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Abstract—Smart devices and Internet of Things (IoT) tech-
nologies are becoming each day more common. At the same
time, besides the exponentially increasing demand to analyze
the produced data, there is an evolving trend to perform the
data analysis closer to the data sources, particularly at the
Fog and Edge levels. In this sense, the development of testbeds
that can, e.g., simulate smart devices in IoT environments, are
important to explore and develop the technologies to enable the
complete realization of such IoT concepts. This paper describes
the digitization of an electric motor, through the incorporation
of sensing and an analytical computational environment, towards
the development of a testbed for IoT and Big Data technologies.
The smart electric motor testbed provides real-time data streams,
enabling a continuous monitoring of its operation along all the
device life-cycle through advanced data analytics. Furthermore,
the paper discusses how specific data analytics features fit the
different IoT layers, while preliminary experiments demonstrate
the testbed potentials.

I. INTRODUCTION

The environments where people live and work are becoming
more and more intelligent towards the enhancement of their
well-being and convenience. Such phenomenon, technologi-
cally covered in the Internet of Things (IoT) context [1], has
been promoted by the wide adoption of smart things and
the large availability of information services. For example,
in the context of smart buildings, there are many solutions
aiming to automate home tasks and improve energy efficiency
through a network of sensors disposed in the buildings,
home appliances and user devices [2]. In smart transportation,
approaches are promoting the reduction of accidents, traffic
jams and travel time through the communication among the
vehicles and infrastructure [3]. In smart grids, the goal is to
promote the use of renewable energy towards energy efficiency
and self-sustainability, reducing the pollution gases, through
an intelligent information network of prosumers, distribution
utilities and generating companies [4]. Smart cities is a broader
area, covering all the previous fields in order to promote the
citizens’ life and the whole quality of the environment [5].

This concept is also extended for industries, where smart
factories promote the optimization of the production system
and the product customization and quality through the em-
ployment of smart machines and products, as well as other
principles leveraged by the Industry 4.0 [6]. Inside this vision,

smart products are appearing at the shop floors, interacting and
influencing the production monitoring, predictive maintenance
and asset management. When out of the factories, smart
products continue their life-cycle [7] and besides fulfill their
designed functionalities, they are also able to improve the
support of customer services. As example, organizations can
assess how the products are being used, and thus provide
improved maintenance services or use the information to
improve the design of the next generation of products to attend
the requirements and features not considered before.

In IoT environments, smart devices have usually limited
processing and storage capabilities, which means that they are
restricted to perform simple monitoring tasks. In this way,
robust algorithms, such those based on machine learning and
data mining, should run in a cloud-based infrastructure, taking
advantage of the large volume of measured data. However,
connecting all devices to the Cloud does not fit all kinds of
applications and may overhead the communication network,
increasing the response latency. Lately, Fog computing [8],
[9] emerged to bring the data processing and analysis close to
the device, at the local network level. This approach addresses
many application requirements, enhancing the response time
and availability, increasing the security levels, and effectively
pushing the data to the cloud [10].

In this complex and interdisciplinary field, there are still
many challenges to leverage the development and adoption of
smart devices towards the realization of intelligent, distributed
and collaborative environments. Therefore, from a research
perspective there are basically two ways to assess the tech-
nologies and approaches to develop and test smart things and
IoT environments solutions: 1) using simulation tools based
on mathematical models, or 2) build experimental testbeds
with real equipment and sensors. In this sense, this paper
describes an easy and low cost deployable testbed to enable
researchers, engineers and technology enthusiasts to explore,
test and develop emergent IoT and Big Data technologies.

For this purpose, this paper discusses how a DC motor
was equipped with several sensors, as well as the require-
ments and features of data analytics along each IoT layer.
The experiments employed the MQTT (Message Queuing
Telemetry Transport) protocol and data mining techniques to



illustrate the data retrieval, integration, preprocessing, analysis
and visualization in several motor operation scenarios.

Electric motors represent a good choice for a smart thing
and IoT testbed, since besides their widely application in
industries (e.g., present in most of shop floor machines) and
daily life devices (e.g., vehicles and household appliances),
motors also continuously provide several parameters (elec-
trical, mechanical and operational) in a real-time stream.
Additionally, motors are subject to several operating conditions
and problems [11]. Therefore, to keep their operability, the
produced data should be monitored and analyzed along the
whole life-cycle, from design and production (features and
quality control) to operation (maintenance and diagnosis).

The rest of the paper is organized as follows. Section
II describes the DC motor hardware setup and Section III
presents the testbed IoT architecture. Section IV discusses the
data analytics features and Section V describes the preliminary
testbed experiments. At last, Section VI rounds up the paper
with the conclusions and points out the future work.

II. SMART MOTOR TESTBED

The testbed was built using simple and low cost equipment,
as well as widely known and used technologies, becoming
easily replicable. The next subsections describe the testbed
hardware setup, signal conditioning and control systems.

A. Hardware Setup

The hardware setup of the smart motor testbed, illustrated in
Fig. 1, was developed using a DC motor (120Watt), equipped
with several sensors to measure, amongst others, the speed,
rotation direction, temperature, 3-axis vibration, and electric
current and voltage.

Table I lists the electric and hardware components, including
a 3D printed brake system to allow the simulation of the motor
under different load conditions. This system is controlled by
a step motor that opens and closes the grippers, braking and
increasing the load.

The encoder was connected to the motor through the
coupler, which was surrounded by the brake system. Two
DC power suppliers were used, particularly 12V to power
the motor and the Arduino, and ±15V to power the signal

Fig. 1. Hardware setup of the DC motor

TABLE I
SETUP COMPONENT LIST

component description / characteristics
electric motor platform

Motor
DC motor from a vehicle Motor engine cooling fan
(model GATE MP5625-12V - 120W)

Arduino Mega 2560

Communication Arduino Ethernet Shield 2

Motor driver L298N H-Bridge Shield from MotoMama

Cooling fan 12V DC fan (80x80x20mm)

Stepper motor Unipolar Stepper Motor 28-BYJ48

Brake system Gripper used to simulate load operating conditions

sensing system

Accelerometer 3-axis Accelerometer (CMPS11)

Thermocouple Type K

Encoder
Rotary Encoder, Incremental (Omron E6B2-
CWZ6C, 360 Pulses/Revolution)

Current transducer LEM HAS 50-S

Integrated circuits
Diverse Operational Amplifiers (OP07), thermo-
couple conditioner (AD597) and precision resistors

conditioning electronics system. Additionally a 12V fan was
installed in order to keep the Arduino and shields cooled.

B. Signal Conditioning

In order to make the signals coming from the sensors
compatible with the Arduino input voltage range (i.e. 0-
5V), a signal conditioning was performed. Therefore, circuits
using operational amplifiers were designed for the current and
voltage amplification and shift.

The circuit for the current signal conditioning is depicted in
Fig. 2 (top), where a voltage shift and signal amplification is
performed. The circuit is based on the HAS 50-S that provides
a output voltage (V oi) that is proportional to the current which
is flowing inside the hall-effect transducer element. In this
way, a very good accurate and linear ±4V voltage signal is
provided for a current range of ±50A.

Considering the signal condition, the input voltage (Vi) at
the Analog-to-Digital Converter (ADC) is expressed as:

Vi = 2(V oi − 2) (1)

And the current signal (I) at the transducer element as:

I = 2(V oi − 2)
AM

VM
(2)

where AM is the maximum current amplitude excursion in the
transducer and VM is the maximum output voltage amplitude.

Due to the relative lower value of the DC voltage bus to
power the motor, a solution based on operational amplifiers
was applied. Fig. 2 (bottom) depicts the developed circuit,
where independent operational amplifiers are used to decouple
the motor supply from the measurement, while the remaining
focuses the voltage shift and amplification.



Fig. 2. Signal conditioning circuits: current (top) and voltage (bottom)

With the previous signal conditioning, the relation between
the circuit output signal (V ov) and the DC motor voltage (Vv)
is given by:

V = 6V ov − VMAX (3)

where the VMAX is the nominal voltage applied to the DC
motor, which in the present application is 12V.

The temperature of the DC motor housing is measured by a
type K thermocouple, which signal is conditioned by using an
AD597 circuitry. The motor speed and direction are measured
by using an Omron E6B2, where the Z pulse pin is attached
to an Arduino’s interrupt port allowing to detect the complete
turn, while the ratio between A and B signals defines the
rotation direction. Lastly, the motor’s vibration is measured
by a CMPS11 compass, coupled to the motor housing, which
provides the measurements already conditioned.

Other sensors were deployed to monitor the environment
condition parameters, e.g., air temperature, humidity and pres-
sure, allowing to correlate them with the motor conditions.

C. Motor Control Logic

An Arduino Mega was used to control the motor operation,
as well as to retrieve the data from the sensors that is sent to
the cloud. It also controls the brake system stepper motor, in
this case using a ULN2003 power driver to logically control
the motor coils, moving the grippers.

The control of the motor speed and direction was performed
using the PWM (Pulse Width Modulation) technique in con-
junction with the L298N H-Bridge shield. This way, a value
between 0 to 255 in the analogue pin is used to set the motor
speed, while its direction is controlled using a digital pin.
Based on that, the motor operations are defined by controlling
these two values direction. For instance, Fig. 3 (top) illustrates
the behavior of such values in 6 motor operations.

Such operations were defined by control loops, coded
based on finite states machine, where the transitions represent
changes in the behavior of the speed/direction. Fig. 3 (bottom)
illustrates the Arduino code of a simple control loop where
initially, the speed linearly increases until the maximum (case
0), followed by a period where the maximum speed is kept
constant (case 1), and finally by a period where the speed is
reduced linearly until the motor stops (case 2). Among the
implemented control loops, only 2 of them follows a closed
loop, i.e., the encoder information is continuously analyzed,
allowing to change the motor speed/direction when a given
number of turns is reached. The other control loops are based
on time intervals.

III. IOT COMMUNICATION TECHNOLOGIES

The communication between the components in an IoT
environment assumes an important aspect that is directly con-
strained to devices and network resources, requiring specific
protocols to attend different applications requirements. The
data structure is another aspect that can affect the communi-
cation and should be carefully defined in order to reduce the
computation requirements and facilitate the ways the data is
collected, preprocessed, transmitted, stored and analyzed. The
next sections describe the most common lightweight protocols
and how MQTT was used in this testbed.

switch(ctrlState) {
case 0: // linearly increase until the maximum speed

if((millis() - lastCycleTime) > TIME_INTERVAL){
lastCycleTime = millis();
motorRefSpeed++;
analogWrite(PWM_PIN, motorRefSpeed);

}
if(motorRefSpeed == MOTOR_MAX_CTRL_SPEED){
ctrlState = 1;

}
break;

case 1: // keep the maximum speed for some time
if((millis() - lastCycleTime) > STEADY_STATE_TIME){
lastCycleTime = millis();
ctrlState = 2;

}
break;

case 2: // reduce the speed linearly until stop
if ((millis() - lastCycleTime) > TIME_INTERVAL){
lastCycleTime = millis();
motorRefSpeed--;
analogWrite(PWM_PIN, motorRefSpeed);

}
if (motorRefSpeed == 0) {
ctrlState = 0; // restart the control loop

}
// for the sake of simplicity some code was omitted

break;
}

Fig. 3. Examples of control loop operations (top) and code (bottom)



A. IoT Lightweight Communication Protocols

Lightweight communication protocols are very important
in IoT environments, being responsible to transmit the data
through the network for a diversity of devices. A plethora of
protocols have emerged, each one presenting different features
and benefits that attend distinct application requirements.

In this context, the CoAP (Constrained Application Proto-
col) provides HTTP interoperability with a reduced overhead,
which uses UDP and multicast instead of TCP, and DTLS for
the communications security. On the other hand, and probably
the most commonly used IoT protocol, the MQTT employs a
simple publish/subscribe protocol, using a minimal overhead
and reliable communications. It is mostly used in applications
with bandwidth or devices limitations.

Mostly used in the financing area, the Advanced Message
Queuing Protocol (AMQP) also applies a publish/subscribe
protocol but, contrary to MQTT, it offers mechanisms to
guarantee the completeness of the transaction. This yields to
a big overhead, being a drawback for lightweight IoT devices.

More recently, DDS (Data Distribution Service) has re-
ceived many attention since it offers important benefits when
compared with others protocols. Particularly, instead of using a
publish/subscribe protocol with a centralized broker, each node
communicates in a peer-to-peer mode, using UDP multicast,
which makes a good solution for the real-time data delivery.

B. Setting and Using MQTT

Considering the aforementioned and the motor testbed data
requirements, particularly those related with reliability, loose-
coupled and low-profile hardware, the MQTT protocol was
selected. Fig. 4 illustrates the resulting IoT architectural per-
spective. A Raspberry Pi, connected to the local network, was
used to host an Eclipse Mosquitto MQTT broker. Through the
Ethernet shield, the Arduino publishes the measured data that
is later consumed by a Node-RED MQTT client, in a Cloud
environment, which stores the data in a MongoDB database
and also feeds an online monitoring dashboard.

Fig. 4. IoT electric motor testbed architecture

In the MQTT protocol, the messages are published follow-
ing a hierarchical topic structure. Fig. 5 illustrates some of the
defined topics, e.g., voltage, current, temperature and speed.
Some control topics, e.g., ctrlSpeed and ctrlBrakeStatus, were
also created to allow the synchronization of the control signals
with the sensor data to enhance the data analysis tasks. The
topics are published using the function client.publish(). Note
that in the examples of Fig. 5 the values provided by the
signal conditioning system are read from the analog pins and
a voltage digital conversion (0-1023 to 0-5V) together with

// TOPICS DEFINITION
String topicVoltage = "motor/voltage";
String topicCurrent = "motor/current";
String topicTemperature = "motor/temperature";
String topicRPM = "motor/rpm";
//...
String topicReferenceSpeed ="motor/ctrlSpeed";
String topicBrakeStatus = "motor/ctrlBrakeStatus";
//...
// TOPICS PUBLICATION
client.publish(topicVoltage.c_str(),

String((analogRead(VOLTAGE_PIN) * (5.0 / 1023.0) * 6
- 12), 4).c_str());

↪→
↪→

client.publish(topicCurrent.c_str(),
String((((analogRead(CURRENT_PIN) * (5.0 / 1023.0) -
2) * 2 * 50 / 4) / 8), 4).c_str());

↪→
↪→

client.publish(topicTemperature.c_str(),
String((analogRead(TEMPERATURE_PIN) * (5.0 / 1023.0)
/ 0.01), 4).c_str());

↪→
↪→

Fig. 5. Examples of MQTT topic namespaces and publish functions

the aforementioned equations need to be applied to obtain the
parameters in their respective unit of measurement.

IV. THE ROLE OF BIG DATA IN THE IOT INFRASTRUCTURE

One of the main challenges in IoT environments is the data
management, namely the retrieval, transmission, storage and
analysis. In this sense, data analytics and Big Data techniques
are crucial to fully realize and leverage the IoT potentials.

A. Data Analytics along the IoT Architecture

An IoT environment comprises the Edge, Fog and Cloud
layers [10]. Each IoT layer is characterized by the presence
of hardware and software components that produce and/or
consume different types and volume of data. In this context,
regarding the data management, specially the data analytics
aspects, it is possible to characterize each one of these layers
according to their functional, data analysis, technological and
implementation aspects, summarized in Fig. 6.

The Edge layer is characterized by heterogeneous devices,
normally with restricted processing and storage resources, lim-
iting the data analysis capabilities. The Fog layer comprehends

Fig. 6. Data analysis features and requirements along the IoT layers



the components at the local network. This layer, besides being
a requirement in many application domains since connecting
all the things to the Cloud is not feasible for many kinds
of devices and applications, can enhance the data analytics,
reducing the amount of data and increasing the quality of
the data send to the cloud, as well as endowing devices with
self- and context awareness. The Cloud layer usually provides
everything-as-a-service (XaaS). Given the large amount of
available resources and data, this layer provides high level
information to support decision making, planning and opti-
mization systems.

Regarding the technological aspects, there is a plethora
of widely used IoT and Big Data tools, (hardware/software)
platforms and solutions, only briefly exemplified in Fig. 6.

B. Setting and Exploring Data Analysis Solutions

The deployment of the data analysis solution requires to
define and develop the data acquisition and storage, and to
perform data mining tasks, which encompass an exploratory
data analysis (EDA), followed by the building and evaluation
of the data models. In this sense, the preliminary experiments
with the DC motor testbed explored some of the well known
existing technologies (see Fig. 4).

The implementation of the data acquisition and storage,
besides the aforementioned MQTT protocol, also considered
the use of the Node-RED platform (nodered.org) and Mon-
goDB database, both hosted in a Cloud server. Node-RED is
a JavaScript-based platform with an extensive library of built-
in functions (called nodes) and a user friendly interface that
enables the fast and easy creation of flows that connect and
combine IoT devices, services and applications. Some flows
were developed to continuously retrieve the data published
by the motor, integrate the data from the various sensors,
check its consistence, and store the samples in the MongoDB.
Also, the node-red-contrib-graphs package was used to create
a dashboard to on-line monitor the raw data streams.

The data mining tasks were performed using the R platform,
which comprises an excellent tool to perform the preliminary
EDA, preprocessing tasks and execute several machine learn-
ing algorithms. However, for solution deployment, other robust
APIs can be used, such as, Weka and Apache Mahout, or
Apache Spark and Storm for stream analysis.

Considering the DC motor testbed, several kinds of data
analysis can be performed, regarding its electrical and me-
chanical properties, as well as operational conditions. In this
sense, at the Edge level (performed by algorithms running in
the Arduino), the measurements can be filtered and smoothed
to reduce the noise, and remove missing or erroneous values.
For instance, knowing the variables boundaries and using
simple logic or moving averages, values out of this range
can be replaced to reduce the noise or indicate an abnormal-
ity in the sensor system or environment. At the Fog level
(performed in the Raspberry Pi) outliers and abnormality
detection algorithms can be used to continuously monitor and
identify abnormality behavior in the variables (e.g., voltage,
temperature, vibration and speed). Time-series (TS) analysis

techniques can be used to develop and deploy predictive
models in order to anticipate the future values of variables,
and consequently the system conditions, and act properly
to mitigate possible problems. Also other classification and
predictive data models can be deployed to determine the
general status and operational conditions of the motor (e.g.,
load, vibration, degradation, energy consumption).

At the Cloud level several algorithms for pattern recognition
can be used to analyze the historical data and build the models
to use at the Fog level. TS analysis techniques have also a great
importance in this scenario, since the motor data is produced as
a multivariate TS. This analysis can be used to extract features
from operational data and then used to perform other tasks, for
example, clustering, classification and prediction. For instance,
the cluster analysis can be used to characterize the operations
according to their performance (e.g., power consumption and
speed) and quality (e.g., vibration).

V. ANALYSIS OF PRELIMINARY EXPERIMENTAL RESULTS

The motor testbed measures 14 samples of 15 raw variables
per second, which can generate about 1.2 millions samples per
day. The experiments comprise the execution of a sequence of
the same or random operations (in this approach, one operation
is related to the execution of one control loop described in Sec.
II-C) and the collection of the data for a posterior analysis. For
now, it is only covered the off-line data analysis in a batch and
centralized mode, using the R platform. The packages ggplot2
and dygraphs were used to support the visualization, while
wavelets and the function hclust for TS and cluster analysis.

Initially, an EDA was performed to better understand the
behavior of the motor in terms of its electrical, mechanical
and operational aspects. Fig. 7 (a) illustrates the vibration,
speed and electrical measurements of 6 executions of a given
operation, where it is possible to identify 2 with abnormal
vibration levels, as well as variation in the speed. Usually, the
analysis of these magnitudes can be used to identify defects
during the motor assembly phases or degradation during its life
usage. Regarding the electrical parameters, the gap between
the voltage and current curves illustrates that the motor has a
different behavior according to the rotation direction.

The TS of each operation were synchronized (thus everyone
started at the same time) and aggregated (2 samples per
second) to analyze the variation in their behavior along the
time. Some statistics were used to compute the mean and
standard deviation values, thus determining the boundaries.
Later, such boundaries can be used to verify the quality of
the produced motor, or during its life-cycle, dynamic update
the device monitoring rules. Fig. 7 (b) illustrates how the
temperature and vibration vary along the execution of 250 op-
erations, and their respective deviation boundaries. Regarding
the temperature, it is possible to verify an increase of about 2
degrees during the experiment. The vibration levels presented
a characteristic profile that in some moments went beyond the
standard deviation boundaries.

Besides the EDA, the Discrete Wavelet Transform (DWT)
was used to extract features from each operation TS. These



Fig. 7. EDA: identification of (a) abnormal events and (b) general behavior

features were used later as input of a hierarchical clustering
algorithm to perform two tasks: identify and cluster the
different operations (see Fig. 3) and, considering the same
operations, cluster them according to some features (vibration,
energy consumption, temperature and speed). An example
considering 100 operations is illustrated in Fig. 8. A clear
distinction among the operations can be identified, but also
the existence of subgroups among the same type of operation.
On the other hand, the clusters A and G presented a greater
similarity between them. The identified subgroups can be
used to evaluate and differentiate the operations regarding the
energy efficiency and quality (in term of vibration levels).

For instance, considering an electric motor used in a wash-
ing machine, these kinds of analysis can be used in both
contexts, at the end of the production line to test the motor
after its production, as well as during its usage as a home
appliance, detecting degradation and malfunction, in order to

Fig. 8. Hierarchical cluster analysis of the operations

adapt/optimize its behaviour, improve the customer support
services and even the product future design.

VI. CONCLUSION

This paper presented the development of a smart and easy
deployable but powerful electric motor testbed to explore and
test several IoT and Big Data technologies. The smart motor
testbed was achieved by equipping the motor with sensors and
using an Arduino to control and collect data provided from
these sensors, which is sent to the Cloud using the MQTT
protocol, stored in a MongoDB and posteriorly analyzed using
the R platform. The testbed showed to be feasible to produce,
retrieve, transmit, store and analyze large amount of data.

The deployment effort was distributed between the IoT
setup (hardware, control design and technology integration)
and data analysis (EDA, TS analysis and clustering). The first
showed to be robust to perform several control operations and
properly measure and push the data to the other components.
In this phase, EDA was widely used to understand the behavior
of each parameter and define the analysis that can be per-
formed in each IoT layer. On the other hand, the TS analysis
showed to be challenging mainly due to the non-discrete-time
data and the variable time take to perform each operation. The
use of clustering techniques showed very promising results in
the identification and assessment of control operations.

Future work is devoted to explore online data stream
analysis technologies combined with multi-agent systems to
support a distributed approach for data collection, analysis
and visualization. Additionally, the use of a more challenging
motor, e.g., an AC induction motor, may be explored.
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