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Abstract. One of the most important tasks for a mobile robot is to
navigate in an environment. The path planning is required to design the
trajectory that generates useful motions from the original to the desired
position. There are several methodologies to perform the path planning.
In this paper, a new method of approximate cells decomposition, called
K-Framed Quadtrees is present, to which the algorithm A? is applied to
determine trajectories between two points. To validate the new approach,
we made a comparative analysis between the present method, the grid
decomposition, quadtree decomposition and framed quadtree decompo-
sition. Results and implementation specifications of the four methods are
presented.
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1 Introduction

Mobile robots have inspired a number of studies in complex environments, where
path planning and control of robotic systems is a concern. They must be agile,
efficient and fast, avoiding collisions and situations that could endanger human
who are in the same environment.

Given the current location and a destination, path planning algorithms de-
termine a path to reach the desired position. Initially, it is necessary to define
the configuration space, which represent all possible system configurations. This
consists of two zones, the space free of an obstacle, which may belong to the
trajectory to be defined for the robot, and the space occupied by obstacles. Of-
ten, a reduction of the configuration space is applied, reducing the robot to a
single point [1]. To do this, all obstacles must be expanded, so the trajectory to
be defined is free of robot obstacle collisions.

There are several techniques for determining the path between two points.
Methods based on Roadmap involve the creation of nodes representing locations,
and links between them, that represent possible paths between nodes. Examples
of Roadmap techniques are the Visibility graph [6], which generates trajectories
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in which the robot can move very close to obstacles, or Voronoi diagram [7],
which generates a Roadmap where the distance between the robot and the ob-
stacles is maximized. In this technique, the generated trajectory commonly do
not correspond to the smallest possible path [2], and the probabilistic roadmap
consists of the random distribution of nodes along the free space. Therefore,
trajectories with narrow passages are not determined, even if they exist [3]. The
algorithm Bug is the simplest algorithm in terms of implementation, which is
used when without knowledge of the environment. However, it does not generate
optimal trajectories [4]. The use of potential fields in path planning is based on
the use of electrical potentials of physics as a heuristic to find the trajectory.
However, this method has important limitations such as local minimums, which
block the robot, and when the robot is in front of concave obstacles, there are
several possible minimum distances, which results in oscillations between the
points closest to the target. The problem of local minima may be solved by forc-
ing local potential extremes to lie on the boundaries of obstacles through the use
of harmonic potentials [8]. The cell decomposition consists of the decomposition
of the space into cells and subsequent division into occupied or free cells. ells
decomposition can be effected through exact cells, where each cell has only two
possible states, totally free or fully occupied, or in approximate cells, where each
cell can be free, occupied or partially free. There are several techniques to imple-
ment this method, decomposition, where the map is decomposed into fixed-size
cells, decomposition into quadtrees, and decomposition into framed quadtrees
[5]. The approximate cell decomposition is one of the most used techniques in
the path planning of mobile robots [1].

In this paper, we present a new approximate cell decomposition method called
K-Framed Quadtrees which generates a graph to A-star (A?) that is applied
to determine the best trajectory. In order to validate the new decomposition,
a comparative analysis is done with the most used methods of approximate
cells decomposition: grid decomposition, Quadtrees decomposition and Framed
Quadtrees decomposition, that also use A?.

2 Approximate Cells Decomposition

Initially, an expansion of the obstacle area is performed with the dimensions of
the robot, to allow a free of collisions path. This allows the robot to be considered
as a point in space.

2.1 Grid Decomposition

Grid decomposition consists of dividing the map into cells of equal size, each
representing a node containing information about the state of the space, i.e.
free or occupied. This size varies according to the type of environment and the
expected results. If a small portion of an obstacle is intersected by a cell, the cell
is filled as occupied, so large cells have associated greater loss of information,
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and consequently, there are more areas of the map considered to be wrongly
occupied.

The size of the cells affects the performance of graph search algorithm sub-
sequently applied, since the smaller the cell size, the greater the number of cells
to analyze. This increases processing time, but the defined path will be closer
to the optimal. The chosen cell size should be enough to maximize the speed of
search algorithms, while allowing the access to most areas of the map.

In this work, the neighbor cells are determined through a search with connec-
tivity 8 around the current cell, where the state of each is stored in a state vector
in the position x + y × numberOfCellsPerLine, where x and y correspond to
the Cell indexes in XX and Y Y .

2.2 Quadtree Decomposition (QD)

Quadtree decomposition uses cells of variable size to represent the environment.
The cells are successively divided into four children cells recursively, until a cell
is located in a completely occupied or completely free zone or until a threshold
resolution is achieved.

Quadtree is a tree data structure in which each inner node has exactly four
children nodes, and each one represents a quadrant (Northwest-NW, Northeast-
NE, Southwest-SW and Southeast-SE). Each cell is represented by a structure
that contains the following information:

1. Initial cell position in XX and Y Y
2. Size of the cell in XX and Y Y
3. State of the cell: totally occupied, totally free or to be subdivided
4. Division level to which the cell belongs
5. Pointers to the 4 children cells (NW, NE, SW and SE)

This method provides great precision in areas close to obstacles. The limit
resolution determines the loss of map information, i.e. a higher limit resolution
allows cells of smaller size, so it will be possible to access more zones of the map,
in relation to a lower limit resolution. Cells are considered neighbor cells if they
share an edge and / or a vertex. Thus, if a neighbor cell is free of obstacles, the
union between them may belong to a path.

2.3 Framed Quadtree Decomposition (FQD)

Framed quadtree decomposition results of an enhancement of the previous method.
This algorithm consists in the addition of higher resolution cells near the perime-
ter of each quadtree region. Each resulting cell is represented by a structure that
contains the following information:

1. Cell’s central point position in XX and Y Y
2. Pointer to the quadtree cell to which the cell belongs
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In this algorithm, when determining the neighbors of the cells generated
through QD, it is necessary to store the information on the side to which the
neighbor cell belongs, that is, if the neighbor cell is located North (N), South
(S), west (W), east (E), northeast (NE), northwest (NW), southeast (SE) or
southwest (SW) of the current cell. Once the neighbors of a parent cell (cell
generated by the QD) are determined, the neighbors of a children cell (cell
generated by the FQD) are higher resolution cells belonging to the same parent
cell and the children cells of the neighbor cells originated by the QD, if they
are within restricted limits. These limits are listed below, where v represents the
neighbor cell and n represents the current cell:

1. If v is a neighbor parent cell (cell originated by QD) to N or S
– The children cells (cells originated by FQD) of v are considered neighbor

cells if their position in XX is between the parent cell’s boundaries in
XX of n and if v contains in its XX boundaries the x position of n

– The children cells of v are considered neighbor cells if their position in
Y Y is between the parent cell’s boundaries in Y Y + size of children
cells (S), or Y Y - size of children cells (N), and if there are no flaws on
the side to which v belongs (N or S) and v does not contain in its XX
boundaries the x position of n

2. If v is a neighbor parent cell to W or E
– The children cells of v are considered neighbor cells if their position in

Y Y is between the parent cell’s boundaries in Y Y of n and if v contains
in its Y Y boundaries the y position of n

– The children cells of v are considered neighbor cells if their position in
XX is between the parent cell’s boundaries in XX+size of children cells
(E), or XX-size of children cells (E), and if there are no flaws on the
side to which v belongs (W or E) and v does not contain in its Y Y
boundaries the y position of n

3. If v is a neighbor parent cell to NW, NE, SW or SE, the children cell closest
to the current cell is considered neighbor, if the sides to which it belongs do
not exist faults.

3 K-Framed Quadtree Decomposition

This method consists of the junction of quadtree decomposition (QD) and framed
quadtree decomposition (FQD). In the K-Framed Quadtree algorithm, the QD
is performed in a first phase, and subsequently cells of higher resolution are
added in the vicinity of the perimeter of each cell with size above the previously
established lower limit, k. This allows an adjustment between the two algorithms
in which at the two extreme points it is possible to have a decomposition very
similar to the QD and the FQD.

Figure 1 shows the map represented by the present algorithm. In the first
instance, decomposition with k = 2.5×2.5 m results in a decomposition identical
to QD, since there are no cells with size larger than k. However, the third case
results in decomposition identical to FQD because the coefficient (k) considered
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was smaller than the size of the smallest cells. The second case is an intermediate
between the QD and the FQD.

(a) (b) (c)

Fig. 1: Representation of the map through the algorithm K-Framed Quadtree. It
was considered a limit for the cell size of 62×62 cm, the cells of higher resolution
have dimensions of 25 × 25 cm, being applied to cells with dimensions greater
than 2.5 × 2.5 m (Figure 1a), 1 × 1 m (Figure 1b) and 25 × 25 cm (Figure 1c).

In the case of the chosen coefficient k being high, and consequently, existing
cells that hasn’t children cells, if some of those cells belong to the initial point
or to the target point, FQD is executed and then deleted. The reason why
these children cells should be eliminated is due to the fact that it is desired to
maintain the previously selected configurations. If they were not eliminated after
executing the graph search algorithm to determine the several trajectories, the
map’s representation would be even more similar to the FQD. Therefore, they
are eliminated after the determination of the trajectory, maintaining the chosen
configuration. Figure 2a shows a representation of the map in which none of
the cells underwent FQD. However, when performing the search algorithm, cells
that contain the beginning and the end point are determined, to which FQD is
applied, as represented in Figure 2b.
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(a) (b)

Fig. 2: Representation of the map using the K-Framed Quadtrees method (Figure
2a. Changing the map representation when executing the graph search algorithm
on the cells containing the start point and the destination point (Figure 2b).

When the neighbor cells originated by the QD (parent cells) are determined,
is it also determined if there is a fault in the neighbor to the North (N), South
(S), West (W) and East (E), that is, if any of the neighbor cells are busy. The
following are some of the restrictions for a cell to be considered neighbor of the
current cell n.

1. If cell v is neighbor at S of cell n
(a) If v has children cells (cells from the FQD)

i. Are considered Neighbor cells the children cells of v if cell v has
within its limits XX the x of cell n

ii. If there are no faults at S of cell n and if v does not contain within
the limits of XX the x of cell n

A. Neighbor cells are the children cells of v that do not exceed the
limits of the parent cell of n in XX, and which do not exceed in
Y Y the upper limit of Y Y of the parent cell of n plus the size of
each children cell

(b) If v does not have children cells
i. If n are a parent cell

A. Cell v is considered a neighbor cell
ii. If n are a children cell

A. v is considered to be a neighbor cell if it contains within its limits
XX the x of cell n

2. If cell v is neighbor at NW of cell n
(a) If v has children cells

i. If there are no failures to N and W of n or if n is a parent cell
A. It is considered neighbor only the children cell of v closest to cell

n
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(b) If v does not have children cells

i. if n is a parent cell or if there are no faults at N and W of n, v is
considered a neighbor cell

The remaining restrictions on the other sides follow the same logic.
Considering the path to be obtained, is possible to determine a coefficient

that minimizes the processing time, with the application of this algorithm. The
cells to be considered for the search of graphs are the cells obtained through the
FQD in cells of dimensions greater than k and cells belonging to the QD if they
have dimensions equal to or less than k.

4 Results

In order to evaluate the results of the different methods, processing time (t) and
distance (D) associated with the path from the start point to the destination
are considered. The tests were carried out on two separate maps, with dimen-
sions of 10 × 10 m and 20.1 × 17.5 m. These tests were done in a simulation
environment, where all methods must give access to the same zones, that is, the
loss of associated information should be the same for all methods. The graph
search algorithm A-star (A?) is used to determine the path through the graphs
that result from the previously described methods. In the tables below, the co-
efficients T, l, r, and K represent the size of the cells upon grid decomposition,
the lower limit of imposed parent cell size, the size of the children cells, and the
minimum dimensions that the parent cells need so children cells are added in
the K-Framed Quadtrees decomposition, respectively.

Fig. 3: Path generated in the first map by A? applied to the methods of grid
decomposition (pink), quadtrees (green), framed quadtrees (blue) and k-framed
quadtrees (yellow).
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Algorithm T or l [cm] r [cm] k [cm] t [ms] D [m]

Grid T = 30× 30 - - 40 5.5
Quadtrees l = 30× 30 - - 9 6.33
Framed Quadtrees l = 30× 30 30× 30 - 126 5.4
K-Framed Quadtrees l = 30× 30 30× 30 62.5× 62.5 61 5.42

Table 1: Results in the first map of A? applied to the grid decomposi-
tion, quadtrees decomposition, framed quadtrees decomposition and k-framed
quadtrees decomposition.

By interpreting Figure 3 and Table 1, we can verify that the trajectory with a
smaller associated distance is generated by the framed quadtrees decomposition
(FQD), followed by the K-Framed Quadtrees method, the grid decomposition
and finally quadtrees decomposition (QD).

Regarding the processing times presented, all values are less than 200ms,
however, the processing time that stands out refers to the QD being only 9ms.
The remaining methods have an additional processing time cost of 31ms, 52ms,
and 117ms for the grid decomposition, for the k-Framed Quadtree method, and
the FQD, respectively.

Considering a small map, such as the one used for the described test, the
algorithm that showed the best results was the grid decomposition, although
the processing time is significantly better in quadtrees decomposition, the tra-
jectory associated with this algorithm has a high additional cost in the distance,
and, with the remaining algorithms, the grid decomposition algorithm presents
a better processing time and a very similar trajectory, having an additional cost
of about 10 cm.

The second map is a large map with narrow passages. In order to compare
the methods, they must have the same loss of information and allow access to the
same zones of the map. Two different paths are considered, where the starting
point is equal for the two trajectories, and the destination point is different in
location of the map, P1, and P2.

Algorithm T or l [cm] r [cm] k [cm] t [ms] D [m]

Grid T = 15× 15 - - 1068 18.05
Quadtrees l = 15× 12.5 - - 190 18.69
Framed Quadtrees l = 15× 12.5 12.5× 12.5 - 10184 17.80
K-Framed Quadtrees l = 15× 12.5 30× 30 65× 62.5 411 18.41

Table 2: Results in the second map of A? applied to the grid decomposi-
tion, quadtrees decomposition, framed quadtrees decomposition and K-framed
quadtrees, to the destination point P1.

Taking into consideration the values presented in Table 2 and the trajectories
presented in Figure 4, the ideal path is generated through the FQD, having a
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Fig. 4: Trajectories generated on the large map, by A? applied to the methods of
grid decomposition (pink), quadtrees decomposition (green), framed quadtrees
decomposition (blue) and k-framed quadtrees decomposition (yellow), to the
destination point P1.

distance of 17.80 m. The remaining trajectories generated by grid decomposition,
K-framed quadtrees decomposition, and QD, have an additional cost in the path
distance generated 1.4%, 3.4% and, 5%, respectively.

The QD results in the trajectory with greater distance, being this approx-
imately 0.7 m higher, nevertheless the associated processing time is the most
satisfactory, being only 190 ms. The path determined through the FQD is the
most optimized of the paths presented, however, this method has a high pro-
cessing time associated, being approximately 10 s. The grid decomposition gave
a trajectory with a distance 25 cm higher than the ideal path and a processing
time of 1 s. The new method resulted in a path of 18.41 m, 41 cm higher than the
ideal one and a processing time of 411 ms, so there is significant improvement,
in temporal terms, in relation to the grid decomposition and FQD.

Algorithm T or l [cm] r [cm] k [cm] t [ms] D [m]

Grid T = 15× 15 - - 705 14.60
Quadtrees l = 15× 12.5 - - 124 14.78
Framed Quadtrees l = 15× 12.5 12.5× 12.5 - 4776 14.46
K-Framed Quadtrees l = 15× 12.5 30× 30 65× 62.5 234 14.54

Table 3: Results in the second map of A? applied to the grid decomposi-
tion, quadtrees decomposition, framed quadtrees decomposition and K-framed
quadtrees, to the destination point P2.
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Fig. 5: Trajectories generated on the large map, by A? applied to the methods of
grid decomposition (pink), quadtrees decomposition (green), framed quadtrees
decomposition (blue) and k-framed quadtrees (yellow), to the destination point
P2.

Figure 5 and Table 3 show results of the path generated from the initial point
to the target point, by the different methods implemented. The shortest path
results from the FQD, which is considered the ideal route. The remaining meth-
ods, in relation to the ideal path, have an additional distance cost of 0.6%, 1.0%,
and 2.2%, corresponding to the K-Framed Quadtree method, the grid decom-
position, and the QD, respectively. The processing times for grid decomposition
and FQD are higher than those associated with the remaining algorithms. The
QD has the best processing time, followed by the suggested method.

5 Conclusion and Future Work

Taking into account that is desired a good compromise between the distance of
the trajectory generated and the time of processing, the developed tests allow
us to conclude that, in the presence of a small map, the grid decomposition is
the method that presents the most satisfactory results. Only the QD presents a
shorter processing time, however, it has associated the path more distant than
the ideal one. In the test for the first map, this presents an additional cost
of a distance of 17% and is not applied when a near-ideal path is desired. In a
completely different way, the FQD allows a path very close to the ideal. However,
the processing time is much higher than the other methods and it is consequently
not the best method to apply. The suggested decomposition presents a path very
close to the ideal, and a processing time not much higher than that presented by
the grid decomposition. However, the increase of processing time is considerable,
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in relation to a small decrease in the distance of the path. So, this was not
considered the best method for these cases.

For the larger map, the grid decomposition obtains a longer processing time,
thus becomes unsuitable for applications where a rapid response is desired. In all
the tests, the QD presents very satisfactory values of processing time, however,
this one originates paths further away from the considered ideal, having as char-
acteristic the presence of an abrupt change of direction, in relation to the other
algorithms. On the other hand, FQD presents the shortest path in most tests,
but a very high processing time compared to the other methods implemented.
In view of these results, a new decomposition appears, which aims, through an
appropriate choice of coefficients, to obtain a compromise between the distance
of the trajectory generated and the processing time. In this way, it is concluded
that when using large maps with narrow passages, with an adequate choice of the
coefficients associated with the k-Framed Quadtrees method, this allows better
results than the others, if the objective is to obtain a good compromise between
processing time and the distance of the trajectory generated. In addition, if the
objective is to obtain a fast response by the algorithm, the new method is a
good approach, with the proper choice of coefficients. It allows a very similar
decomposition with the QD, also obtaining similar results, with an improvement
of the trajectory at the beginning of the path and arrival at the destination.

As future work it would be interesting to test the algorithm in a real robot,
as well as consider the orientation of the same and including dynamic obstacles.
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