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Abstract. This research intends to give insights on the pattern aggregation of 
wind energy conversion systems technologies through identification of homo-
geneous groups within a set of wind farms installed in Portugal. Pattern aggre-
gation is performed using Hierarchical Cluster Analysis followed by Discrimi-
nant Analysis, in order to validate the results produced by the first one. The 
clustering support matrix uses three independent variables: installed capacity, 
net production and capacity factor, in a per year basis. Cluster labelling allows 
the identification of two homogenous groups of wind farms, whose main attrib-
utes are based on the technological conversion system trend: (1) asynchronous 
generator based technology and (2) direct driven synchronous generator based 
technology, with higher capacity factors. 
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1 Introduction 

The integrated use of renewable energy sources and mature technologies in power 
systems contributes to strengthen domestic economies, by reducing dependency on 
imported fossil fuels and dramatically reduce greenhouse-gas emissions, over time.  

In this scenario, the exploitation of wind energy resources play an important key 
role, capable of decarbonising the power sector. Wind energy is a clean source and 
enfolds an environmental friendly technology. Its renewable character and the fact it 
does not pollute during the operational phase makes it one of the most promising 
energy source in reducing environmental problems at both global and local levels. 

The technological maturity of wind energy conversion systems contributes to a 
small economic differential cost with regard to conventional technologies. In fact, 
wind energy systems are more competitive than other renewable energies, apart from 
for hydro energy systems. This scenario suggests that, in the following decades, wind 
energy will remain the main commitment to new electrical generation capacity.  
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According to the Global Wind Energy Council (GWEC), installed wind power ca-
pacity has grown to cumulative worldwide installation level of 369,5 GW, with 
51,5 GW alone installed in 2014. Europe’s total installed capacity has been surpassed 
for the first time by Asian markets (India, China). Nevertheless, by the end of 2014, 
the wind power capacity installed would produce energy enough to cover approxi-
mately 10% of the Europe’s electricity consumption, in a normal wind year [1]. Por-
tugal accounts for about 5% of the wind energy capacity installed in European Union, 
with approximately 4,9 GW of accumulated installed capacity in 2014 which is capa-
ble to generate about 15% of the electrical energy consumption [2].  

Despite the advantages inherent to a renewable energy source, wind energy has al-
so some unfavourable conditions. The small power density of the wind leads to wide 
and material extensive turbines, thereby hindering the on-site assembly and the elec-
trical infrastructure. Technological developments are being made in order to increase 
unit power wind generators to optimize the impact on the ground for onshore wind 
farms or for offshore applications [3].  

Concerning the prime source, wind is stochastic in nature and essentially ruled by 
random meteorological changes. Due to its intermittent and unpredictable behaviour, 
wind energy conversion systems are not dispatchable, i.e., they do not have the ability 
to produce electrical energy following load requirements. The inherent variability of 
wind power is also raising concerns regarding the reliability and cost-effectiveness of 
the transmission and distribution power systems while supporting large wind farms 
[4]. High penetration levels of wind energy implies structural changes in power sys-
tems as, for instance, the usage of storage systems and/or coupling hydro and wind 
systems to smooth the output pattern [5]. Progress and improvements are being made 
in renewable energy integration into power systems. Development of energy storage 
provided, for instance, by bi-directional Vehicle-to-Grid technologies and intelligent 
networking will allow a greater penetration potential of wind energy.  

The life span of the first wind farms is coming to an end, which implies repowering 
processes aiming an augmented efficiency and reliability of the wind turbines. From 
the available technologies of the conversion systems, it is far from clear which of 
them is the optimal.  

The motivation for this work is supported by the absence of a deterministic cer-
tainty in allocating outputs of wind farms, regarding the technological conversion 
system trends [6,7]. Therefore, this study aims at giving some insights into techno-
logical approaches for wind turbines, using probabilistic clustering to identify homo-
geneous groups.  

Clustering wind farms allocate different units into a group which contains some 
common characteristics, which may be used to reduce the size and the order of 
mathematical models and also to perform pattern classification into extensive multi-
dimensional data set [8-11]. 

Previous studies had been performed on pattern aggregation of wind farms using 
probabilistic clustering [12,13]. This work addresses the problem through a method-
ology based on two multivariate analyses: Hierarchical Cluster Analysis and Dis-
criminant Analysis. In order to identify the clusters characteristics, it is also per-
formed an exploratory descriptive analysis. In addition to previous publications, this 
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work considers an increased reference data set of wind farms and extended time span 
in order to establish a comparative analysis with previous results.  

The paper is organized as follows: next section presents technological trends on 
wind energy conversion systems, Section 3 overviews the clustering and validation 
methodologies, Section 4 applies the proposed approach to a case study, presents the 
main results and discussion and, finally, Section 5 rounds up the paper with the main 
conclusions. 

2 Wind Energy Conversion System Technologies  

Despite the fact first development of commercial wind energy technology began in 
the late 1930s, only after the oil crises of the 1970s, there have begun economical 
incentives to develop the technology further [14]. Since the 1980s, there has been a 
significant consolidation of the design of wind turbines. This section describes main 
design styles in wind energy conversions systems and points out the technological 
trends of the conversion system drive train.  

2.1 Design Styles 

The mainstream commercial market uses horizontal axis wind turbines, meaning the 
rotating axis is parallel to the ground. This option is inherently more efficient than 
vertical axis. Concerning the number of blades, the aerodynamic efficiency and re-
duced acoustic noise emission establish three-bladed rotor design.  

Other important issue related with the design of a wind energy conversion systems 
is the mean of limiting rotor power in high operational wind speeds. There are two 
main approaches: stall and pitch control.  

In stall regulated machines, speed regulation is intrinsic to the aerodynamic design, 
without any change of the rotor geometry. Under this control approach, wind turbine 
runs at approximately constant speed even when the wind speed is high, without pro-
ducing excessive power. The constant speed is achieved through the connection of the 
electric generator to the grid. Regarding this aspect, the grid behaves like a large fly-
wheel, holding the speed of the turbine nearly constant irrespective of changes in 
wind speed.  

Pitch control involves pitching the blades (i.e., turning the wind blades about their 
main axis) in order to regulate the power the rotor extracts from wind. This control 
involves an active control system, which should sense the blade position and defines 
appropriate changes of blade pitch, according to the measured output power.  

Another important and decisive design issue of the wind turbines is the use of vari-
able rotational speed versus fixed speed, with consequences on the overall perfor-
mance of the system [15,16].  

The constant speed turbine designs consist on generators operating at fixed speed 
when producing power, directly connected to the utility grid which, through the gen-
erator, holds the speed constant. This concept makes use of Squirrel Cage Induction 
Generators (SCIG) with a geared drive train to adapt the rotational speed to the fre-
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quency of the grid. With this design, the wind energy capture and also the power qual-
ity in the utility grid are reduced.  

Variable speed wind energy systems allows operation below rated power, enabling 
increased energy capture, and also above rated power, even over a small speed range, 
which can substantially ease pitch system duty and reduce output power variability. 
This exploitation mode of wind energy systems improves the power quality when 
compared with constant speed systems. Variable speed wind energy systems may be 
implemented using synchronous or asynchronous generators, allowing wider or nar-
rower wind speed ranges, respectively.  

Solutions based on asynchronous generators, the so called Doubly Fed Induction 
Generators (DFIG), with the stator windings directly connected to the grid and a par-
tial scaled electronic converter between the rotor and the grid, allow a low to moder-
ate variation of the rotor speed. Since the power converter is partially scaled, typically 
one third of the rated power of the system [17], this solution is somewhat cost effec-
tive but, on the other hand, there are limitations to control effectively the grid varia-
bles, which translates in a deficient quality power system [18]. It should be pointed 
out that this concept uses a geared drive train to match the low rotational speed pro-
moted by wind velocities to the higher efficient rotational speed of this generator 
type.  

Solutions based on Synchronous Generators (SG) use full scaled electronic con-
verters. The electrical energy is generated at variable frequency (strictly related to the 
rotational speed of the rotor) and then converted to the frequency of the grid. This 
concept takes advantage of the wide speed range operation allowed by the full scale 
converter between the generator and the grid, which also allows boosting the grid 
stability and performance. Additionally and when compared with DFIG, this type of 
generators requires lower ratio gearboxes, or even its omission, which translates in 
higher reliability and lower maintenance costs [18]. Gearboxes are one of the most 
expensive components of the wind turbine system and require significant repair or 
overhaul before the intended life span of the entire system is reached. Thus, the sim-
plification introduced in the drive train by the absence of these components improves 
significantly the reliability of the wind turbine system and helps bring the cost of 
wind energy back to a decreasing trajectory [19]. 

2.2 Technological Trends 

Under the premise of high variability and intermittency of wind speed, the actual 
demand on power quality issues compels for generators featuring variable speed, 
which is the dominant trend in the actual market.  

Comparing partial speed range systems, promoted by DFIG, and full-range vari-
able speed drives based on SG, the later bring some attractions, specially on opera-
tional flexibility and power quality issues, but also have some drawbacks related with 
the higher power of the electronic converter, with the same rating of the generator 
[20]. In fact, there was never a clear case for full variable speed range on economic 
grounds, with small energy gains being offset by extra costs and also additional losses 
in the power converter. 
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Another technological trend is related with direct driven generators, i.e., gearless 
systems. The direct drive systems of Enercon [21] are long established, and gearless 
systems or with low ratio gearboxes, using Synchronous Permanent Magnet Genera-
tor (SPMG) technology have emerged in recent years [22]. In fact, some manufactur-
ers that in past had based their technology on asynchronous generators are now mov-
ing to SPMG with full scaled converter [23].  

Permanent magnet technology allows a higher power-to-volume-ratio, and fully 
rated power converter based systems can be applied without design hardware modifi-
cations in both 50 Hz or 60 Hz power systems, which increases flexibility for interna-
tional developers operating in multiple wind markets [14].  

Concerning the power control in high operational wind speeds, the design issues of 
pitch versus stall and degree of rotor speed variation are evidently connected. The 
stall-regulated design remains viable, but pitch control offers potentially better output 
power quality, while overall costs of both systems remain similar [14].  

3 Clustering and Validation Methodology 

Clustering, i.e., partitioning objects/cases into similar groups, is a problem with sev-
eral alternatives in mathematics as well as in applied sciences. Cluster analysis aims 
at recognizing groups of similar records and, therefore, helps to discover distribution 
of patterns and interesting correlations in data sets [24, 25]. 

To attain the main goal of this research study, a hierarchical cluster analysis has 
been applied, using the methodology proposed by Ward [24], which is the most com-
monly used for problems similar to the one under analysis, providing a more consis-
tent solution and it is also recommended for quantitative variables measured on a ratio 
scale. In this methodology, an objective function, defined as the sum of squares of 
deviations of the individual observations compared with the average of the group, is 
minimized, aiming at creating groups which have maximum internal cohesion and 
maximum separate external distance [24]. This method uses the variance to evaluate 
distances between clusters, which results in an efficient approach when compared 
with other hierarchical methods (for instance, nearest neighbour, furthest neighbour 
and median clustering). 

The Ward’s distance between clusters iC  and jC , ( ),w i jD C C , is the difference 

between the total within cluster sum of squares for the two clusters separately, and 
within cluster sum of squares, which results from merging the two clusters in cluster 

ijC  [24, 25], i.e.,  

 ( ) ( ) ( ) ( )2 22
,

i j ij

w i j i j ij
x C x C x C

D C C x r x r x r
∈ ∈ ∈

= − + − − −    (1) 

where ir  is the centroid of iC , jr  is the centroid of jC  and ijr  is the centroid of ijC . 

To implement a dissimilarity measure between subjects, it is selected the Euclidean 
Distance Squared. The distance is defined as the square root of the sum of the squared 
differences between the values of i and j for all the selected variables (1, 2,..., p), [26]:  
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where ikx  is the value of the variable k for cases i and jkx is the value of the variable 

k for cases j. 
An agglomerative algorithm is used in order to produce a sequence of clustering 

schemes of decreasing number of clusters at each step. The clustering scheme pro-
duced at each step results from the previous one by merging the two closest clusters 
into one.  

One of the most important issue in clustering analysis is the evaluation of the pro-
duced results to find the partitioning which best performs the underlying data. To 
accomplish this requirement, the performed methodology applies a Discriminant 
Analysis (DA). The basic purpose of DA is to estimate the relationship between a 
single categorical dependent variable and a set of quantitative independent variables 
[26]. Discriminant Analysis involves the determination of a linear equation like re-
gression that will predict which group the case belongs to, minimizing the within-
group distance and, simultaneously, maximizing the between-group distance, thus 
achieving maximum discrimination [26]. The basic idea underlying Discriminant 
Function Analysis is to determine whether groups differ with regard to the mean of a 
variable, and then to use that variable to predict group membership. Given p  vari-

ables and g  groups, it is possible to establish ( )min 1,m g p= −  discriminant func-

tions, iDF , in the form given by [27] 

 ( )
1

1
p

i ik k
k

DF a b x i m
=

= + =   (3) 

where a  is a constant, ikb  is the discriminant coefficient and kx  is the independent 

variable. 
The discriminant model has the following assumptions [28]: 

1. Multivariate normality, given that data values are from a normal distribution; 
2. Equality of variance-covariance within group, i.e., the covariance matrix within 

each group should be equal; 
3. Low multicollinearity of the variables; when high multicollinearity among two or 

more variables is present, the discriminant function coefficients will not reliably 
predict group membership. 

4 Wind Farms Clustering 

Wind farms clustering is addressed here by applying the previous described method-
ology to a case study in order to identify possible clusters and their main attributes.  
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4.1 Case Study 

The chosen support variables used to cluster wind farms are the installed capacity, net 
production and capacity factor, given in a per-year basis.  

Installed capacity of a wind farm is the rated power of each wind turbine multiplied 
by the number of wind turbines within each farm. The rated power of each wind tur-
bine translates the power each drive train is able to convert from mechanical to elec-
trical energy, under given test wind speed conditions. The data set comprises wind 
farms with installed capacities higher than 10 MW. It should be noted that some wind 
farms have been submitted to overpowering processes under the considered time 
span, i.e., installed capacity of each farm in the per-year basis is not constant.  

The net production per year measures the output of each farm, in terms of electrical 
energy delivered to the grid, considering programmed and random unavailabilities 
(failures) of wind turbines. At present, this output is not constrained by load demand 
or wholesale markets, as currently regulated. 

The capacity factor is the ratio of actual productivity in a year to its theoretical 
maximum. Higher capacity factors indicate a better utilization of the installed capac-
ity, which helps to reduce investment costs. In fact, capacity factors are particularly 
important on evaluating the overall economics of wind farms. Typically, capacity 
factors need to be elevated to values about 50% (or better) to make a modern wind 
farm commercially viable [18]. The capacity factor relates with the other two vari-
ables under analysis, nevertheless its inclusion aims at sensing the wind availability in 
each farm. Considering a particular farm, with a given number of wind turbines using 
a specific technological drive train, if the capacity factor increases from one year to 
another, it means that the meteorological conditions in the later favoured the wind 
source. On the other hand, comparing wind farms with similar wind availability pro-
file, if they have different capacity factors, it implies that the design technology and 
layout of the infrastructure are performing differently, assuming that maintenance 
schemes are similar. From the original data set, two wind farms were excluded from 
the analysis, given that they performed as outliers regarding this variable, deviating 
from regular wind energy profiles.  

Final data set comprises 32 wind farms from two promoters acting in the wind en-
ergy sector in Portugal, EDP and GENERG. The information was collected from 
institutional and technical Annual Reports available from [29,30], including a time 
span of 4 years (from 2010 till 2013).  

4.2 Results and Discussion 

The analysis of a dendrogram, using the Ward linkage method, is a common way to 
anticipate the hypothetical optimal number of wind farms’ clusters as well as their com-
position. This graph also allows observing the distance level at which there is a combi-
nation of wind farms and clusters. From the obtained dendrogram, shown in Fig. 1, at 
the rescaled distance of 15, it is straightforward the definition of two notable groups. 
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Fig. 1. Dendrogram graph for the data set under analysis 

In order to strengthen the identification of the optimal number of clusters, it is also 
used the test R-Squared (R-Sq) based on the analysis of variance (ANOVA) infor-
mation, namely the ratio between Sum of Squares Between Groups or Clusters and 
the Total Sum of Squares. The results of the relativized distance between clusters is 
shown in Fig. 2, from which a solution of two clusters has been chosen, explaining 
28% of the total variance. Table 1 outlines wind farms that pose similar features allo-
cated in the 2 identified clusters. The first cluster comprehends 15 wind farms, la-
belled cluster A, and the second cluster has 17 wind farms, with the label S. 

 
Fig. 2. Optimal number of clusters for the data set 
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Table 1. Clustering components based on variables installed capacity, net production and 
capacity factor 

Cluster Wind Farms 

A 

Açor 
Alto do Talefe 

Amaral 1 
Caldas 1 
Caramulo 

Fanhões 
Ortiga 

Pena Suar 
Pinhal Interior 
Fonte da Mesa 

São João 
Serra d'el Rei 

Sobral 2 
Serra do Barroso 

Testos 

S  

Alagoa de Cima 
Bordeira 

Cabeço Rainha 
Cadafaz 

Coentral-Safra 
Carreço 

Madrinha 
Negrelo e Guilhado 

Guerreiros 
Cabeço Rainha 2 

Gardunha 
Trancoso 

Serra de Alvoaça 
Serra de Mú 

Serra do Barroso 2 
Alto Arganil 
Vila Nova 

 
The following step consists in application of the Discriminant Analysis to validate 

the results produced by applying the Cluster Analysis, as previously described. Ac-
cording to this analysis, it is possible to observe significant mean differences for all 
predictors - independent variables - installed capacity, net production and capacity 
factor in the clusters A and S - dependent variables. The discriminant function reveals 
a significant association between groups and all predictors. Regarding the DA results, 
with only two groups, one Discriminant Function has been produced with an eigen-
value of 3,002. The canonical correlation is given by the multiple correlation between 
the predictors and the discriminant function. With only one function, the DA provides 
an index of overall model fit, which is interpreted as being the proportion of variance 
explained (R-Sq). The relation between the canonical discriminant function and the 
clusters reveals a greater correlation, approximately 87%. The significance of the 
discriminant function, evaluated by the Wilks’ lambda, is considerably high (p 
value < 0,001), which means that the model has significant discriminatory power, and 
provides the proportion of total variability not explained, i.e., the converse of the 
squared canonical correlation, evaluated in 25%. The classification results reveal that 
93,8% of wind farms are classified correctly into ‘Cluster A’ or ‘Cluster S’ groups, 
which can be considered excellent. The wind farms in Cluster S were classified with 
slightly better accuracy (94,1%) than wind farms in Cluster A (93,3 %). 

Table 2 shows the results for the variables into the different clusters, Capacity Fac-
tor ( FC , in %), Net Production (W , in GWh) and Installed Capacity ( P , in MW) for 

the time span under analysis.  

Table 2. Summary of descriptive statistics by cluster and variables 

Cluster n.º Variable Minimum Maximum Mean Std. Deviation 

A 15 

P (MW) 10,00 144,00 29,80 37,134 

FC (%) 23,42 28,36 25,80 1,293 

W (GWh) 22,35 328,80 66,86 83,418 

S 17 

P (MW) 10,00 114,00 28,98 23,843 

FC (%) 27,86 32,77 29,690 1,548 

W (GWh) 28,20 280,00 74,14 58,012 
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From the descriptive statistics it is possible to observe that both clusters have a 
high dispersion of the installed capacity, with similar mean values. Main difference 
between clusters is the mean value of the capacity factor, with a low dispersion: clus-
ter A has lower capacity factors than cluster S, meaning that the overall performance 
of wind farms in the later cluster had a better performance, for similar installed capac-
ities. In consequence, the mean net production of cluster S is higher than the one of 
cluster A, whereas the high standard deviation observed for this variable in both clus-
ters follows obviously the one observed for the installed capacity. 

After the definition of the clusters and their components by the proposed method-
ology, it is now possible to explore dominant attributes in each cluster, in order to find 
particular patterns. The attribute looked into each cluster is the technological trend of 
the energy conversion system utilized in the different farms. It is possible to observe 
that Cluster A has a predominance of technology based on Asynchronous generators 
(73,3% of the farms), while in Cluster S the dominant technology is based on direct 
driven Synchronous generators (76,5% of the wind farms). As previously stated, this 
technological concept, using full variable speed range, improves substantially the 
efficiency of the system which corroborates the higher capacity factors observed with-
in this clusters. Moreover, the absence of the gearbox component increases the relia-
bility and allows reduced maintenance schemes which, together with the wide speed 
range operation, results in an increased capture of the disposable wind energy. 

5 Conclusions 

The main objective of this research was to identify homogeneous groups within a data 
set of wind farms of two promoters acting in the energy sector in Portugal, based on 
two multivariate analyses using a support matrix with three independent variables: 
installed capacity, net production and capacity factor, in a per year basis. In a first 
stage it is used Hierarchical Cluster Analysis followed by a Discriminant Analysis, in 
order to validate the results produced by the first one. Based on both methodologies, 
from the obtained results, it has been possible to identify two clusters, explaining 28% 
of the total variance.  

Regarding the DA outcomes, one discriminant function has been produced with an 
eigenvalue of 3,002. The relationship between the canonical discriminant function 
and the clusters reveals a satisfactory positive correlation, about 87%. Also, the sig-
nificance of the discriminant function, evaluated by the Wilks’ lambda test, is signifi-
cantly high which means that the model has significant discriminatory power, and 
provides the proportion of total variability not explained, i.e., the converse of the 
squared canonical correlation is evaluated in 25%. The classification results shows 
that 93,8% of original grouped cases are correctly classified. 

Following the clustering and validation methodology, it has been possible to iden-
tify the technological trend based on the wind turbine generator type in each cluster: 
Cluster A, with asynchronous generator based technology and cluster S, mainly using 
direct driven synchronous generator based technology.  
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From the descriptive statistics regarding data set of both clusters, it is possible to 
infer that cluster S presents higher mean value of capacity factor than cluster A, which 
is a good indicator that wind farms using the technological trend based on direct 
driven synchronous generators have a better performance than the ones based on 
geared asynchronous generators. The latter, may reduce the initial costs of the drive 
trains, by using partially scaled electronic converters, but as a counterpart, the in-
crease in the converted energy over the lifespan may offset the higher initial cost.  
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