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Abstract—Smart grids rely on the integration of distributed
energy resources towards an intelligent and distributed manner
to organize the electrical power grid enabled by a bidirectional
flow of information to improve reliability and robustness, fault
detection and system operation, and plug-and-playability of en-
ergy devices. The integration of information and communication
technologies (ICT), one of the key enablers of smart grids,
will ease the deployment of intelligent and distributed systems
implementing the automation functions. In this context, there is
a need to assess how these systems, developed using these emer-
gent technologies, e.g., multi-agent systems, data analytics and
machine learning, will behave and affect the working conditions
of the power grid. This paper aims to explore the development of
a transparent and loose-coupled interface between the behavioral
control system and the physical or simulated power system
environment, in a coupled simulation perspective, aiming to assess
and improve the development of such systems during the design
phase.

Index Terms—Simulation, Smart grids, Multi-agent Systems,
Matlab Simulink.

I. INTRODUCTION

Global warming awareness allied to the agreements
achieved in the Kyoto protocol has enforced new restraints in
the electric generation. Green and eco-friendly energy sources
are now becoming prominent for a sustainable and carbon
free development, which allied with the technological break-
throughs in ICT, poses the ideal conditions for the transition
of the traditional power grid towards a smart grid [1].

The smart grid not only aims to address ecological issues,
but also to reduce the centralized energy generation by sup-
porting the integration of distributed energy resources (DER),
grid monitoring and control through demand response (DR)
and advanced metering infrastructure/reading (AMI/AMR)
technologies. This evolution towards a smarter grid and the in-
tegration of new technologies promises to bring enhancements
in several fields, namely power quality and reliability, reduced
generation costs, improved asset management and economic
benefits to customers [2].

This evolution comes allied with the emerging technologies
associated to Internet of Things (IoT), which is not only
present in the smart grid and energy management field [3]
but also everywhere, namely environmental monitoring [4] and
smart factories [5]. It provides decoupling and decentralization
capabilities to the devices placed in the ecosystem, potentiating
the distributed management and control of physically dispersed
devices and technologies.

The resulting evolution originates an aggregation of sev-
eral types of technologies, ranging from power electronics
to communication infrastructures, leading to a complex and
multi-disciplinary cyber-physical system that integrates several
heterogeneous and distributed energy resources, as well as,
computational applications for control and monitoring of the
power grid operation. Multi-agent systems (MAS) is pointed
as a suitable approach to introduce distributed intelligence
in power grid control and operation. In fact, MAS provides
autonomous control actions in a distributed and decentralized
manner matching the distributed nature of the smart grid and
its devices [6].

The assessment and verification of such distributed smart
grid systems becomes a primordial part of the development
that has to be performed prior to the system deployment.
This issue poses a barrier when it comes to simulate such
systems, as in the past the different domains of the smart
grid have been modeled separately, having simulators where
control strategies (e.g., market operation and demand side
management techniques) were simulated, and power grid sim-
ulators where the physical behavior is tested (e.g., frequency
stability and power factor correction). In this last physical
component, there are available power grid simulators, e.g.,
Matlab Simulink [7] and Gridlab-D [8], that can be used to
provide a realistic environment to simulate the control and
monitoring applications for smart grids.

Having this in mind, a simple, loose-coupled and transparent
interface platform is required to interconnect the behavioral
part of the grid, i.e. where the control and monitoring proce-
dures take place, e.g., by using MAS solutions, and the phys-
ical part of the grid, i.e. where different power systems can
be modeled in detail using a realistic simulation environment.
Therefore, this interface should allow to merge different tools
and techniques to simulate the different parts of the overall
complex system simultaneously.

This paper presents a loose-coupled simulation interface that
simplifies the interaction between the behavioral simulation
counterpart of smart grid systems with the physical power
grid simulation. The validation of the proposed approach was
performed by interfacing a MAS solution for the high level
control developed by using the JADE framework with a micro
grid case study modeled in Simulink.

The rest of the paper is organized as follows: Section II
briefly reviews the literature related to simulation of power
systems and Section III introduces the designed loose coupled

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153416958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


interface for combining behavioral and physical simulation
counterparts. Section IV describes the experimental tests and
analyses the results from the implementation of the proposed
approach to interface a JADE based MAS solution with a
micro grid modeled with Simulink. At last, Section V rounds
up the paper with conclusions and points out the future work.

II. RELATED WORK

A. Simulation of Smart Grids

Simulation provides the possibility to create different mod-
els where different realities can be combined. As example,
by combining the simulation of a control system with power
grid simulators that are operating in parallel with the real
power grid, such simulation can bring one step closer to the
implementation of the designed control models.

Simulation approaches, that typically involve the integration
of two or more simulators to assess the cyber-physical inter-
dependency of a process or system, poses that each modeled
system is analyzed in its dedicated simulation environment [9].

Some research deals with the distribution of simulation
across several computers and devices enabling the possibility
to break down a system into subsystems, which can be mod-
eled independently. Therefore, distributed simulation enables
to [10]:

‚ Parallelize computing, improving the overall performance
of the simulation processing.

‚ Combine heterogeneous simulators that may focus on
different simulation objectives.

‚ Combine hardware and software, join the hardware to the
simulation process (hardware-in-the-loop).

The heterogeneity of the smart grid, as well as the need
to simulate simultaneously the control and physical layers,
requires the creation of a mean to interconnect these two
worlds. Several works can be found in the literature review.

Kelley et al. presented the federated simulation toolkit
(FSKIT) that couples continuous time and discrete event sim-
ulations (DES), joining the power system and communication
network simulations into an integrated tool [11]. A modular
simulation framework called Mosaik is presented in [12],
supporting automatic composition of heterogeneous simulation
models in order to evaluate control strategies.

In [13], the authors developed a simulation engine called
EPOCHS which combines PSCADE/EMTDC, PSLF and NS2
together with multi-agent systems. A run-time infrastructure
(RTI) was used to route all the messages between the simula-
tion components as well as manage simulation times while the
distributed control and protection schemes were implemented
using agents. Roche et all in [14] developed an interface
that joins the PowerWorld (power system simulator) and
JADE (agent environment) using TCP/IP and MATLAB as
a simulation controller.

The authors in [15] proposed a simulation framework called
GridIQ that interfaces JADE with PSAT (Power Simulation
Analysis Tool). The framework acts as an interface between
the two distinct simulators, although the authors considered the

communication times between the agents to be ideal, which
makes it unrealistic. The MACSim software framework [16]
simulates a MAS application and the communication network,
being the JADE framework used to develop the MAS environ-
ment and OPNET as network simulator, although the power
grid simulation was no considered. A similar approach was
presented in [17] that provides a modeling and development
of multi-agent driven control systems.

Roche et. al [14], presented a framework that interfaces
power systems analysis software, such as Matlab and Power-
World, with multi-agent system developed by using the JADE
framework. The main aim of this framework is to enable
reliable communication and coordinated interaction between
the two types of tools. The two tools interact via a TCP/IP
(transmission control protocol)/(Internet Protocol) where the
agents act as coordinator via the InterfaceAgent and Matlab
as a slave.

B. Synchronization Structure

The synchronization of connected simulation tools from
different domains is crucial to achieve a coherent simulation.
Fig. 1 illustrates the synchronization scheme proposed by [18]
describing the simulation between the behavioral simulation
and the power grid simulation. The two simulation engines
are coupled between a synchronization scheme that explicitly
synchronizes the shared variables and simulation time.

Fig. 1. Synchronization Structure adapted from [18]

Each simulator locally stores the current state and time at
which the state is valid. Thus, let τBS be the current state of the
behavioral simulator (BS) at simulation time tBS , and let τPS

be the internal state of the power simulator (PS) at simulation
time tPS . The defined controllable variables are set by the BS
(defined in σc and read by the PS; the simulated variables σm
are set by the power simulator and read by the BS. Consider a
synchronized cycle, a cycle which starts with the two simulator
having a common simulation time (tBS=tPS). On each cycle,
the BS set the values and defines a watching simulation time
δt by which the simulation should be performed by the PS.
The result variables σ1

m and the actual reached time δtq are
reported back to the BS side. During the PS processing the



BS simulation remains unaltered, simulation time remains at
tPS and state τBS . The simulation will then advance by δtq so
that both BS and PS are once again synchronized at the same
simulation time and the simulated variables are updated σ1

c

and the new time step is proposed to the PS. The granularity
of the time step is always determined by the BS.

C. Existing Gaps and Requirements

Combining different simulation environments in a dis-
tributed and loose-coupled manner poses several issues.

The literature review reveals the existence of some ap-
proaches that create a combined simulation environment that
brings the control and physical simulations together. However,
they lack a toughly decoupled, standard and transparent com-
munication environment that enables to integrate distributed
and loose-coupled simulation platforms and devices.

Taking a closer look of the above review of the state of
the art is perceptible that works presented use either a hard
coded communication channel that need to be reworked if a
new/different simulator is added or the interfaced tools work in
the same machine with no need for a communication channel.

Therefore there is a need to create a loose-coupled com-
munication channel that can provide the inter-exchange of
simulators and physical devices in order to interconnect them
as a whole simulation environment. This loose-couple interface
framework for simulation environment should consider the
following requirements:

1) Synchronization of the data exchange: the timing issue
is very important as it ensures a proper information
exchange between simulators.

2) Coordination and execution scheduling of all simula-
tions: the proper scheduling and coordination of the
simulations ensures that they are started at the correct
time. This ensures a proper simulation synchronization
avoiding simulation delays.

3) Track simulation time: ensure that all simulations have
access to current simulation time.

4) Simplify the data exchange facilitation: exchange data
between the different simulations using a common com-
munication bus.

5) Loose-Coupling: ensures that the simulations are dis-
tributed requiring less computational resources.

III. DESIGN OF THE LOOSED COUPLED INTERFACE

The evolution of the systems poses that plug-and-play
capabilities should be found in simulation environments where
the evolution and complexity grow, requires them to be loose
coupled and easily scalable.

A. Philosophy and Application Domain

Components in a loosely coupled system can be changed
or replaced with alternative implementations that provide the
same or similar services, being less constrained to the same
platform, language, operating system, or build environment.
The maintenance of the system consistency in loose coupled
systems requires a special attention.

Loosed coupling provides a way to spread the simulation
across multiple devices replicating, in many cases, the layout
of the simulated scenario. This replication is not only in
terms of communication conditions but also in terms of
decentralization of the simulation by distributed computa-
tional resources. The principal deployment scenario of loosely
coupled simulation is to interlinking heterogeneous system
simulators to achieve an integrated simulation tool chain,
with the possibility of swapping software components. In this
scenario, the physical power grid and behavioral simulator
counterparts exchange real-time data allowing the complete
verification of the developed models.

Therefore, using such techniques testing and simulation of
control strategies on electrical power systems, are approached
to real case scenarios replicating possible instabilities in the
electrical system. Therefore, it provides a safe environment
to benchmark the quality of the control algorithms as well as
perform the behavioral and decision-making tests.

B. Simulation Communication Channel

The different simulators need to interact in order to commu-
nicate and perform the joint simulation process. For this pur-
pose, the interconnection between the two layers is supported
by a MQTT (Message Queuing Telemetry Transport) broker
providing a lightweight method of carrying out messaging
using a publish/subscribe model. The MQTT protocol has its
roots back in 1999, invented by IBM and Arcom for oil field
and food plain monitoring [19]. MQTT is designed to provide
efficient communication across a wide area portion of the net-
work. Unlike HTTP (Hypertext Transfer Protocol) applications
that would have to continuously poll to query a given status
inefficiently using the network, and CPU resources. MQTT
enables applications to listen for events and goes to idle until
the event occurs at which point the event will be pushed to
the listening application

The MQTT protocol also allows customizable levels of QoS.
Therefore, each publish event will use QoS level 2 in order to
ensure a reliable and unique delivery by each publisher [20].
Each message will be stored by the sender until the delivery
acknowledgment sent by the broker is received, this process
is described in Fig. 2.

Fig. 2. Communication sequence between the behavioral simulator and
physical simulator



As example, an PV agent will start by locally store the mes-
sage to be sent, then it will publish (e.g.radiation values to be
used in the physical simulator model) to the broker. The broker
will store the message locally and then forward the message
to the subscribers of that topic trough a publish event. The
broker will then acknowledge the publisher that the message
has been successfully delivered. After a successful delivery
the publisher and the broker will exchange acknowledgment
messages in order to delete the stored message.

Fig. 3. Simulation interface between behavioral and power simulators

The main responsibility of the broker is to ensure proper
communication between the clients and ensure the message
distribution between them. When a message is received the
broker as find all the clients that have a subscription to the
received topic and forward the message. Besides the message
handling, the broker checks authentication and authorization
of the clients. The client will send a connect message that
will contain a username and password that will be checked by
the broker, additionally, on the broker side topic permission is
implemented as a mean to block unauthorized clients to public
or subscribe. Fig. 3 describes how the different interfaces
composed by a behavioral simulators, comprising the high-
level decision-making and coordination functionalities imple-
mented, and the functional simulators that emulates the power
grid using a power grid simulator can interact using a common
communication channel such as a broker.

C. Simulation Data Structure

The data shared trough the Mosquito broker, between the
simulators uses a JSON structure where each message has the
following content:

‚ Message id: identifies the sender and number of the
message.

‚ Type: identifies the type of the message content, e.g.,
Boolean, double and character.

‚ Parameter: identifies the exchange parameter, e.g.,
rad PV H12 is the radiation parameter for the con-
nected PV in house 12.

‚ Value: contains the value for the content parameter pre-
viously described.

This structure eases the process of bug tracking as each
received message is stored locally in the receiver’s local data
base for a predetermined amount of simulation cycles until is
deleted to give place to new incoming messages.

The following piece of code describes the structure of a
message exchange between the two ends of the simulation
infrastructure.

example
{
"MessageID": "Sender_Msgnumber",
"Type": "Float",
"Parameter": "rad_PV_H12",
"Value": "12"

}

D. Simulators Schedule

As the different entities present in the simulation model
have dependencies between each other, e.g., the simulation
of a PV requires input from the weather simulation or the
load scheduling requires input from the prediction models.
Additionally, the simulator can be started by other simulators
and have different time steps.

In order to solve the dependencies and avoid the desynchro-
nization, the simulations that are inputs for other simulation
processes are started whenever they are needed. Fig. 4 shows
the graph sequence for the above example, assuming that Sim2
and Sim3 provide inputs for Sim1, and Sim1 provides inputs
for Sim4.

Fig. 4. Simulations schedule graph

Considering the discrete event simulator in the simulation
as the Sim1 and the continuous simulator as the Sim4, the dis-
crete simulator will locally launch all the necessary auxiliary
simulations and wait for the input or use the previous state
in case of non response. The result will be communicated to
a continuous simulator that will wait for all other necessary
events and data before proceeding with the simulation. This
means that for this case the discrete simulator handles the
necessary simulation triggers, acting as a master (Sim1) and
the continuous simulator as a slave (Sim4).

In order to ensure a coherent simulation, all running simu-
lations have to be synchronized. Considering a simulation set
Co = tS0, S1, ..., Snu, n P N and Setpp = tSetp0, Setp1,



..., Setpnu, n P N the fixed simulation steps. The maximum
simulation step time will be equal to biggest simulation
duration. Therefore, the global synchronization point for the
simulation period presented in the above example (Fig. 4) is
the point where all the simulators have shared the results.
Therefore, the global synchronization is the point of the return
value of the continuous simulator (Sim4).

IV. EXPERIMENTAL IMPLEMENTATION

The following subsections describe the case study and the
implementation of the proposed approach to simulate a small
microgrid.

A. Description of the Case Study

The case study considered in this work is a small low-
voltage microgrid with four households, each one comprising
7 different loads as follows:

‚ Water heater (2kW).
‚ Electric heater (2kW).
‚ Illumination (200W).
‚ Refrigerator (200W).
‚ Television (200W).
‚ Microwave (800W).
‚ Emergency illumination (100W).
Several renewable energy supplies, as well as storage de-

vices, are available to supply energy to these loads, as follows:
‚ 1 residential house with no generation or storage.
‚ 1 Residential house with 1 PV 5Kwp, 1 electric vehicle

50Ah and no storage.
‚ 1 Residential house with no generation and 1 battery bank

80Ah for storage.
‚ 1 Residential house with 1 wind generator 2.4Kwp and

no storage.
‚ shared generation and storage with 1 PV 5Kwp, 1 wind

generator 2.4Kwp and 1 battery bank 100Ah.
The shared generation and battery banks are part of the

community, meaning that all residential houses can get energy
from these energy units. The primordial use for the generation
units is to be applied within the residential units and the
surplus stored within the batteries and EV.

The microgrid was modeled in both behavioral and power
grid simulators. The behavioral system responsible the power
grid operational control modeled and implemented using the
MAS technology through the JADE framework. The physical
grid simulator implement using Simulink, where each power
grid element is designed and represented through its equivalent
block diagram.

B. Implementation

In the behavioral simulation, each agent has its physical
representation in the power grid model developed using the
Simulink simulator and is isolated in its own machine con-
stituting a fully decoupled environment. Each agent is both
subscriber and publisher of topics where all are related and
individual topics that deal with the physical grid simulation,

e.g. a PV agent accessing data from the simulated generation
or change the data of the sun radiation.

In the physical layer modeled within the Simulink en-
vironment, each power grid element is designed to be as
close as possible to the real equipment in terms of electric
characteristics. Alt ought, power grid is simulated as a whole,
having each modeled power grid element inputs and outputs
connected to subscribed topics in MQTT broker. This is
achieved through an open source library called Paho that is an
open source MQTT client implementation for java that enables
to create a client connection to an MQTT broker running on
a host, over TCP to port 1883 (the default port for MQTT).
Paho is present in each agent implementation creating a MQTT
client for each instance, on the Simulink side one client is
present through the Matlab Java API.

The synchronization and simulation processes between both
simulations are started by he agents that always act as master
whereas the Simulink act as a slave answering to queries
performed by the agents.

C. Results Discussion
The developed system interface was tested to assess the

characteristics of the simulation interface.
1) Latency Times: The assessment of the device-to-device

Publish-Subscribe latency, respecting the QoS 2, between the
agents and the Simulink environment, an experimental test was
performed considering two scenarios:

‚ Case 1: small dummy simulation on Simulink side and
dummy communication content.

‚ Case 2: full use case simulation on both sides.
The latency times were calculated by measuring the time

between the publish event and the acknowledgment of de-
livery by the broker, performing from both sides during the
simulation runtime and after the end simulation by Simulink.

Table I summarizes the latency times During (top of the
table) the simulation runtime and After (bottom of the table) a
finished simulation by Simulink with data request from both
sides.

TABLE I
LATENCY TIMES DURING AND AFTER THE SIMULATION RUNTIME

Request by MAS Request by Simulink

Time (ms) Case1 Case2 Case1 Case2

During 232 341 246 286
After 158 180 168 171

The observation of the results allows to verify that the com-
putational requirements of the Simulink environment affect
the communication latency During the simulation. The latency
increases to 341 ms in Case2 when compared to 232 ms in
Case1 during the simulation runtime requested by MAS. The
same behavior can be observed when the Simulink performs
the request.

Similar behavior is observed for requests After Simulink
execution, the increase in model size influences the simulation



communication latencies, although with less significant in-
creases 22 ms for the MAS request and 3 ms for the Simulink.

The simulation execution times would be reduced, and the
wole systems performance would benefit from a distributed
simulation from the Simulink side.

2) Scalability: Due to the necessity to map each electrical
entity in both layers, the proposed approach turns-it labor in-
tensive in order to scale-it up. Although, power grids tend to be
quite static with few changes over the years. This would mean
that few modifications within the structure of the Simulink
model, as well as in the agent-based system side, would mean
to clone an agent and correct the dependencies. Although, the
implementation of the Simulink simServer would solve the
need to completely redesign the whole micro grid structure
and transform it in a modular addition where each entity will
be a co-model of the overall simulation.

3) Possible Change of Simulators: The changes of the sim-
ulator environment, at both simulation layers, is possible with-
out changes within the broker structure and subscribed/pub-
lished topics. Additionally, the change in the physical simu-
lation counterpart does not affect the behavioral counterpart
since it is decoupled through the use of the broker interface.
Although, in case of a coding language change, the MQTT
client topic subscriptions would necessarily to be recoded.

V. CONCLUSION

Simulation should mimic the design and behavior character-
istics of the simulated system, needing in this case separated
and distributed models for both behavioral and physical sim-
ulations, as well as a communication channel that interfaces
them.

The publish/subscribe schema is a distributed interaction
paradigm well adapted to support the deployment of scalable
and loosely-coupled systems. This paper presented a trans-
parent and loose coupled interface to interconnect an agent-
based control system and the corresponding electrical power
system modeled in a proper simulator environment, in a smart
grid context, using a publish/subscribe framework. The generic
interface between both layers is described, and posteriorly
implemented using the JADE framework and the Simulink
environment, and tested to assess the communication bound-
aries of the proposed implementation. The experimental results
allowed to verify that by loosely-coupling different types of
simulation platforms it is possible to simulate and evaluate the
microgrid from behavioral and physical perspectives.

Future work will be devoted to apply the proposed ap-
proach towards the development and testing of intelligent and
distributed multi-agent based solutions that manage the self-
sustainability of micro grids.
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