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Abstract. Solving the robot localization problem is one of the most
necessary requirements for autonomous robots. Several methodologies
can be used to determine its location as accurately as possible. What
makes this difficult is the existence of uncertainty in the sensing of the
robot. The uncertain information needs to be combined in an optimal
way. This paper stresses a Kalman filter to combine information from the
odometry and Ultra Wide Band Time of Flight distance modules, which
lacks the orientation. The proposed system validated in a real developed
platform performs the fusion task which outputs position and orientation
of the robot. It is used to localize the robot and make a 3 DoF scanning
of magnetic field in a room. Other examples can be pointed out with
the same localization techniques in service and industrial autonomous
robots.

Keywords: Localization · Ultra Wideband Time of Flight ·
Autonomous mobile robot

1 Introduction

An industrial mobile robot requires the ability to self-localize in the environment
without human intervention. This means answering the question “Where am I?”
from the robot point of view.

Estimating the pose of the robot in a map has been capturing the attention
of researchers and developers due to its complexity and the multitude of possible
approaches.

Localization systems in industrial environments, are expensive and common
to use solutions that rely on artificial landmarks, such as the classic magnetic
tape following, line tracking or reflector based laser triangulation [1,2].

c© Springer International Publishing AG 2018
A. Ollero et al. (eds.), ROBOT 2017: Third Iberian Robotics Conference, Advances in Intelligent
Systems and Computing 693, https://doi.org/10.1007/978-3-319-70833-1_71



880 J. Lima and P. Costa

This method has a main disadvantage that requires the installation of ded-
icated reflectors for all the environment in the field of view of the robot laser
scanner, that in some factories might become an complex and expensive solution.

Another localization method can be done resorting to radio frequency mea-
suring the signal intensity (Receive Signal Strength Indicator, RSSI). Related
problems such as distance errors and multipath effects can be identified in
this approach. Instead, distances can be measured resorting to the transit time
methodology (Time of Flight, ToF). This method measures the running time of
light between a fixed tag module and receiver (Anchor). Ultra-wideband (UWB)
modules from Decawave are used in this work. By this way, distances between
different fixed tags and anchors can be determined. The distances allow to make
the trilateration to estimate the tag position. Unfortunately, this system can
only provide the position and not the orientation.

On the other hand, odometry provides the orientation but the cumulative
error of localization is a well-known problem. To fulfill this problem, the infor-
mation provided by odometry and by the UWB technology is further processed
through a data fusion filter (Kalman filter).

This paper presents the data fusion of the UWB ToF distances with the
odometry. The Kalman filter combines both information and provides as out-
put the position and orientation data. This development allows to validate the
concept of data fusion from odometry and UWB ToF distancies and it is imple-
mented in a 3 DoF magnetic field sensor robot that scans over a desired path.

The paper is organized as follows: After a brief introduction, Sect. 2 presents
the related work of localization having in mind the UWB technology. Then,
Sect. 3 addresses the system architecture where the odometry and UWB are
described and the UWB localization model is stressed. Section 4 presents the data
fusion from odometry and UWB ToF data whereas Sect. 5 results of localization
and magnetic field scanning are discussed. Finally last section concludes the
paper and presents some future work.

2 Related Work

Once mobile robots localization is a complex, challenging and one of the most
fundamental problems in the robotics field, there are several approaches in the
community. Among the others, laser triangulation, matching algorithms, com-
plex vision systems, odometry and radio frequency are methodologies used to
find the position of a robot.

In the matching algorithms, position estimation is commonly fused with dead
reckoning data, using for that purpose, probabilistic methods such as the Kalman
Filter family and the Particle Filters. There are matching algorithms that require
prior knowledge on the navigation area. This prior knowledge can be an envi-
ronment map, natural landmarks or artificial beacons [3]. There are other types
of matching algorithms, which compute the overlapping zone between consec-
utive observations to obtain the vehicle displacement. One possible matching
algorithm to estimate the quantity of angular and linear displacement of a vehi-
cle between two different and consecutive configurations is the Iterative Closest
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Point (ICP) [5,6]. The problem of this approach is the huge amount of data to
be processed. The process of finding the correct correspondence between points
(matching) is a difficult and time-consuming task.

Another common localization approach is to combine several solutions such
as line following and laser triangulation [1,2]. Meanwhile, in the last decade
localization based on natural marks has been increasing [7]. These natural marks
are composed by a set of distances and angles to the detected objects (such as
doors, walls, furniture, . . . ) that can be acquired through an on-board laser range
finder. This method has the main advantage of not requiring the installation of
dedicated reflectors in the environment, which in some factories might not be a
viable option. On the other hand, objects placed in different locations originate
measuring errors.

Wireless distance measurement technologies are an increasingly important
technology. High accuracy measurements are critical for in-building applications
such as autonomous robotic navigation. In these cases, users are requiring ever
greater levels of accuracy. Actually, sub-centimeter accuracy can be achieved [4].

The trilateration problem, the process of finding the center of the area of
intersection of three spheres, demands a different treatment to other similar
solutions, as for example, those based on laser. There are authors that charac-
terize the UWB ranges combined with particle filters within a variety of envi-
ronments and situations [12] and apply UWB using spatial models [8]. Ultra-
wideband (UWB) localization is a recent technology that promises to outper-
form many indoor localization methods currently available [9]. UWB has received
some attention within the robotics community [17]. It is considered one of the
most promising indoor positioning technologies currently available, especially
due to its fine time resolution [8]. UWB time of flight has already captured the
researchers attention that combines it with inertial sensors [10]. Unfortunately,
the orientation cannot be determined with this approach.

Odometry has been used for several years in mobile robots. Knowing the
rotation of each wheel and its parameters (such as diameter, distance, friction)
it is possible to estimate the posture of the robot on the environment. This is
one of the first methodology used to calculate the robot position. A common
and basic localization method called dead reckoning (DR) is used to estimate
the position by counting wheel rotations with the help of encoders.

However, there are unavoidable accumulated errors for DR based localization
over long distances, in that it needs to utilize the previous position to estimate
the next relative one and during which, the drift, the wheel slippage, the uneven
floor and the uncertainty about the structure of the robot will together cause
errors [15]. Due to this cumulative errors it is common to combine different local-
ization methods. Several works can be pointed out using the odometry localiza-
tion with different approches, such as image processing [13] or Wireless Sensor
Network [14].

The presented work uses a combination of odometry and UWB ToF distance
to compute the position and orientation of a robot. By this way, it is possi-
ble to localize (position and orientation) the robot and perform the magnetic
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field scanning in an autonomous way. There are some commercial products like
automated scanners but they are remote operated vehicles and not autonomous
(example Jireh Industries. As extended work, the localization system could be
improved (another Kalman filter input) with the magnetic field acquired data,
as shown in [11].

3 System Architecture

A wheeled mobile robot prototype of 28 × 35 cm (Fig. 1) was developed having
in mind the scanning of the magnetic field in a room based of the proposed
positioning system.

Fig. 1. Mobile robot prototype

It is composed by two drive wheels and a castor wheel. Two stepper motors
drive the differential mobile robot, a typical configuration in mobile robots, are
powered by Allegro MicroSystems - A4988 modules that handle the microstep-
ping method and regulate the current. The maximum speed of the robot is 1m/s
but the tests presented in Results section were achieved with 10% of speed. It is
powered by onboard 12 V battery and a DC/DC step down converter allows to
supply the electronic modules composed by a Raspberry 3 model and arduino
microcontroller boards. The upper level is composed by a Raspberry microcom-
puter that runs raspbian operative system and is responsible for the Kalman fil-
ter processing, wi-fi communications and decision. The Arduino microcontroller

Fig. 2. Mobile platform architecture
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boards deal with the low level control of motors, voltages, current, power man-
agement, odometry and acquire the 3 axis magnetic field sensors (HMC5883L).
A block diagram of the system is presented in Fig. 2.

3.1 Ultra Wideband Time of Flight

Time of flight describes methods that measure the time that an object, particle,
electromagnetic or other wave take to travel a distance. It is a technology used,
for example, in depth cameras that allows to measure the distance of an object to
the camera based on the travel time of the speed of light. Using radio frequency,
there are some approaches that estimates the distance measuring the signal
strengths (Receive Signal Strength Indicator, RSSI). Results are not much sat-
isfactory because signal reflections and multi-path effects introduces errors and
noise in measure. The distance between two Ultra Wideband (UWB) devices can
be measured precisely by measuring the time that it takes for a radio wave to
pass between the two devices. It delivers much more precise distance measure-
ment than signal-strength estimation. UWB signals maintain their integrity and
structure even in the presence of noise and multi-path effects. It is a technology
based on the IEEE 802.15.4-2011 standard, which can enable tagged objects to
be located [16].

Decawave DW1000 is a single chip, UWB compliant, and Arduino compatible
Wireless Transceiver based on Ultra Wideband techniques and provides a new
approach to Real Time Location and Indoor Positioning Systems. This module,
embedded in the Pozyx system is presented in Fig. 3. The presented hardware
allows to measure the distance between modules process the (x, y) position.

Fig. 3. UWB Pozyx tag

3.2 UWB - ToF Distances Model

The model of the Ultra wide band can be achieved through several measurements
in the field where 512 samples of (x, y) measures for 44 positions were acquired,
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having the tags placed in the bottom corners of a room of 7 × 2.5m. A pre-
filtering process before Kalman filter (a median based gate, shown in Fig. 5) must
be applied to reject the incoherent measures. In fact, the x and y errors remain
the same but the co-variance is reduced with the proposed filter as presented
in Table 1 where Rk is the observation noise covariance that will be used in
the Kalman filter. Figure 4 presents the error ellipses for both methods: at left
without median filter gate and at right with it.

Table 1. Error and co-variance values with and without median based filter

Without median filter With median filter

error x −0.079 −0.074

error y −0.013 −0.013

co-variance Rk =

[
0.0433 −0.0028

−0.0028 0.0079

]
Rk =

[
0.0015 0.0002

0.0002 0.0005

]

Fig. 4. (x,y) measures for different locations and respective error ellipses with and
without median filter

4 Localization Data Fusion

This section presents the Kalman filter that receives the odometry and the UWB
modules position information and outputs the position and orientation. The
median based gate filters the position provided by the ultra wide band time of
flight module (UWB-ToF), x′

p and y′
p. The Kalman filter implements the sensor

fusion task. It receives xp and yp (position) from the median based gate and ωL
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and ωR (left and right wheel speeds) from the odometry system. The output of
the filter (Xk in Eq. 1) is composed by x, y and θ that is the robot position and
orientation as presented in Fig. 5. In this case, the height of all tags and anchor
was the same.

Fig. 5. Kalman filter inputs/outputs.

The first filtering approach, the median filter presented in previous section,
is applied. The filtered values (x and y values to set the center of the gate that
eliminates unlikely measures) are the input for the Kalman filter.

Xk =

⎡
⎣

x
y
θ

⎤
⎦ (1)

Ẋ = f(X,u) (2)

where

u =
[

v
ω

]
(3)

The observation estimate, Z:

Z = h(X) (4)

From odometry (Fig. 6), vL = ωL.r and vR = ωR.r where r is the wheel
radius.

The linear velocity (v) and angular velocity (ω) can be calculated as presented
in Eq. 5 where d is the distance between wheels that equals 0.29 m.

v =
vL + vR

2
ω =

vR − vL
d

(5)

Equation 2 (Ẋ) can now be calculated as:
⎡
⎣

ẋ
ẏ

θ̇

⎤
⎦ =

⎡
⎣

v.cos(θ)
v.sin(θ)

ω

⎤
⎦ (6)
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Fig. 6. Robot velocity vectors.

Fk is the state transition model which is applied to the previous state Xk−1,
expressed in Eq. 7 where Δt is the time step for the acquisition.

Fk =

⎡
⎣

1 0 −Δt.v.sin(θ)
0 1 Δt.v.cos(θ)
0 0 1

⎤
⎦ (7)

The Jacobian of h function is:

Hk =
[

1 0 0
0 1 0

]
(8)

The measurement from UWB-ToF is Zk:

Zk =
[

xp

yp

]
(9)

Predict. This subsection addresses the predict of state.
The predict covariance estimate, P−

k (until k instant).

P−
k = Fk−1Pk−1F

′
k−1 + Qk−1 (10)

where Fk is the state transition model which is applied to the previous state
xk−1 and Qk−1 is the process noise covariance. The Qk−1 matrix can be written
as Eq. 11.

Qk−1 =

⎡
⎣

cov(vx, vx) cov(vx, vy) cov(vx, ω)
cov(vx, vy) cov(vy, vy) cov(vy, ω)
cov(vx, ω) cov(vy, ω) cov(ω, ω)

⎤
⎦ (11)

Instead of working with vx and vy, it is possible to perform a rotation Rot
(Eq. 12) to work with v and vn (where v is the linear velocity whereas vn is the
normal velocity) we can assume vn = 0 and cov(vn, vn) = σ2

n.
⎡
⎣

vx
vy
ω

⎤
⎦ =

⎡
⎣

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤
⎦ ·

⎡
⎣

v
vn
ω

⎤
⎦ (12)
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Working with v and vn, Qk−1 = Rot ·Q′
k−1 ·RotT , where Q′

k−1 is presented in
Eq. 13, it is possible to reach the ratio between cov(v, v) and cov(ω, ω) presented
in Eq. 16, assuming that vL and vR errors follows a normal distribution (N)
centred in zero with a standard deviation of σo. Equations 14 and 15 present the
distribution of v and ω.

Q′
k−1 =

⎡
⎣

cov(v, v) 0 0
0 cov(vn, vn) 0
0 0 cov(ω, ω)

⎤
⎦ (13)

v → 2 · 1
4

· N(0, σ2
o) (14)

ω → 2 · 1
d2

· N(0, σ2
o) (15)

cov(v, v) =
4
d2

cov(ω, ω) (16)

This methodology allows to tune the Kalman filter by two constants (σo, σn)
that can be found by performing a few experiences.

The prediction state estimate, X−
k (until k instant)

X−
k = f∗(Xk−1, uk−1) (17)

Update. This subsection addresses the Update process.
The measurement residual:

Ỹk = Zk − Z (18)

The innovation covariance:

Sk = HkP
−
k H ′

k + Rk (19)

where Rk is the observation noise covariance, that can be calculated based on
the covariance average of measures points from previous subsection as presented
in Table 1.

The Kalman gain, Kk:

Kk = P−
k H ′

kS
−1
k (20)

The updated state estimate, Xk:

Xk = X−
k + KkỸk (21)

The updated covariance estimate, Pk can be described:

Pk = (I − KkHk)P−
k (22)
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5 Results

The localization system under validation was tested in the developed robot on
a corridor of 7m × 2.5m (x,y). The output state Xk of the Kalman filter allows
to control the robot to follow the desired path presented in Fig. 7 (the controller
will be addressed in a future work). The tags were placed in the corners, as
presented in Fig. 7 by blue circles and the scanning was performed according to
the presented path. Start position is (0, 0.5) and the end position is (2, 0.5).

Fig. 7. Scanning path

Obviously, this is only for localization demonstration purpose. Otherwise, a
more detailed scan could be performed. Euclidean Mean absolute error associated
with the proposed methodology is about 6 cm. A ground truth system will be
applied to validate the presented approach as future work. The scan with the
3 DoF magnetic field sensor allows to measure the magnetic field value in x, y
and z directions. Figure 8 presents the direction of the x and y vectors whereas
Fig. 9 presents the x, y and z vectors magnitude.

Fig. 8. Magnetic field orientation vector
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The disturbances in the magnetic field orientation and magnitude are
explained by metallic underground boxes.

Fig. 9. Magnetic field magnitude plot

6 Conclusion and Future Work

The presented paper proposes a robot localization system based on odometry
and ultra wideband time-of-flight. This sensor fusion allows to estimate the ori-
entation of the robot that UWB ToF lacks. The data fusion is processed by a
Kalman filter and the implementation of a pre filtering system composed by a
median based gate allows to reduce the covariance. Thus, localization error is
reduced. As implementation, a 3 DoF magnetic field scan is done in a floor of a
corridor that finds the underground hidden metallic objects.

As future work, Kalman filter inputs can be added such as the previous
known scanned magnetic field, accelerometer/gyroscope and visual localization
to improve the localization of the robot. Also, a ground truth system will be
applied to validate the presented approach.
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