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Legumes (Fabaceae) are important crops, known as sources of food, feed for livestock and raw materials for in-
dustry. Their ability to capture atmospheric nitrogen during symbiotic processes with soil bacteria reduces the
need for expensive chemical fertilizers, improving soil and water quality. Several Fabaceae species are acknowl-
edged for the high levels of secondary metabolites. Isoflavones are among the most well-known examples of
these compounds, being recognized for their several types of biological activity. Herein, isoflavone profiles
were characterized in nine species of four Fabaceae genera (Biserrula, Lotus, Ornithopus and Scorpiurus). Plants
were harvested in the late flower physiological stage to prevent biased results due to naturally occurring varia-
tions along the vegetative cycle. Isoflavoneswere extracted usingmatrix solid-phase dispersion and analyzed by
high performance liquid chromatography/diode-array detection. The detected profiles revealed significant dif-
ferences, inclusively among species belonging to the same genus, indicating that other factors besides the geno-
typic features contribute to the expression of these phenolic compounds. The classification of the results by
principal component analysis placed species belonging to the same genus in different clustering groups, proving
this latter assumption. However, the detected profiles proved to be characteristic of the assayed, as it was proved
by the applied linear discriminant analysis.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Species belonging to Fabaceae family, commonly known as legumes,
have been essential to the development of modern agriculture (Boerma,
John & Molen, 2001). In fact, legumes are the second most important
crop as source of food, feed for livestock and raw materials for industry
(Udvardi et al., 2007). In symbiosis with soil bacteria, legumes capture
nearly 17 million metric tons of atmospheric nitrogen, reducing the use
of expensive chemical fertilizers and the need for petroleum derivatives
(Boerma et al., 2001).
e Ciências Químicas, Faculdade
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The Fabaceae species selected for this study (Table 1) are native from
the Mediterranean areas of Europe, Africa and Canary Islands, being char-
acterized for their deep radical system, good quality of hay and silage and
compatibility with summer-growing perennial grasses. These nutritious
and palatable species tolerate high levels of soil-available aluminum and
low pH, growing preferably in deep, sandy and acid soils, besides being
suited for self-regenerating annual pasture (Hackney, Dear & Crocker,
2007). Species belonging to Lotus and Ornithopus genera are found in
Macaronesian Islands (Azores, Madeira, Canary Islands and Cape Verde);
some Lotus species might also be found in the North, Central and/or
South America (Santos, 2007). Besides the Canary Islands, species belong-
ing to Scorpiurus genus are found on the southern region of Portugal and
Spain (Scorpiurus muricatus and Scorpiurus vermiculatus), Sardinia, Malta
(S. muricatus) and other Mediterranean regions (Zielinski, 1991). Biserrula
pelecinus is important in Australia, where the first commercially available
cultivars (Casbah and Mauro) were produced (Hackney et al., 2007).
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Table 1
Evaluated species of Fabaceae plants grown in the Agrarian Station of Vairão at
the experimental field of University of Porto, Portugal.

Species Accessions

Biserrula pelecinus L. 1
5

Lotus conimbricensis Brot. 23
24

Lotus subbiflorus Lag. 29
30

Ornithopus compressus L. 129
148

Ornithopus pinnatus (Mill.) Druce 167
170

Ornithopus sativus Brot. 175
176

Scorpiurus muricatus L. 199
202

Scorpiurus vermiculata L. 212
213

Scorpiurus vermiculatus L. 185
186
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The importance of legumes is also associatedwith their secondaryme-
tabolites, particularly phytoestrogens (Yildiz, 2005). The three main clas-
ses of phytoestrogens are isoflavones, lignans and coumestans (Jacobs,
Wegewitz, Sommerfeld, Grossklaus & Lampen, 2009), and their biosyn-
thesis depends highly on the environment and plant species (Martin,
Castilho, Silveira & Abreu, 2006). Several plant phenolic compounds are
known to be antimicrobial or signaling molecules, acting frequently as
phytoanticipins, phytoalexins, structural barriers, modulators of pathoge-
nicity, or plant defense gene activators (Hammerschmidt, 2005).
Isoflavones, in particular, have an important role during the interaction
of Fabaceae species with nitrogen-fixing bacteria (Phillips & Kapulnik,
1995),modulating the soilmicrobial communities,with particular impor-
tance in interactions between roots and microorganisms (Cooper, 2007;
Guo, Kong, Wang & Wang, 2011). Concerning their effect on human
health, isoflavones are known for their ability to decrease the morbidity
rates due to age-related cardiovascular diseases and osteoporosis,
hormone-dependent breast and prostate cancers (mainly attributed to
the structural resemblance between isoflavones and estradiol), andmen-
opausal symptoms (Cano, García-Pérez & Tarín, 2010; Mourouti &
Panagiotakos, 2013; Park &Weaver, 2012).

Isoflavones are typically associated with soybean, despite being
commonly synthesized by other Fabaceae plants, such as alfalfa, clover,
pea, peanut, beans, (Jacobs et al., 2009) or Medicago spp. (Visnevschi-
Necrasov et al., 2014).

Matrix solid-phase dispersion (MSPD) technique has been success-
fully applied in the extraction of isoflavones. Their analysis is usually
based on high-performance liquid chromatography (HPLC) coupled
with different detectors (Aguiar, Baptista, Alencar, Haddad & Eberlin,
2007; Fiechter, Opacak, Raba & Mayer, 2013; Visnevschi-Necrasov
et al., 2014; Visnevschi-Necrasov, Cunha, Nunes & Oliveira, 2009).

Herein, the free and conjugated isoflavone profiles of selected open-
field Fabaceae species harvested in the late flower physiological stage
were determined and evaluated through principal component analysis
to understand how these phytoestrogens vary in response to phyloge-
netic effects, acting as a potential indicator of the adaptation level of
these legumes to their ecological environment. Extractions and chro-
matographic methodologies were applied as previously optimized
(Visnevschi-Necrasov et al., 2014).

2. Materials and methods

2.1. Standards and reagents

Acetonitrile (HPLC grade) and formic acid (analytical grade) were
from Merck (Darmstadt, Germany). Purified demineralized water used
was from a “Seradest LFM 20” system (Seral, Ransbach-Baumbach,
Germany). The eluents were filtered through 0.45 μm filters and
degassed under reduced pressure and ultrasonic bath. Disposable sy-
ringe filter PTFE 0.45 μm was from Macherey-Nagel (Düren,
Germany). The C18-bonded silica (particle size 55–105 μm) used as sor-
bent for MSPD was from Waters (Milford, MA, USA).

2.2. Plant material and field experimental site

Nine species (Table 1) of four Fabaceae genera (Biserrula, Lotus,
Ornithopus and Scorpiurus) were cultivated from February to June of
2010, in the experimental field of the University of Porto at the Agrarian
Station of Vairão, in Portugal. No chemical fertilizers were used and
plants were not inoculated with nitrogen-fixing bacteria. Plants were
harvested in the late flower physiological stage (one or more nodes
with 50% open flowers, no seed pods). The vegetal germplasm was ob-
tained from the Portuguese collection of Leguminosae provided by the
National Institute of Biological Resources (Instituto Nacional dos Recursos
Biológicos, I.P.). Voucher specimens of each species were numbered and
deposited in the local herbarium.

For each species, three independent samples were selected (in dif-
ferent locations within the limits of the indicated experimental field)
consisting of fresh leaves from randomly selected plants (5 plants for
each accession) belonging to 2 different accessions; samples were
dried at 65 °C for 72 h and milled, at particle size of 0.1 mm, using an
A11 analysis mill (IKAWerke, Staufen, Germany). Samples were stored
in silicone tubes at room temperature.

2.3. Extraction procedure

MSPD extraction of isoflavones was applied with small modifica-
tions of a previous method (Visnevschi-Necrasov et al., 2014). An ali-
quot of 500 mg of the previously milled dried sample, 2 g of C18 and
40 mg/kg of 2-methoxyflavone (200 μL at 100 mg/L), used as internal
standard, were placed in a glass mortar and blended with glass pestle
for 2–3 min. This mixture was then transferred to an empty column
connected to a vacuum system. The column was washed with 10 mL
of distilled water (reddish-brown phase eluted from the column) and
the isoflavones were eluted with 5 mL of methanol:H2O (9:1, v/v). Be-
fore HPLC analysis, the extracts collected in amber vials were filtered
through a 0.45 μmPTFEmembrane. Different samples of two distinct ac-
cessions of all species were extracted.

2.4. HPLC determination of isoflavones

Purity-corrected individual isoflavones stock solutions (1 g/L) were
prepared in methanol:H2O (75:25, v/v). A composite stock standard solu-
tion of multiple isoflavones containing 40 mg/L of each standard:
biochanin A (≥97%), puerarin (≥99%), glycitein (≥97%), daidzein (≥98%),
daidzin (≥95%), prunetin (≥98%), genistein (≥98%), genistin (≥95%) and
formononetin (≥99%) (Sigma-Aldrich, St. Louis, MO, USA); pratensein
and irilone (both ≥98%) (Chromadex Inc., Barcelona, Spain)was prepared.
The internal standard (IS) 2-methoxyflavone was obtained from Sigma. A
working 2-methoxyflavone solutionwas prepared inmethanol at 1 g/L. All
the solutions were stored at−20 °C in amber glass vials when not in use.

Chromatographic analyses were performed with a Jasco (Tokyo,
Japan) high-performance liquid chromatograph equipped with a PU-
2080 quaternary pump and a Jasco AS-950 automatic sampler with a
20 μL loop. Detection was performed with a Jasco model MD-2010
multi-wavelength diode-array detector (DAD). Chromatographic sepa-
ration of the compounds was achieved with a Luna 5 U C18 column
(5 μm, 150 × 4.60 mm; Teknokroma, Barcelona, Spain) operating at 40
°C. The eluent was a gradient of acetonitrile (A) and 0.1% formic acid
(B), at a flow rate of 1 mL/min, with a linear gradient as follows:
0 min 33% B, 7 min 45% B, 15 min 50% B, 25 min 60% B, 30 min 70% B,
35 min 50% B, 37 min 33% B, maintaining these conditions for 10 min



Isoflavones R1 R2 R3 R4 R5 R6

Daidzin H H O-Glucose H H OH

Genistin OH H O-Glucose H H OH

Daidzein H H H H H OH

Glycitein H OCH3 H H OH OH

Genistein OH H H H H OH

Pratensein OH H H H OH OCH3

Formononetin H H H H H OCH3

Irilone OH O- -CH2- H H OH

Prunetin OH H CH3 H H OH

Biochanin A OH H H H H OCH3

Scheme 1. Structures of the isoflavones identified in different species from Biserrula, Lotus, Ornithopus and Scorpiurus genera.
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and returning to the initial ones after 3 min. Data were analyzed using
the Borwin-PDA Controller Software (JMBS, Le Fontanil, France). Com-
pounds were identified by chromatographic comparisons with authen-
tic standards and UV spectra. Quantification was made by DAD at
254 nm based on the internal standard (2-methoxyflavone) method.
2.5. Statistical analysis

All extractions were performed in triplicate and each replicate was
quantified in duplicate. Datawere expressed asmeans± standard devi-
ations. All statistical tests were performed at a 5% significance level
using the SPSS software, version 22.0 (SPSS Inc).

The statistical differences represented by letters were obtained
through one-way analysis of variance (ANOVA). The fulfillment of the
one-way ANOVA requirements, specifically the normal distribution of
the residuals and the homogeneity of variance, was tested by means
of the Kolmogorov–Smirnov with Lilliefors correction and the Levene's
tests, respectively. In the cases where statistical significance differences
were identified, the dependent variables were compared using Tukey's
honestly significant difference (in homoscedastic samples) or
Tamhane's T2 (in heteroscedastic samples).

Principal components analysis (PCA)was applied as pattern recogni-
tion unsupervised classification method. PCA transforms the original,
measured variables into new uncorrelated variables called principal
components. The first principal component covers as much of the vari-
ation in the data as possible. The second principal component is orthog-
onal to the first and covers as much of the remaining variation as
possible, and so on (Patras et al., 2011). The number of dimensions
kept for data analysis was evaluated by the respective eigenvalues
(which should be higher than one), by the Cronbach's alpha parameter
(thatmust be positive) and also by the total percentage of variance (that
should be as high as possible) explained by the number of selected
components. The number of plotted dimensions was chosen in order
to allow meaningful interpretations, and by ensuring their reliability.

In addition, a linear discriminant analysis (LDA) was used to evalu-
ate the association of the genus and the isoflavone profile. A stepwise
technique, using the Wilks' λ method with the usual probabilities of F
(3.84 to enter and 2.71 to remove), was applied for variable selection.
This procedure uses a combination of forward selection and backward
elimination procedures, where before selecting a new variable to be in-
cluded, it is verified whether all variables previously selected remain
significant (Palacios-Morillo, Alcázar, Pablos & Jurado, 2013). With this
approach, it is also possible to identify the significant variables that con-
tribute in higher extent to the discrimination of a determined genus. To
verify which canonical discriminant functions were significant, the
Wilks' λ test was applied. A leaving-one-out cross-validation procedure
was carried out to assess the model performance.

3. Results and discussion

This study quantified ten isoflavones with the following elution
order: daidzin (daidzein-7-O-glucoside), genistin (genistein-7-O-glu-
coside), daidzein (4′,7-dihydroxyisoflavone), glycitein (4′,7-dihy-
droxy-6-methoxyisoflavone), genistein (4′,5,7-trihydroxyisoflavone),
pratensein (4′-methoxy-3′,5,7-trihydroxyisoflavone), formononetin
(7-hydroxy-4′-methoxyisoflavone), irilone (9-hydroxy-7-(4-hydroxy-
phenyl)-[1,3]dioxolo [4,5-g]chromen-8-one), prunetin (4′,5-dihy-
droxy-7-methoxyisoflavone) and biochanin A (5,7-dihydroxy-4′-
methoxyisoflavone) (Scheme 1).An exemplifying chromatogram, cor-
responding to Lotus subbiflorus in the late bud (LB) stage, is presented
in Fig. 1. Isoflavone profiles varied greatly among the assayed Fabaceae
species (Table 2). Lotus conimbricensis presented the highest content in
isoflavones (3360±92mg/kgDM),mostly due to its biochanin A quan-
tity (3092 ± 91 mg/kg DM); on the other hand, S. muricatus presented
the lowest overall content (65 ± 1 mg/kg DM). The biochanin A levels
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Fig. 1. HPLC-DAD chromatogram of the isoflavones from Lotus subbiflorus recorded at 254 nm. 1: daidzin; 2: genistin; 3: genistein; 4: pratensein; 5: prunetin; 6: biochanin A; 7: 2-
methoxyflavone (IS).
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in B. pelecinus and L. conimbricensis are noteworthy in viewof important
biological activity of this isoflavone (Saviranta et al., 2011). Inwhat con-
cerns total isoflavone, the quantified amounts were also higher than
those presented by other vegetable samples like green bean, carrot,
white cabbage, cauliflower, iceberg lettuce or artichoke (Konar,
Poyrazoğlu, Köksal & Artik, 2012).

Despite their phylogenetic relationship, these species showed also
great qualitative differences. As it can be depicted from Table 2,
B. pelecinus and Ornithopus pinnatus presented the highest content in
daidzein (22 ± 1 mg/kg DM, in both cases); genistein (98 ± 1 mg/kg
DM) and biochanin A (3092 ± 92 mg/kg DM) were reached maximal
values in L. conimbricensis; Lotus subbiflorus, on its side, presented the
maximal contents in pratensein (217 ± 5 mg/kg DM) and prunetin
(34 ± 1 mg/kg DM); the highest level of daidzin (73 ± 5 mg/kg DM)
was quantified in Ornithopus compressus, while the top value for
genistin (206 ± 8 mg/kg DM) was verified in O. pinnatus; finally, the
highest content in glycitein (59±1mg/kgDM)was given by Scorpiurus
vermiculata, while formononentin (53 ± 1 mg/kg DM) and irilone
Table 2
Isoflavones contents (mg/kg dry matter) in the evaluated Fabaceae species. The results are pre

Species Daidzin Genistin Daidzein Glycitein Genistein

Biserrula pelecinus L. nd 33 ± 1 c 22 ± 1 a 6.6 ± 0.4 f 65 ± 2 b
Lotus conimbricensis Brot. nd 11.2 ± 0.3 fg 10.1 ± 0.3 e 12.3 ± 0.5 d 98 ± 1 a
Lotus subbiflorus Lag. 6 ± 1 c 56 ± 1 b nd nd 34 ± 1 c
Ornithopus compressus L. 73 ± 5 a 10.4 ± 0.5 g 4.2 ± 0.2 f nd 7.9 ± 0.4 h
Ornithopus pinnatus
(Mill.) Druce

18 ± 1 b 206 ± 8 a 22 ± 1 a 33 ± 1 c 10.3 ± 0.5

Ornithopus sativus Brot. nd 3.4 ± 0.4 h 3.4 ± 0.3 g nd 13.3 ± 0.4
Scorpiurus muricatus L. nd 19.3 ± 0.4 e 13.3 ± 0.4 c 9.0 ± 0.4 e 9.3 ± 0.3 g
Scorpiurus vermiculata L. nd 12 ± 1 f 16 ± 1 b 59 ± 1 a nd
Scorpiurus vermiculatus L. nd 30 ± 1 d 11.4 ± 0.5 d 51 ± 1 b 18 ± 1 d
Homoscedasticity2

(p-value)
b0.001 0.021 0.009 0.001 b0.001

One-way ANOVA3

(p-value)
b0.001 b0.001 b0.001 b0.001 b0.001

1 Means within a column with different letters differ significantly (p b 0.05), evaluated usin
moscedasticity requirement.

2 Homoscedasticity among cultivars was tested by means of the Levene test: homoscedastic
3 p b 0.05 meaning that the mean value of the evaluated parameter of at least one cultivar d
(81 ± 3 mg/kg DM) presented the maximal values in Scorpiurus
vermiculatus.

Formononetin is a methylated form of daidzein, which is also the
aglycone of daidzin; considering these isoflavones together, their differ-
ent proportions among species seem to indicate differences inmetabol-
ic dynamics that cannot be explained by plant maturation, since all
samples were harvested in the same phenological stage. The same rea-
soning could be applied to genistein, which might result from the de-
methylation of biochanin A or prunetin, as well as from the loss of a
glucose moiety by genistin. In terms of biological activity, the efficiency
of anaerobic demethylation by acetogenic bacteria is relatively low, but
specific human hepatic enzymes are also capable of demethylating the
proestrogenic isoflavones biochanin A, prunetin and formononetin to
yield their demethylated derivatives with higher estrogenic activity.
Plant isoflavones are usually found as substituted glucoside conjugates;
thereby, their bioavailability and bioactivity require hydrolysis of glyco-
sidic bonds to release the free aglycons (Tolleson, Doerge, Churchwell,
Marques & Roberts, 2002). Herein, most plants presented higher
sented as mean ± SD1.

Pratensein Formononetin Irilone Prunetin Biochanin A Total

17 ± 1 f 37 ± 2 b 10 ± 1 e nd 2046 ± 91 b 2236 ± 91 b
119 ± 3 b nd 18 ± 1 c nd 3092 ± 91 a 3360 ± 92 a
217 ± 5 a nd nd 34 ± 1 a 558 ± 32 c 906 ± 32 c
16.3 ± 0.3 fg 7.4 ± 0.4 d 6.5 ± 0.3 f 10.0 ± 0.4 c 74 ± 2 d 210 ± 5 e

f 15 ± 1 g nd 5.0 ± 0.2 g nd nd 309 ± 3 d

e 28 ± 2 e 18.7 ± 0.4 c 15 ± 1 d 31 ± 1 b 7.6 ± 0.4 e 120 ± 3 f
3.1 ± 0.2 h nd 1.7 ± 0.1 h nd 9.5 ± 0.5 e 65 ± 1 f
73 ± 1 c nd 26 ± 1 b nd nd 186 ± 2 e
35 ± 1 d 53 ± 1 a 81 ± 3 a nd 8 ± 1 e 288 ± 3 d
b0.001 b0.001 b0.001 b0.001 b0.001 b0.001

b0.001 b0.001 b0.001 b0.001 b0.001 b0.001

g the multiple comparison Tamhane's T2 test, since none of the samples fulfilled the ho-

ity, p-value N 0.05; heteroscedasticity, p-value b 0.05.
iffers from the others (in this case multiple comparison tests were performed).
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contents of the aglycones in comparison to their glucoside conjugates,
probably due to the late flower phenological stage in which samples
were collected. This finding is highly relevant to predict the bioavail-
ability of isoflavones, as well as their potential biological effects,
which include a wide range of activities in human and farm animal or-
ganisms (Mortensen et al., 2009). Accordingly, by enhancing the knowl-
edge regarding the profile of isoflavones in a determined plant, it is
possible to select animal feeding in a more effective manner, by
selecting the best species according to its specific use. This is surely a
more natural approach than the metabolic engineering of isoflavonoid
biosynthesis in legume and non-legume crops to provide dietary
isoflavones (Yu & McGonigle, 2005). Furthermore, isoflavones might
act as phytoanticipins, phytoalexins, pathogenicity modulators, activa-
tors of plant defense genes, or signalingmolecules in symbiotic process-
es (Cooper, 2007; Guo et al., 2011; Hammerschmidt, 2005; Phillips &
Kapulnik, 1995). Therefore, the different isoflavone levels detected in
each plant species might be interpreted as an indicator of their adapta-
tion to the edaphoclimatic conditions, since isoflavone accumulation
and composition are affected by genotype and environmental condi-
tions (Barion, Hewidy, Mosca & Vamerali, 2010). B. pelecinus, in
Fig. 2. Biplot of objects (species) and component loadings (isoflavones). When a determined sp
significantly high amounts in that species.
particular, is adapted to a broad range of soil types, particularly to
well-drained ones (Revell & Revell, 2007), while O. pinnatus has better
tolerance to waterlogged conditions, in contrast to O. compressus that
is not well adapted to prolonged waterlogging (Doole, Pannell &
Revell, 2009). On the other hand, these species are not, in general, suit-
ed to clay or clay loam soils; their annual vegetative cycles require com-
panion summer-growing species for all-year-round paddock
production and good soil fertility and they are susceptible to pests
such as lucerne flea and heliothis (Hackney et al., 2007; Revell &
Revell, 2007). The different profiles might also be explained by signals
released by rhizobia,which have the ability to change the pattern of iso-
flavone accumulation in legumes roots and leaves (Khaosaad et al.,
2008).

To obtain a comprehensive knowledge regarding thedetected differ-
ences in isoflavone profiles, a principal component analysis (PCA) was
applied. The plot of component loadings (Fig. 2) indicates that the first
two dimensions includedmost of the variance of all quantified variables
(35.4% and 29.9%, respectively). According to their Cronbach's alpha
values (first dimension: 0.746; second dimension: 0.665; third dimen-
sion: 0.505; fourth dimension: 0.081) and eigenvalues (first dimension:
ecies is overlapping with a particular isoflavone it means that the compound is present in



Table 3
Pooled within-groups correlations between discriminating variables and standardized ca-
nonical discriminant functions.

Isoflavone Discriminant functions

1 2 3

Daidzin −1.234 8.512 1.926
Genistin 7.570 8.628 −1.136
Daidzein −7.663 −2.729 2.872
Glycitein −6.868 8.933 5.056
Genistein 16.370 8.123 −3.311
Pratensein 20.944 −9.724 −0.296
Formononetin 8.042 −8.439 14.582
Irilone −11.641 2.327 −15.245
Prunetin −10.612 22.081 2.900
Biochanin A 1.830 1.978 6.168
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3.042; second dimension: 2.491; third dimension: 1.833; fourth dimen-
sion: 1.079), the first four dimensions were significant; however, the
presented output kept only the first two dimensions in order to allow
a more meaningful interpretation. Three main groups were formed
(shadowed ellipses): L. subbiflorus was placed far from the remaining
species mainly due to its high pratensein and prunetin contents;
Ornithopus sativus and O. compressus revealed high similarities, mostly
due to their high contents in prunetin and daidzein (except for
O. sativus) and low levels of daizein; Scorpiurus spp. and O. pinnatus
were placed close to each other, but S. vermiculata and S. vermiculatus
showed the highest similarity, mostly due to their high contents in
irilone and glycitein. This spatial distribution of markers enables con-
cluding that isoflavone profile is not exclusively dependent on the
plant species. If that was the case, the obtained clusters should corre-
spond to the nine assayed species.

Nevertheless, we hypothesized that the isoflavone profile could be
linked to a lower taxonomical rank, opting to verify its association
with the genus. To evaluate this hypothesis, a linear discriminant anal-
ysis was applied using genus as the grouping factor, simultaneously ver-
ifying the differentiation power of the selected variables. The significant
independent variables (isoflavones) were selected using the stepwise
procedure of the LDA, according to the Wilks' λ test. Only those with a
statistical significant classification performance (p b 0.050) were kept
for analysis. In this discriminant model, three functions were defined
as being significant (plotted in Fig. 3) integrating 100% of the observed
variance (first: 90.9%; second: 6.2%; third: 2.9%), with all variables
being selected by the model. Function 1, mainly correlated with
pratensein and genistein, as deduced from the canonical discriminant
Fig. 3.Mean scores of different Fabaceae genera projected for the three first discriminant funct
separated.
functions standardized coefficients (Table 3) separated primarily Lotus
and Biserrula from the remaining genera. Function 2, more strongly cor-
relatedwithprunetin, projectedOrnithopus far fromany other genus. Fi-
nally, function 3, more powerfully correlated with irilone and
formononetin, was particularly effective in confirming the separation
of Biserrula genus. The complete individualization of the four genera is
a strong indicator of the influence of genotypic factors on the isoflavone
profiles. In fact, the differences in isoflavone profiles led to a flawless
classification performance, allowing classifying correctly 100.0% of the
assayed species for the originally grouped cases as well as for the
cross-validated cases. Nevertheless, this specification was not achieved
at species level, indicating that other factors besides those ruled by
ions defined from the isoflavone profiles. The four naturally occurring groups were clearly
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genotypic influence play their part in defining the isoflavoneproduction
dynamics. Under this approach, several additional factors should be
considered. In fact, besides the influence inherent to the genotypic
group, the qualitative and quantitative differences, may result from
the variation induced by environmental conditions, specifically the
stress induced by temperature, light exposure and drought, once that
plants faced different temperatures during their vegetative develop-
ment (the periods of sowing, elongation, transplantation or flowering
are not equal among the assayed species) (Bednarek et al., 2003;
Sakthivelu et al., 2008). Cultivation year is often indicated as the main
source of variation in isoflavones concentration (Hoeck, Fehr, Murphy
& Welke, 2000); however, since all samples were collected in the
same year, the detected differences are more likely associated with
physiological factors. Low temperatures, for instance, increase the activ-
ity of key enzymes of the phenylpropanoid and flavonoid pathways,
such as phenylalanine ammonia-lyase and chalcone synthase
(Posmyk, Bailly, Szafranska, Janas & Corbineau, 2005); likewise, low
temperatures reduce cell photosynthetic activity, leading to photon
flux excess (light stress) responsible for further phenylpropanoid path-
way enhancement (Barion et al., 2010).

4. Conclusion

The detected profiles indicate a significant association among
isoflavones and genus. In fact, the biosynthetic pathway of
isoflavones is genetically determined; nevertheless, there are addi-
tional factors contributing to the type and concentration of
isoflavones present in the assayed species, as indicated by the princi-
pal component analysis results. When used as food or feedstuffs,
isoflavones might exert beneficial or deleterious effects, depending
on their type and concentration. Therefore, knowing the exact isofla-
vone profile of a natural product is a valuable task. This selective ap-
proach might represent an interesting alternative to the metabolic
engineering of isoflavonoid biosynthesis in legume and non-
legume crops. Furthermore, the detected isoflavone levels might be
indicators of the suitability of the assayed species in what regards
the environmental characteristics of their cultivation.
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