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Abstract. Constrained multilocal programming optimization problems
may be solved by solving a sequence of unconstrained problems. In turn,
those unconstrained problems may be solved using techniques like the
Stretched Simulated Annealing (SSA) method. In order to increase the
solving performance and make possible the discovery of new optima,
parallel approaches to SSA have been devised, like Parallel Stretched
Simulated Annealing (PSSA). Recently, Constrained PSSA (coPSSA)
was also proposed, coupling the penalty method with PSSA, in order to
solve constrained problems. In this work, coPSSA is explored to solve four
test problems using the l1 penalty function. The effect of the variation of
the reduction factor parameter of the l1 penalty function is also studied.
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1 Introduction

Multilocal programming aims to identify all local maximizers of unconstrained
or constrained nonlinear optimization problems. More formally, a constrained
multilocal programming problem may be defined by the following formulation:

max f(x)
s.t. hk(x) = 0, k ∈ E

gj(x) ≤ 0, j ∈ I
−li ≤ xi ≤ li, i = 1, . . . , n

(1)

where at least one of the n-dimensional functions f, hk, gj : Rn → R is nonlinear,
and E and I are index sets of equality and inequality constraints, respectively.
Since concavity is not assumed, the nonlinear optimization problem can have
many global and local (non-global) maxima. Consider the feasible region (search
space) defined by R = {x ∈ R

n : −li ≤ xi ≤ li, i = 1, . . . , n ; hk(x) = 0, k ∈
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E ; gj(x) ≤ 0, j ∈ I}. Thus, the purpose of the maximization problem (1) is to
find all local maximizers, i.e., all points x∗ ∈ R such that condition (2) holds:

∀x ∈ Vε(x∗) ∩ R, f(x∗) ≥ f(x). (2)

where Vε(x∗) is a neighborhood of x∗, with a positive ray ε.
It is also assumed that problem (1) has a finite number of isolated global and

local maximizers. The existence of multi-solutions (local and global) makes this
problem a great challenge that may be tackled with parallel solving techniques.

Methods for solving multilocal optimization problems include evolutionary
algorithms, such as genetic [1] and particle swarm [13] algorithms, and additional
contributions, like [6,15,20,23,24]. Stretched Simulated Annealing (SSA) was
also proposed [14], combining simulated annealing and a stretching function
technique, to solve unconstrained multilocal programming problems.

In previous work [16,18], Parallel Stretched Simulated Annealing (PSSA)
was introduced as a parallel version of SSA, based on the decomposition of the
feasible region in several subregions to which SSA is independently applied by
a set of processors. Several domain decomposition and distribution approaches
were explored, leading to successively increasing levels of numerical efficiency.

More recently, the parallel solving of constrained multilocal programming
problems was also proposed, through coPSSA [19] (constrained PSSA), that
couples the penalty method with PSSA. Basically, coPSSA creates a homoge-
neous partition of the iteration set of the l1 penalty function [11]; each iteration
subset is run in parallel, by different processors of a shared memory system, and
each specific iteration invokes PSSA; this, in turn, involves additional processors;
these processors are usually from a distributed memory cluster, but may also be
from the same shared memory host, once PSSA is a MPI-based application [8].

In this paper, coPSSA is explored, with the l1 penalty function, to solve four
well known test problems [4], in order to analyze the kind of performance gains
that may be expected with a reasonable set of parallel configurations. Moreover,
the effect of the variation of the reduction factor parameter τ of the l1 function
is analyzed to investigate the existence of values leading to faster convergence.

The rest of the paper is organized as follows. Section 2 revises the basic ideas
behind SSA and PSSA. Section 3 covers the basics of penalty method with l1
penalty function, and provides some details on coPSSA design and implementa-
tion. Section 4 presents performance and numerical results from the evaluation
of coPSSA. Finally, Section 5 concludes and defines directions for future work.

2 Unconstrained Optimization

2.1 Stretched Simulated Annealing

Stretched Simulated Annealing (SSA) is a multilocal programming method that
solves bound constrained optimization problems. These may be described as:

max
x∈X

ϕ(x), (3)
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where ϕ : Rn → R is a given n-dimensional multimodal objective function and
X is the feasible region defined by X = {x ∈ R

n : −li ≤ xi ≤ li, i = 1, ..., n}.
SSA solves a sequence of global optimization problems in order to compute

the local solutions of the maximization problem (3). The objective function of
each global problem is generated using a stretching function technique [12].

Let x∗ be a solution of problem (3). The mathematical formulation of the
global optimization problem is as follows:

max
x∈X

Φl(x) ≡
{

φ̂(x) if x ∈ Vε(x∗)
ϕ(x) otherwise

(4)

where Vε(x∗) is the neighborhood of solution x∗ with a ray ε > 0.
The φ̂(x) function is defined as

φ̂(x) = φ̄(x) − δ2[sign(ϕ(x∗) − ϕ(x)) + 1]
2 tanh(κ(φ̄(x∗) − φ̄(x))

(5)

where δ1, δ2 and κ are positive constants, and φ̄(x) is

φ̄(x) = ϕ(x) − δ1
2

‖x − x∗‖[sign(ϕ(x∗) − ϕ(x)) + 1]. (6)

To solve the global optimization problem (4) the Simulated Annealing (SA)
method is used [5]. The Stretched Simulated Annealing algorithm stops when no
new optimum is identified after r consecutive runs. [15,16] provide more details.

2.2 Parallel Stretched Simulated Annealing

As a parallel implementation of the SSA method, PSSA was thoroughly
described in previous work [16]. In this section, only a brief description is pro-
vided.

SSA applies a stochastic algorithm, ι successive times, in the feasible region
of the bound constrained problem. The same algorithm may be applied to the
subregions of a partition of the feasible region, with the aim of improving the
number of optima found. Moreover, each subregion may be processed indepen-
dently, once there are no data or functional dependencies involved. SSA is thus an
embarrassingly parallel problem, calling for a Domain Decomposition approach.

In this regard, PSSA supports both homogeneous and heterogeneous
decomposition of the feasible region, as well as static or dynamic assignment
of subregions to processors. The various combinations of these possibilities are
materialized in three PSSA variants: i) PSSA-HoS (Homogeneous decomposi-
tion, Static assignment), where subregions are defined only once, have equal size
and processors self assign the same number of subregions; ii) PSSA-HoD (Homo-
geneous decomposition, Dynamic assignment), different from PSSA-HoS only in
subregions being assigned to processors on-request (thus possibly in varying
number); iii) PSSA-HeD (Heterogeneous decomposition, Dynamic assignment),
based on an adaptive recursive refinement of an initial homogeneous partition
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of the feasible region, leading to an unpredictable number of subregions, of vari-
able size, dynamically generated and processed on-demand, until certain stop
criteria are met. PSSA-HoS and PSSA-HoD have the same numerical efficiency
(i.e., both find the same number of optima), but PSSA-HoD is faster due to its
workload auto-balancing. PSSA-HeS usually finds more optima, but is also the
slowest of the PSSA variants, once it typically searches many more subregions.

PSSA was written in C, runs on Linux systems, and it builds on MPI [8]
(thus following the message passing paradigm). It is a SPMD (Single Program,
Multiple Data) application that operates in a master-slaves configuration (slave
tasks run SSA in subregions, under coordination of a master task), and may be
deployed in shared-memory systems and/or in distributed-memory clusters.

3 Constrained Optimization

3.1 l1 Penalty Method

There are three main classes of methods to solve constrained optimization prob-
lems [9,25]: 1) methods that use penalty functions, 2) methods based on biasing
feasible over infeasible solutions, and 3) methods that rely on multi-objective
optimization concepts. In this work constraints are handled using a class 1
method with the l1 penalty function. This function is a classic penalty [11]
defined by

ϕ(x, μ) = f(x) − 1
μ

⎡
⎣∑

k∈E

|hk(x)| +
∑
j∈I

[gj(x)]+
⎤
⎦

where μ is a positive penalty parameter that progressively decreases to zero,
along kmax iterations. A lower bound μmin is defined and μ is updated as follows:

μk+1 = max
{
τμk, μmin

}
(7)

where k ∈ {1, ..., kmax} represents the iteration, μmin ≈ 0 and 0 < τ < 1.
To solve the constrained problem (1), the penalty method solves a sequence

of bound constrained problems, based on the l1 penalty function, as defined by

max
x∈X

ϕ(x, μk). (8)

Problem (8) is solvable using PSSA. It is possible to prove that the solutions
sequence {x∗(μk)} from (8) converges to the solution x∗ of problem (1) [11,15].

The penalty method stops when a maximum number of iterations (kmax) is
reached, or successive solutions are similar, accordingly with the next criteria:

∣∣f(xk) − f(xk−1)
∣∣ ≤ ε1 ∧ ∥∥xk − xk−1

∥∥ ≤ ε2 (9)

where k is a given iteration of the penalty method.
The optimum value for the reduction factor τ of the update expression (7)

is an open research issue in the optimization field [10,21]. This paper presents
an analysis of the effect of the variation of τ in the l1 penalty function method,
when solving multilocal programming problems by PSSA. The main goal is to
identify the best value τ in order to obtain the optima set in the shortest time.
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3.2 Constrained PSSA

Constrained PSSA (coPSSA) was already introduced in [19], albeit in the context
of a simpler evaluation scenario than the one explored in this paper. Here coPSSA
is revised, and some clarification is provided on its design and implementation.

As stated in the previous section, problem (8) may be solved using SSA,
including its parallel implementations, like PSSA. However, coupling PSSA with
a serial implementation of the penalty method is of limited benefit performance-
wise: in the end, some extra optima may be detected (due to the extra efforts
of PSSA), but the penalty method will not run faster. A possible approach to
increase the performance of the penalty method is to parallelize its execution.

As it happens, the parallelization of the penalty method is trivial: this method
will execute a certain maximum number of times or iterations, as defined by
the parameter kmax; each iteration uses successively lower values of the penalty
parameter μ; these values are completely deterministic, as given by (7); therefore,
a partition of the iteration space {1, ..., kmax} may be defined, a priori, such that
mutually disjoint subintervals of this space are assigned to different processors
or search tasks (with one task per processor); each task will then run the penalty
method along its iteration subspace; as soon as a task reaches convergence (in
accordance to criteria (9)), the others will stop the search (before moving on to
its next iteration, a task checks if other has already converged to the solutions).

Having different processors/tasks starting the optima search with different
values of μ, scattered along the interval of possible values {μ1, ..., μkmax}, may
allow to reach convergence sooner, as compared to a single full sequential scan of
that interval. However, it was noted that this strategy does not necessarily pay
off; it must be tested for each and different constrained optimization problem,
once the value(s) of μ that lead to convergence are unpredictable by nature.

coPSSA adopts the strategy above, for the parallelization of the penalty
method, by performing a homogeneous decomposition of the iteration space:
given P search tasks and kmax iterations, any search task tp (with p = 1, ..., P )
will iterate through approximately the same number of iterations, w = �kmax

P ),
where �x is the smallest integer value not less than x; the iteration subinter-
val for a task tp is then {kp

left, ..., k
p
right}, where kp

left = ((p − 1) × w) + 1 and
kp

right = p × w; when a uniform width w is not possible (kmax mod P �= 0),
coPSSA makes the necessary adjustments in the last iteration subinterval (the
one for task p); for instance, with kmax = 100 and P = 2, it is obtained
w = �50.0 = 50 and so t1 will iterate through {1, ..., 50} and t2 will iterate
through {51, ..., 100}; with P = 3 it is obtained w = �33.3(3) = 34, and so t1, t2
and t3 will iterate through {1, ..., 34}, {35, ..., 68} and {69, ..., 100}, respectively.

Like PSSA, coPSSA was also coded in C, for performance reasons, and also
to reuse previous code from one of the authors. In coPSSA, search tasks are con-
ventional UNIX processes, that synchronize and exchange data using classical
System V IPC mechanisms, like semaphores and shared memory1. When coPSSA

1 Alternatives like Pthreads, OpenMP or even MPI, may be explored in the future.
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starts, it forks P child processes (one per search task), where P is usually defined
to be the number of CPU-cores of the host running coPSSA. Each child (search
task) will then run the penalty method through a specific iteration subinterval;
for each particular iteration, PSSA must be invoked; this is simply accomplished
using the system primitive, that spawns second-level childs to run the mpiexec
command2; in turn, this command runs PSSA, in a MPI master-slaves config-
uration, in a set of hosts / CPU-cores that are defined by coPSSA; basically,
coPSSA is supplied with a base MPI “machinefile”, from which extracts the
computing resources to be assigned to each PSSA execution; the results pro-
duced by PSSA executions are written in specific files, which are then checked
by the search tasks, in order to detect a possible convergence.

Fig. 1. The coPSSA application and its interactions with PSSA (tp are coPSSA search
tasks; m and s are PSSA tasks (master and slaves); fp are result files from PSSA)

Figure 1 is a representation of coPSSA, including its interactions with PSSA.
coPSSA may thus be viewed as a hybrid application, in the sense that combines
its internal usage of shared-memory based parallelism, with an external compo-
nent (PSSA) specially suited to exploit distributed-memory parallelism.

4 Evaluation

4.1 Setup

The experimental evaluation performed in the context of this work was carried in
a commodity cluster of 9 hosts (1 frontend, and 8 worker nodes), with one Intel
Core-i7 4790K 4.0GHz quad-core CPU per node, under Linux ROCKS version
6.1.1, with the Gnu C Compiler (GCC) version 4.4.7 and OpenMPI version 1.5.4.

coPSSA was always executed in the cluster frontend, with the number of
search tasks (P ) ranging from 1 to 8 (no overload was observed for P > 4,

2 As a side note, we had to switch the MPI implementation, from MPICH2 to Open-
MPI, because a bug in MPICH2 corrupts stdio in coPSSA after mpiexec returns.
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despite the frontend having only a 4-core CPU). PSSA executions took place in
the 8 worker nodes; these offer a total of 32 CPU-cores, fully specified in the
base MPI hostfile supplied to coPSSA, that are used, four at a time, to service
the PSSA execution requests of each coPSSA task; thus, each PSSA execution
always consumed 4 cores, with 1 core for the master process, and 3 cores for
slave processes; in order to fully utilize these 3 cores, the number of subregions
for each PSSA execution was set to be as close as possible (in excess) of 3; for
2-dimensional problems, like the ones tested, this implies 4 subregions [16]. The
PSSA variant used throughout the tests was always PSSA-HoD: not only it is
appropriate for a fixed number of subregions, but is also the fastest variant.

All tests shared the penalty algorithm parameters kmax=100, μ0=1.0, μmin =
10−6 and τ ∈ {0.1, ..., 0.9}, and the convergence parameters ε1 = ε2 = 10−4.
The PSSA numerical parameters were r = 5, δ1 = 1.5, δ2 = 0.5 and κ = 0.05.

4.2 Search Times

Tables 4 to 7 show the search times measured for the selected benchmark prob-
lems, for all valid combinations of P (number of coPSSA search tasks) and τ
(the penalty reduction factor under evaluation), with P = 1, 2, ..., 8 and τ =
0.1, 0.2, ..., 0.9. The search times are the times required by coPSSA to converge
to the constrained problem optima. Figures 2 to 5 represent the data of the
tables, with four subfigures per table, that offer four different and complemen-
tary perspectives on search times (the first two – (a) and (b) – build on a hori-
zontal reading of the table, and the last two – (c) and (d) – build on a vertical
reading):

(a) “Search times for each τ”: one curve per τ value, based on the search times
obtained with a fixed τ , when varying the number P of search tasks; allows
to verify the influence of the variation of the degree of search parallelism (P )
on the search times produced by a specific τ ; allows also to identify the τ
value that ensures the lowest (absolute minimum) search times;

(b) “Average search times for P ≥ 1 and P ≥ 2”: one curve, where each point
is the average of the search times obtained with a fixed τ and all possible
values of P (i.e., P ≥ 1); another curve, where each point is the average
of the search times obtained with a fixed τ and all values of P ≥ 2; the
first curve allows to deduce the best τ , irregardless of the use of sequential
(P = 1) or parallel (P ≥ 2) searches; the second curve allows to conclude
which τ value is the best when only parallel searches are made;

(c) “Search times for each P”: one curve per P value, based on the search times
obtained with a fixed P , when varying τ ; allows to verify the influence of
the variation of the value of τ on the search times produced by a specific P ;
allows also to identify the P value that ensures the lowest search times;

(d) “Average search times for all τ values”: a single curve, where each point
is the average of the search times obtained with a fixed P and all possible
values of τ ; allows to deduce the best P , irregardless of the value of τ .
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For each of the above perspectives, these are the main conclusions that may
be derived from the experimental data3:

(a) in all problems, when increasing the number of search tasks, the trend fol-
lowed by the search times for each τ is mostly downwards, eventually fol-
lowed by stabilization; this trend is more regular for Problems G6 and G8
(see Figures 2a and 3a), slightly less regular in Problem G12 (see Figure
5a), and much more irregular in Problem G11 (see Figure 4a); it is also
possible to identify the values of τ that attain the absolute minimum search
times; these times are boxed (within a tolerance of 5%), in Tables 4 to 7; the
corresponding values of τ are gathered in the following table:

Table 1. Values of τ that ensure the absolute minimum search times

Problem P = 1 P ≥ 2

G6 0.1 0.5 , 0.6
G8 0.1 0.7
G11 0.3 0.9
G12 0.1 0.6 to 0.9

the previous table allows to conclude that when only sequential searches are
used (P = 1), the absolute minimum values for search times are attained with
small values of τ ; however, if only parallel searches are conducted (P ≥ 2),
the lowest search times are achieved with higher (mid range to maximum)
values of τ ; one should note, though, that these observations cannot be
generalized, because the τ values that produce the absolute minimum search
times may not be the ones that produces the lowest average search times;

(b) the values of τ that ensure the lowest average search times depend on the
specific problem, and also depend on whether both sequential or parallel
searches are admitted (P ≥ 1), or only parallel searches (P ≥ 2) are allowed;
in Tables 4 to 7, the columns “avg. P ≥ 1” and “avg. P ≥ 2” show the
average search times attained by each τ , when P ≥ 1 and P ≥ 2, respectively;
in each column, the lowest average search time is in bold (within a tolerance
of 5%); the related values of τ are gathered in the following table:

Table 2. Values of τ that ensure the lowest average search times

Problem P ≥ 1 P ≥ 2

G6 0.1 0.1 to 0.6
G8 0.1 0.8 , 0.9
G11 0.3 0.3
G12 0.1 0.1 to 0.6

the previous table allows to conclude that if using a sequential or a parallel
search is indifferent (P ≥ 1), then single small values of τ are best in order

3 Note: for Problem G6, no values are shown for τ = 0.9, because no convergence was
reached within the maximum of kmax = 100 iterations.
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to attain the lowest search times, on average (coincidentally, such values of τ
match the values in Table 1 that ensure the absolute minimum search times
for P = 1); however, if only parallel searches are admissible (P ≥ 2), there
may be several best values of τ to chose from, like in problems G6 and G12,
that share the same range of values (0.1 to 0.6), or like in problem G8, with
another range (0.8 to 0.9); problem G11, though, is an exception, because
the best τ value is always the same (0.3) for sequential and parallel searches;

(c) when increasing τ , problem G6 (Figure 2c) and problem G12 (Figure 5c)
exhibit a similar trend on the search times for each P (these times progres-
sively increase for P = 1, but for P ≥ 2 they are substantially lower and
stable, and only start to increase for higher values of τ); for problem G8
(Figure 3c), the trend is also upwards for P = 1, but now is reversal for
P ≥ 2 (as τ values increase, the search times will decay); finally, for problem
G11 (Figure 4c), the pattern is very irregular, independently of P (increasing
τ may lead to an unpredictable surge or decline of search times);

(d) irregardless of τ , the use of parallel searches typically pays off for all problems
(in general, increasing the level of parallelism (P ) will decrease the search
times); this downwards trend is more regular in problems G8 (Figure 3d),
G11 (Figure 4d), and G12 (Figure 5d), where the lowest average search times
are achieved with the higher values of P (values 7 and/or 8); in problem G6
(Figure 2d), both P = 4 and P = 7 provide the best average search times;
all these times are shown encircled in the tables (within a tolerance of 5%).

4.3 Number of Optima

Another important issue is the number of optima found. Table 3 shows that
number as an average: for each problem, sequential only (P = 1) and parallel
only (P ≥ 2) searches are considered; for each of these categories, it is presented
the mean of the number of optima found with all values of τ tested (0.1,...,0.9);
along with the mean, the coefficient of variation is also presented, in parenthesis.

Table 3. Average number of optima found (and coefficient of variation)

Problem P = 1 P ≥ 2

G6 4.9 (20.3%) 5.7 (12.7%)
G8 6.0 (0%) 6.0 (0%)
G11 11.4 (21.5%) 11.9 (18.4%)
G12 10.8 (7.7%) 10.2 (6.9%)

The table allows to conclude that: i) for problem G8, the number of optima
found is the same, independently of P and τ ; ii) for the other problems, there
are indeed differences between using a single sequential search and using parallel
searches; but these differences are small, and they may either favor parallel
searches (problems G6 and G11) or sequential searches (problem G12); it seems,
however, that parallel searches exhibit a smaller dispersion of the optima number.
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Table 4. Search times values for Problem G6 (seconds)

P avg. avg.
τ 1 2 3 4 5 6 7 8 P ≥ 1 P ≥ 2

0.1 33.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 10.9 7.7

0.2 41.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 11.9 7.7
0.3 70.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 15.6 7.7
0.4 95.8 7.7 7.7 7.7 7.7 7.7 7.7 7.6 18.7 7.7

0.5 85.8 7.7 7.7 7.7 7.7 7.7 7.1 7.8 17.4 7.6

0.6 142.4 7.7 7.7 7.7 7.9 8.2 7.2 8.7 24.7 7.8

0.7 159.9 7.8 7.7 7.8 9.0 7.6 8.8 8.7 27.1 8.2
0.8 263.2 91.3 31.7 8.7 14.8 17.6 8.7 12.7 56.10 26.5
0.9

avg. 111.7 18.1 10.7 7.8 8.8 9.0 7.8 8.6

(a) Search times for each τ (b) Average search times for P ≥ 1 and
P ≥ 2

(c) Search times for each P (d) Average search times for all τ values

Fig. 2. Search times plots for Problem G6
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Table 5. Search times values for Problem G8 (seconds)

P avg. avg.
τ 1 2 3 4 5 6 7 8 P ≥ 1 P ≥ 2

0.1 14.9 15.0 15.2 15.0 15.0 14.9 15.0 14.9 15.0 15.0

0.2 19.3 19.5 19.5 19.3 19.5 19.5 19.5 19.3 19.4 19.4
0.3 22.8 22.6 22.3 22.6 22.7 22.6 22.3 20.1 22.3 22.2
0.4 25.8 23.1 22.8 22.8 22.7 18.8 9.8 9.9 19.5 18.6
0.5 35.0 23.0 22.8 22.8 10.5 9.9 9.9 10.4 18.0 15.6
0.6 41.2 22.9 22.7 9.8 9.7 8.5 9.9 10.0 16.8 13.4

0.7 51.2 22.9 9.7 10.0 9.7 9.7 9.6 6.8 16.2 11.2

0.8 77.6 9.6 10.0 9.3 9.0 9.8 9.5 8.4 17.9 9.4
0.9 157.3 9.7 10.0 9.7 7.4 9.4 11.2 11.8 28.3 9.9

avg. 49.5 18.7 17.2 15.7 14.0 13.7 12.9 13.0

(a) Search times for each τ (b) Average search times for P ≥ 1 and
P ≥ 2

(c) Search times for each P (d) Average search times for all τ values

Fig. 3. Search times plots for Problem G8
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Table 6. Search times values for Problem G11 (seconds)

P avg. avg.
τ 1 2 3 4 5 6 7 8 P ≥ 1 P ≥ 2

0.1 274.8 24.0 23.8 24.0 28.3 23.9 23.8 28.4 56.4 25.2
0.2 129.2 95.4 24.1 23.6 23.6 23.0 23.7 28.3 46.4 34.5

0.3 15.2 14.9 15.0 14.9 14.9 15.0 14.9 15.1 15.0 15.0

0.4 264.1 48.3 23.4 24.9 56.2 23.6 41.8 28.2 63.8 35.2
0.5 100.2 94.1 84.1 64.8 88.9 12.7 19.8 28.1 61.6 56.1
0.6 89.9 90.2 89.9 24.5 37.7 34.4 27.5 11.3 50.7 45.1
0.7 318.3 56.2 103.0 56.2 54.5 53.8 27.6 48.8 89.8 57.1
0.8 184.2 41.9 69.5 28.9 16.2 44.3 25.7 23.1 54.2 35.7

0.9 38.1 37.6 37.6 32.8 9.5 37.6 11.9 19.0 28.0 26.6

avg. 157.1 55.9 52.3 32.7 36.6 29.8 24.1 25.6

(a) Search times for each τ . (b) Average search times for P ≥ 1 and
P ≥ 2

(c) Search times for each P (d) Average search times for all τ values

Fig. 4. Search times plots for Problem G11
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Table 7. Search times values for Problem G12 (seconds)

P avg. avg.
τ 1 2 3 4 5 6 7 8 P ≥ 1 P ≥ 2

0.1 67.6 14.1 14.1 14.1 14.1 14.1 14.1 14.1 20.8 14.1

0.2 79.5 14.1 14.1 14.1 14.1 14.1 14.1 14.1 22.3 14.1
0.3 87.3 14.1 14.1 14.1 14.1 14.1 14.1 13.5 23.2 14.0
0.4 116.9 14.2 14.1 14.1 14.1 13.5 14.1 14.1 26.9 14.0
0.5 154.9 14.1 14.1 14.1 14.1 14.3 14.1 15.2 31.8 14.3

0.6 142.4 14.1 14.1 14.1 14.1 16.3 13.1 16.4 30.6 14.6

0.7 202.1 21.4 14.2 15.2 16.3 16.3 13.3 13.1 39.0 15.7

0.8 92.4 90.1 13.1 36.7 16.3 15.1 16.3 15.0 36.9 29.0

0.9 124.7 125.6 83.6 19.1 45.1 12.9 13.3 12.8 54.6 44.6

avg. 118.7 35.8 21.7 17.3 18.0 14.5 14.1 14.3

(a) Search times for each τ (b) Average search times for P ≥ 1 and
P ≥ 2

(c) Search times for each P (d) Average search times for all τ values

Fig. 5. Search times plots for Problem G12
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5 Conclusions and Future Work

In this paper coPSSA is explored, as a hybrid application that solves constrained
optimization problems, by integrating a numerical l1 penalty method with a
parallel solver of unconstrained (bound constrained) problems (PSSA).

The effect of the variation of the number of search tasks, and of the penalty
parameter reduction factor (τ) was studied, in the context of the l1 penalty
function. With base on the analysis of the results obtained with the four tested
problems, it is possible to conclude: i) increasing the number of search tasks
typically decreases the search times; ii) for the tested problems, smaller values of
τ typically imply lower average search times; iii) for some problems, the number
of optima found does not depend on the number of search tasks neither on the
value of τ , while other problems are sensitive to the variation of those factors.

In the future, the research team intends to refine this work, by solving more
constrained problems (including problems with more than 2 dimensions), and
exploring higher levels of parallelism (i.e., by running coPSSA with P >> 8).
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