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Abstract In the last decades, the rapid spread of diseases,
such as varroosis and nosemosis, associated with massive
honey bee colonies mortality around the world has significant-
ly decreased the number and size of honey bee populations
and possibly their genetic diversity. Here, we compare the
genetic diversity of Iberian honey bee colonies in two sam-
plings performed in 2006 and 2010 in relation to the presence
of the pathogenic agents Nosema apis, Nosema ceranae, and
Varroa destructor in order to determine whether parasite and
pathogen spread in honey bee colonies reflects changes in
genetic diversity. We found that the genetic diversity remained
similar, while the incidence of N. ceranae increased and the
incidence of N. apis and V. destructor decreased slightly.
These results indicate that the genetic diversity was not affect-
ed by the presence of these pathogenic agents in the analyzed

period. However, the two groups of colonies with and without
Nosema/Varroa detected showed significant genetic differen-
tiation (G test). A detailed analysis of the allelic segregation of
microsatellite loci in Nosema/Varroa-negative colonies and
parasitized ones revealed two outlier loci related to genes in-
volved in immune response.
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Introduction

The International Union for Conservation of Nature (IUCN)
recognizes genetic diversity as one of the three forms of bio-
diversity worthy of conservation (McNeely et al. 1990).
Indeed, the need to conserve genetic diversity within popula-
tions is based on two arguments: the importance of genetic
variability for evolution to occur and the tight relationship
between heterozygosity and population fitness (Reed and
Frankham 2003). In the case of honey bees, within-colony
genetic diversity has proven to reduce the negative impacts
of pathogens and parasites (Crozier and Page 1985; Palmer
and Oldroyd 2000; Crozier and Fjerdingstad 2001; Oldroyd
and Fewell 2007).Meanwhile, the increased adaptive capacity
associated with wider genetic diversity at the population level
allows short-term environmental perturbations to be with-
stood, such as the emergence of new diseases, enabling bee
populations to evolve and adapt to long-term environmental
changes (Frankham et al. 2010).

Human management often brings profound changes in the
genetic variation of species, and accordingly, the effect of
domestication on the genetic diversity of honey bee popula-
tions has recently been addressed (Harpur et al. 2012; De la
Rúa et al. 2013). In contrast to other livestock species, honey
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bees are not fully domesticated (Oxley and Oldroyd 2010)
given the lack of control that beekeepers have on the natural
mating of honey bee queens with unselected drones during the
breeding season. Nevertheless, honey bee populations have
been severely affected by human activities, and in recent de-
cades, there has been an overall reduction in the number of
colonies from different regions (Biesmeijer et al. 2006;
vanEngelsdorp and Meixner 2010), potentially affecting the
diversity of honey bee populations. The importation of foreign
queens in an attempt to replace lost colonies has become an
important driver of these changes (Muñoz et al. 2013).

Different factors have been analyzed and discussed in the
literature for their potential influence on the decline and even-
tual disappearance of honey bee colonies. The most signifi-
cant of them is possibly the increased incidence of parasites
and pathogens (vanEngelsdorp et al. 2009). Particularly, viru-
lent combinations of different pathogenic agents, instead of a
single pathogenic factor, are thought to be the most likely
explanation for this decline (Chen and Evans 2007; Johnson
et al. 2009). Pathogens like the Varroa destructor mite
(Anderson and Trueman 2000) and its associated viruses, as
well as the microsporidia of the genus Nosema, are currently
considered to be the most harmful pathogens of honey bees
(Higes et al. 2006; Cox-Foster et al. 2007; Johnson et al. 2009;
Rosenkranz et al. 2010; de Miranda and Genersch 2010; de
Miranda et al. 2010), while other agents that have been around
since the 1950s (American foulbrood; chalkbrood) are report-
ed much less often nowadays.

There is accumulating evidence that genetic variation can
influence host susceptibility to pathogens (Reed and
Frankham 2003; Spielman et al. 2004; Whitehorn et al.
2011). However, we still have a limited and insufficient un-
derstanding of the interaction of these pathogenic organisms
with their host, Apis mellifera (Martinson et al. 2011). In a
recent study (Jara et al. 2012), the distribution of the
V. destructor mite was not significantly related to that of the
two evolutionary lineages making up the Iberian honey bee
population, Apis mellifera iberiensis (M, Western European
lineage at the North-West, and A, African lineage at the
South-East; Cánovas et al. 2008). This data coincided with
that obtained in the original host species of this mite, Apis
cerana (Rueppell et al. 2011). However, a significantly higher
incidence of the microsporidian Nosema apis was detected in
northern Iberian honey bee populations belonging to the M
lineage, a result that changed due to the rapid expansion of
Nosema ceranae that now affects more than 50 % of Iberian
colonies (Jara et al. 2012; Martín-Hernández et al. 2012;
Botías et al. 2012).

The wide dispersion of N. ceranae, both in Spain and
worldwide (Fries 2010; Higes et al. 2010a, b; Muñoz et al.
2014), is indicative of the successful colonization of this new
pathogen and the limited adaptation of its new host,
A. mellifera. A potential effect of this rapid expansion of

N. ceranae is a reduction in genetic diversity, since invasive
species may affect certain genotypes more than others, and the
high risk of collapse in infected colonies (including asymp-
tomatic colonies during the incubation period: Martín-
Hernández et al. 2007; Higes et al. 2008). To assess the rela-
tionship between the spread of three major pathogens
(N. ceranae, N. apis, and V. destructor), and the genetic diver-
sity in Iberian honey bee colonies (A. mellifera iberiensis), we
used microsatellite markers to analyze the genetic diversity of
A. m. iberiensis in two different samplings obtained in 2006
and 2010. The null hypothesis tested was that changes in the
frequency of pathogens and parasites are unrelated to the
changes in genetic diversity of honey bee colonies. In addi-
tion, because transmissible diseases or pests are an important
and universal selective evolutionary force (Seal 1991), we
assessed whether any of the microsatellite alleles analyzed
was associated to genes possibly involved in the adaptive
response of honey bees to these harmful agents.

Materials and methods

Sampling

The samplings of this study were designed to be representative
of Spanish honey bees at a country scale including samples
from the peninsula and from islands such as Majorca and
Tenerife. We analyzed adult worker honey bees from 228
colonies sampled in 41 Spanish provinces, corresponding to
two surveys carried out in spring 2006 (113 colonies) and
2010 (115 colonies: Fig. 1). Each sample contained about
150 adult inner worker honey bees from each colony. An
etiological analysis was performed for some of the major path-
ogenic agents affecting honey bees, and subsequently, one
adult worker honey bee from each colony was placed directly
into 100 % ethanol and stored at −20 °C for later DNA anal-
ysis (Department of Zoology and Anthropology, Faculty of
Veterinary Medicine, University of Murcia). The evolutionary
lineage of each colony was determined previously by analyz-
ing the mitochondrial DNA variation (Jara et al. 2012).

DNA extraction and microsatellite analysis

The two left legs were removed from one worker honey bee
per colony, and the total DNAwas extracted in a 5 % Chelex
solution according to a modified version of the protocol pub-
lished byWalsh et al. (1991). The final solution of DNA (2 μl)
was then used for PCR amplification, performing two multi-
plex PCR reactions in order to study a total of 12microsatellite
loci in the genotype of the worker honey bees (Chahbar et al.
2013; Evans et al. 2013). PCR products were visualized by
capillary electrophoresis (ABI-3730, Applied Biosystems)
and sized with an internal standard (Servei Central de Suport
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a la Investigació Experimental, University of Valencia, Spain).
The individual alleles were subsequently scored using
GeneMapper v3.7 software (Applied Biosystems).

Detection of pathogenic agents

All the samples came from colonies treated against Varroa
(mandatory in the Spanish beekeeping regulation); therefore,
the finding of Varroa-positive samples indicates that the treat-
ment was not successful or incorrectly applied (>50 % of the
treatments are applied improperly in Spain: see Garrido
Bailón 2012). Conversely, Varroa-negative colonies indicate
either the result of a recent treatment (reducing infestation to
levels below the threshold of detection) or the development of
natural tolerance to Varroa as that reported by other authors
(Rinderer et al. 2001; Büchler et al. 2002, 2008; Le Conte
et al. 2007; Seeley 2007; Rosenkranz et al. 2010; Locke
et al. 2012).

Nosema spp. and V. destructor presence had already been
analyzed in these colonies (Jara et al. 2012). Briefly, about 150
inner worker honey bees from each colony were pooled and
analyzed to detect the presence of Nosema spp. and
V. destructor according to OIE recommendations (2008). To
assay Nosema species, DNA extraction and PCR reactions
were performed as described previously, using an internal
PCR control to determine the reliability of the analysis
(Martín-Hernández et al. 2007; Botías et al. 2011).
Therefore, Nosema spp.- and V. destructor-negative colonies

are defined here as colonies in which none of these parasites
were detected in a sample of 150 bees.

Genetic and statistical analysis

Population genetic parameters were calculated for the samples
in the two samplings (2006 and 2010) using GenAlex (Peakall
and Smouse 2006). Given the notable genetic homogeneity
found in the microsatellite analyses of Iberian honey bees
across the Peninsula (Cánovas et al. 2011), we considered that
all samples collected in the same year make up a single pop-
ulation. Genetic diversity was evaluated by calculating allele
frequencies, comparing the observed (Ho) and expected (He)
heterozygosity values. Population genetic differentiation was
tested using Genepop software (Raymond and Rousset 1995;
Rousset 2008), and the relationship between genetic diversity
in the population and the prevalence of the pathogenic ele-
ments (V. destructor and Nosema spp.) was analyzed with
the Pearson’s chi-squared and Fisher exact tests, as imple-
mented in SPSS 19 for Windows.

Detecting loci under selection

To investigate whether selection affected any of the loci ana-
lyzed, we used the Lositan software (Antao et al. 2008).
Adaptive differentiation has traditionally been identified from
the differences in allele frequencies among different popula-
tions, summarized by an estimate of the FST (Beaumont
2005). Low-frequency outliers relative to an appropriate

Fig. 1 Map showing the location
of the Apis mellifera iberiensis
colonies sampled in 2006 and
2010 (from Jara et al. 2012)
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neutral population genetic model indicate loci subject to
balancing selection, whereas high-frequency outliers suggest
adaptive (directional) selection. Lositan is based on a method
that describes the expected distribution of allele frequencies
(FST) vs He under an island model of migration with neutral
markers (Wright 1931). This distribution is used to identify
outlier loci that have excessively high or low FST scores com-
pared to neutral expectations. Such outlier loci are therefore
candidates to be subject to selection.

To minimize the bias on the estimation of the mean neutral
FST, Lositan was run using all loci through 50,000 simula-
tions. After the first run, those loci that appeared outside the
desired confidence intervals (95 % CIs) were removed and the
mean neutral FST was computed again. In this way, a more
accurate estimate of the neutral FST value was obtained using
only neutral loci. This refined estimate was used for a final set
of 50,000 simulations over all loci, and the estimated selection
status of each of them was reported.

The outlier loci were submitted to a sequence similarity
search using Blast (www.ncbi.nlm.nih.gov) and BeeBase
(http://hymenopteragenome.org/beebase/), and likewise, they
were screened for annotation of genes using the Map Viewer
tool (NCBI; Amel 4.5). As the functional annotation of the
honey bee genome is incomplete, putative Gene Ontology
classifications were ascribed to genes based on homology to
Drosophila melanogaster FlyBase (www.flybase.org),
complemented by NCBI annotation.

Results

Of the 12 microsatellite loci analyzed, one (AC011) was re-
moved from the analysis due to the poor efficiency of ampli-
fication and posterior fragment detection. For the 11 remain-
ing microsatellite loci, we found a total of 122 different alleles
within the 228 samples studied (Table 1). All the loci were
polymorphic in both the 2006 and 2010 samplings, and the
allele frequencies for all of them are listed in Supplementary
material, including the observed (Ho) and expected (He) het-
erozygosity values.

There was allelic loss at the Ap43 and Ap55 loci in 2010
compared to 2006, and whereas five loci exhibited an in-
crease (A8, Ap274, A79, A88, and Ap249), the remaining
four maintained the same number of alleles in both sam-
plings (A113, A7, B124, and Ap224). Of the 87 alleles
identified in 2006, only 63 were found in samples collected
in 2010, a loss of 24 alleles all of which had a low frequen-
cy (below 0.015). Moreover, of the 98 alleles recorded in
2010, 35 corresponded to alleles not detected in 2006, and
again, these were alleles with a low frequency (between
0.005 and 0.018).

Highly significant genetic differentiation was found be-
tween 2006 and 2010, as evident with the G test implemented

in the Genepop software (p<0.001). However, genetic diver-
sity levels (He) were similar in both surveys (He in 2006=
0.463±0.080 and 0.462±0.075 in 2010). These values are
within the expected range of genetic diversity for A. m.
iberiensis (Cánovas et al. 2011).

Of the 228 colonies randomly sampled in 2006 and 2010,
at least one of the pathogenic agents analyzed was detected in
almost 80 % of them (V. destructor, N. apis, and N. ceranae),
although they were less prevalent in 2006 (74 %) than in 2010
(83 %). About 31 % of the colonies analyzed in 2006 were
parasitized by V. destructor, which decreased to 19 % in 2010
(Table 2), while Nosema microsporidia were more prevalent
than the V. destructormite in 2006 (64%) and 2010 (72 %). In
2006, N. ceranae was detected in 50 % of the colonies while
N. apis was less frequent (13 %). However, by 2010, the
presence ofN. ceranae reached to 59%, whereas in only three
of the colonies sampled in 2010, N. apis was detected alone
(3 %). Indeed, while N. apis and N. ceranae were detected
together in only 1 % of the colonies in 2006, this had risen to
10 % in 2010 (Table 2).

Since the genetic diversity of the A. m. iberiensis popula-
tion was similar in 2006 and 2010, no temporal correlation
could be established between this parameter and the preva-
lence of pathogens and parasites in the Iberian honey bee.
Nevertheless, we analyzed the allelic patterns in the colonies
parasitized by Varroa or Nosema separately vs Nosema/
Varroa-negative colonies (i.e., without any of these pathogen-
ic agents). Greater genetic diversity was found in these
Nosema/Varroa-negative colonies (He=0.480±0.075) than

Table 1 Microsatellite descriptive statistics for 2006 and 2010 samples
of Apis mellifera iberiensis

Locus Na Ho He

2006 2010 2006 2010 2006 2010

A113 13 13 0.604 0.588 0.592 0.619

A7 7 7 0.459 0.330 0.478 0.416

Ap43 16 14 0.735 0.489 0.719 0.669

Ap55 12 11 0.673 0.689 0.744 0.755

B124 11 11 0.815 0.806 0.834 0.821

A79 9 11 0.146 0.194 0.294 0.301

A8 3 7 0.062 0.172 0.145 0.278

A88 3 7 0.081 0.400 0.132 0.363

Ap224 6 6 0.545 0.578 0.614 0.631

Ap249 2 5 0.033 0.058 0.464 0.122

Ap274 5 6 0.042 0.051 0.081 0.108

Alla 7.9 8.9 0.381 0.396 0.463 0.462

Columns indicate the total number of alleles observed (Na), observed
heterozygosity (Ho), and expected heterozygosity (He) estimates per locus
a Average values across loci
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in the parasitized colonies (He=0.464±0.075), and although
these differences did not appear to be statistically significant
(Student t=−0.149, p=0.441), the G test revealed highly sig-
nificant genetic differentiation between these two groups of
colonies (p<0.001).

To further analyze these genetic differences, we studied
the allele frequency patterns of each locus in colonies sam-
pled in 2006 vs colonies sampled in 2010. Coalescent sim-
ulations performed with Lositan software detected an outlier
locus (Ap249) as a candidate of being subjected to positive
selection (Table 3). The comparison between Nosema/
Varroa-negative colonies vs colonies parasitized by Varroa
revealed another outlier locus, B124, as a candidate for pos-
itive directional selection (Table 4). No outliers were detect-
ed when comparing Nosema/Varroa-negative colonies vs
positive colonies to Nosema spp., irrespective of the sam-
pling year. Screening for annotated genes (Map Viewer tool
NCBI; Amel 4.5) showed that the Ap249 locus is located on
chromosome LG2 of A. mellifera and that it is linked to the
protein-coding gene Aos1 related to protein degradation,

whereas B124 locus is located on chromosome LG13 and
it is associated with the dpr7 gene that encodes immuno-
globulin proteins.

Discussion

This study indicates that the genetic diversity level among
honey bee colonies in Spain has remained stable over the last
decade, despite the colony losses recorded in this and other
European countries (Higes et al. 2010a, b; vanEngelsdorp and
Meixner 2010). Therefore, the initial hypothesis that the in-
creased incidence of parasites (V. destructor) and pathogens
(N. apis and N. ceranae) in recent years was associated with a
decrease in genetic diversity of the Iberian honey bee popula-
tion was not corroborated here. This result does not rule out
the possibility of such effects at a local or intra-colony scale,
an issue that deserves more specific research. However, the
genetic diversity levels at the peninsular scale (He) remained
similar in both years surveyed, 2006 (He=0.463±0.080) and

Table 2 Presence of Nosema
spp. and Varroa destructor by
sampling year in Apis mellifera
iberiensis colonies

% Positive colonies (number of positive colonies)

2006 (N=113) 2010 (N=115)

N. ceranae 50 % (56) 59 % (68)

N. apis 13 % (15) 3 % (3)

Co-infection by N. apis+N. ceranae 1 % (1) 10 % (12)

Total prevalence of Nosema spp. 64 % (72) 72 % (83)

Prevalence of Varroa mite 31 % (35) 19 %a (21)

Presence of at least one of the analyzed agents 74 % (84) 83 % (95)

aVarroa presence was not analyzed in six of the 115 colonies from the sampling in 2010. Furthermore, the
percentage is calculated in this case based on 109 colonies analyzed

Table 3 Results of the outlier analysis of Apis mellifera iberiensis
populations when comparing 2006 and 2010 samples

Locus He FST P (SimulFST<sample FST)

A113 0.606836 −0.003254 0.33287

A7 0.450309 0.002717 0.475918

Ap43 0.703883 0.008342 0.464157

Ap55 0.789031 0.045271 0.824397

B124 0.829635 −0.003618 0.142272

A79 0.29875 −0.002601 0.450995

A8 0.216294 0.017493 0.593753

A88 0.267323 0.069342 0.869986

Ap224 0.623494 −0.00542 0.30051

Ap249 0.39438 0.250268 0.999406

Ap274 0.094999 −0.001697 0.386087

Locus Ap249 shows a high probability of being subjected to selective
pressures

Table 4 Results of the outlier analysis when comparing Apis mellifera
iberiensis populations (2006 plus 2010 samples) negative for Varroa/
Nosema infestation vs colonies parasitized by V. destructor

Locus He FST P (SimulFST<sample FST)

A113 0.62406 −0.000357 0.613779

A7 0.478716 2.8e-05 0.69447

Ap43 0.681419 −0.007087 0.436818

Ap55 0.791319 0.001775 0.562544

B124 0.866319 0.047409 0.985782

A79 0.401316 0.021712 0.798066

A8 0.336097 0.029368 0.85626

A88 0.201974 −0.008837 0.470685

Ap224 0.648352 −0.00876 0.437697

Ap249 0.357919 0.025789 0.829389

Ap274 0.077703 −0.000715 0.595662

Locus B124 shows a high probability of being subjected to selective
pressures
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2010 (He=0.462±0.075). In fact, the genetic diversity re-
corded in this study is concordant with that obtained previ-
ously in the Iberian Peninsula studying microsatellite loci
(Cánovas et al. 2011: He 0.401 to 0.518; Miguel et al.
2007: He 0.442 to 0.516). As discussed by these authors,
honey bee populations in Spain might be considered to
make up a single large population for certain purposes, giv-
en the large population interchange and gene flow derived
from the extensive beekeeping mobility around the
Peninsula (Cánovas et al. 2011; 2014). In fact, around
80 % of the estimated number of Spanish colonies move
in a yearly cycle, which leads to a potential bi-directional
genetic flow between migratory and resident colonies
(Perrier et al. 2003; Hernández-García 2010), an effect that
is enhanced by the lack of control that beekeepers have on
natural honey bee mating (Baudry et al. 1998; Koeniger and
Koeniger 2000; Hernández-García et al. 2009; Jaffé et al.
2009). Additional factors promoting the genetic homogene-
ity in the Iberian Peninsula are the capture of swarms and
the purchase of colonies or mated queens, often originating
from distant locations (Cánovas et al. 2008; Serrano et al.
2011). All these factors would account for the maintenance
of genetic diversity in Iberian honey bee populations report-
ed in this study, despite of the colony losses occurred in
recent decades. However, there is an evident risk of disease
spreading as a result of the intense colony movement be-
tween most regions in the Iberian Peninsula. In this sense,
the increased prevalence of pathogens in Spain during the
study period is not surprising, consistent with data found in
other studies (Higes et al. 2010a, b; Botías et al. 2012;
Martín-Hernández et al. 2012; Muñoz et al. 2014) and in
other regions (Fries 2010; Traver and Fell 2011; Martin
et al. 2013; Bekele et al. 2015). It is noteworthy that around
74 % (2006) or 86 % (2010) of the colonies presented at
least one of the searched pathogenic agents (V. destructor,
N. apis, and N. ceranae) showing N. apis a lower prevalence
even though the samples were obtained in Spring, the peak
season for N. apis infestation (Fries 2010). By contrast,
N. ceranae was the pathogen that showed the greatest ex-
pansion with an increase in prevalence of 10 % in the 4 years
of our study. This high prevalence of parasites and patho-
gens, and the fast expansion of N. ceranae, are of particular
concern given the potential of V. destructor (Rosenkranz
et al. 2010) and N. ceranae (Martín-Hernández et al. 2007;
Higes et al. 2008) to produce colony collapse.

A relationship between honey bee genetic diversity and
the prevalence of parasites and pathogens could not be
established in this study due to the genetic stability ob-
served. However, we did detect significant genetic differ-
ences in the surveys performed in 2006 and 2010 (G test,
p<0.001), as well as Varroa/Nosema-negative colonies and
parasitized colonies (G test, p<0.001), with tentatively
higher He values in the Varroa/Nosema-negative colonies

compared to parasitized ones. This is consistent with studies
showing that colonies of genetically diverse social insects
have a selective advantage because of increased resistance
to pests (Sherman et al. 1988; Liersch and Schmid-Hempel
1998; Tarpy 2003; vanBaalen and Beekman 2006; Mattila
and Seeley 2007; Oldroyd and Fewell 2007). It is thought
that different host genotypes have distinct susceptibilities to
diverse parasitic strains; thus, parasitic infections are not
likely to spread in genetically heterogeneous colonies as
rapidly as in more homogeneous ones (Sherman et al.
1988; Schmid-Hempel 1998). Studies on different
Hymenoptera species also support this hypothesis, including
those on bumblebees like Bombus terrestris (Liersch and
Schmid-Hempel 1998; Baer and Schmid-Hempel 2001)
and Bombus pascuorum (Whitehorn et al. 2011) and on ants
(Hughes and Boomsma 2004).

To further investigate the genetic differences between the
groups of colonies, we studied whether any of the loci ana-
lyzed was subject to selective pressure. A comparison of allele
frequencies between the samples collected in 2006 and 2010
showed that the Ap249 locus was subjected to positive selec-
tion during that period. Searches of the complete A. mellifera
genome (Consortium HGS 2006) showed that this locus is
located on the chromosome LG2 and that it is linked to the
protein-coding gene Aos1 . Experimental data in
D. melanogaster indicate that Aos1 (FlyBase: http://flybase.
org/reports/FBgn0029512.html, 16/01/2015) is involved in
the biological processes of protein sumoylation, a protein
modification implicated in various cellular processes that
include the stress response (Hay 2005; Paddibhatla et al.
2010), and the positive regulation of the NF-kappaB transcrip-
tion factor, a modulator of the immune response to infection
and of nervous system plasticity (Ghosh et al. 1998; Albensi
and Mattson 2000; Li and Verma 2002; Meffert et al. 2003).

When comparing Varroa/Nosema-negative colonies vs col-
onies parasitized by V. destructor, we found a second outlier
locus, B124. As noted before, Varroa-negative colonies might
be false negatives because of a recent treatment, but also the
result of the development of natural tolerance to the mite. It is
interesting that the screening of B124 in the annotated genome
of A. mellifera (Map Viewer tool, NCBI; Amel 4.5) suggested
the linkage of this locus with the dpr7 gene that encodes
immunoglobulin proteins (FlyBase: http://flybase.org/
reports/FBgn0053481.html, 16/01/2015).

In conclusion, in this study, we show that the genetic di-
versity in Spanish honey bee populations remained stable be-
tween 2006 and 2010, despite the increasing levels of patho-
gens and parasites. This result possibly reflects the multi-
drone mating system of the queens and the high gene flow
between colonies over most regions of the country. We iden-
tify two outlier loci related to genes that respond to stress and
that could potentially reflect selective processes a hypothesis
that should be assessed in more specific analyses.
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