
Towards an Orientation Enhanced Astar Algorithm
for Robotic Navigation

Elisabete Fernandes∗, Pedro Costa∗†, José Lima∗‡, Germano Veiga∗
∗INESC TEC - Tecnologia e Ciência (formely INESC Porto)
†FEUP - Faculdade de Engenharia da Universidade do Porto

‡Instituto Politécnico de Bragança
Email: {elisabete.s.fernandes, germano.veiga}@inesctec.pt , pedrogc@fe.up.pt , jllima@ipb.pt

Abstract—This paper presents an algorithm capable of gen-
erating smooth, feasible paths for an any-shape non-holonomic
mobile robot, taking into account orientation restrictions, with the
aim of navigating close to obstacles. Our contribution consists
in an extension of the A* algorithm in a cell decomposition,
where besides its position, the orientation of the platform is
also considered when searching for a path. This is achieved by
constructing 16 layers of orientations and only visiting neighbor
layers when searching for the lowest cost. To simplify collision
checking, the robot’s footprint is used to inflate obstacles, yet,
to allow the robot to find paths close to obstacles, the actual
footprint of the robot must used. By discretizing the orientation
space into layers and computing an oriented footprint for each
layer, the actual footprint of the robot is used, increasing the
configuration space without becoming computationally expensive.
The path planning algorithm was developed under the EU-funded
project CARLoS1 and was implemented in a stud welding robot
simulated within a naval industry environment, validating our
approach.

I. INTRODUCTION

There are several approaches that address the automation
process in naval industry. The MINOAS project [1] [2] is an
example of such an effort, by projecting a climbing robot to
perform vessel inspection. In [3] a robotic crawler for ship hull
inspection is also described.

Among many others, the pre-outfitting, that include the
stud welding of pins to support the insulation and the marking
operations for other components such as extinguishers or pipes,
represents a significant value, estimated in 10% of the overall
cost of the ship [4]. These tasks are still a manual labor. In
order to automate this process, a robotic mobile manipulator
is being developed in the scope of the CARLoS project.

Mobile manipulators have an extended workspace, but not
without some challenges. For a mobile robot it is often enough
to compute a path that minimizes some cost, such as distance
or computation time but in the context of mobile manipulators,
this may not be the case. On the one hand manipulators usually
require contact with objects and have a limited workspace,
so the platform’s position is conditioned by the range of the
manipulator. On the other hand, mobile robots have the ability
to move in the environment. Combining both characteristics
allows robotic applications to go beyond new approaches.

In the context of stud welding the robot needs to work close
to walls. As the robot is non-holonomic and its dimensions do

1http://carlosproject.eu

not allow an in-place rotation due to its proximity to the wall,
the robot should be able to arrive at the desired position with
the correct orientation, as it is not capable of rotating at the
goal. Most path planning techniques would fail to compute
a path because they use an inflated footprint of the robot,
often circular, not being able to generate a path so close
to an obstacle, or do not take into account the orientation
restrictions when approaching an obstacle. Because the robot is
a tracked vehicle, pure rotations constitute the most demanding
case, with more power consumption and more slippage on the
ground. As the localization system also has the most error in
such cases, in-place rotations were eliminated from the search
space.

Most solutions found in the literature that cope with
orientation are based on a set of primitives that construct
a lattice graph, that is then searched upon [5] [6] [7]. Our
approach combines the A* path planning algorithm [8] with
the orientation of the robot. This way, it is possible to create
a smooth path, that minimizes the distance while taking into
account the orientation constraints in the map.

To find collision-free paths the planner must take the
footprint of the robot into consideration. By using the actual
footprint, the planner can plan as close to the wall as the head-
ing of the robot allows it. However, full collision checking is
expensive, so an expansion of the obstacles is often employed
for efficiency. This way the robot can be assumed a single
point and a full body pose collision check can be avoided [7].

This paper begins with a review of related work, followed
by a description of the platform used in section III. The
developed algorithm is stated in section IV and the results
are presented in V.

II. RELATED WORK

A path planning task finds the navigation path between
two specified locations, the initial and the goal state with
an associated cost. The path is possible and optimal if the
total cost is minimal across all feasible paths leading from the
initial position (start state) to the goal position (goal state).
There are many solutions available to plan a path for mobile
robots movement. Approaches such as Potential field planners,
Probabilistic Roadmap (PRM), Tree-based planner (RRT) and
Non-holonomic and Kinodynamic planning, among others, are
topics addressed by researchers to solve the path planning
problem.

978-1-4799-7800-7/15/$31.00 ©2015 IEEE 3320

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153417254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A common technique for robotic path planning consists
of representing the environment (or configuration space) in
a discrete set of states. Planning a path can therefore be
seen as a search problem on this set (or graph). Classical
graph search algorithms have been developed for calculating
least-cost paths on a weighted graph; the most popular one
is the Dijkstra’s algorithm [8] whereas A* [8] is basically
an informed variation of Dijkstra. A* operates essentially in
the same way as Dijkstra’s algorithm except that it searches
towards the most promising states using an heuristic function,
saving time and computational resources.

Search based methods can be divided into two categories:
grid-based and lattice-based [9]. Grid-based planners decom-
pose the continuous space into a fixed cell grid. Typically
nodes represent states and edges represent the cost of travers-
ing trough states. On the other hand, lattice-based planners
depend on state lattices that discretize the space into a set of
reachable configurations. Nodes represent configurations and
edges represent feasible paths. [10]

Both lattice-based and grid-based approaches allow any
search method, for instance A*, to be applied in order to search
the state space. The disadvantage of lattice is that it requires
a set of motion primitives to be constructed beforehand [10]
and therefore a trajectory generator, such as [11] is needed to
determine all feasible paths in the free space.

One of the limitations of the original A* is that it’s
algorithm is static. This means applications such as mobile
robots with real time constraints are not suitable to use
the original A*. Several variants of the A* were developed,
such as replanning algorithms (e.g. D*), anytime algorithms
(e.g. ARA*), and anytime replanning algorithms (e.g. AD*).
Replanning every time the scene changes seems to be a waste
of computation. Instead, it may be more efficient to take
the previous solution and repair it taking into account the
changes to the graph. Anytime algorithms address the high
dimensional search problem by first computing a feasible path
and improving it towards an optimal solution during execution.

In order to cope with the high dimensional space, several
approaches are used. Sampling based algorithms, such as PRM
and RRT are frequently used because they are able to find
smooth paths in high dimensional space [9]. However, they
often produce highly suboptimal paths and require a post-
processing step to find a feasible path [7] .

Another approach is to rely on a discretization of the
configuration space. In [12] the state space is reduced by
dividing the orientation space into discrete intervals, rep-
resenting the free space. By representing the collision-free
configuration space in a more compact manner, it is suitable
for an incremental planner.

III. MOBILE PLATFORM

The platform used in this implementation was Guardian2.
Guardian is a differential mobile manipulator, with both tracks
and wheels and with skid steered locomotion. This platform
was selected because of the unstructured aspect of ship build-
ing. The platform can be used with or without the wheels,

2http://www.robotnik.eu/mobile-robots/guardian/

which rotate together with the tracks. The tracks allow the
robot to pass over objects and doors within the ship.

The platform is roughly 1.1x0.5m with tracks, and
1.1x0.75m with wheels. It is equipped with 2 Hokuyo laser
range finders, a URG-04LX in the front and a URG-04LX-
UG01 in the back, for a 360 degrees view of the world. This
allows the platform to drive both forward and backwards.

The software was implemented under ROS (Robot Operat-
ing System) [13]. This architecture allows a modular approach
and the interface between different tasks (ROS nodes) becomes
easier.

Guardian is also one of the robots available in ROS3 and is
simulated under Gazebo4. Fig. 1 represents such simulation. To
avoid a more complex computation, the arm was not simulated
in Gazebo.

Fig. 1. Guardian simulation in Gazebo

IV. IMPLEMENTATION

A. Path planning with Orientation Restrictions

A* is a graph search algorithm that finds the lowest cost
path from a given initial position to a goal position. It can
work with a cell based map. Each cell (position XY) represents
a node. A* explores the environment by computing a cost
function for each possible cell to search and then selects
the lowest cost position to add to the search space. In this
approach, the differences relative to the traditional A* by cell
decomposition are:

1) Map: From an input 2D map, Fig. 2a, a 3D represen-
tation of the map will be constructed, the third dimension
being the orientation, as shown in Fig. 2b. There are 16
layers, each layer representing a range of orientations. With
this discretization each layer represents 22.5◦.

2) Neighbors: Traditionally, the A* in a cell decomposition
has connectivity 8, where the 8 neighboring cells are the
cells surrounding it, as illustrated in Fig. 3a. In this case the
connectivity is 16, as shown in Fig. 3b. The aim is to have
neighbors that can represent all possible directions. In this case,
as we have 16 layers representing 16 angles, it is appropriate
to have a neighbor for each angle.

3http://wiki.ros.org/Robots/Guardian
4http://gazebosim.org/

3321

(a) Input 2D map. (b) 16 layered map

Fig. 2. Map representation

(a) 8-connected neighbors. (b) 16-connected neighbors

Fig. 3. Neighbors representation

But in this case, in each iteration, only six of the sixteen
neighbors are visited. Because we are trying to find a smooth
path, it is unreasonable to visit orientations in a complete
different direction than its current orientation, θ. So, for a node
in layer n the six neighbors to visit are:

• Two neighbors in layer n, representing movement
in the same direction of the layer (i.e. keep the
orientation at that moment).

• Two neighbors in the preceding layer, n − 1, repre-
senting movement in the same direction of the layer
(i.e. rotate 22.5◦ clockwise).

• Two neighbors in the next layer, n + 1, representing
movement in the same direction of the layer (i.e. rotate
22.5◦ counter-clockwise).

For each layer, the two nodes represent moving forward and
backwards in that same layer. So, for layer n, the nodes visited
are n and n+ 8, representing movement in θ and θ + 180◦.

For instance, if the current orientation of the robot is θ =
0◦, then its current layer is n = 0 and:

• for layer 0, the nodes visited are 0 and 8.

• for layer 15, the nodes visited are 15 and 7.

• for layer 1, the nodes visited are 1 and 9.

This implies that the possible movements are forward and
backwards motion with orientation 0◦(layer 0), 22.5◦(layer 1)
and 337.5◦(layer 15).

Fig. 4 illustrates such case. The blue cell represents the
current node, the green cells represent the visited neighbors.

Fig. 4. Visited neighbors for a node in layer 0

B. Collision checking/ Layered obstacle expansion

Prior to the search the known obstacles are inflated by
the footprint of the robot, serving two purposes. First, this
eliminates the need for a full collision check, as the robot
can now be expressed as a single cell and collision checking
becomes a simple check of whether the robot position falls
within a free or occupied cell in the map. Second, this also
removes untraversable cells from the search, reducing the
configuration space and optimizing the computation.

A common practice is to inflate the obstacles by the inner
or outer radius of the robot [7], resulting in an optimistic or in
a conservative approach. This approximation is adequate for
circular or nearly squared robots, but fails for those rectangular
or unsymmetrical. If the robot’s distance to an obstacle is less
than the inner radius, then the robot would be certainly in
collision with the obstacle. For a distance farther than the inner
radius, than a collision can happen, depending on the current
heading of the robot.

Fig. 5 demonstrates the importance of the robot’s orienta-
tion relative to the obstacles. In this case, it is clear that for
the same configuration (θ = 0◦) the distance to the center of
the robot is different considering a lateral or frontal wall, so
using the inner or outer radius of the robot would not respond
to both cases.

Fig. 5. Obstacle inflation depending on orientation

Using the inner radius will allow the planner to compute
infeasible paths for some configurations while using the outer
radius may cause the planner to discard feasible paths in low
mobility zones, such as in narrow spaces or close to obstacles.
As the purpose of the algorithm is to compute paths close to
obstacles while also being feasible, the outer or inner radius

3322

are not viable options. Our approach uses the actual footprint
of the robot and works for any robot shape.

By using an oriented footprint of the robot, the configura-
tion space is augmented relative to an outer radius inflation yet
by using an orientation discretization the configuration space
is compact enough for an efficient collision checking.

The orientation space is divided into 16 layers, and for
each one, the oriented footprint of the robot is computed and
the obstacles convoluted with this footprint. Each layer will
have the same obstacle map, but will have different obstacle
inflation, depending on the robot’s orientation. This way, when
searching, the planner may find a path for a specific orientation,
close to an obstacle, that wouldn’t be possible to obtain if the
outer radius was employed.

C. Control

Although the work focus is in global path planning, a PD
(proportional-derivative) controller was implemented to follow
the computed paths.

V. RESULTS

Tests were conducted on two different scenarios. One
represents a ship interior scenario, 8.4x12.4m and the other
represents some corridors, 24x12.4m. Fig. 6 illustrates such
scenarios.

Fig. 6. Tested scenarios

The same map was tried with several resolutions ranging
from 0.01m to 0.1m.

A. Orientation Restricted Paths

Fig. 7 illustrates the need for the orientation in the search
space. The red path represents the path returned by ROS’
implementation of Dijkstra and the blue one the path returned
by our planner. Dijkstra (an uninformed version of A*) fails
under our purposes because it requires turning in-place. This
implementation only searches in (x,y) whereas our planner
searches in (x,y,θ). The blue arrows represent the orientation of
the robot in each point. In this particular example, the robot
should move backwards until the second-last point and then
forward until the goal point.

Fig. 8 illustrates the case in which the goal point is parallel
to the initial point, with the same orientation. As the previous
example, the original A* would compute a straight line,
rotating both at the initial and the goal point. Our algorithm
generates a smooth path that rotates only 22.5◦in each iteration,
avoiding in-place rotations.

Fig. 7. Dijkstra vs orientation restricted path

Fig. 8. Path generated for a goal parallel to the initial point - 0.1m resolution

Fig. 9. Path generated for a goal parallel to the initial point - 0.01m resolution

Fig. 9 also exposes a parallel configuration. In this case
the map resolution is higher (0.01m instead of 0.1m) and the
goal (red arrow) is closer to the initial point (cyan square),
0.1m instead of 2m apart. The resolution makes the orientation
arrows much closer to each other, making it to hard to
comprehend, therefore, no arrows are showed in the picture.

If the robot is at a wall A and it receives a goal point in a
close range but in a wall B, perpendicular to A, then we are in
the presence of a corner. The narrow space will not allow the
robot to turn in-place, so the planner will first distance itself
from the wall, performing then a maneuver to move towards

3323

the goal. This maneuver is illustrated in Fig. 10.

Fig. 10. Example of a corner maneuver

B. Layered Obstacle Expansion

In Fig. 11, at the top, layers 0 (0◦, cyan) and 1 (22.5◦,
pink) are represented. At the bottom, layers 3 (67.5◦, green)
and 4 (90◦, yellow). It can be verified how in layer 0 (if robot’s
heading is 0◦) than it is able to enter the doors, while in layer
4 (robot’s heading is 90◦) it is incapable of such.

If the outer radius was used to inflate the walls, the robot
would never been able to enter the doors, while if the inner
radius was used it would always assume free space and would
cause collisions for certain configurations.

Fig. 12 illustrates a path for a goal in layer 0 (orientation
0◦) as well as the obstacle inflation for layers 0 (cyan), 4
(yellow), 14 (orange) and 15 (red). The planner is able to
find a path because the goal point is free in layer 0 (point
is outside cyan area). If the point were to be in layers 4, 14
or 15, the planner would fail to compute a path because the
point is inflated in such layers and therefore is untraversable.
From the image can be concluded that the planner respects the
restrictions from the obstacle expansion, not entering areas that
its heading does not allow.

The layered obstacle inflation allows the planner to con-
struct paths close to obstacles for certain configurations while
keeping the robot away from them in configurations that would
lead to a collision. These layers also allow an efficient collision
checking, eliminating the need for a full collision checking.

C. Path Following

In Fig. 13, a representation of the path followed by the
robot (green line) over the planned path (blue line) can be
viewed in a 0.025m resolution map. The path was followed
backwards and the tolerance was 0.05m for distance error and
5◦ for angle error. The controller was able to follow closely
the planned path, stopping within tolerance, at 0.0474m and
−0.134◦ from the goal.

Fig. 11. Obstacle inflation for different orientations

Fig. 12. Paths close to obstacles

Fig. 13. Path followed by the robot

3324

VI. CONCLUSIONS

This paper presented the first developments on an extension
over the A* algorithm, where besides the 2D position of
the platform, its orientation was also considered, resulting
in a smooth, feasible path. The actual footprint of the robot
was considered in order to avoid being too conservative or
generating infeasible paths, working for any-shape robots. In
order to improve collision checking and reduce the state space,
the oriented footprint of the robot was used to inflate the
obstacles only in the orientation of the motion, allowing the
use of the actual footprint of the robot without increasing the
complexity of the collision checking, enabling the planner to
compute paths close to obstacles. Simulation tests demonstrate
that the planner is capable of creating paths even in narrow
spaces, such as close to walls and inside corners.

ACKNOWLEDGMENT

The authors would like to thank everyone involved in
the CARLoS Project. This project has received funding from
the European Commission Seventh Framework Programme
for Research and Technological Development under the grant
agreement number 606363 and from the national project
”NORTE-07-0124-FEDER-000060”.

REFERENCES

[1] M. Bibuli, G. Bruzzone, M. Caccia, A. Ortiz, T. Vogele, M. Eich,
L. Drikos, Y. Koveos, E. Kolyvas, F. Spadoni, A. Vergine, K. Tan-
neberger, A. Todorova, I. Gaviotis, and V. Apostolopoulou, “The minoas
project: Marine inspection robotic assistant system,” in Control Automa-
tion (MED), 2011 19th Mediterranean Conference on, June 2011, pp.
1188–1193.

[2] M. Eich and T. Vogele, “Design and control of a lightweight magnetic
climbing robot for vessel inspection,” in Control Automation (MED),
2011 19th Mediterranean Conference on, June 2011, pp. 1200–1205.

[3] L. Menegaldo, M. Santos, G. Ferreira, R. Siqueira, and L. Moscato,
“Sirus: A mobile robot for floating production storage and offloading
(fpso) ship hull inspection,” in Advanced Motion Control, 2008. AMC
’08. 10th IEEE International Workshop on, March 2008, pp. 27–32.

[4] L. Deschamps and C. Greenwell, Integrating Cost Estimating with the
Ship Design Process. SPAR Associates, Inc.

[5] A. Hornung, M. Phillips, E. Jones, M. Bennewitz, M. Likhachev, and
S. Chitta, “Navigation in three-dimensional cluttered environments for
mobile manipulation,” in Robotics and Automation (ICRA), 2012 IEEE
International Conference on, May 2012, pp. 423–429.

[6] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” I. J. Robotic Res, 2009.

[7] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev,
“Path planning for non-circular micro aerial vehicles in constrained
environments,” in Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, May 2013, pp. 3933–3940.

[8] D. Ferguson , M. Likhachev, and A. T. Stentz, “A guide to heuristic-
based path planning,” in Proceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systems, International
Conference on Automated Planning and Scheduling (ICAPS), June
2005.

[9] J. P. Gonzalez and M. Likhachev, “Search-based planning with provable
suboptimality bounds for continuous state spaces,” in SOCS’11, 2011,
pp. –1–1.

[10] M. Pivtoraiko and A. Kelly , “Efficient constrained path planning via
search in state lattices,” in The 8th International Symposium on Artificial
Intelligence, Robotics and Automation in Space, September 2005.

[11] A. K. andBryan Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” The International Journal of Robotics
Research, vol. 22, no. 7-8, pp. 583–601, 2003.

[12] M. Dakulovic, C. Sprunk, L. Spinello, I. Petrovic, and W. Burgard,
“Efficient navigation for anyshape holonomic mobile robots in dy-
namic environments,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, Nov 2013, pp. 2644–2649.

[13] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” ICRA workshop on open source software, vol. 3, no. 3.2, p. 5,
2009.

3325

Powered by TCPDF (www.tcpdf.org)

