
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153417412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Business Modeling and Requirements in RUP:

A Dependency Analysis of Activities, Tasks

and Work Products

Carina Campos

Dept. de Sistemas de Informação

Universidade do Minho

Guimarães, Portugal

carina.campos13@gmail.com

José Eduardo Fernandes

Polytechnic Institute of Bragança

Bragança, Portugal

jef@ipb.pt

Ricardo J. Machado

Centro ALGORITMI,

Escola de Engenharia

Universidade do Minho

Guimarães, Portugal

rmac@dsi.uminho.pt

Abstract. Most artifacts developed during the requirements

engineering process relate themselves in different ways. In order

to understand in detail how they affect each other during the

software development process, it is relevant to identify their

interdependencies. This paper presents a systematization of the

existing interdependencies between the different elements of the

Rational Unified Process (RUP) in the Business Modeling and

Requirements disciplines. This work, which highlights knowledge

about the different interdependencies and traceability of RUP

elements, is useful to avoid unconscious decisions during software

the development process and also, to detect potential problems due

to the violation of the existing interdependencies.

Keywords: requirements engineering, interdependencies,

traceability, artifacts, RUP

I. INTRODUCTION

Most individual requirements developed during the
requirements engineering process relate to and affect each other
in different ways and thus cannot be treated in isolation [1, 2].
The fact that the requirements relate to and affect each other
makes it necessary to identify and manage the requirements
interdependencies in order to avoid potentially costly mistakes
during the system development.

Requirements interdependencies are not a problem by
themselves, but they influence the number of development
activities and decisions made during the software engineering
process [3]. Traceability is the basis for studying the
requirements interdependencies during the development process
[4] since it allows identifying and justifying the artifacts that
implement the requirements initially formalized.

Software development produces various kinds of artifacts.
The artifacts, such as requirements, do not exist in isolation;
instead they relate to and affect each other [5]. During the
development of solutions and also during the exploration phase
for maintenance issues, frequently arises the need to introduce
several changes to the project decisions previously established.
These changes should be clearly identified to ensure the
complete identification of the artifacts involved in the changes.

To this end, it is necessary to have knowledge about how the
different artifacts relate among them since it facilitates the
identification of the artifacts affected.

RUP is a process that provides the best practices and
guidelines for successful software development [6]. This work,
in the context of Business Modeling and Requirements
disciplines of RUP, analyzes and systematizes the traceability
and the interdependencies that may occur between the various
elements during software development projects.

This paper has the following structure: section 2 presents the
importance of dealing with the interdependencies and the
traceability during the software development; section 3
describes the interdependencies and the traceability between the
different elements of the RUP; section 4 presents the
conclusions.

II. INTERDEPENDENCIES AND TRACEABILITY

Dahlstedt and Persson [4] refer to traceability as "a basis for
addressing the requirements interdependencies". According to
Genvigir [7] and Zou, Settimi and Cleland-Huang [8],
traceability is intimately associated to the software production
process, specifically to the requirements and to the ability to
establish links between these requirements and other artifacts
that satisfy them.

Sánchez, Alonso, Rosique, Álvarez and Pastor [9] mention
that the requirements traceability aims to help determine the
impact of changes in the conception phase of software, to
support their integration, preserve the knowledge and assure the
quality and correction of the global system.

Requirements traceability is as a quality factor [3, 10, 11,
12]. Actively supporting traceability in a software development
project can help ensuring other qualities of software, such as
adequacy and understandability [11]. On the other hand,
neglecting the traceability can lead to less maintainable software
and to failures due to inconsistencies and omissions [11].
Dömges and Pohl [13] refer to neglecting the traceability or
capture insufficient and/or unstructured traces leads to a

This work has been supported by COMPETE: POCI-01-0145-FEDER-

007043 and FCT – Fundaçaõ para a Ciência e Tecnologia within the Project

Scope: UID/CEC/00319/2013.

mailto:jef@ipb.pt
mailto:rmac@dsi.uminho.pt

decrease in system quality, causes revisions, and hence,
increases project costs and time.

Aizenbud-Reshef, Nolan, Rubin and Shaham-Gafni [14]
refer that, from the perspective of requirements management,
traceability facilitates the interconnection of requirements to
their origins and reasons. Additionally, it allows capturing the
information needed for understanding the evolution of
requirements and for verification of requirements fulfillment.
Complete traceability allows calculate more accurately the costs,
as well as to determine lists of changes, without depending on
the programmer knowledge of all the areas that these changes
affect [14]. All these reasons make crucial to implement
traceability practices throughout the software development.

It is essential to identify and manage the interdependencies
that occur throughout the system development in order to, if
needed, in any context, to properly consider related artifacts and
as such, to avoid potentially costly mistakes by neglecting either
those relations or eventually relevant artifacts As mentioned
earlier, through traceability, it is possible to manage these
interdependencies; hence, traceability is fundamental to the
development process.

The purpose of dealing, systematically, with requirements
interdependencies improves the decisions made during software
development as well as to detect the potential problems that may
arise because of the requirements interdependencies [3].
Managing requirements interdependencies consists in identify,
store and maintain information about how the requirements
relate to and affect each other [3].

Maintain traceability of the requirements interdependencies
is essential in order to support various situations and activities in
the system development process [4]. Traceability should be
included and treated along the development projects, thus
representing, an asset to their success. Knowing the whole story
of the artifacts, as well as their interdependencies, will enable
easier identification and management of existing
interdependencies from the early stages of development.
Therefore, this knowledge minimizes problems that may arise
during the software development process.

III. INTERDEPENDENCIES AND TRACEABILITY IN

RUP

RUP aims to ensure the production of quality software that
meets the needs and expectations of its users in a predictable
schedule and cost [6]. RUP guidelines entail several elements
such as activities, tasks, roles and work products. Throughout
the development process, at several moments, RUP elements
become interconnected; by this way, a simple change in an
element causes various subsequent adjustments in others.
Therefore, the knowledge of existing interdependencies between
the various elements is particularly useful since it allows easier
identification of elements affected during a change.

As Dahlstedt and Persson [4] refer, is essential to maintain
the traceability of interdependencies since it allows to know, in
detail, how the elements relate, as well as to support various
situations and activities in the software development. Through
the traceability of various elements of RUP, it is possible to
easier identify and manage the interdependencies that may occur
between elements. For those practitioners that adopt RUP

guidelines, it is useful to understand the interdependencies that
may exist between the various RUP elements.

A. Dependency Analysis of Activities and Tasks

RUP is organized in various disciplines and phases.
However, the study mentioned in this paper focuses in two
transitions (see Fig. 1): (1) from the Business Modeling
discipline to the Requirements discipline, at Inception phase; (2)
from the Inception to the Elaboration phase, within the
Requirements discipline.

To facilitate an overview and analysis of all tasks of RUP
(for Business Modeling and Requirements disciplines), the
conduction of an initial RUP review allowed the construction of
information presented in TABLE I and TABLE II.

These tables show the different tasks of the disciplines of
Business Modeling and Requirements, the activities associated
with these tasks, the phase where they are performed, and the
roles responsible for them. TABLE I details the activities, tasks,
phases and roles of the Business Modeling discipline
considering both processes of Classic RUP Lifecycle and
Business Modeling Lifecycle.

The column Activities presents the five activities performed
in this discipline. The activities performed in the Classic RUP
Lifecycle process are signaled in the table by an α, the activities
performed in the Business Modeling Lifecycle process are
signaled by an β and the activities performed in both processes
are signaled in the table by αβ.

Column Tasks exposes all tasks practiced in the Business
Modeling discipline. Only the tasks with a gray background
were studied, since the other stand in phases that are outside the
scope of our study. The intersection of column Activities with
the lines of column Tasks indicates (through an ‘x’) the tasks
included in the activities.

Column Phases presents which phases include the different
tasks and activities. The abbreviations B1, B2, B3, B4 and B5
(for the various activities) associate tasks and their activities to
the several phases. Column Role main refers which are the roles
responsible for performing the different tasks. The activities
with blue background (Assess Business Status, Describe Current
Business and Develop Domain Model) and the phase (Inception)
refer to the activities and the phase studied in Business Modeling
discipline.

Fig. 1. Positioning of the study in the RUP (Based on [15])

TABLE I. ACTIVITIES, TASKS, PHASES AND ROLES OF THE BUSINESS MODELING DISCIPLINE

TABLE II. ACTIVITIES, TASKS, PHASES AND ROLES OF THE REQUIREMENTS DISCIPLINE

TABLE II presents the activities, tasks, phases and roles of

the Requirements discipline.

Column Activities presents the six activities practiced in this
discipline. As before, in the table, α signals activities performed
in the Classic RUP Lifecycle process, β signals activities
executed in the Business Modeling Lifecycle process, and αβ
signals the activities performed in both processes.

Column Tasks exposes all tasks practiced in the
Requirements discipline. In this discipline, all tasks have a gray
background since they are in the phases of the scope of this study
and as such, covered by this study. An 'x' at the intersection of
column Activities with the lines of column Tasks indicates the
tasks practiced in the activities.

Column Phases presents tasks and activities performed in the
different phases. Abbreviations R1, R2, R3, R4, R5 and R6 (for
the various activities) associate the tasks and their activities to
phases where they are performed. In the intersections, we use α
for Classic RUP Lifecycle, β for Business Modeling Lifecycle
and αβ for both processes. The intersections show the process
where the tasks and their activities are performed.

As in the previous table, the column Role main refers to the
roles responsible for performing the different tasks.

The activities with blue background (Analyze the Problem,
Understand Stakeholder Needs, Define the System, Manage the
Scope of the System, Refine the System Definition and Manage
Changing Requirements) and the phases (Inception and
Elaboration) refer to the activities and the phases studied in
Requirements discipline.

The information provided in these tables is useful throughout
the software development because it allows to perceive how
activities, tasks, and roles relate in a particular discipline and
phase.

B. Dependency Analysis of Work Products and Tasks

The elaboration of the previous two tables allowed to
perceive the tasks and activities covered in the disciplines and
phases considered in this study. TABLE III and TABLE IV have
the purpose of clarifying the interconnection of all work
products of both disciplines to their respective tasks.

The first column of TABLE III shows all the work products
of the Business Modeling discipline and the second column
presents all the tasks. Only the tasks with a gray background
were analyzed because the other tasks are in phases that are not
within the scope our study.

The intersection of these two columns depicts the work
products consumed and produced in the various tasks. These
intersections use the terms IN, OUT and I/O: the term IN is used
to refer work products consumed by the associated task; the term
OUT represents the work products produced by the task in
question; the term I/O represents that the work products are both
consumed and produced by the task in question. Besides these
terms, the term IN* refers to work products that are an optional
entry of the associated task; these work products are not
necessarily consumed in the task. In the tables, the use of colors

facilitate the identification of terms IN, OUT, and I/O: the term
IN is represented by the green color, the term OUT by the red
color and the term I/O by the yellow color.

The first column, TABLE IV shows all the work products of
the Requirements discipline and in the second column presents
all the tasks. All the tasks of this discipline were analyzed
because all the tasks are in phases that are within the scope our
study. The intersection of these two columns depicts which work
products are consumed and produced in the various associated
tasks. These intersections use the terms IN, OUT and I/O, which
were previously defined.

TABLE III and TABLE IV show the work products
produced and consumed by the different tasks. The information
available in these tables allows the identification of existing
interdependencies between tasks and work products that are
produced and consumed.

Fig. 2 and Fig. 3 present two graphical representations that
were developed to enhance the perception of the information
contained in the previous tables; i.e., all the existing
interdependencies between the activities and the tasks and work
products of a given phase and discipline. This visualization
facilitates the analysis of the existing interdependencies along
the development process, thus allowing for a better
understanding and management.

The representation of the TABLE I and TABLE III. This
representation refers to the Business Modeling discipline in the
Inception phase. It presents the five activities belonging to this
discipline. These activities interconnect to their tasks; two of
these activities have no associated tasks because they are outside
the scope of this study. Each task has its associated work
products. These work products may be consumed in the
associated task (inputs, graphically represented by arrow green)
or may be produced by that task (outputs, graphically
represented by arrow red). The work products represented in
yellow refers to work products belonging to the Business
Modeling discipline.

The work products, represented in orange, despite being
work products produced and consumed in this discipline|phase,
do not belong directly to work products defined by RUP for this
discipline. For these work products (in orange), a description
below them indicates the discipline and the phase to which they
belong; some of those do not have associated discipline because,
in concrete, they do not belong to any.

The representation of the Fig.2 is based on information
gathered in the TABLE II and TABLE IV. This representation
refers to the Requirements discipline in the Inception and
Elaboration phases. It presents the six activities belonging to this
discipline, as well as its interconnected tasks. All these activities
have associated tasks because all of them are within the scope of
this study. Each task has its associated work products. These
work products may be consumed in the associated task (inputs,
graphically represented by arrow green) or may be produced by
that same task (outputs, graphically represented by arrow red).
The work products represented in yellow refers to work products
belonging to the Requirements discipline.

TABLE III. WORK PRODUCTS OF THE TASKS OF THE BUSINESS MODELING DISCIPLINE

TABLE IV. WORK PRODUCTS OF THE TASKS OF THE REQUIREMENTS DISCIPLINE

Fig. 2. Scheme Business Modeling@Inception

The work products represented in orange, despite being work

products produced and consumed in this discipline|phase, do not
belong directly to work products defined by RUP for this
discipline. For these work products, represented in orange, a
description below them indicates the discipline and the phase to

which they belong; some of them do not have discipline
associated because, in concrete, they do not belong to any Fig. 2
depicts two different colored background areas: one represents
the Inception phase and the other the Elaboration phase.

Fig. 3. Scheme Requirements@Inception, Elaboration

These colored background areas allow perceiving that two

tasks are handled in both phases, thus verifying that there are
interdependencies between the phases. The tables built facilitate
the identification of interdependencies, not only among
activities, tasks, phases and the roles, but also among tasks and
work products, of the disciplines under consideration.

These tables, as well as the graphical representations allow
analyzing the traceability of various elements of RUP, as well as
easily identifying all the existing interdependencies between
those elements. This becomes particularly useful since it allows
knowing in detail how the various elements of the RUP process
are related.

The information provided in these tables and representations,
improve the practitioner’s capacity in dealing with the impact of
changes and in supporting better development decisions.

This systematization of the interdependencies is also useful
to compare a particular method/process model with the RUP
since it allows knowing in detail how the RUP is organized. The
study of traceability and of the interdependencies between the
various elements of the RUP may be extended to all disciplines
and phases that compose this process. The expansion of the
study will allow detailing how the various elements are related
throughout the whole RUP process.

IV. CONCLUSIONS

RUP is a process that provides best practices and guidelines
for successful software development. However, this does not
provide any information that enables for easy identification of

traceability and existing interdependencies between the various
elements that constitute it. Throughout the software
development, this can become a problem since there is no
explicit native information on RUP documentation on the inter-
relation of RUP elements.

Our work produced several tables and graphical
representations in order to highlight how the various RUP
elements are related. These tables and graphical representations
allow, from the initial phases of development, an easier
identification of the various interdependencies and the
traceability among elements, as well as to provide a deeper
knowledge about the organization of RUP. This is quite
advantageous since it is possible to avoid unconscious decisions
during the development process as well as to detect early
potential problems due to the existing interdependencies.

ACKNOWLEDGMENT

This work has been supported by COMPETE: POCI-01-

0145-FEDER-007043 and FCT – Fundaçaõ para a Ciência e

Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag,
“An Industrial Survey of Requirements Interdependencies in Software
Product Release Planning, ” Proc. of the Fifth International Symposium
on Requirements Engineering, IEEE, 2001, pp. 84-91.

[2] B. Regnell, B. Paech, A. Aurum, C. Wohlin, A. Dutoit, and J. Natt och
Dag, “Requirements Mean Decisions! – Research issues for
understanding and supporting decision-making in Requirements
Engineering,” Proc. First Swedish Conference on Software Engineering
Research and Practice (SERP’01), 2001.

[3] Å. G. Dahlstedt, and A. Persson, “Requirements Interdependencies– State
of the Art and Future Challenges,” In Aybüke Aurum, & Claes Wohlin,
Engineering and Managing Software Requirements, Springer, 2005, pp.
95-116. Springer.

[4] Å. G. Dahlstedt, and A. Persson, “Requirements Interdependencies -
Moulding the State of Research into a Research Agenda,” Proc. of the
Ninth International Workshop on Requirements Engineering: Foundation
for Software Quality, 2003, pp. 55-64.

[5] M. Heindl, and S. Biffl, “A Case Study on Value-based Requirements
Tracing,” Proc. of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, ACM, 2005, pp. 60-69.

[6] P. Kruchten, “Tutorial: Introduction to the Rational Unified Process,”
Proc. of the 24th International Conference on Software Engineering
(ICSE '02), ACM, 2002, p. 703.

[7] E.C. Genvigir, Um modelo para rastreabilidade de requisitos de software
baseado em generalização de elos e atributos, São José dos Campos:
Instituto Nacional de Pesquisas Espaciais, 2009.

[8] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated
requirements trace retrieval: a study of term-based enhancement
methods,” Empirical Software Engineering, vol. 15, no. 2, 2010, pp. 119-
146.

[9] P. Sánchez, D. Alonso, F. Rosique, B. Álvarez, and J. A. Pastor,
“Introducing Safety Requirements Traceability Support in Model-Driven
Development of Robotic Applications,” IEEE Transactions on
Computers, vol.60, no. 8, 2011.

[10] B. Ramesh and M. Jarke, “Toward Reference Models for Requirements
Traceability, ” IEEE Transactions on Software Engineering, vol. 27, no.
1, 2001, pp. 58-93.

[11] S. Winkler and J. V. Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” Software and Systems
Modeling, vol. 9, no. 4, 2010, pp.529-565. Springer.

[12] G. Spanoudakis and A. Zisman, “Software Traceability: A Roadmap,”
Handbook of Software Engineering and Knowledge Engineering, vol. III
S K Chang, Eds.World Scientific Publishing, 2005, pp. 395-428.

[13] R. Dömges and K. Pohl, “Adapting Traceability Environments to Project-
Specific Needs,” Communications of the ACM, vol. 41, no. 12, 1998, pp.
54-62.

[14] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni,”
Model traceability,” IBM Systems Journal, vol. 45 no.3, 2006.

[15] IBM, Rational Method Composer, version.7.1.

	capa
	TTSDP2016_BMRinRUP

