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Abstract

Acquisition of azole resistance by clinically relevant yeasts in nature may result

in a significant, yet undetermined, impact in human health. The main goal of

this study was to assess the development of cross-resistance between agricul-

tural and clinical azoles by Candida spp. An in vitro induction assay was per-

formed, for a period of 90 days, with prochloraz (PCZ) – an agricultural

antifungal. Afterward, the induced molecular resistance mechanisms were

unveiled. MIC value of PCZ increased significantly in all Candida spp. isolates.

However, only C. glabrata developed cross-resistance to fluconazole and posa-

conazole. The increased MIC values were stable. Candida glabrata azole resis-

tance acquisition triggered by PCZ exposure involved the upregulation of the

ATP binding cassette multidrug transporter genes and the transcription factor,

PDR1. Single mutation previously implicated in azole resistance was found in

PDR1 while ERG11 showed several synonymous single nucleotide polymor-

phisms. These results might explain why C. glabrata is so commonly less

susceptible to clinical azoles, suggesting that its exposure to agricultural azole

antifungals may be associated to the emergence of cross-resistance. Such studies

forward potential explanations for the worldwide increasing clinical prevalence

of C. glabrata and the associated worse prognosis of an infection by this

species.

Although Candida albicans is still the most frequently iso-

lated Candida species, C. glabrata and C. parapsilosis have

emerged as the second or third most common agent of

invasive candidosis, depending on the region (Pfaller &

Diekema, 2007; Costa-de-Oliveira et al., 2008; Tortorano

et al., 2013).

In an attempt to understand the growing clinical rele-

vance of Candida species, several facts were considered.

Candida species are human commensals, but they are also

ubiquitous in the environment (Odds, 1988); antifungal

agents used for crop protection of the azole class, such as

prochloraz (PCZ), very similar to those used in human

therapy and are extensively used in agriculture within the

EU (Hof, 2001). Such long antimicrobial pressure is rec-

ognized to lead to drug resistance. Fungal diseases are

problematic for both human health and agriculture, and

azole drugs represent the core therapy for both; such cir-

cumstance may represent an initial step in the emergence

of clinically resistant fungal isolates. Therefore, the

purpose of this study was to evaluate the potential devel-

opment of cross-resistance by the extensive use of azole

fungicides in agriculture, similar to azoles used in

humans.

A preliminary broth microdilution susceptibility assay

was performed in order to evaluate the initial MIC of the

isolates to PCZ and to confirm results for all the clinical

azoles, according to the Clinical and Laboratory Stan-

dards Institute M27-S4 protocol (Clinical & Laboratory
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Standards Institute, 2012). Within the fungal collection of

the Microbiology Department of Faculty of Medicine –
University of Porto, we found that isolates, irrespectively

from their species, resistant to clinical azoles showed also

high MIC value to PCZ. Therefore, three clinical isolates

each of C. albicans, C. parapsilosis, and C. glabrata were

selected based upon their susceptibility profile: susceptible

to clinical azoles and low MIC value to PCZ. Strains were

kept in a YPD medium broth supplemented with 10%

glycerol, stored at �80 °C. Prochloraz (PCZ) was used as

a representative of agriculture azoles because its initial

minimal inhibitory concentration (MIC) value was the

lowest encountered. Among clinical antifungals, we used

fluconazole (FLC), voriconazole (VRC), and posaconazole

(POS) – clinical azoles – and anidulafungin (AND) as

representative of echinocandins. Prochloraz was resus-

pended in 80% acetone solution at a final concentration

of 5 mg L�1. Clinical azoles were dissolved in dimethyl

sulphoxide to obtain a stock solution of 10 mg L�1. All

drugs were stored at �20 °C until use. Drug concentra-

tion ranged from 0.125 to 64 mg L�1 of FLC and PCZ

and from 0.0313 to 16 mg L�1 of POS, VRC, and AND;

MIC determination was repeated at least twice.

In vitro induction experiments were performed as

described by Borst et al. (2005) and Pinto e Silva et al.

(2009). It was carried out daily for 90 days keeping a

constant subinhibitory concentration of PCZ. MIC of

PCZ was determined every ten days throughout the

90 days of assay. Whenever a marked MIC increase was

observed (fourfold the initial PCZ MIC), the MIC values

of clinical antifungals were determined as well.

To assess the stability of the developed elevated MIC,

the induced strains were afterward subcultured for an

additional ninety days in the absence of antifungal and

MIC values re-determined, as previously described in the

induction assay.

RNA was extracted as described by K€ohrer & Domdey

(1991). For each real-time quantitative PCR (RT-qPCR)

analysis, three replicates for each species, of the initial

and final strain, were included: for C. albicans CDR1,

CDR2, MDR1, and ERG11; for C. parapsilosis MRR1,

MDR1, UPC2, NDT80, ERG6, and ERG11; for C. glabrata

PDR1, CDR1, PDH1, YOR1, SNQ2, and ERG11 (Kanafani

& Perfect, 2008). The signal obtained for each gene was

normalized with the ACT1 for C. albicans and C. glabrata

and with TUB4 for C. parapsilosis.

In vitro induction assays were performed with three

isolates of each species with similar results within the

same species – one isolate representative of each species

was shown in the results. The three species developed a

progressive increment of PCZ MIC value in comparison

to the initially determined value. After 10 days of induc-

tion, all Candida species developed a 32–64 times higher

PCZ MIC value. In addition, a concomitant increase of

the MIC of FLC, VRC, and POS was observed, but only

for C. glabrata; regarding POS, cross-resistance was well

established after 60 days of induction. No cross-resistance

was registered regarding AND (Table 1).

Table 1. Susceptibility profile of Candida species tested to PCZ, triazoles, and anidulafungin

Species

Time of exposure

to PCZ (days)

MIC (mg L�1)

PCZ FLC VRC POS AND

C. albicans 0 0.5 0.25 0.03 0.03 0.015

10 16 0.25 0.06 0.5 0.03

30 16 0.5 0.06 0.5 0.03

60 16 0.5 0.06 0.5 0.03

90 16 1 0.06 0.5 0.03

Ø90 16 0.5 0.06 0.5 0.03

C. parapsilosis 0 2 0.5 0.03 0.03 1

10 64 1 0.06 1 1

30 64 1 0.06 1 1

60 64 1 0.06 2 2

90 64 1 0.06 2 2

Ø90 64 1 0.06 2 2

C. glabrata 0 1 1 0.25 0.03 0.06

10 64 16 0.5 16 0.125

30 64 16 0.5 16 0.125

60 64 32 1 16 0.125

90 64 64 1 16 0.125

Ø90 64 64 0.25 16 0.125

PCZ, prochloraz; FLC, fluconazole; VRC, voriconazole; POS, posaconazole; AND, anidulafungin; Ø, MIC after 90 days of culture in the absence of

PCZ.
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The in vitro developed high MIC values of PCZ for all

species were stable in the absence of the inducing antifun-

gal PCZ as well as the cross-resistance observed in

C. glabrata.

No significant difference was obtained between the ini-

tial and final strain, regarding gene expression in C. albi-

cans or C. parapsilosis. C. glabrata was the only species

that consistently overexpressed genes previously associated

with azole resistance due to upregulation of efflux pumps

(Bennett et al., 2004). Meanwhile, ERG11 was found to be

downregulated (0.141-fold and P = 0.775). PCZ exposure

triggered overexpression of ATP Binding Cassette (ABC)

multidrug transporters PDH1, YOR1, CDR1, and SNQ2.

The first two genes were found to be 48.5-fold (P < 0.001)

and 66.8-fold (P < 0.001) overexpressed, respectively;

CDR1 and SNQ2 showed an expression level of 2.9-fold

(P = 0.008) and 1.3-fold (P = 0.193), respectively. These

multidrug transporters are regulated by PDR1 encoded

transcription factor, which was also found to be overex-

pressed – 6.8-fold (P < 0.001) (Fig. 1). Therefore, both

C. glabrata transcriptional factor and related efflux genes

were upregulated following the in vitro induction assay. To

determine whether resistance was associated with muta-

tions: ERG 11 and PDR1 genes were sequenced for a single

C. glabrata isolate. DNA products were sequenced in an

ABI Prism 3130 genetic analyzer (Applied Biosystems). A

G727A point mutation in PDR1 gene was found, leading

to an aspartic acid to asparagine amino acid substitution at

codon 243. ERG11 analysis revealed several synonymous

single nucleotide polymorphisms (SNPs) (Supporting

information, Fig. S1).

The concept that the use of azoles in agriculture would

not only influence plant pathogenic species but also

impair susceptible species of opportunistic human patho-

gens has gained relevance; such drugs may also have an

impact in saprophytic fungal species found in human

microbial communities (Snelders et al., 2009, 2012; Ver-

weij et al., 2009; Bowyer & Denning, 2014). In fact, such

an imbalance might affect the endogenous population

and medically important pathogens. It is generally

accepted that a persistent antimicrobial pressure on a

complex microbial population will lead to selection of

resistant clones. Systemic infections due to C. glabrata are

characterized by a high mortality rate; they are difficult to

treat due to the intrinsically low susceptibility of this spe-

cies to azole drugs (Pfaller et al., 2003). In addition,

C. glabrata easily develops fluconazole resistance during

patient treatment. In fact, it is now common to find

azole-resistant Candida isolates from patients not previ-

ously exposed to clinical antifungal agents (Pfaller &

Diekema, 2004; Pfaller et al., 2004). In our study, in all

the three species PCZ MIC value increased from 32- to

64-fold compared to the initial value. However, neither

C. albicans nor C. parapsilosis developed cross-resistance.

Anidulafungin activity was not impaired following the

selective pressure of an agricultural azole compound,

which is not surprising considering that echinocandins

have a different mechanism of action. Our results suggest

a different perspective on the way C. glabrata species

develop stable resistance to medical triazoles. Drug efflux,

resulting from the increased expression of ABC trans-

porter proteins, is the predominant mechanism by which

C. glabrata mediates resistance to a wide range of anti-

fungal compounds. Also Pdr1, as the principal regulator

of ABC transporter gene expression, has been found to be

a key player in such resistance (Bennett et al., 2004; Tsai

et al., 2006; Vermitsky et al., 2006; Ferrari et al., 2009).

These genetic alterations may transform an intrinsically

susceptible to a permanently resistant phenotype. In fact,

haploid fungal cells – as is the case of C. glabrata – might

be more prone to such events (Brockert et al., 2003). We

assessed the most common associated genes with azole

resistance and found that all ABC transporters were up-

regulated, as well as their regulatory transcription factor.

To our knowledge, this is the first time that YOR1 was

found to have such high expression in a C. glabrata

azole-resistant strain – it was 66.8-fold overexpressed.

Also, previous reports addressing genes involved in azole

resistance in C. glabrata state that the predominant basis

for acquired azole resistance is the constitutively upregu-

lated expression of multidrug transporter genes CDR1
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Fig. 1. Gene expression alterations triggered by PCZ exposure in

C. glabrata. Black bars represent the susceptible initial strain – day 0;

gray bars represent the same strain after the induction assay, day 90.

Comparative gene expression profile between the initial, day 0,

susceptible strain and the strain after the induction assay, day 90.

Gene expression is expressed as average with standard deviation of

three independent experiments. Each mean value was normalized

with the ACT1 gene.
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and PDH1 (Bennett et al., 2004; Sanguinetti et al., 2005;

Ferrari et al., 2009). Borst et al. (2005) reported a rapid

and stable acquisition of azole resistance by C. glabrata

after an induction assay with FLC; the same ABC trans-

porters were found overexpressed while no contribution

of ERG11 was verified. As previously described, a single-

point mutation was found at PDR1 while ERG11 only

showed the existence of several synonymous SNPs sug-

gesting that this gene was not involved in C. glabrata

azole resistance in the isolate examined (Sanguinetti et al.,

2005; Ferrari et al., 2009) Certainly, additional studies are

necessary to address the involvement of such genes in the

development of azole cross-resistance triggered by the

selective pressure of an agricultural drug.

In conclusion, apart from very few speculative reports

published some years ago, there is still no evidence for a

clear correlation between the agricultural use of azoles

and the increasing clinical azole resistance (M€uller et al.,

2007; Serfling et al., 2007; Hof, 2008). Nevertheless, our

results strongly suggest such possibility and have the

merit to put in evidence the molecular mechanisms trig-

gered by such an exposure.
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