the clathrate hydrate, ! !,! , is the normalized sum of the 

incoherent contribution of the THF molecule and of the incoherent contribution of the cage water molecule, 

! !,! = 1 − ! !!"# !,! + !!!"#$% !,! . (3) 

One needs to determine the contribution of deuterated cage substructure in the QENS spectra since the deuterium nuclei 

possesses an incoherent cross section. The reorientation timescale of the water molecules of the aqueous sub-structure is of 

the order of microsecond [39-41], i.e. significantly longer than the observation time. Thus, the water molecules will be 
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immobile with respect to the probed timescale, and the host sub-structure will reduce to an elastic contribution to the 

scattering law, 

! !,! = 1 − ! !!"# !,! + !" ! , (4) 

where !!"# !,!  is the incoherent neutron scattering law due to the guest molecules, ! !  is a Dirac function due to elastic 

scattering of the water molecules and p is the corresponding incoherent scattering fraction. Taking into account for the 99.5% 

deuteration and for the guest to host molecular ratio of 1:17, the incoherent contribution of the deuterated water molecules is 

contained in the elastic term p, representing 11.5% of the incoherent signal of the THF clathrate hydrate sample (i.e. p = 

0.115 in Equation (4)). 

Computing the powder averaged intermediate scattering function derived from the MD trajectories (the program nMoldyn 

has been used [71]) makes accessible the comparison of the time-of-flight QENS data with the MD-simulations data. 

Following the van Hove formalism [69], the MD-derived intermediate scattering law has been Fourier transformed according 

to the following expression,  

!!" !,! = ! ! !
!! !(!, !) 1 − ! !!"#!" !, ! + ! !!!"#!"!!

!! = !(!) 1 − ! !!"#!" !,! + !" ! . (5) 

In this expression, the MD-derived intermediate scattering function !!"#!" !, ! !and MD-derived scattering law 

!!"#!" !,! !represent the incoherent contribution of the THF molecules (in the time domain and in the energy domain, 

respectively). As previously mentioned, the water molecules undergo reorientations on a timescale longer than the 

observation time reached by means of QENS experiments and also by means of MD simulations (see water orientational 

autocorrelation functions provided in the supplementary material), so that no quasielastic broadening due to the water 

molecules dynamics is expected on the probed MD timescale. The water molecule contribution is then taken into account 

through the Dirac function weighted with the incoherent fraction p. Finally, the MD-derived intermediate scattering function 

is folded with a Gaussian function (in the time domain) determined with the help of the Fourier transform of the experimental 

vanadium QENS spectra for reproducing the experimental conditions. 

In both set of data, i.e the experimental and MD-derived QENS spectra, the incoherent contribution arising from the guest 

molecules have been fitted with the help of the following phenomenological scattering law,  

!!"# !,! = !! ! ! ! + 1 − !! ! ! !!
∆

!!!ℏ!² , 
(6) 

where !! !  is the elastic incoherent structure factor (EISF) giving the amplitude of the elastic term represented by a Dirac 

function ! !  and provides information about the geometry of the THF dynamics. Both MD-derived and experimental 
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neutron scattering laws have been fitted with the expression (6) as shown in Figure 4. The Lorentzian function represents the 

averaged quasielastic contributions for which the half-width at half-maximum (denoted HWHM), ∆, provide information 

about the characteristic time of the THF motion. The measured HWHMs (Figure 5) have been averaged over the whole Q 

range for allowing direct comparison of the MD-derived and experimental broadenings. Two temperature ranges are 

discriminated in both set of data with the inflection point observed at ca. 100K. In the high temperature region (i.e above ca. 

100K), there is a good agreement between both set of data. The associated relaxation process is characterized with identical 

thermal behavior of the HWHMs (with an overall small offset of the MD-derived HWHM with respect to the experimental 

HWHMs) and with identical structure factors (see Figure 6) in the theoretical and experimental data. In the low temperature 

region (i.e. below ca. 100K), the relaxation process is not activated at the same temperatures in both sets of data (the slope of 

the MD-derived and experimental QENS HWHMs are different). These behaviors result in slight differences between the 

experimental EISFs and the MD-derived EISFs in the intermediate temperature region at ca. 100K (Figure 6). Nevertheless, 

the relaxation process is characterized by means of experimental structure factor well reproduced by the MD-derived 

structure factor (see Figure 6) at 50K. Both MD-derived and QENS EISFs are closed to 1, suggesting that the THF QENS 

broadening is not correctly resolved with respect to the present energy resolution. At 50K, this behavior indicates that the 

THF dynamics occur on a timescale significantly longer than the probed timescale, i.e. with a characteristic time longer than 

the picosecond. Such a timescale is in full agreement with dielectric spectroscopy [34], 1H NMR [37,47- 49] and ²H NMR 

[39-42,48], according to these measurements the characteristic time for THF reorientation is shorter than 10-10 s for 

temperature above ca. 100 K. 

Thus, the MD trajectories lead to spatial and time characteristics of the THF dynamics similar to those observed with the help 

of QENS experiments. As observed with the analyzis of the structure factors, no long-range diffusion of the THF molecules 

is observed on the probed timescale. Only reorientations are observed on a timescale of the order of the picosecond above ca. 

100K on both MD-derived and QENS scattering laws. Such an agreement between the experimental and theoretical data 

allows the validation of the MD simulations and thus, the subsequent analyzis of the MD trajectories in order to elaborate a 

detailed model of the THF dynamical process.  

 

B. Orientational distribution functions of the THF molecules 

The calculation of the orientational distribution functions (denoted ODFs in the following) requires the definition of a 

molecular frame (Cxyz) with respect to the MD box reference frame (OXYZ) as represented in Figure 2: the (Cx) axis is 

collinear to the C5-C3 bond and the (Cz) axis goes through the oxygen atom and the middle of the C3-C5 bond (denoted C, 
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the origin of the molecular frame). The latter axis corresponds to the C2 symmetry axis. In addition, three specific angles have 

been used by following the Euler definition. The polar θ and azimuth ϕ angles of the (Cz) molecular axis will be used to 

describe the orientation of the THF molecules within the 51264 cages. In addition, the third Euler angle ψ (not represented in 

Figure 2) has been defined to explore the rotation of the THF molecule about the (Cz) molecular axis. This angle has been 

computed with the help of the following procedure. At each time-step, the azimuth and polar angles have been calculated and 

the THF molecules have been rotated by the angle ϕ about the (OZ) axis and then by the angle θ about the (OY) axis. The 

angle between the (OX) axis and the C3-C5 bond (i.e ψ) has then been calculated. 

By considering the Nstep time-steps and the Nmol THF molecules of the MD simulations, the normalized orientational 

distribution function (denoted ODF in the following) P(ψ) has been calculated by using the expression,  

! ! = !
!!"#$!!"#

! !!!"#
!

!!"#$
! !!"#ℎ! ! ! !" = 1, (7) 

where N(ψ) is the number of THF molecules with angle ψ in the range [ψ,ψ+dψ]. The resulting ODF P(ψ) calculated by 

using the MD trajectories at 270K is shown in Figure 7. This ODF is constant as a function of ψ. This indicates that the THF 

molecules undergo continuous rotations about the (Cz) molecular axis at T = 270K. By decreasing the temperature to 50K, 

the ODF P(ψ) exhibits a more structured shape: there are six maxima unequally weighted. Such ODF can be representative of 

a static or dynamic disorder: either the THF molecule is stuck in one ψ orientation with a static distribution of these 

orientations differing from cage to cage or the THF molecule undergoes rotation about its (Cz) axis between 6 

unequiprobable orientations. According to the phenomenological analyzis, the THF dynamics below 100 K occur on a 

timescale accessible by means of NMR, i.e. longer than the one probed in the present MD-QENS analyzis. With respect to 

the probed timescale, the static distribution of the preferred orientations is the most plausible. 

In order to analyze whole reorientations of the THF molecules, the ODF P(θ,ϕ) of the (Cz) axis have also been calculated by 

using  

! !,! = !
!!"#$!!"#

! !,!
!"#!

!!"#
!

!!"#$
! !!"#ℎ! ! !,! sin ! !"!!" = 1 , (8) 

where N(θ,ϕ) is the number of THF molecules with azimuth angle ϕ in the range [ϕ,ϕ+dϕ] and polar angle θ with cos(θ) in 

the range [cos(θ),cos(θ)+dcos(θ)]. The calculated ODFs are shown in Figure 8 for all THF molecules of the MD simulations 

box at T = 270K and at T = 50K. None of these ODFs respects the Td symmetry of the 51264 cage occupied by the THF 

molecule. Indeed, in such a case, one would have expected to observe four equally weighted maxima on these distributions. 
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Instead, one preferred orientation (at least) of the (Cz) axis is observed (θ ~ 90° and ϕ ~ 180° at T = 270K). Such ODFs are in 

agreement with previous results: deuteron NMR analyzis [42] has revealed the existence of a “distorted octahedral” 

reorientational model, i.e. not respecting the Td symmetry of the cage encapsulating the THF molecules and Neutron Powder 

Diffraction [32] analyzis has showed the existence of preferred orientation adopted by the THF molecule. Moreover, analyzis 

of the ODF of individual THF molecule shows that there is a distribution of these preferred orientations. These various local 

environments lead to ODF at T = 270K for which all orientations are adopted: the ODF is quite smooth with probabilities 

ranging between 8.0 10-6 to 1.8 10-5. Thus, the THF molecule undergoes quasi-isotropic reorientations with some anisotropic 

character at T = 270K. At T = 50K, the preferred orientations are more pronounced and all orientations are not experienced 

by the THF molecules. The dynamical exchange between the preferred orientations might be frozen with respect of the MD 

observation time according to the phenomenological analyzis done in the previous section.  

As a summary of the analyzis of the ODFs and of the phenomenological analyzis of QENS and MD-derived scattering laws, 

the main characteristics of the THF dynamics may be described into two types of motions:  

• the THF molecule undergoes rotation about its C2 (Cz) molecular axis (Figure 2). By lowering the temperature from 

270K to 50K, this motion evolves from a continuous rotation to modulated rotation occurring on a timescale longer 

than the one probed in the present MD-QENS investigation at 50K. 

• The C2 molecular axis performs slightly anisotropic reorientations with preferred orientations in the cage. By 

lowering the temperature to 50K, the THF molecules get frozen in preferred orientation with respect to the probed 

timescale.  

 

C. Orientational relaxation processes of the THF molecules 

The subsequent step in analyzing the THF dynamics concerns the determination of the timescale of the various dynamical 

processes. In this issue, the autocorrelation functions of the three THF molecular axis <x(0).x(t)>, <y(0).y(t)> and 

<z(0).z(t)>  have been computed and are represented on the Figure 9. In the frame of the description done on the basis of the 

ODFs, the <z(0).z(t)> autocorrelation function is representative of the relaxation within the P(θ,ϕ) ODF (motion (ii) 

previously described as the quasi-isotropic reorientation) while the <x(0).x(t)> and <y(0).y(t)> autocorrelation functions 

allow the relaxation within the P(ψ) ODF (motion (i) previously described as the rotations about the (Cz) axis) to be probed. 

The features of these three functions (Figure 9) confirms this description: the <z(0).z(t)> time dependence differs from 

<x(0).x(t)> and <y(0).y(t)> time dependences. The <z(0).z(t)> function does not relax to zero at long time (compared to the 
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MD timescale), suggesting no full loss of correlation of the (Cz) molecular axis. Such behavior is in agreement with the 

existence of preferred orientation as observed on the P(θ,ϕ) ODF. Both <x(0).x(t)> and <y(0).y(t)> functions follow the 

same behavior. Slight differences are observed at long time. However, the loss of correlation is reached within the probed 

time range for the two highest temperatures. Focusing on the temperature dependence, it appears that the THF molecule relax 

on a significant long timescale at 50K. This behavior confirms the fact that, at 50K, the THF molecules are frozen (with 

respect to MD and QENS timescales) in preferred orientations statically distributed. Finally, these autocorrelation functions 

are clearly not decaying as a single exponential. One can observe the existence of a rotational excitation (oscillating signal 

observed at short time) in addition to the relaxation phenomenon, as observed in other type II clathrate hydrate [53]. This 

excitation is highly damped: a single oscillation is observed with a time period of ca. 2 ps (indicated by a vertical dotted line 

on Figure 9). Moreover, this excitation is less pronounced on the <y(0).y(t)> autocorrelation function. This observation 

suggests that this excitation is characteristic of a dynamical process of the THF molecule about the (Cy) axis, i.e an in-plane 

rotational excitation. 

A quantitative analyzis of the autocorrelation functions has been performed without explicitly considering the in-plane 

excitation. Considering a single decaying exponential function could not satisfactorily reproduce the autocorrelation 

functions. It was necessary to consider two exponential functions,  

! ! = !!!"# − !
!!

+ !!!"# − !
!!

+ !!!!"#ℎ! !!!
!!! = 1 , (9) 

where τ1 and τ2 are the correlation times and the constant A3 has been introduced in order to take into account for the long 

time limit of the autocorrelation function. At each temperature, the autocorrelation functions have been fitted by means of 

four free parameters, i.e the amplitudes (A1 and A2) and characteristic times (!!!and !!) of the two exponentials. This fitting 

procedure leads to inconsistent results in terms of temperature dependence of the characteristic times. The amplitude 

parameters have then been constrained: it has been assumed that the proportionality of the exponential amplitudes (i.e A1/A2) 

was independent of the temperature. Such assumption is justified by the fact that the geometrical properties of the THF 

dynamics do not evolve with the temperature and that the clathrate structure is identical in the whole temperature range. 

Thus, for each component of the autocorrelation function, the whole temperature range has been fitted by means of 

expression (9) via the four parameters A1, A2, t1 and t2 with the constraint that the ratio A1/A2 is temperature independent. As 

shown in Figure 10, an overall good agreement has been obtained. The ratio A1/A2 was 1.17, 1.12 and 1.32 for the functions 

<x(0).x(t)>, <y(0).y(t)> and <z(0).z(t)>,  respectively; the weight of the two exponential functions are in the same range 

whatever the molecular axis is. The fitted correlation times are shown in Figure 11. Whatever is the component of the 
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autocorrelation function, each exponential function possesses the same correlation time and an Arrhenius law (!! ! =

!!!!"# −!!! !" ) has been fitted to the thermal variation (by excluding the data obtained at 50K). The fitted prefactors were 

 = 0.55 ± 0.7 ps and  = 0.22 ± 0.7 ps respectively for τ1(T) and τ2(T). The fitted activation energies were 

 = 0.3 ± 0.1 kJ.mol-1 and   = 3.0 ± 0.3 kJ.mol-1.  

Two dynamical processes are clearly identified: (i) the first relaxation process is associated with fast reorientational 

fluctuations occurring on a sub-picosecond timescale characterized with a small energy barrier and (ii) the second relaxation 

process is associated with the whole reorientational motions of the THF molecules. The attribution of process (ii) is 

consolidated with the agreement of its activation energy with the one determined in previous analyzis of rotational THF 

motions: Ea has been measured ranging from 2.2 kJ.mol-1 (determined from spin-lattice relaxation time data in the 

temperature range 125 – 243 K [39]) to 4.12 kJ.mol-1 (determined from stimulated echo data at temperatures below 100K 

[42]) by means of 2H NMR and it has been determined as 2.3 ± 0.2 kJ.mol-1 by fitting an Arrhenius law to correlation times 

measured by dielectric spectroscopy [34]. Figure 11 includes the temperature dependence determined by means of these two 

techniques. While the agreement is correct for the activation energies, the MD-derived correlation times are in agreement 

with dielectric measurements, but nevertheless shorter than NMR results. Differences between dielectric and NMR 

correlation times have been discussed previously [37,38,42]. In the present case, it should be noticed that 2H NMR spectra are 

typical of the so-called rapid regime for T > 100K, so that the correlation time is shorter than 10-9 s (with no accurate 

determination of the correlation time from NMR profile analyzis) [39], in full agreement with the present results. It follows 

that NMR-derived correlation times of Figure 11 are extrapolated from NMR measurements below 100K. Moreover, no 

significant distribution of the correlation time of process (ii) is observed in the present analyzis, except for the one introduced 

by the fluctuating reorientational process (i). According to 2H NMR analyzis [39-41], no relaxation time distribution is 

observed above 100 K. Deviation from the exponential relaxation - interpreted with the help of stretched exponential and thus 

representative of correlation time distribution (see e.g. [72]) - is observed for temperatures below 100K [40,42]. These 2H 

NMR analyzes are thus in full agreement with the present study. 

Finally, the two reorientational processes (i) and (ii) occur on different timescales with different activation energies, but no 

anisotropy is observed in terms of characteristic times (i.e. the three molecular axes relax on identical timescale). The 

anisotropy character of the reorientational process is observed on the temperature dependence of the long time limit (see 

Figure 11): the one of the <z(0).z(t)> autocorrelation function is higher than the ones of the two other components. This limit 

may be associated to the existence of reorientational process occurring on a significantly longer timescale than the MD 

τ1
0 τ 2

0

E1
a E2

a
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observation time, as observed by means of 2H NMR [39,42]. In other words, on the probed timescale, this limit could be 

interpreted as a parameter representative of the anisotropic character of the potential experienced by the THF molecules, i.e 

of the probability of the preferred orientations in agreement with structural analyzis by means of neutron Powder Diffraction 

[32] and with 2H NMR data analyzis [39]. By lowering the temperature, this parameter increases while the THF molecule 

gets stuck in one preferred orientation along the z molecular axis, i.e. the molecular axis containing the guest oxygen atom. In 

agreement with previous results [50,73], this preferred orientation might thus be associated to the H-bonding between the 

THF molecules and the water molecules, as revealed by the radial pair distribution function calculated according to the 

distance between the oxygen atom of the THF molecule and the water hydrogen atoms (Figure 3). 

 

IV. SUMMARY AND CONCLUDING REMARKS 

By combining quasielastic neutron scattering (QENS) experiments and molecular dynamics (MD) simulations, a 

comprehensive model of the reorientational dynamics of the THF molecule encapsulated in the large cage of the type II 

clathrate hydrate has been elaborated for temperatures above 100K. The MD-derived elastic incoherent structure factor 

(EISF) as well as the MD-derived quasielastic broadening compare with the experimental ones with a good agreement. 

Spatial and time characteristics of the THF dynamics obtained by means of MD simulations are then consistent with those 

experimentally determined. Such comparison of experimental and MD-derived neutron scattering laws in the quasielastic 

region (i.e. for energy smaller than 3 meV and for momentum transfer ranging from 0.5 Å-1 to 2.5 Å-1) leads to the 

experimental validation of the MD simulations for the first time in the case of the THF clathrate hydrate. The MD trajectories 

has then been analyzed to develop a model reproducing the complex THF dynamics, in conjunction with known results from 

dielectric spectroscopy [34], NMR [39, 42], neutron diffraction [32] and other MD simulations [50, 51]. 

No long-range translational motion is observed and several processes characterize the reorientations of THF molecule within 

the cage. To unravel these various components, orientational distribution functions of the THF molecule has been computed 

in conjunction with autocorrelation functions of the guest molecular axis. A highly damped rotational excitation is observed 

in the plane of THF molecule with a period of ca. 2ps. In addition to this excitation, orientational relaxations occur with a 

characteristic time of 0.7 ± 0.1 ps at 270K and are characterized by means of an energy barrier of 3.0 ± 0.3 kJ.mol-1. The 

modeling of the MD trajectories leads to a description of the THF dynamics in two types of motions occurring on identical 

timescale. The THF molecule undergoes rotation about its C2 molecular axis. This motion evolves from a continuous rotation 

at 270K to hindered rotations characterized with a modulated orientational distribution function at 50K. In addition, the C2 

axis performs anisotropic reorientations by preferentially adopting orientations within the cage. By lowering the temperature 
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to 50K, the THF molecules get frozen in preferred orientations with respect to the probed timescale. As revealed by the 

analyzis of selected radial pair distribution function, the preferred orientations adopted by the THF molecules might be 

associated with the existence of H-bonds between the water molecules and the THF molecules [50], as observed in various 

clathrate hydrates [73]. The reorientational timescale of the THF molecule (of the order of picsecond) is significantly shorter 

than the one of water molecules (significantly longer than hundreds of picosecond). This difference of timescale induces a 

distribution of local environment experienced by the guest molecule and thus the water H-bonds distribution differ from cage 

to cage on the timescale of MD simulations and of QENS experiments. According to the present analyzis, this various local 

environment does not induce a distribution of guest relaxation time. The characteristic time associated with the H-bonded 

host network rearrangement is thus the driven factor of guest preferred orientations within the cage. 

 

 

SUPPLEMENTARY MATERIAL 

See supplementary material for additional details about the structural and dynamical properties derived from the MD 

trajectories. 
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TABLES 

 

 

 

 

 

 

TABLE I. Values of the parameters used in the intermolecular interaction potential (see text for details). Original SPC/E parameters for 
water [57] and ab initio derived parameters for THF molecule. 

Atom ε  [kJ/mol] σ   [Å] q [e] 

Water molecule    

O 0.65017 3.16556 -0.8476 

H 0 0 0.4238 

THF  molecule    

C1 0.4577 3.400 +0.2226 

O2 0.7113 3.000 -0.4660 

C3 0.4577 3.400 +0.0120 

C4 0.4577 3.400 +0.2214 

C5 0.4577 3.400 +0.0100 
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FIGURES 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  Powder difractograms of the THF clathrates hydrates recorded at indicated temperatures with the ToF 

spectrometer IN5@ILL (λ0 = 5 Å). The Bragg peaks are indexed in the type II clathrate structure (i.e space group Fd3m with 

a ≈ 17.2 Å). 
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Figure 2:  Representation of THF molecular frame (Cxyz) as well as the polar (θ) and azimuth (ϕ) angles with respect of the 

MD box reference frame (OXYZ).  
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Figure 3: Pair distribution function of the oxygen atom on the THF molecules with the lattice water hydrogen atoms at 50K, 

100K, 150K, 200K and 270K (the arrow indicates decreasing temperatures).  
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MD-derived QENS spectra                                   Experimental QENS spectra 

 

 

 
 

Figure 4: MD-derived (left hand) and experimental (right hand) neutron scattering laws (points) of the THF clathrate 

hydrates at 270K (energy resolution ΔE ~ 90 µeV for an incident wavelength λo = 5Å). The thick continuous line is the fitted 

scattering laws according to equation (6). The dashed lines represents the fitted quasielastic components and the dotted lines, 

scattering backgrounds.  
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Figure 5: Experimental (open symbols) and MD-derived (filled symbols) HWHM of the THF clathrate hydrates at various 

temperatures (energy resolution ΔE ~ 90 µeV for an incident wavelength λo = 5Å) averaged over momentum transfers. The 

continuous lines represent guide to the eyes. 
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Figure 6: Experimental (points) and MD-derived (lines) EISF of the THF clathrate hydrates at various temperatures (energy 

resolution ΔE ~ 90 µeV for an incident wavelength λo = 5Å). 
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Figure 7: Normalized orientational distribution function P(ψ) of THF molecule located in large 51264 cages of the type II 

clathrate structure at T = 270K (open symbols) and at T = 50K (filled symbols).  
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Figure 8: Normalized orientational distribution function P(θ,ϕ) of THF molecule located in large 51264 cages of the type II 

clathrate structure at T = 270K (left hand) and at T = 50K (right hand).  
 
  

T = 270K T = 50K 
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Figure 9: Autocorrelation functions of the THF molecular axis. <z(0).z(t)> is represented on the left hand. On the right hand, 

<x(0).x(t)> (continuous line) and <y(0).y(t)> (dashed line) are represented. On both plots, the temperatures are 50K, 100K, 

150K, 200K and 270K from top to bottom curves.  The dotted lines indicate the period of excitations observed on 

autocorrelation functions (see text for details). 
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Figure 10: MD-derived (points) and fitted autocorrelation functions of the THF molecular axis. The temperatures are 50K, 

100K, 150K, 200K and 270K from top to bottom curves. The time sampling has been selected to 0.48 ps in order to minimize 

the impact of the in-plane excitation. 
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Figure 11: Temperature dependence of the rotational correlation time (top) and the long time limit (bottom) of the 

autocorrelation function <x(0).x(t)> (triangles), <y(0).y(t)> (squares) and <z(0).z(t)> (circles). Top: the open symbols refer 

to the correlation time t1, the filled symbols to t2 and the continuous lines are the fitted Arrhenius laws. The dotted and dashed 

lines correspond to the Arrhenius behaviour measured by means of dielectric measurements [34] and of solid state ²H NMR 

[42], respectively. 
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Additional structural and dynamical properties calculated from the MD trajectories are provided.  
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I. STRUCTURAL PROPERTIES 

In Figure S1, intermolecular pair distribution functions gOO(r), gOH(r) and gHH(r) coming from the 

host substructure obtained from simulations at various temperatures between 50K and 270K are 

presented. First peaks of gOO(r), gOH(r) and gHH(r) appear respectively around 2.75Å, 1.75Å and 

2.25Å respectively. These values are consistent with a clathrate hydrate structure and these results 

show clearly that the aqueous sub-structure is stable in the temperature range 50 K – 270 K. 

 

 
 

 
 

Figure S1: Pair distribution functions gOO(r), gOH(r) and gHH(r) for water obtained from MD 
simulations at various temperatures. 50K: solid line, 100K: long dashed line, 150K: short dashed 
line, 200K: dotted line and 270K: dotted dashed line. The same representation is used in the next 
figures. 
 
 
The Figure S2 shows the two radial distributions functions between the water atoms and the oxygen 

of the THF molecule. As expected from the intermolecular parameters, the gOwOg(r) function 

exhibits a first peak around 3 Å. The gHwOg(r) function (Figure 3) exhibits a small peak around 1.75 

Å, even at the highest temperature. This feature demonstrates the formation of hydrogen bond 

between water and THF and thus the breaking of hydrogen bond in the water cage substructure.  
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Figure S2: Pair distribution functions gOwOg(r) and gHwOg(r) between water (w) and THF (g) 
obtained from MD simulations at various temperatures as specified in Figure S1.  
 
 
The Figure S3 shows some pair distribution functions between THF molecules: gOO(r), gOC1(r) and 

gOC4(r) (see Figure S2). The behavior of the system is very similar in the temperature range 

considered except at 50 K where a small peak can be observed below 5 Å in the gOO(r) function. 

These results show that some structures can appear below 50 K while above this temperature the 

dynamic of the THF molecules allow to explore all possible orientations. 

 

 

 
Figure S3: Pair distribution functions gOO(r) and gOC(r) for THF obtained from MD simulations at 
various temperatures as specified in Figure S1. 
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2. DYNAMICAL PROPERTIES 

The mean squared displacements of the water and THF molecules obtained from simulations are 

presented in the Figure S4 and Figure S5 respectively. The orientational correlation functions of 

water C2 molecular axis is shown in Figure S6. From these results, it could be concluded that there 

is neither long-range diffusion in the system nor reorientations of the water molecules. The time 

scale of the water reorientations in the clathrate hydrate being of the order of the microsecond and 

the time scale probed during simulation being of the order of the nanosecond, the water cage 

structure can thus be considered as immobile during our simulations. 

 
Figure S4: Mean square displacement of H2O obtained from simulations at various temperatures 

indicated on the figure. 
 

 
Figure S5: Mean square displacement of the THF molecule obtained from simulations at various 

temperatures indicated on the figure. 
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Figure S6: Orientational correlation function of the molecular C2 axis of H2O obtained at various 
temperatures indicated on the figure. 
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