
© Woodhead Publishing Limited, 2012

         11

Real-time ultrasound (RTU) imaging 
methods for quality control of meats  
    S. R.   Silva,      CECAV, University of Trás-os-Montes e Alto Douro, 
Portugal and V. P. Cadavez, CIMO, ESA, Instituto Politécnico de 
Bragança, Portugal   

   Abstract:  In this chapter the use of real-time ultrasonography to predict  in vivo  
carcass composition and meat traits will be reviewed. The chapter begins by discussing 
background and principles of ultrasound. Then aspects affecting the suitability of real-
time ultrasonography and image analysis for predicting carcass composition and meat 
traits of meat producing species and fish will be presented. This chapter also provides an 
overview of the present and future trends in the application of real-time ultrasonography 
in the meat industry.  
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 11.1     Introduction 
 Carcass composition and meat traits are important aspects of animal science relat-
ing to food production. This knowledge is fundamental to the study of genetics, 
nutrition, physiology, to marketing based on carcass value, as well as for monitor-
ing body fat reserves. Dissection and chemical analysis have traditionally been 
used as the standard methods for determining carcass composition. However, 
these procedures are expensive, laborious and destructive (i.e., an animal or car-
cass can be used only once). Non-destructive techniques are often required to test 
valuable animals or when sequential study of the animals is necessary or desirable 
(Fuller  et al ., 1990). The search for non-destructive methods of estimating carcass 
composition or meat traits has led to the evaluation of numerous techniques such 
as real-time ultrasound (RTU), computer tomography (CT), magnetic resonance 
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imaging (MRI), dual-energy X-ray absorptiometry (DXA), whole-body  40 K count-
ing, total body electrical conductivity (TOBEC), dilution techniques, bioelectrical 
impedance and neutron activation analysis. These techniques have been reviewed 
by several researchers, including Allen (1990), Fuller  et al . (1994), Stanford  et al . 
(1998), Szabo  et al . (1999), De Campeneere  et al . (2000), Mitchell and Scholz 
(2005) and Teixeira (2009). Of the techniques mentioned above, only those based 
on RTU will be outlined in this chapter. Techniques based on ultrasound have 
had great success in the fields of medical and animal science, as they are non-
invasive, non-destructive and do not cause pain to the animal. For over 50 years, 
ultrasound techniques have been used to predict carcass composition and meat 
traits  in vivo . Since its initial use, and especially in the last two decades, RTU has 
been demonstrated to be a valuable tool for the estimation of carcass composition 
and meat traits in living animals. The recent interest in the technique is almost cer-
tainly a result of the application of technology originally developed for comput-
ers, whereby a digital image formation process provides good quality black and 
white images. Furthermore, modern equipment is robust, easy to use and portable, 
and offers accurate imaging with great repeatability at relatively low cost, while 
also being well accepted by the public (Allen, 1990; Stanford  et al ., 1998). This 
chapter presents an overview of the use of RTU in predicting carcass composition 
and meat traits in meat-producing species and fish.   

 11.2     Historical background on ultrasound use for carcass 
composition and meat traits evaluation 

 The roots of the use of ultrasound techniques for animal science purposes can be 
identified in several discoveries throughout history and are closely connected to 
the same developments in the medical field. The discovery of the piezoelectric 
properties of certain crystals in 1880 by the Curie brothers is one major milestone 
in the development of ultrasound (Woo, 2006) (Table 11.1). Since then, the appli-
cations of ultrasound have expanded rapidly in the fields of navigation, medicine 
(Thwaites, 1984; Szabo, 2004) and non-destructive testing in industry (Bray and 
McBride, 1992; Chen, 2007).  

 Mankind has always had a fascination with the idea that it might be possible 
to look inside objects and, with sonar and radar as models, it was established that 
pulse-echo techniques had the potential to be used for medical purposes (Szabo, 
2004). After five years of work on ultrasound principles and equipment develop-
ment, the first diagnostic ultrasound study was published (Dussik, 1942). Some 
years later, Wild (1950) presented the first use of ultrasonic pulses for the mea-
surement of biological tissues and the detection of tissue density with ultrasound 
equipment. This equipment contained a transducer that sent a sequence of repeti-
tive ultrasonic pulses into a material or a body (Wells, 1991; Whittaker  et al ., 
1992). Echoes from different target objects and boundaries were received and 
amplified so that they could be displayed on an oscilloscope as an amplitude-
versus-time record (Thwaites, 1984; Wells, 1991; Whittaker  et al ., 1992). This 
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 Table 11.1      Milestones for ultrasound development and application in animal science  

Discovery or 
application

Year Author Description Reference

Eco-localization 1790 Lazzaro 
Spallanzani

In 1790 Lazzaro Spallanzani experimented with bats and 
found that they manoeuvred through the air using their 
hearing rather than sight

Kane  et al . (2004)

Piezoelectric 
proprieties

1881 Pierre Curie In 1881 Pierre Curie found a connection between electrical 
voltage and pressure on crystalline material. This was 
the breakthrough that was needed to create the modern 
ultrasound transducer

Turner  et al . (1994)

Using ultrasound in 
submarine warfare

1916 The first recorded detection and subsequent sinking of a 
German U-boat (UC-3) using a hydrophone

Kane  et al . (2004)

First report of 
ultrasound use for 
medical purposes

1942 Karl Dussik Karl and Friederich Dussik used the first medical application 
of ultrasound when they localized brain tumours by 
measuring the sound transmission through the skull and 
brain

Weinstein  et al . (2006)

Ultrasound propagation 
speed in body tissues

1950 Ludwig Ludwig (1950) made a number of time-of-flight 
measurements of sound speed through arm, leg, and thigh 
muscles. He found the average to be 1540 ms -1 , which is 
the standard value still used today

Ludwig (1950)

First article showing 
the utility of 
ultrasounds for soft 
tissues

1950 Wild The first scientific proof of sonic energy reflection from 
within soft tissue histological elements, using ‘A’ mode 
readout

Wild (1950)

First B-mode 1952 Wild and Reid The B-mode scanner became one of the first to differentiate 
between abnormal tissue

Wild and Reid (1952)

First animal evaluation 
publication using 
ultrasounds

1956 Temple  et al . First ultrasound animal evaluation publication in the United 
States

Temple  et al . (1956)

(Continued)
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Table 11.1     Continued  

Discovery or 
application

Year Author Description Reference

First B-mode study 
with animals

1959 Stouffer Cross-sectional image of beef rib eye produced by an early 
mechanical B-scan system improved by mounting the 
transducer on a carriage that moved along a fixed, shaped, 
curved guide

Stouffer  et al . (1959)

A reference study 1961 Stouffer Study with hogs, cattle and sheep showing the superior 
performance of mechanical B-scan over the A-mode

Stouffer  et al . (1961)

First real time 1965 Appearance of Vidoson from Siemens, the first real-time 
mechanical commercial scanner

Szabo (2004)

Scanogram 1969 Stouffer Scanogram, commercial mechanical B-scanner, second 
generation, produced by Ithaco Inc, 1969

Stouffer (2004)

First RTU application 
for carcass traits 
evaluation

1976 Hans Busk Use of the RTU Danscanner in breeding programmes for pigs, 
cattle and sheep

Busk (1984)

First 3-D 1987 First 3-D ultrasound Szabo (2004)
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type of display became known as the A-mode, with A standing for amplitude 
(Szabo, 2004). The distances between successive peaks represent the thickness of 
the different tissues. In animal science, the horizontal axis of the oscilloscope is 
calibrated in millimetres, allowing for a direct reading. 

 After the first medical applications, this ultrasound technique was immedi-
ately recognized as a potential tool for animal science, as shown by the work 
published in the late 1950s on animal carcass evaluation (Stouffer, 2004). These 
publications reported research results showing the feasibility of using ultrasound 
to evaluate carcass composition in live cattle (Temple  et al ., 1956), swine (Claus, 
1957; Dumont, 1957; Hazel and Kline, 1959) and sheep (Campbell  et al ., 1959). 

 Despite the encouraging findings, the accuracy of the early A-mode, a sin-
gle-transducer device, was often quite variable (Stouffer, 2004). Moreover, the 
A-mode display has limited use, because it lacks anatomical information, mean-
ing that it is difficult to identify the anatomical sources of the echoes (Ophir 
and Maklad, 1979), and that it is impossible to trace area measurements from 
images of organs or tissues (Thwaites, 1984). To overcome these limitations, 
the B-mode presentation (‘B’ meaning brightness) was introduced. B-mode is 
an image display created by integrating multiple A-mode signals (Amin, 1995). 
In B-mode, the brightness of the dots is proportional to the amplitude of the 
echoes. The display consists of time traces running vertically (top to bottom) to 
indicate depth. 

 By the early 1960s a pioneering technique in the use of ultrasound for animal 
science purposes was introduced: a continuous mechanical scanning procedure 
(Stouffer  et al ., 1961). An electric motor was mounted on a thick rubber belt that 
was placed on the animal’s back. The motor moved a transducer horizontally as 
it was held vertically by an operator, and was synchronized to keep the lens open 
for the duration of the 10 s scan in order to capture the image. The image on 
Polaroid film was developed in about 1 min, and the image data was then evalu-
ated and measured. In the same period, the first commercialized contact B-mode 
mechanical scanners became available for medical purposes (Szabo, 2004). At 
the end of the 1960s, a commercial unit of the primary system was introduced for 
live animal evaluation, using similar technology (Stouffer, 2004). This equipment 
– the Scanogram – produced in 1969 by Ithaco Inc. (Ithaca, NY), was in use until 
the mid-1980s for the majority of  in vivo  carcass evaluation studies using ultra-
sound (Miles  et al ., 1972; Shelton  et al ., 1977; Kempster  et al ., 1982; Andersen 
 et al ., 1983; Simm  et al ., 1983). However, one of the major limitations of B-mode 
mechanical scanners for animal applications was the movement of the animal, 
which, being random, was the cause of inaccuracy of images and low repeatability 
of measurements (Hedrick  et al ., 1962; Gooden  et al ., 1980; Stouffer, 2004). 

 The launch of RTU systems with good image quality marked the end of the 
mechanical B-scanners, which had completely disappeared by the late 1980s 
(Klein, 1981; Szabo, 2004). RTU systems are based on the B-mode technique, 
and use multiple-crystal transducers to display an image on the screen that is 
constantly updated. The entire image frame must be displayed in 33 ms or less in 
order to be able to update the information at real-time frame rates (Insana, 2006). 
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RTU reduces the time required to produce and record an image, which greatly 
enhances the use of this technique in live animal evaluation. 

 Since the first attempts to image carcass traits using the RTU technique in 
the late 1970s (Kempster  et al ., 1979) and early 1980s (Kempster  et al ., 1982), 
significant advances in hardware and software have allowed the initial obstacles 
– animal movement and long acquisition times – to be overcome. In recent years, 
RTU has become a crucial tool in many routine carcass evaluations for animal 
production, and offers the advantage of providing data not only on carcass traits 
but also on a multitude of meat and fat deposits, which are similar to or even 
superior to those provided by more expensive imaging tools. The features of the 
ultrasound equipment, combined with the possibility of differentiating tissues and 
organs in the image, form the basis of the huge success that this technique has 
achieved in medicine and in animal science. 

 There has been a radical increase in the use of RTU imaging in animal science 
in the last 20 years, due to significant technological improvements and the avail-
ability of more accurate and less costly equipment. During this period, RTU has 
been widely used in the prediction of carcass traits, as shown by the numerous 
works found in the major animal science journals (Fig. 11.1).      

 11.3     Basic ultrasound imaging principles 
 Ultrasound is sound waves that have a frequency beyond the range of human 
hearing (above 20 kHz). These acoustic waves propagate through body tissues 
via compression and expansion of the tissues, and during propagation small par-
ticles of the material move back and forth in order to generate the compressions 
and expansions of the acoustic wave (Mannion, 2006). In soft tissues (biological 

200

160

120

80

40

N
um

be
r 

of
 IS

I a
rt

ic
le

s

0
1960s 1970s 1980s 1990s 2000s

 Fig. 11.1      Number of articles in main animal science journals (ISI indexed) using 
ultrasound to evaluate carcass traits.  
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tissue), these particles move back and forth in the same direction that the acous-
tic wave is travelling (Prince and Links, 2006). The particles themselves merely 
oscillate or are displaced locally; it is the wave that travels from source to detec-
tor, not the particles (Leighton, 2007). The ultrasonic waves have different propa-
gation properties and can be characterized by the following formula

      v f λ  [11.1]  

 where  λ  is the wavelength,  f  is frequency and  v  is velocity. The acoustic imped-
ance  Z  is a fundamental property of the tissue and is related to the density  ρ  and 
the velocity

      ρvv  [11.2]  

 The fraction of energy reflected,  R,  at the normal interface of two different tissue 
types is
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 [11.3]  

 where  Z  1  and  Z  2  are the impedance of the tissues in the interface (Seidband, 1998). 
The acoustic signals decrease as a result of attenuation by the medium, and the 
signal intensity  I  is given by

      
I

Ioe

r

r

=
−αr

2
 [11.4]  

 where  α  is the coefficient of attenuation,  I  0  is the incident signal intensity and  r  is 
the distance (Seidband, 1998). Most biological tissues have high coefficients of 
attenuation, which increases as frequency increases (Seidband, 1998). Thus, it is 
important to establish the thickness of the tissue at which the attenuation of the 
medium decreases the signal by half (half-value layer, HVL) (Seidband, 1998). 
Ultrasound of higher frequencies provides higher resolution, yet the increased 
HVL reduces the depth of penetration. The acoustic properties of some tissues at 
1.0 MHz are presented in Table 11.2.

   In soft tissues, the ultrasound waves propagate at a velocity of about 1500 
m/s. Each change of tissue type causes a reflection and the greater the difference 
in acoustic impedance between the tissues the greater the proportion of the ultra-
sound wave to be reflected. For example, more energy is reflected in the passage 
from muscle to bone than from muscle to fat. The time taken for the echoes to 
reach the transducer is directly proportional to the thickness of the medium and 
inversely proportional to the velocity of ultrasound in that particular tissue. Thus, 
the time delay between the transmitted pulse and its echo is a measure of the depth 
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of the tissue interface (Seidband, 1998). The tissue thickness can be estimated on 
the basis of the time difference between the generation of the ultrasonic wave and 
the reception of the echoes (Thwaites, 1984).  

 11.3.1     Ultrasound transducers 
 Ultrasound transducers make use of the piezoelectric properties of ceramics such 
as barium titanate: such ceramics have the ability to generate an electric poten-
tial when mechanically strained, and conversely an electric potential can cause 
physical deformation of the ceramic (Peura and Webster, 1998). This ability to 
transform electrical energy into mechanical energy and vice versa is called the 
piezoelectric effect (Szabo, 2004). 

 The piezoelectric effect enables an ultrasound transducer to act simultaneously as 
a transmitter and a receiver of ultrasound energy. The transducer converts electrical 
signals to acoustic signals (ultrasound), which are sent to the animal’s body. The tis-
sue boundaries then produce echoes by reflecting and scattering the ultrasound waves, 
which turn back and are detected by the transducer, which in turn converts this acous-
tic signal to an electric signal (Prince and Links, 2006). Thus, with appropriate elec-
tronic circuits, the ceramic can be pulsed to transmit a short burst of ultrasonic energy 
as a miniature loudspeaker and then switched to act as a microphone to receive signals 
reflected from the interfaces of various tissue types (Seidband, 1998).   

 11.3.2     Ultrasound imaging of tissues 
 When ultrasonic waves are generated by a transducer and applied to the skin of an 
animal, the transducer receives the reflected waves and converts them into electrical 
power, which is then displayed on a screen in several ways, as outlined previously. 
Thus, ultrasound imaging systems capture the reflected energy (echoes), which is 
used as an indication of the position of the interface between two tissues (Goddard, 
1995). The reflected sound can be used to obtain a spatial distribution of the tissues 
through which the ultrasonic wave has passed, and of the interfaces at which part 
of the ultrasonic wave was reflected. The ultrasound imaging systems process the 
echoes and present an image of the tissue anatomy on a display, in which each point 
in the image corresponds to the anatomical location of an echo-generating structure, 
with its brightness corresponding to the echo strength (Prince and Links, 2006). 

 Table 11.2      Acoustic proprieties of some tissues at 1.0 MHz  
Material  v  (m/s)  Z HVL (cm) Interface  R 
Water 1496 1.49 4100 Air/water 0.999
Fat 1476 1.37 3.8 Water/fat 0.042
Muscle 1568 1.66 2.5 Water/muscle 0.054
Brain 1521 1.58 2.5 Water/brain 0.029
Bone 3360 6.20 0.23 Water/bone 0.614
Air 331 4.13 1.1 Tissue/air 0.999

  Source: adapted from Seidband (1998).  
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 The spatial resolution of an image produced by ultrasound is limited by the 
wavelength of the ultrasound. The wavelength decreases with the increase in fre-
quency: for example, at 2, 5 and 7.5 MHz the wavelength is approximately 0.77, 
0.31 and 0.21 mm, respectively (Mannion, 2006). The best resolution is obtained 
with higher frequencies, since these are associated with a higher attenuation by 
biological tissues (Goddard, 1995). Thus, the choice of ultrasonic frequency 
should be based on two factors: (1) the desired resolution – the minimum number 
of elements to be differentiated – as the resolution power varies along with the 
ultrasound frequency; and (2) energy absorption by the medium, which increases 
very rapidly with the increase in ultrasound frequency, and high-frequency waves 
are less penetrative (Goddard, 1995; Mannion, 2006). The choice of ultrasound 
frequency must take into account the compromise between the type and thickness 
of the tissue to be analysed. For animal science, the ultrasound frequency range 
used is between 1 and 10 MHz (Stouffer, 2004; Silva  et al ., 2006a).    

 11.4     Applications of real-time ultrasound (RTU) to predict 
carcass composition and meat traits in large animals 

 The ability of RTU to measure carcass composition and meat traits in cattle, swine, 
sheep and goats has been the subject of a number of studies. This section presents 
a comprehensive review of the methods used, degree of precision achieved and 
the factors affecting the use of RTU for predicting the carcass composition and 
meat traits of those species  in vivo .  

 11.4.1     Use of RTU to predict carcass composition and meat traits in cattle 
and swine 

 Since the first reports on the use of ultrasound to predict carcass composition and 
meat traits in cattle (Temple  et al ., 1956) and swine (Claus, 1957; Dumont, 1957), 
it was understood that these two species would be the main target for this technol-
ogy. Although cattle and swine are very different species, it has been shown that 
RTU can be used to assess carcass composition and meat traits in both, as will be 
discussed in this section. 

 The RTU imaging system allows the collection of anatomical measurements in 
live animals; these measurements, when combined with other sources of informa-
tion, represent a good basis from which to estimate carcass composition (Paisley 
 et al ., 2007). During the last decade, RTU has increased in popularity and, today, 
has a great impact on the beef cattle and swine industry through two principal 
applications: as a selection tool for genetic programmes to improve the quality 
of the carcass and meat traits (e.g., Wilson, 1992) and as a management tool to 
optimize time of slaughter (Hassen  et al ., 1998, 1999a; DuPonte and Fergerstrom, 
2006). 

 The use of ultrasound as a selection tool involves the collection of data relating 
to the carcass and meat traits of cattle (yearling bulls and heifers) and swine. This 
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information is then used to select the best breeding animals in genetic improvement 
programmes (Wilson, 1992). Traits such as  Longissimus thoracis et lumborum  mus-
cle area (LMA) and subcutaneous fat depth (SFD), usually over the 12th–13th rib, 
and intramuscular fat have been used as selection criteria. However, in this section, 
attention will be focused on the use of RTU as a management tool to improve carcass 
and meat quality for consumers, who are the ultimate evaluators of meat quality. 

 The use of RTU to measure SFD and LMA in live animals has been thoroughly 
documented (Perkins  et al ., 1992a; Greiner  et al ., 2003, and these two carcass 
traits are good estimators of lean meat yield in beef cattle (Hamlin  et al ., 1995; 
Griffin  et al ., 1999; Hassen  et al ., 1999a; May  et al ., 2000; Suguisawa  et al ., 
2003) and in swine (McLaren  et al ., 1989; Moeller, 1990; Gresham  et al ., 1994; 
Morlein  et al ., 2005; Olsen  et al ., 2007). Similarly, ultrasound has been used to 
estimate intramuscular fat (marbling), which is the principal criterion determining 
meat quality in beef cattle and swine, and will be discussed later in this chapter. 
The ability to model and predict the composition of the carcass is the basis for a 
decision support system that allows the producers to adjust animal feeding and 
handling strategies according to their specific needs. 

 Several studies have been carried out to analyse the efficacy of ultrasound as a pre-
dictor of carcass composition prior to slaughtering in beef cattle (Perkins  et al ., 1992b; 
Smith  et al ., 1992; Delehant  et al ., 1996; Ragland  et al ., 1997; Griffin  et al ., 1999; 
Wall  et al ., 2004) and in swine (McLaren  et al ., 1989; Terry  et al ., 1989; Gresham  et 
al ., 1992, 1994; Ragland  et al ., 1997; Newcom  et al ., 2002). Optimum composition 
means the highest lean meat proportion, and optimum organoleptic properties. When 
a carcass meets these requirements, it should be sold for the highest price; if, on the 
other hand, the composition and organoleptic properties are not optimal, its price will 
be lowered. Predicting the composition of a carcass is therefore key in determining its 
value at the slaughter line. A low-cost and expeditious method for predicting carcass 
composition can be used for carcass classification at the slaughter line (Smith  et al ., 
2008a), and for determining the price along the commercialization chain. 

 The methodology used to predict carcass composition should be accurate, fast 
and automated, and the first step in developing these prediction models is to achieve 
accurate measurement of the SFD and LMA, since these are the most frequently 
used predictors of carcass composition and quality (Perkins  et al ., 1992b; Delehant 
 et al ., 1996; Griffin  et al ., 1999; Hassen  et al ., 1999a; Suguisawa  et al ., 2003; Wall 
 et al ., 2004), and are the main price drivers for the value-based marketing system 
used by the meat industry. The use of RTU to measure both SFD and LMA in live 
animals has been well documented for both swine and beef cattle (e.g., Houghton 
and Turlington, 1992), and several studies have shown that it is an accurate method 
if the images are taken and interpreted by a trained technician (McLaren  et al ., 
1991; Perkins  et al ., 1992b; Herring  et al ., 1994; Hassen  et al ., 1998). SFD is 
principally used to predict the lean meat content of carcasses of similar weights 
(Faulkner  et al ., 1989), while LMA is also used to predict the carcass composition 
(Perkins  et al ., 1992b; Hassen  et al ., 1998). The evaluation of the accuracy of ultra-
sound measurements of SFD and LMA is the first step in assessing the applicabil-
ity of the technology (Robinson  et al ., 1992) for this purpose. Several articles have 
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focused on the accuracy of the measurement of these carcass traits in beef cattle 
and in swine. Table 11.3 summarizes the values of correlation coefficients ( r ) and 
confidence interval (CI) between SFD and LMA measured by ultrasound and the 
homologous measurements taken on the carcass for beef cattle and swine.  

 In cattle, the correlation coefficients between SFD and LMA measured by ultra-
sound and the homologous measurements taken on the carcass range from 0.70 

 Table 11.3      Correlation coefficients ( r ) and confidence interval (CI) between SFD and 
LMA measured by ultrasound and the homologous measurements taken on the carcass 
attained by several authors for cattle and swine  
Species Reference SFD LMA

 r CI (95%)  r CI (95%)

Cattle Hedrick  et al . 
(1962)

0.71 0.56–0.81 0.88 0.81–0.92

Davis  et al . (1964) 0.90 0.84–0.93 0.87 0.79–0.82
Henderson-Perry 

 et al . (1989)
0.86 0.82–0.89 0.76 0.69–0.81

Brethour (1992) 0.90 0.88–0.91 0.58 0.48–0.66
Perkins  et al . 

(1992a)
0.75 0.71–0.78 0.60 0.54–0.65

Robinson  et al . 
(1992)

0.91 0.74–0.93 0.88 0.76–0.94

Smith  et al . (1992) 0.82 0.75–0.87 0.63 0.52–0.72
Hassen  et al . 

(1998)
0.70 0.61–0.77 0.48 0.35–0.59

Griffin  et al . 
(1999)

— — 0.52 0.10–0.78

May  et al . (2000) 0.81 0.76–0.85 0.61 0.52–0.69
Silva  et al . (2004) 0.86 0.76–0.92 — —

Fixed effect model 0.84 0.78–0.88 0.66 0.63–0.68
Random effects 

model
0.84 0.78–0.88 0.72 0.62–0.80

Swine Busk (1986) 0.90 0.86–0.93 — —
McLaren  et al . 

(1989)
0.55 0.40–0.67 0.61 0.48–0.72

McLaren  et al . 
(1991)

0.86 0.74–0.93 0.80 0.63–0.89

Gresham  et al . 
(1992)

0.49 0.34–0.62 — —

Ragland  et al . 
(1997)

0.84 0.81–0.87 0.74 0.69–0.78

Moeller and 
Christian 
(1998)

0.87 0.85–0.88 0.74 0.71–0.77

Fixed effect model 0.85 0.84–0.86 0.72 0.70–0.74
Random effects 

model
0.82 0.74–0.88 0.70 0.64–0.75
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to 0.91 and from 0.48 to 0.88, respectively. For swine, the correlation between 
ultrasound and the homologous carcass measurements are very similar (0.49–0.90 
and 0.61–0.80 for SFD and LMA, respectively). 

 Although these correlations are generally significant, the data presented in 
Table 11.3 shows some variation in the correlation coefficients between differ-
ent studies and species. This variation is influenced by several factors, namely 
the ultrasound equipment used, differences between animal and carcass position 
after slaughter, methods for RTU image analysis and operator training (Robinson 
 et al ., 1992; Herring  et al ., 1994; Stouffer, 2004). All these factors contribute to 
reducing the accuracy of the RTU technique (Houghton and Turlington, 1992). 
However, in recent years, important advances have been made in ultrasound 
technology, which allow for increasing accuracy and reliability in measuring the 
SFD and LMA (Lusk  et al ., 2003). Moreover, efforts have been made to improve 
image acquisition protocols by certified independent technicians (Stouffer, 
2004). Additionally, the captured RTU images can be sent to a central laboratory 
and analysed by trained staff (Greiner  et al ., 2003). Similar procedures could 
be adopted to optimize the use of the RTU technique in swine (Moeller, 2002; 
Schwab  et al ., 2010).   

 11.4.2     Use of RTU to predict carcass composition and meat traits in sheep 
and goats 

 One of the first ultrasound scanning examinations to predict the composition of 
sheep carcasses was reported in the late 1950s (Campbell  et al ., 1959). Since then, 
numerous studies have been carried out with the aim of predicting carcass com-
position and meat traits in small ruminants (Table 11.4). The application of RTU 
technology to small ruminants has been centred on the development of genetic 
improvement programmes for fat reduction and on the prediction of carcass com-
position (e.g., Simm, 1987; McEwan  et al ., 1989), which also proved useful in 
marketing decisions (Alliston, 1980; Leeds  et al ., 2007). Particularly in sheep, an 
excess of fat in the carcass is a major problem that reduces the commercial value 
of the animal (Sañudo  et al ., 2000). To overcome this problem, the use of RTU 
technology has been shown to be very effective in the evaluation of carcass fat 
levels (Simm  et al ., 2002; MacFarlane and Simm, 2008). In addition, for sheep 
and goats, RTU shows great potential for  in vivo  evaluation of carcass composition 
and meat traits. In recent years, several works have been published that clearly 
show that the RTU technique allows good estimates of the composition of the car-
cass to be obtained. These studies aimed to predict carcass composition in adult 
animals (Hopkins  et al ., 2007; Teixeira  et al ., 2008), market lambs (Teixeira  et al ., 
2006; Leeds  et al ., 2008; Orman  et al ., 2008; Thériault  et al ., 2009; Emenheiser 
 et al ., 2010; Orman  et al ., 2010) or light carcasses (Ripoll  et al ., 2009). Although 
the results obtained were generally good, attention must be paid to the factors that 
lead to inaccuracy in the RTU technique when used for small ruminants. These 
factors include wool or hair, identification of measurement points, fat level and 
image interpretation and analysis.  



©
 W

o
o
d
h
e
a
d
 P

u
b
lis

h
in

g
 L

im
ite

d
, 2

0
1
2

 Table 11.4      Summary of studies conducted with sheep and goat for predicting  in vivo  carcass traits using the RTU technique  

Species Reference Equipment Objective

Sheep Kempster  et al . (1982) Danscanner Predicting carcass composition
McEwan  et al . (1989) Aloka; 3 MHz and Toshiba SAL 22; 

5 MHz
Accuracy of RTU measurements and predicting carcass 

composition
Ramsey  et al . (1991) Toshiba SAL 32B; 5 MHz Predicting carcass composition
Young  et al . (1992) Aloka SSD-210 DXII; 5 MHz Predicting carcass composition
Delfa  et al . (1995a) Toshiba SAL 32B; 5 MHz Accuracy of RTU measurements and predicting carcass 

composition
Stanford  et al . (1995a) Aloka SSD 500V; 2 MHz Accuracy of RTU measurements and predicting carcass 

composition
Glasbey  et al . (1996) Vetscan MKI; 5 MHz Accuracy of RTU measurements
Hopkins  et al . (1996) Aloka 500V; 3.5 MHz Accuracy of RTU measurements and predicting carcass 

composition
Fernández  et al . (1997) Toshiba SAL 32B; 5 MHz Accuracy of RTU measurements
Silva  et al . (2005) Aloka 500V; 7.5 MHz Predicting body and carcass chemical composition
Silva  et al . (2006a) Aloka 500V; 5 and 7.5 MHz Predicting carcass composition
Teixeira  et al . (2006) Aloka 500V; 5 and 7.5 MHz Predicting carcass composition
Hopkins  et al . (2007) Honda HS-1201; 5 MHz Accuracy of RTU measurements and predicting carcass 

composition
Silva  et al . (2007a) Aloka 500V; 7.5 MHz Predicting carcass composition
Leeds  et al . (2008) Aloka 500V; 3.5 MHz Accuracy of RTU measurements and predicting yields
Orman  et al . (2008) Dynamic imaging, 7.5 MHz Accuracy of RTU measurements
Ripoll  et al . (2009) Aloka SSD 900; 7.5 MHz Accuracy of RTU measurements and predicting carcass 

composition
Thériault  et al . (2009) Ultrascan 50; 3.5 MHz Accuracy of RTU measurements
Emenheiser  et al . (2010) Aloka 500V; 3.5 MHz Accuracy of RTU measurements
Orman  et al . (2010) Dynamic Imaging, 7.5 MHz Accuracy of RTU measurements
Ripoll  et al . (2010) Aloka SSD 900; 7.5 MHz Accuracy of RTU measurements and predicting carcass 

composition
(Continued)
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Table 11.4 Continued 

Species Reference Equipment Objective

Goat Delfa  et al . (1995b) Toshiba SAL 32B/5 MHz Accuracy of RTU measurements and predicting carcass 
composition

Stanford  et al . (1995b) Keikei CS-3000/3.5 MHz Accuracy of RTU measurements
Delfa  et al . (1996) Toshiba SAL 32B/5 MHz Accuracy of RTU measurements and predicting carcass 

composition
Mesta  et al . (2004) Aloka 500, 5 MHz Accuracy of RTU measurements
Teixeira  et al . (2008) Toshiba SAL 32B/5 MHz Accuracy of RTU measurements and predicting carcass 

composition
Monteiro (2010) Aloka 500, 5 MHz Accuracy of RTU measurements and predicting carcass 

composition
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 The value of clipping or shearing the wool or hair at the measuring points of 
sheep and goats is a controversial issue. One perspective is that the procedure is 
useful, as it helps to avoid aberrant echoes caused by air bubbles trapped between 
the conductive medium and wool or hair (Kempster  et al ., 1982; Stouffer, 1991, 
Silva  et al ., 2006a; Leeds  et al ., 2008). Air bubbles are the cause of low quality 
images because the ultrasonic beams can dissipate quickly in the air. The neces-
sity of shearing animals was verified by McLaren  et al . (1991): after studying 
data from seven sheep that had not been shorn, an increase from 0.15 ( P  > 0.05) 
to 0.59 ( P  < 0.01) was observed for the correlation between fat thickness mea-
sured with ultrasound and fat thickness measured in carcass. The main argument 
against shearing is the need for the whole ultrasound examination process to be 
carried out quickly (Hopkins  et al ., 1996; Teixeira  et al ., 2008). This issue can be 
of great economic importance when RTU examinations are performed in a large 
number of animals, as is the case in commercial herds. Poor acoustic contact 
between the probe and skin may cause RTU measurements to be underestimated, 
and it is therefore necessary to increase the pressure on the probe, which causes a 
deformation of superficial tissues (McEwan  et al ., 1989; McLaren  et al ., 1991). 
To overcome this problem, Ramsey  et al . (1991) and Young and Deaker (1994) 
pointed out the possibility of following the tissue deformation through the image 
on the monitor, allowing it to be immediately corrected. Using a greater amount 
of conductive medium and the use of a standoff pad between probe and skin are 
other procedures that can reduce the tissue deformation problem. 

 In most studies involving sheep and goats, ultrasonic measurements are car-
ried out along the midline of the thoracic and lumbar regions, usually between the 
12th thoracic vertebra and 4th lumbar vertebra, using the  Longissimus thoracis 
et lumborum  (LTL) muscle and thoracic and lumbar vertebrae for orientation. 
Subcutaneous fat depth above the LTL muscle and muscle depth and area are the 
parameters usually measured in RTU examinations. A large number of studies 
(McEwan  et al ., 1989; Silva  et al ., 2006a; Teixeira  et al ., 2006; Hopkins  et al ., 
2007; Silva  et al ., 2007a; Leeds  et al ., 2008; Teixeira  et al ., 2008; Thériault  et 
al ., 2009; Emenheiser  et al ., 2010; Orman  et al ., 2010) have found a significant 
correlation ( r  > 0.6;  P  < 0.01) between both fat and muscle RTU measurements 
and the corresponding carcass measurements in those regions. The placement of 
the probe at reference points must be correct, since SFD and LTL muscles vary 
significantly over short distances either cranio-caudally (Delfa  et al ., 1991; Silva 
 et al ., 2007a) or medium-laterally (Simm, 1983; Korn  et al ., 2005). In addition, 
anatomical distortions arising from the position of the animals and skin flexibility 
may also contribute to discrepancies between RTU and carcass measurements 
(Thwaites, 1984; Leeds  et al ., 2008). This problem is more evident in young ani-
mals, in which the skin is more flexible and the thickness of tissues is lower 
(Thwaites, 1984; Silva  et al ., 2006a; Ripoll  et al ., 2009). 

 Ultrasound measurements of other regions are also carried out, including over 
the sternum (Delfa  et al ., 1996, 2000; Silva  et al ., 2005; Teixeira  et al ., 2008) and 
grade rule (GR) measurement, which is taken between the 11th and 12th ribs at 
a lateral distance of 11 cm from the spine (Hopkins  et al ., 1993; Thériault  et al ., 
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2009). The sternum region is particularly appropriate for the assessment of fat 
thickness in goats (Delfa  et al ., 1996, 2000). In fact, in this species the subcutane-
ous fat layer in the thoracic and lumbar regions is usually very thin, and is there-
fore more difficult to measure (Teixeira, 2009). 

 It has been observed that the accuracy of subcutaneous fat thickness measure-
ments is higher in fatter animals within the same species and between different 
species (McLaren  et al ., 1991; Stouffer, 2004; Silva  et al ., 2006a). In general, RTU 
measurements obtained in lambs (Young and Deaker, 1994; Silva  et al ., 2006a; 
Ripoll  et al ., 2010) or in kids (Stanford  et al ., 1995b; Monteiro, 2010) lead to diffi-
culties in SF measurement due to the lower thickness of this tissue. One way to over-
come the problem of thin subcutaneous fat is the use of higher-frequency probes, as 
demonstrated by Silva  et al . (2006a) and Teixeira  et al . (2006), who showed that a 
frequency of 7.5 MHz outperformed 5 MHz in measuring SFD. The 7.5 MHz probe 
showed higher resolution and lower penetration (Silva  et al ., 2006a). Generally, the 
first 6 mm are the focus of attention, comprising skin and subcutaneous fat (Gooden 
 et al ., 1980). Therefore, the interface between skin and subcutaneous fat should be 
located with precision, because the fat is only a few millimetres thick (Gooden  et 
al ., 1980; McEwan  et al ., 1989). The difficulty of determining the interface between 
skin and subcutaneous fat led some authors to include the skin in the measurement 
of SFD (Kempster  et al ., 1982; Silva  et al ., 2005; Thériault  et al ., 2009). 

 Accurate depth measurements require clear identification of the tissues and 
their interfaces. RTU equipment usually contains an internal measurement system 
that typically has a resolution of 1 mm (McEwan  et al ., 1989; Fernández  et al ., 
1997). This resolution, as discussed previously, undermines the accuracy of SF 
measurements when lean animals are examined (Fernández  et al ., 1997; Silva 
 et al ., 2006a) or when it is necessary to monitor variations of tissue thickness in 
growing animals (Hamby  et al ., 1986; Silva  et al ., 2005). This resolution issue 
was reported by Young  et al . (1992) who took fat and muscle thickness measure-
ments in a group of sheep using an RTU associated with a video system for image 
recording and an image analysis programme. Young  et al . (1992) observed supe-
rior measurement repeatability with their approach, including image recording 
and analysis, compared with measurements performed directly on the equipment 
monitor. The difference in repeatability of the two approaches was connected 
to the resolution, which was 0.1 mm on the image analysis system and 1 mm 
on the monitor. Similar results were also observed by Silva  et al . (2005) in a 
study with growing lambs. They report that better results were obtained when 
a high-frequency probe (7.5 MHz) was used, allowing an image resolution of 
0.2 mm, which was capable of detecting differences in SFD between animals. 
This is undoubtedly a strong justification for recording ultrasonic images for later 
analysis. Other factors that justify the recording of images and their subsequent 
analysis are the shorter time required to evaluate the animals (Glasbey  et al ., 
1996; Silva  et al ., 2006a); the possibility of obtaining several measurements from 
the same image including irregular areas (Silva  et al ., 2007a); and improvements 
in repeatability, since the interpretation of the images is more important than its 
acquisition (McLaren  et al ., 1991). 
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 Problems in identifying tissue interfaces may also arise in fat animals. Indeed, 
in fat lambs, two or even three layers of subcutaneous fat can be formed, which 
can be problematic for the interpretation of images taken at the interface between 
skin and subcutaneous fat (Miles  et al ., 1972; Silva  et al ., 2005; Thériault  et al ., 
2009) and can lead to an underestimation of SFD. This underestimation can have 
serious implications when the RTU measurements aim to select animals with lean 
carcasses (Gibson and Alliston, 1983; Brethour, 1992). 

 Over the years, several reports have shown that RTU is a suitable technique for 
predicting carcass composition both in sheep (Kempster  et al ., 1982; McEwan  et 
al ., 1989; Ramsey  et al ., 1991; Young and Deaker, 1994; Silva  et al ., 2005, 2006a; 
Teixeira  et al ., 2006; Hopkins  et al ., 2007; Ripoll  et al ., 2009) and goats (Delfa  et 
al ., 1995a, 1996; Teixeira  et al ., 2008). In general, these studies develop models 
which are able to explain the variation in carcass composition in terms of muscle, 
fat and bone content. Very often, the best models include RTU measurements 
and body weight. For example, Silva  et al . (2006a) and Ripoll  et al . (2009) used 
models for lambs that included the body weight and one or two RTU measure-
ments, which demonstrate 59–99% and 51–98% of the variation in muscle and fat 
content, respectively. For goats, Teixeira  et al . (2008) also observed the value of 
body weight in combination with RTU measurements to predict carcass muscle 
content ( r  2  = 0.90;  P  < 0.01), carcass fat ( r  2  = 0.92;  P  < 0.01) and total body fat 
( r  2  = 0.92;  P  < 0.01).    

 11.5     Applications of RTU to predict carcass composition and 
meat traits in small animals and fish 

 This section presents an overview of the research conducted with RTU to measure 
carcass composition and meat traits in poultry, rabbits and fish.  

 11.5.1     Use of RTU to predict carcass composition and meat traits in 
poultry 

 Intensive research into the quality of poultry meat began after World War II, 
mainly in industrialized countries (Grashorn, 2010). Since then, the successful 
application of science (health, management, nutrition and genetics) to business in 
a challenging industry has led to astounding changes in the final product (Boyle, 
2006). In the 1950s, to grow a 1.8 kg broiler, it took 90 days (20 g body weight 
gain day –1 ), with a consumption of 3.6 kg of feed kg –1  of body weight gain, pro-
ducing about a breast meat yield of approximately 12%. Today, to grow a broiler 
with the same body weight takes less than 39 days (46 g body weight gain day –1 ), 
with less than half the feed used previously (1.7 kg of feed kg –1  of body weight 
gain) and with a breast meat yield of 19% (Arthur and Albers, 2003; Boyle, 2006). 
These changes have mostly been implemented through selection methods that 
efficiently improved the yield of the carcass, particularly the breast and leg mus-
cles (Berri  et al ., 2005; Duclos  et al ., 2006). As stated in several papers, the breast 
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is the most valuable part of a poultry carcass (Silva  et al ., 2006b; Larivière  et al ., 
2009) and the breast muscle thickness is a good indicator of poultry carcass com-
position (Michalik  et al ., 1999, Rymkiewicz and Bochno, 1999). Poultry carcass 
traits have therefore been measured with both invasive (slaughtering and dissec-
tion of progenies/sibs) or  in vivo  non-invasive methods (Zerehdaran  et al ., 2005; 
Larivière  et al ., 2009). The latter are particularly relevant when serial determina-
tions of carcass traits in the same animal are required. For poultry, as for other 
species, numerous studies have described non-invasive methods for the evalua-
tion of carcass composition and meat and fat traits. For example, methods, such as 
TOBEC (Latshaw and Bishop, 2001), DXA (Mitchell  et al ., 1997; Swennen  et al ., 
2004), MRI (Mitchell  et al ., 1991; Kallweit  et al ., 1994; Kövér et al., 1998a; 
Scollan  et al ., 1998; Davenel  et al ., 2000) or CT (Bentsen and Sehested, 1989; 
Svihus and Katle, 1993; Andrassy-Baka  et al ., 2003) have been shown to be use-
ful for poultry research. Among these techniques, MRI and CT have been iden-
tified as being particularly accurate. However, the high cost of the equipment 
required for these techniques, combined with the fact that the equipment is not 
portable, severely limits their routine application in poultry research. Real-time 
ultrasonography has been used for several years in poultry science studies to pre-
dict carcass composition and meat traits (Bochno  et al ., 2000; Melo  et al ., 2003; 
Silva  et al ., 2006b; Larivière  et al ., 2009). Ultrasound studies on broiler chick-
ens to predict carcass traits were focused mainly on abdominal fat (e.g., Melo  et 
al ., 2003; Arceo  et al ., 2009) and breast measurements (e.g., Silva  et al ., 2006b; 
Kleczek  et al ., 2009). The results obtained using RTU to predict poultry carcass 
traits are given in Table 11.5.  

 In general, the results show that RTU measurements are useful for developing 
models of broiler breast and leg cuts and lean tissue. It has also been observed 
in several studies that the best models combine body weight (BW) with RTU 
measurements (Konig  et al ., 1998; Melo  et al ., 2003; Silva  et al ., 2006b; Oviedo-
Rondón  et al ., 2007). The use of BW in combination with RTU measurements 
in models for predicting carcass composition is a common practice since BW is 
closely related to key carcass traits and there are minimal costs associated with its 
measurement. Using BW combined with RTU measurements for chicken breast, 
it was possible to account for between 85% and 97% of the observed variation 
in breast yield and between 63% and 99% of the observed variation in total lean 
meat content. Based on these results, it is understandable that some reports rec-
ommend the use of this non-invasive technique as a valuable tool for selection 
schemes in broiler breeding (Zerehdaran  et al ., 2005; Oviedo-Rondón  et al ., 
2007). Ultrasound is also recognized as being sufficiently accurate to monitor the 
changes in breast yield that occur over the course of a bird’s growth; it will there-
fore prove to be a powerful tool for making the necessary adjustments in feed-
ing regimes to enhance productivity (Dixson and Teeter, 2001; Oviedo-Rondón 
 et al ., 2007) and in deciding the optimal weight for slaughter (Oviedo-Rondón 
 et al ., 2007). Nevertheless, ongoing study of the use of RTU in poultry research 
is necessary in order to optimize methods and equipment. Several RTU variables 
such as breast thickness (e.g., Dixson and Teeter, 2001), breast area obtained both 
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 Table 11.5      Summary of trials with broilers for prediction of carcass traits from breast measurements obtained by RTU alone or associated with 
body weight (BW)  
Reference Equipment Probe  n Dependent variable Independent variables  r  2 
Konig  et al . (1998) Aloka 500V 5 MHz, linear 150 male Breast yield, % 2 Breast area measurements 0.54

108 female Breast yield, % 2 Breast area measurements 0.50

Michalik  et al . (1999) 77 male Total lean, g BW + Breast thickness 0.64
76 female Total lean, g BW + Breast thickness 0.59

Rémignon  et al . (2000) Toshiba SAL38B 5 MHz, linear 48 Breast,  g BW+ Breast cross-sectional 
area

0.89

Breast yield, % BW+ Breast cross-sectional 
area

0.63

104 Breast,  g BW+ Breast cross-sectional 
area

0.80

Breast yield, % BW+ Breast cross-sectional 
area

0.60

Dixson and Teeter (2001) Breast,  g Breast thickness 0.90
Total lean,  g Breast thickness 0.90

Melo  et al . (2003) Ekhoson 500V 7.5 MHz, linear 96 Breast,  g BW + Breast thickness 0.85

Silva  et al . (2006b) Aloka 500V 7.5 MHz, linear 103 Breast yield, % BW + Breast volume 0.52
Breast,  g BW + Breast volume 0.92

Oviedo-Rondón  et al . 
(2007)

Aloka 500V 3.5 MHz, linear Breast,  g BW + Breast area 0.97

Legs,  g BW + Breast area 0.98
Total meat,  g BW + Breast area 0.99

(Continued)
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Table 11.5 Continued

Reference Equipment Probe  n Dependent variable Independent variables  r  2 

Kleczek  et al . (2009) Dramiński Animal 
Scanner

7 MHz, sector 40 male Breast,  g Breast thickness 0.22

40 female Breast,  g Breast thickness 0.45

Larivière  et al . (2009) Pie Medical 100 5 MHz, linear 24 Breast,  g Breast thickness 0.62
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by perpendicular (e.g., Silva  et al ., 2006b) or longitudinal scanning (e.g., Oviedo-
Rondón  et al ., 2007), or breast volume (e.g., Silva  et al ., 2006b) have been used as 
independent variables in linear regression equations for  in vivo  estimation of the 
total breast muscle content. The fact that these variables are of different origins 
underlines the need for the selection of one site and a specific scanning procedure. 
There are also concerns related to the choice of equipment: some studies use a 
linear probe whereas others use a sector probe. The images resulting from breast 
scanning with a sector probe (Fig. 11.2a) are very different from those obtained 
with a linear probe (Fig. 11.2b). This difference causes additional difficulties in 
the interpretation of tissue interfaces. The frequency and length of the probe are 
also sources of inaccuracy. Using a 3.5 MHz with 17.5 cm length probe, as is 
usually employed in large animals, allows a wider ultrasonic window to be exam-
ined, which in turn allows better identification of the anatomical site and hence a 
consistent measurement of the muscle area (Oviedo-Rondón  et al ., 2007). If small 
probes are used, the anatomical site must be correctly identified before ultrasound 
image acquisition can be carried out (Konig  et al ., 1997; Silva  et al ., 2006b). 
On the other hand, the high probe frequency reported by Silva  et al . (2006b) is 
potentially more useful in monitoring small changes in breast muscle thickness, 
particularly in smaller birds, because, as a result of a direct relationship between 
frequency and attenuation, a lower-frequency probe is more appropriate for deep 
tissue examinations, whereas a high-frequency probe is better suited to the exami-
nation of superficial structures (Goddard, 1995; Silva  et al ., 2006b).    

 From a practical point of view, the time needed to acquire a RTU image is 
very important (Silva  et al ., 2006b; Oviedo-Rondón  et al ., 2007). The correct 
placement of the probe at the anatomical site, along with proper acoustic contact 
between the probe and bird are crucial for image quality (Konig  et al ., 1997, 1998; 
Silva  et al ., 2006b; Oviedo-Rondón  et al ., 2007). In the studies just listed, 50–76 
birds were examined per hour, and the RTU images were captured with mini-
mum stress, as only manual restraint was necessary, with no detached feathers. 
Additional time is necessary for image analysis. Two different procedures can be 
followed: the first takes advantage of the equipment callipers and software, with 

(a)
Breast-bone crest

Breast-bone crest

Breast thickness
Breast
thickness

(b)

 Fig. 11.2      RTU images obtained from cross-sectional view of broiler chicken breast mus-
cle: (a) with a 7.5 MHz sector probe and (b) with a 7.5 MHz linear probe. Breast bone crest 

and breast thickness were represented.  
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measurements taken during the image capturing session (Kleczek  et al ., 2009); in 
the second, images are stored for subsequent image analysis (Konig  et al ., 1997; 
Rémignon  et al ., 2000; Silva  et al ., 2006b; Oviedo-Rondón  et al ., 2007; Larivière 
 et al ., 2009). In the latter process, a higher-resolution power is expected, with the 
result that the measurements obtained are more accurate (Young  et al ., 1992).   

 11.5.2     Use of RTU to predict carcass composition 
and meat traits in rabbit 

 Rabbit meat is an important product in the Mediterranean areas of Europe, and is 
also popular in other parts of the world (FAOSTAT, 2010). In recent years, several 
studies have focused on rabbit meat and carcass traits (Hernández  et al ., 2004; 
Larzul  et al ., 2005). A relationship has been established between growth rate on 
the one hand, and carcass characteristics and meat quality on the other (Gondret  et 
al ., 2005; Pascual and Pla, 2007). Moreover, rabbit is a good experimental model 
for meat carcass traits because experiments on rabbits can be performed more 
quickly and at a lower cost than those on other species (Hernández  et al ., 2006). 
To further current understanding of rabbit carcass and meat traits, several studies 
have called for techniques that can evaluate these features  in vivo  (Szabo  et al ., 
1999). Although several non-invasive techniques have been successfully used to 
evaluate carcass composition in rabbits, such as CT (Szendrö  et al ., 1992, 2008; 
Romvári  et al ., 1996), MRI (Kövér  et al ., 1998b) and TOBEC (Fortun-Lamothe 
 et al ., 2002), only a few studies have been conducted using RTU. Some of these 
studies are related to the prediction of fat deposits (Pascual  et al ., 2000, 2002, 
2004; Dal Bosco  et al ., 2003; Castellini  et al ., 2006; Quevedo  et al ., 2006) while 
others are related with carcass and meat traits (Silva  et al ., 2007b, 2008a, 2008b, 
2009). In the pioneering study by Pascual  et al . (2000), it was shown that RTU 
was suitable for fat deposit evaluation. A method based on the measurement of 
perirenal fat thickness at a fixed anatomical location (8th–9th thoracic vertebrae) 
was developed and accurate results for predicting carcass perirenal fat weight 
( r  2  = 0.95;  n  = 42) and total fat weight ( r  2  = 0.93;  n  = 42) were obtained. 

 In rabbits, the ability to assess the fat content of the carcass is of little value 
because this species has only a small dissectible fat content (Pascual and Pla, 
2007). For rabbit carcasses, the evaluation was mainly focused on meat percent-
age and muscularity, defined as the ratio between meat and bone (Lukefahr and 
Ozimba, 1991) .  Several reports have shown that muscularity or cutability attri-
butes may be improved through selection programmes (Lukefahr  et al ., 1982, 
1983).Thus, the development of  in vivo  measurements of muscularity and carcass 
composition in rabbits using RTU has potentially useful applications in genetic 
improvement programmes or simply in economic carcass evaluation (Silva  et al ., 
2009). In rabbits, good results were achieved in studies using live body measure-
ments to predict the muscle percentage and muscularity in the carcass (Lukefahr 
 et al ., 1982; Lukefahr and Ozimba, 1991; Michalik  et al ., 2006). Lukefahr and 
Ozimba (1991); it was found that the lean cut weight (measure of cutability) of 
the loin was accurately predicted using body weight and loin width ( r  2  = 0.797). 
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Several recent studies have assessed the suitability of  in vivo  RTU measurements 
for assessing rabbit carcass composition and muscularity of loin and leg (Silva 
 et al ., 2007b, 2008a, 2008b, 2009). The results reported by these studies clearly 
showed that measurements obtained from RTU images could account for a large 
amount of the variation observed in carcass composition and muscularity traits. 
By employing a 7.5 MHz probe and carrying out image analysis using Image J 
software for RTU images, 51–94% of the variation in carcass chemical composi-
tion (Silva  et al ., 2007b) and 49–77% of the variation in carcass meat and bone 
weight (Silva  et al ., 2009) could be explained with LTL muscle measurements 
(Fig. 11.3). These results are close to those obtained with CT (Szendrö  et al ., 
1992). Silva  et al . (2007b, 2009) pointed out that with this system it was possible 
to estimate the amount of loin muscle ( r  = 0.80;  P  < 0.01).    

 Moreover, after RTU image analysis, it was possible to predict the LTL muscle 
volume of the carcass from the  in vivo  LTL volume ( r  2  = 0.81), which can be cal-
culated from area measurements obtained with multiple scanning images and by 
using Cavalieri’s principle (Silva  et al ., 2008a). As stated previously, muscular-
ity is an important trait in rabbit carcasses and  in vivo  RTU is able to accurately 
estimate loin muscularity ( r  between 0.76 and 0.81;  P  < 0.01) (Silva  et al ., 2009). 
However, for leg muscularity, lower coefficients of correlation ( r  from 0.15;  P  > 
0.05–0.46;  P  < 0.01) were found (Silva  et al ., 2008b). These results highlighted 
the need to improve the procedures related to RTU and carcass measurements so 
that increased accuracy can be achieved when using RTU to determine hind leg 

(a)

(b)

(c)

MA MD
MW

MDMW

MA

 Fig. 11.3      (a) RTU image acquisition procedure with a linear probe placed over loin region 
between the 6th and 7th lumbar vertebrae. Note the hair clipped close to the skin. (b) RTU 
image taken  in vivo  showing the representations of longissimus thoracis et lumborum mus-
cle area (MA), width (MW) and depth (MD) measurements. (c) Carcass cut section at 
homologous anatomical position showing the representations of equivalent  longissimus 

thoracis et lumborum  muscle measurements.  
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muscularity. Nevertheless, the results obtained from these studies are encouraging 
as far as the use of  in vivo  RTU to predict rabbit carcass traits is concerned; further 
research is necessary to improve the practicability of RTU and image analysis for 
extensive use in the evaluation of rabbit carcasses, since other attributes such as 
animal restraint, equipment mobility, ease of use and non-invasive nature have 
already been well established for this technique. The need for the removal of hair 
from the ultrasound measurement site is also inconvenient, and this problem will 
need to be addressed in order to improve the practicability of the technique in 
rabbits.   

 11.5.3     Use of RTU to predict carcass composition and meat traits in fish 
 An understanding of the carcass composition, and particularly the fat content, 
of live fish is important for feeding, breeding and genetics, and for increasing 
the meat yield of the carcass. It is also an important factor in consumer accep-
tance (Probert and Shannon, 2000; Romvári  et al ., 2002; Veliyulin  et al ., 2005). 
Traditionally, carcass composition in fish was determined by comparative slaugh-
tering followed by chemical analysis (Oberle  et al ., 1997). Other methods such as 
ultrasound velocity (Suvanich  et al ., 1998; Sigfusson  et al ., 2000) or near-infrared 
techniques (Wold and Isaksson, 1997) are based on fillet samples or dead fish. 
However, fish production is heavily dependent on quick, accurate and, above all, 
non-invasive methods to predict carcass composition in live fish (Probert and 
Shannon, 2000; Veliyulin  et al ., 2005; Silva  et al ., 2010a). Comprehensive stud-
ies using image techniques such as CT (Romvári  et al ., 2002; Hancz  et al ., 2003; 
Kolstad  et al ., 2004), MRI (Collewet  et al ., 2001; Veliyulin  et al ., 2005) and RTU 
(Bosworth  et al ., 2001; Rodrigues  et al ., 2010; Silva  et al ., 2010a) have shown 
that these techniques are able to predict carcass traits in fish. From a practical 
point of view, CT has several characteristics that make it the preferred technique 
for  in vivo  evaluation of carcass composition in fish. In fact, RTU is a simple, 
rapid and reasonably priced technique (Stouffer, 2004). Additionally, as water is 
an excellent coupling medium between transducer and fish, the RTU images can 
be captured when the fish are in the water (Crepaldi  et al ., 2006). Over the years, 
this technique has been shown to be sufficiently precise and accurate to be used as 
a tool for carcass composition studies (e.g., De Campeneere  et al. , 2001). Despite 
these attributes, little information is available about the use of RTU to predict 
carcass composition in fish. Examples of studies that use RTU images to predict 
fish carcass composition traits are summarized in Table 11.6.  

 The results of these studies are reliable. In farm-raised catfish, Bosworth  et 
al . (2001) reported that ultrasound measurements of muscle area in live fish are 
strongly correlated with the equivalent measurements take on the carcass ( r  = 
0.84–0.94;  P  < 0.001), but in meat yield measurements there was only moderate 
correlation between the two. A single transverse ultrasound scan accounted for 
40–50% of the variation in meat yield traits in female catfish, and 16–23% in 
male catfish (Bosworth  et al ., 2001). In the same study, using multiple regres-
sions, Bosworth  et al . (2001) found a three-variable model using ultrasound and 
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 Table 11.6      Examples of studies for predicting fish carcass traits using RTU technique  

Reference Objective Results Equipment Notes

Probert and Shannon (2000) Low intensity ultrasound to 
determine fish composition, 
particularly the fat content

Encouraging results 2.0 MHz convex Freshly killed fish

Bosworth  et al . (2001) Determine the relationships 
between meat yield traits 
with body shape traits and 
transverse ultrasound images 
of muscle area measured in 
live catfish

A single ultrasound 
measurement 
explained 40–50% 
and 16–23% of the 
variation in meat yield 
traits of females and 
males, respectively

Toshiba Echocee; 
7.5 MHz convex

Fish were tranquilized

The best three variable 
models using 
ultrasound and body 
shape traits explained 
48–56% and 31–38% 
of the variation in meat 
yield traits in females 
and males, respectively

Bosworth  et al . (2001) Study with 30 market weight 
channel catfish to compare 
muscle area measured from 
transverse ultrasound images 
with muscle area measured 
in fish

Correlations between 
0.84 and 0.94 for 
ultrasound muscle area 
with equivalent carcass 
measurement

Aloka 1700; 
5 MHz linear

(Continued)
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Table 11.6   Continued

Reference Objective Results Equipment Notes

Silva  et al . (2010a) Develop a rapid non-destructive 
and non invasive method to 
predict fillet volume of  Solea 
senegalensis  individuals 
from volume measurements 
obtained  in vivo  after RTU 
image analysis

The best model explains 
98% of the fillet 
volume variation 
and was obtained by 
stepwise procedure 
with S3, S2 and S4 
cross-sectional slices 
volumes

Aloka 500V; 7.5 
MHz linear

Fishes under 
anaesthesia

Rodrigues  et al . (2010) Relationship between the 
traditional solvent-extraction 
fat determination method with 
RTU measurements

Preliminary results with 
RTU images clearly 
support the preferential 
accumulation of fat in 
subcutaneous tissues of 
Senegalese sole

Aloka 500V; 7.5 
MHz linear
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body shape variables that accounted for 48–56% and 31–38% of the variation in 
meat yield traits in females and males, respectively. On the other hand, Silva  et al . 
(2010a) scanned flat fish ( Solea senegalensis ) with an RTU ultrasound with a 7.5 
MHz probe to capture ten cross-sectional slices (Fig. 11.4), from which fillet vol-
ume measurements were obtained after image analysis. The best model accounted 
for 98% of the fillet volume variation and was obtained through volume measure-
ments of three cross-sectional slices.    

 In fish species processing errors combined with potential errors in RTU image 
capture and image analysis may limit the accuracy of models for predicting tissues 
and yield in live fish. For example, fish movement during ultrasound scanning is one 
drawback that limits the use of RTU in fish farms (Probert and Shannon, 2000). In 
general, the use of an anaesthetic (Bosworth  et al ., 2001; Silva  et al ., 2010a) or, more 
radically, the use of freshly killed fish (Probert and Shannon, 2000) were reported 
to reduce fish movement. The need to use these procedures, especially the latter, has 
restricted the use of this technique in fish farms. Fish size is another limiting factor: 
the RTU technique is less effective with small fish (Bosworth  et al ., 2001). However, 
the use of high-frequency probes (7.5–10 MHz) overcomes this problem because 
clearer images can be obtained from proximal anatomical structures.    

 11.6     Using real-time ultrasonography to predict 
intramuscular fat (IMF)  in vivo  

 It is recognized that fat plays an important role in the eating quality of meat 
(Wood  et al ., 2008; Kouba and Sellier, 2011). Intramuscular fat (IMF) content, 
particularly in cattle and swine, affects meat quality, especially the sensory prop-
erties of juiciness and flavour (Huff-Lonergan  et al ., 2002; Thompson, 2004; 
Skiba, 2010). Some studies have shown that IMF or marbling is essential for meat 

Fillet cross-
section area

Dorsal

Skin and subcutaneous fat

 Fig. 11.4      Example of RTU image showing a fillet cross-section area 
obtained after image analysis.  
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acceptability by consumers (Shi-Zheng and Su-Mei, 2009) and for meat industry 
grading (Smith  et al ., 2008a). Before reviewing the use of ultrasound technology 
to examine these features, the differences between IMF and marbling should be 
outlined. IMF refers to the chemically extractable fat in a muscle (Shi-Zheng and 
Su-Mei, 2009) and is an objective measurement, whereas marbling, assessed vis-
ually, refers to the appearance of evenly distributed white flecks or streaks of fatty 
tissue between bundles of muscle fibres (Tume, 2004) and can be subjectively 
assessed with grading scores or objectively assessed when image analysis is used 
(e.g., Faucitano  et al ., 2005; Jackman  et al ., 2008). Both are relevant for meat 
quality evaluation and are closely related to each other (correlation coefficients 
of up to 0.8 in Savell  et al ., 1986; Devitt and Wilton, 2001; Kemp  et al ., 2002). 
In general, the percentage of IMF is taken as the reference trait (Brethour, 1994), 
while marbling proves useful in understanding the size and distribution of IMF 
deposit in meat (Ferguson, 2004). These attributes are relevant and reinforce the 
value of using image analysis techniques to evaluate marbling (Du  et al ., 2008). 

 The IMF trait has been extensively studied in swine and cattle (Pethick  et al ., 
2006). It is now generally agreed that the IMF content accounts for a significant 
amount of the genetic variation in the eating quality of meat of these species 
(Shi-Zheng and Su-Mei, 2009; Schwab  et al ., 2009, 2010). In addition, IMF is 
one of the meat quality traits that has the potential to be measured in live ani-
mals (Newcom  et al ., 2002; Aass  et al ., 2009). Thus, a cost-effective and accurate 
method for quantifying IMF  in vivo  is needed, because repeated measurements are 
necessary on one animal, if it is intended for breeding (Williams, 2002; Parnell, 
2004). Furthermore, it is possible to establish the optimal point at which the ani-
mal should be sold with the greatest economic benefit (Houghton and Turlington, 
1992; Rimal  et al ., 2006). To achieve this goal, experimental work was conducted 
to predict IMF  in vivo  through RTU and image analysis (e.g., Brethour, 1990; 
Amin  et al ., 1997). This technique was found to be particularly promising since it 
is relatively cheap, easy to use and animal-friendly (Stouffer, 2004). Even though 
the majority of the studies using ultrasonography to estimate the percentage of 
IMF date from the 1990s (e.g., Brethour, 1990; Sather  et al ., 1996), the technique 
has been used since the 1960s to estimate fat thickness in the back and the rib eye 
area, and by then it was already perceived as a technique with the potential for use 
in IMF prediction (Hedrick  et al ., 1962; Davis  et al ., 1964). 

 The use of ultrasound image analysis to predict marbling in beef cattle was first 
attempted by Haumschild and Carlson (1983). This study had only marginal suc-
cess and was considered too inefficient to have any practical significance. Later 
on, a number of authors (e.g., Brethour, 1994; Hassen  et al ., 1999b; Newcom 
 et al ., 2002) reported results which undoubtedly suggest that IMF was accurately 
predicted with RTU and image analysis. 

 In the early 1990s, Wilson (1992) stated that considerable research and develop-
ment was needed before ultrasound could be effectively employed in cattle produc-
tion and breeding. Since then, ultrasound technology has become a well-established 
and widely accepted method for predicting IMF in live cattle and swine (i.e., 
Brethour, 1994; Herring  et al ., 1998; Hassen  et al ., 1999b, 2001; Chambaz  et al ., 
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2002; Newcom  et al ., 2002; Bahelka  et al ., 2009; Schwab  et al ., 2010). Recently, 
the RTU technology for predicting IMF was chosen as one of the  100 Innovations 
from Academic Research to Real-World Application  (AUTM, 2007). This report 
recognized the work developed by Professor John Brethour from Kansas State 
University, which changed the beef industry by allowing producers to employ a 
cost-efficient method for measuring intramuscular fat in livestock. Nonetheless, 
ultrasound technology can still be further optimized for IMF prediction, by improv-
ing RTU image analysis and image acquisition (Shi-Zheng and Su-Mei, 2009).  

 11.6.1     Using RTU image analysis for IMF prediction 
 The IMF is primarily determined by the distribution pattern of fat flecks in a cross-
section of the LTL muscle, usually between the 12th and the 13th thoracic vertebrae 
(Fig. 11.5a). Although IMF is present in other muscles, the assessment generally is 
performed on a LTL muscle section. The IMF consists of deposits that occur within 
the muscle, which are irregular either in form or in their dispersal. These deposits 
represent a cluster of IMF cells. Individual cells can be very small (40–60 μm) and 
are not visible to the human eye (Anon., 2004). The rough surface and small size 
of IMF deposits cause sound waves to scatter (Brethour, 1990; Whittaker  et al ., 
1992), producing spots on RTU images that are referred to as speckles (Fig. 11.5b). 
This is why ultrasound techniques have the potential to predict IMF  in vivo  after 
RTU image analysis (Brethour, 1990; Whittaker  et al ., 1992).    

 The RTU image analysis for predicting IMF or marbling has been carried out in 
a number of ways over the years. Early studies were conducted to predict marbling 
scores from a subjective analysis of the RTU image features (coherent speckle, 
attenuating and reverberation) from which a speckle score was obtained (Harada 
and Kumazaki, 1979; Brethour, 1990). Speckle scores were estimated visually and 
corresponded subjectively to a point classification scheme. This procedure had the 
benefit of allowing an immediate estimation of the marbling score and, thanks 
to the portability of the ultrasound equipment portability, could be used for farm 
animals (Brethour, 1990). However, it is subjective, and dependent on beam geom-
etry and machine calibration. Furthermore, an understanding of the classification 
scheme and calculation of the score can be difficult for a technician to acquire 
(Brethour, 1990). These negative aspects led Brethour (1990) to observe that ultra-
sound speckle was a ‘quick and dirty’ way to estimate the marbling score of a 
carcass and that, consequently, further improvements were necessary to reduce the 
subjectivity of RTU images. Although a skilled ultrasound technician can visually 
interpret an RTU image and estimate marbling in a live animal with fair accuracy 
(Brethour, 1990, 1994), it was recognized that research using mathematical models 
for RTU image analysis was imperative (Amin  et al ., 1993; Kim  et al ., 1998).   

 11.6.2     Mathematical modelling approaches from RTU image analysis 
 Since the early studies (Harada and Kumazaki, 1979; Brethour, 1990), several 
papers have dealt with the assessment of IMF content and marbling by RTU 
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computer image analysis (Brethour, 1994; Hassen  et al ., 2001; Harron and Dony, 
2009). On the whole, results obtained with mathematical procedures were supe-
rior to the subjective RTU image evaluation, even when this task was conducted 
by an experienced individual (Raeth  et al ., 1985; Couto  et al ., 2011). Since the 
first attempt was made to predict IMF using RTU image analysis, significant 
advances have been possible as a result of developments in equipment and soft-
ware. Table 11.7 summarizes some studies that have used RTU images to predict 
IMF and marbling score.  

 The algorithms used to predict the IMF percentage of live animals were 
based on regression analysis (Whittaker  et al ., 1992; Amin  et al ., 1993; Newcom 
 et al ., 2002; Li  et al ., 2009); neural network (Brethour, 1994; Amin  et al ., 1992; 
Harron and Dony, 2009; Li  et al ., 2009) or support vector machine (Harron and 
Dony, 2009), among others. These algorithms were developed from textural 
RTU image features such as a histogram of pixel grey levels, Fourier-based 

(a)

(b)

Intramuscular fat flecks

Ultrasound speckle originated from IMF flecks

 Fig. 11.5      (a) Image from a cattle lumbar cut section showing LTL muscle and intra-
muscular fat flecks and (b)  RTU image of the LTL muscle showing speckle originated 

from IMF.  
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 Table 11.7      Summary of trials to predict intramuscular far percentage or marbling score from RTU image analysis in cattle and swine  

Reference RTU 
equipment

Probe n Species Anatomical 
position

Y X r 2 RSD Statistical 
analysis

Brethour 
(1990)

Aloka 210 3 MHz, 
107 mm

40 Cattle 12th rib, 
parallel and 
perpendicular

Marbling 
score

Speckle 
patterns

0.45 0.36% Regression

Amin  et al . 
(1993)

Aloka 500 3.5 MHz, 
172 mm

126 Cattle Across 12th and 
13th ribs

IMF% Image texture 
features

1.39 and 
1.42%

Regression

Brethour 
(1994)

Aloka 210 3.5 MHz, 
125 mm

53 and 
108

Cattle 12th rib, 
parallel and 
perpendicular

Marbling 
score

Image texture 
features

0.53 Neural 
network

Kim  et al . 
(1998)

Aloka 500 3.5 MHz, 
125 mm

207 Cattle Across the 11th 
and 13th rib

IMF% Image texture 
features

1.4%

Hassen  et al . 
(1999b)

Aloka 500 3.5 MHz, 
172 mm

144 Cattle Across 11th 
–13th ribs

Hassen  et al . 
(2001)

Aloka 500 3.5 MHz, 
172 mm

500 Cattle Across the 11th 
and 13th rib

IMF% Image texture 
features

0.72 0.84% Regression

Hassen  et al . 
(2001)

Pie 200 3.5 MHz, 
180 mm

500 Cattle Across the 11th 
and 13th rib

IMF% Image texture 
features

0.70 0.85% Regression

Chambaz  et 
al . (2002)

Pie 200 3.5 MHz, 
180 mm

Cattle Across 12th and 
13th ribs

IMF% RTU, hide 
thickness and 
liveweight

0.96% Regression

Aass  et al . 
(2006)

Pie 200 3.5 MHz, 
180 mm

145 Cattle 12th thoracic 
and 1st 
lumbar 
vertebrae

IMF% Image texture 
features

0.48 0.46% Regression

Aass  et al . 
(2009)

Pie 200 3.5 MHz, 
180 mm

172 Cattle 12th thoracic 
and 1st 
lumbar 
vertebrae

IMF% Image texture 
features

0.80 0.66% Regression

(Continued)
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 Table 11.7  Continued

Reference RTU 
equipment

Probe n Species Anatomical 
position

Y X r 2 RSD Statistical 
analysis

Harron and 
Dony 
(2009)

Aloka 500 3.5 MHz, 
172 mm

75 Cattle Across 12th and 
13th

IMF% Image texture 
features

1.37% Recursive 
least 
squares 
filter

Harron and 
Dony 
(2009)

Aloka 500 3.5 MHz, 
172 mm

75 Cattle Across 12th and 
13th

IMF% Image texture 
features

2.67% Support 
vector 
machine

Harron and 
Dony 
(2009)

Aloka 500 3.5 MHz, 
172 mm

75 Cattle Across 12th and 
13th

IMF% Image texture 
features

1.36% Linear neural 
network

Harron and 
Dony 
(2009)

Aloka 500 3.5 MHz, 
172 mm

75 Cattle Across 12th and 
13th

IMF% Image texture 
features

1.36% Multilayer 
perceptron 
network

Sather  et al . 
(1996)

LS-1000 3.5 MHz 149 Swine 3rd and 4th 
lumbar

IMF% Percent object 
area of 
muscle

0.012 Regression

Sather  et al . 
(1996)

CS-3000 3.5 MHz 240 Swine 3rd and 4th 
lumbar

IMF% Percent object 
area of 
muscle

0.04 Regression

Newcom  et al . 
(2002)

Aloka 500 3.5 MHz, 
125 mm

207 Swine Across 10th to 
the 13th ribs

IMF% Image texture 
features

0.32 1.02%

Bahelka  et al . 
(2009)

Aloka 500 3.5 MHz, 
172 mm

144 Swine Last rib IMF% 0.38 0.52% Regression

Schwab  et al . 
(2010)

Aloka 500 3.5 MHz, 
125 mm

Swine Across the 10th 
to 13th ribs

IMF% Image texture 
features

0.81 Regression
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parameters, gradient-based parameters and co-occurrence parameters (Amin 
 et al ., 1997; Hassen  et al ., 1999b; Newcom  et al ., 2002; Harron and Dony, 
2009). Generally, image features can be calculated after selecting a region of 
interest (ROI) over the RTU image; the image analysis software then provides 
an ROI parameter file with the image parameters (Amin  et al ., 1997; Silva  et 
al ., 2010b). 

 In parallel to research on RTU image analysis for IMF evaluation, several 
studies aimed at establishing practical and usable software image analysis for 
livestock production (Amin  et al ., 1997; Aass  et al ., 2006). For example, the 
software proposed by Amin  et al . (1997) was frequently used in both swine 
(Newcom  et al ., 2002; Schwab  et al ., 2010) and cattle (Hassen  et al ., 1999b). An 
RTU image acquisition protocol must be followed in order to use this software. 
For swine, a minimum of four longitudinal images were collected at 7 cm off-
midline across the 10th–13th ribs (Newcom  et al ., 2002; Schawab  et al ., 2009, 
2010). With cattle, four to six images were taken longitudinally without a wave 
guide (standoff block) across the 11th–13th ribs of the animal at a position three-
quarters of the distance from the medial end of the rib eye area to the lateral end 
(Hassen  et al ., 1999b, 2001). Currently, most swine and cattle scanning for IMF 
prediction is carried out using an Aloka 500 V with a 17 cm linear array 3.5 MHz 
transducer (e.g., Hassen  et al ., 2001; Newcom  et al ., 2002; Schawab  et al ., 2010) 
or with a Pie 200 SLC with a 18 cm linear array 3.5 MHz transducer (e.g., Aass 
 et al ., 2009). In either case, ultrasound images of the highest quality must be 
collected. In fact, it is well established that image quality has an impact on mea-
surement accuracy (Houghton and Turlington, 1992; Spangler and Moser, 2009). 
For both swine and cattle, a typical image with acceptable quality includes the 
following features: clearly visible hide and subcutaneous fat layer(s) without any 
sign of uneven couplant or poor transducer contact; LTL muscle area taken from 
across the 10th–13th ribs with clearly visible rib-shadows; even speckle or tex-
ture pattern in the muscle area; and ROI box area completely free of deficiencies 
(Amin  et al ., 1997; Hassen  et al ., 1999b; Newcom  et al ., 2002). It is also impor-
tant to correctly distinguish the various tissue types – subcutaneous fat, muscle, 
blood capillaries, intramuscular fat and bones – for ROI box selection and sub-
sequent use of computer image analysis (Amin  et al ., 1997). During the image 
analysis process, attention must be paid to all these aspects since they affect the 
nature of the ultrasonic backscattered signal and consequently the quality of the 
image (Amin  et al ., 1992). For each image, parameters were generated using 
texture analysis from a 100 × 100 pixels ROI box (Amin  et al ., 1997; Hassen  et 
al ., 2001; Newcom  et al ., 2002). 

 Two observations may be made on the basis of the reports on RTU image anal-
ysis and IMF presented in Table 11.7. First, the developments in ultrasound tech-
nology offer an opportunity to better predict carcass and meat quality with regard 
to IMF. Second, the developing technology of using ultrasound image analysis for 
IMF prediction has been successfully transferred from research to the beef and 
swine industry, which has allowed improvements in carcass quality.    
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 11.7     Optimization of production system and market carcass 
characteristics 

 The most important attribute of meat quality is its overall eating satisfaction, 
which is a function of the combined effects of tenderness, juiciness and flavour 
(Ferguson, 2004). However, today’s meat is usually criticized for its lack of suc-
culence, due to the low levels of intramuscular fat (marbling), which has been the 
outcome of years of genetic selection that has aimed to reduce the fat content of 
the carcass. Moreover, the slaughtering of animals either before or after the opti-
mum point is responsible for significant economic losses (Brethour, 2000), and 
the prediction of the optimum slaughter date is key in maximizing the quality of 
the meat and the income of the producer (Williams, 2002). RTU can be used to 
develop a decision support system to sort animals into management groups prior 
to feedlot feeding, and to predict the optimum slaughter point using computer-
based models to assist the management decisions.  

 11.7.1     Predicting optimum slaughter date 
 Meat tenderness and juiciness are positively correlated with the proportion of 
fat in the carcass (Wood, 1990; Bruns  et al ., 2004). Marbling fat has no direct 
effect on meat tenderness (Renand  et al ., 2003; Thompson, 2004); however, it 
plays an important role in meat juiciness and overall eating satisfaction. In fact, 
marbling leads to greater palatability in panel scores (McPeake, 2001) and lower 
shear force values (Dolezal  et al ., 1982). Carcasses with higher marbling content 
also have a higher subcutaneous and intermuscular fat content, thus insulating the 
muscles during chilling and preventing the phenomenon of cold shortening. 

 The production of carcasses with excessive weight, excessive subcutaneous fat 
and only a small degree of marbling, as well as a lack of uniformity, is a common 
problem in meat production systems. The production of carcasses with the correct 
weight and an optimum amount of subcutaneous fat therefore ensures that the 
meat is protected during the cooling process and also maximizes the organoleptic 
properties. 

 Fatter carcasses undergo a faster drop in pH, which is associated with more 
tender meat; and slower cooling of fatter carcasses contributes to an increase in 
the activity of ageing enzymes, leading to greater tenderness (Wood, 1995). Even 
under normal chilling conditions, carcasses with less than 13 mm of SFD over 
LTL display reduced tenderness due to the cold shortening effect (Wood, 1995). 
Ageing a carcass affected by cold shortening will not alleviate the detrimental 
effects on tenderness. Thus, the SFD is a very important attribute, because it 
protects the meat from thermal shock during refrigeration, which prevents cold 
shortening, oxidation of muscles, browning and microbial contamination of meat 
during skinning. 

 As stated previously, the ability to measure the SFD, LMA and marbling using 
ultrasound images taken from live animals provides an opportunity to study the 
relationship between animal growth and the development of various tissue types. 
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Thus, for a known feeding strategy, it is possible to monitor the growth of SFD 
and LMA and the deposition of marbling as the animals grow and during the 
finishing phase. These data can then be used to project the slaughter date, for a 
pre-defined subcutaneous fat level (Brethour, 2000). For example, Delehant  et 
al . (1996) showed that ultrasound measures, taken on cattle prior to feedlot feed-
ing, combined with performance data collected during the finishing phase, could 
effectively predict LMA, SFD and IMF percentage at any point during the finish-
ing phase. The ability to predict the optimum slaughter date of a particular animal 
is an attractive use of ultrasound technology (Lusk  et al ., 2003). The RTU can be 
used to develop models to predict the number of days necessary to reach a target 
carcass composition under a defined feeding regime (Hassen  et al ., 1999a), or 
to develop a feeding regime that maximizes the production of carcasses with a 
higher-yield or higher-quality grade (Basarab  et al ., 1999). 

 So far, the use of RTU to optimize the slaughter date has been focused on beef 
production; however, RTU can also be successfully used for meat species such as 
swine. RTU is also useful in predicting market-weight slaughter characteristics and in 
predicting the percentage of lean cuts in market-weight swine. The ability to predict 
market-weight slaughter characteristics was investigated by Robinson  et al . (1992). 
Similarly, McLaren  et al . (1989) studied 110 barrows and gilts, which were scanned 
every two weeks from 42 days old up to the point of slaughter to measure SFD at the 
first rib, last rib and last lumbar vertebrae, and to measure LMA at the 10th rib. They 
showed that ultrasound measurements were able to estimate lean gain a day early (up 
to 53 kg BW) immediately prior to slaughter. These authors (McLaren  et al ., 1989) 
concluded that ultrasound data were useful in early selection decisions and for selec-
tions made at market weight for carcass merit in swine. Olsen  et al . (2007) also used 
ultrasound for online classification of swine carcasses and showed that live animal 
ultrasound measurements could predict retail product yield after slaughter. 

 The implementation of RTU in meat production systems can help to reduce the 
production of carcasses with either too little or too much subcutaneous fat. This 
is beneficial for producers – first, as it can lead to reduced feeding costs, and also 
because it improves the quality of the product presented to consumers.   

 11.7.2     Sorting animals prior to feedlot feeding 
 The study by Green  et al . (2000) found a total of 280 inefficiencies in the US beef 
industry, and proved that the majority of losses occurred due to excessive fat pro-
duction, leading to poor consistency in taste. Green  et al . (2000) concluded that 
the beef cattle industry needed to improve carcass quality by improving feeding 
and management practices, as well as by genetic improvement. 

 Ultrasound technology provides information on the optimum sorting of ani-
mals into feedlot groups, based on their body composition predicted by RTU mea-
surements of SFD at the 12th rib level (Houghton and Turlington, 1992; Hassen 
 et al ., 1999a). This approach for beef cattle was shown to be more accurate than 
simple visual appraisal (Delehant  et al ., 1996). Sorting meat animals into uniform 
groups based on frame size, SFD and LMA can help to obtain carcasses with 
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uniform slaughter weight and consistent composition, which can then be sold at 
the optimal time (Houghton and Turlington, 1992; Wall  et al ., 2004; Rimal  et al ., 
2006). When cattle have an average initial SFD of more than 3 mm, ultrasound 
is useful in projecting the number of days required to reach a target SFD level, 
which allows animals to be clustered into groups for more effective marketing 
(Brethour, 2000). 

 Ultrasound provides information about the carcass of each animal individu-
ally, and if the data are collected when animals start on feed, it can also provide 
information that can be used to sort animals into adequate feeding regimes (Lusk 
 et al ., 2003). Therefore, RTU contributes to reducing the problem of overfeeding, 
improves the efficiency of the production system and increases the income of the 
meat producers (Lusk  et al ., 2003; Pyatt  et al ., 2005). For example, Basarab  et al . 
(1999) used ultrasound to sort beef cattle three to four months before slaughter 
into more uniform groups, and this strategy displayed positive effects on growth 
rate, feed efficiency, carcass yield and quality grade, as well as increasing the 
net return by $15–$27 per head slaughtered. Similarly, with swine, Gresham  et 
al . (1992) showed that RTU was able to separate either live animals or carcasses 
using a single SFD measurement along with live or carcass weight. Gresham  et al . 
(1992) concluded that RTU can be used in a commercial environment to achieve 
accurate measurements of carcass value or of compositional differences between 
the carcasses. 

 Variation among cattle within a pen diminishes opportunities for precision 
feeding. If cattle within a pen are more uniform in their characteristics, they can 
be fed more precisely according to requirements; this is preferable to using an 
average measurement to determine feeding, as this can overfeed or underfeed 
a portion of the cattle (Trenkle and Williams, 1997). The costs and the labour 
required to operate the system remain the main barriers to the adoption of this 
technology (Basarab  et al ., 1999). However, recent developments in ultrasound 
equipment, along with remote sensing and infrared technologies, may make the 
system of sorting cattle for feeding purposes completely non-invasive and also 
less labour intensive Li, 2010.   

 11.7.3     Optimizing marketing strategies 
 A genuine value-based marketing system will necessarily result in some premi-
ums as well as discounts (Trenkle and Williams, 1997); management optimiza-
tion can contribute to increased economic returns and carcass desirability in the 
marketplace. The optimization of management can include strategies such as 
energy concentration in the diets used during growth and in the finishing phase, 
and the length of feeding, among many others. However, the prediction of car-
cass composition pre-slaughter allows the identification of animals with higher 
carcass cutability (Paisley  et al ., 2007), and beef producers are able to provide 
carcasses according to consumer preferences (Williams and Trenkle, 1997). Thus, 
RTU will enhance the profitability of meat producers, as it will allow them to 
raise meat animals that directly correspond to the desired attributes of consumers 
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(Rimal  et al ., 2006). The ultrasound data collected from live animals can be used 
to predict carcass yield and quality grades (Lusk  et al ., 2003), and to enhance 
the meat marketing decisions by optimally targeting carcasses to specific market 
needs. Lusk  et al . (2003) studied the potential use of ultrasound measurements 
taken in the feedlot in guiding pricing decisions for cattle. They found that actual 
carcass merits were reasonably accurately predicted; and that when cattle were 
sorting for live, dressed, or grid-based pricing, an increase of returns of $25 per 
head was achieved compared with marketing all cattle on a live-weight basis.    

 11.8     The future of RTU imaging in the meat industry 
 There have been remarkable achievements in the development of ultrasound as a 
tool for the prediction of carcass composition and meat traits in animals since its 
first application in the late 1950s. The advent of RTU and image analysis have 
made ultrasound a valuable and reliable tool in animal research and production, 
with major applications in genetics, nutrition, carcass value-based marketing and 
monitoring for body fat reserves (Moeller, 2002; Williams, 2002; Parnell, 2004; 
Schröder and Staufenbiel, 2006). For all these applications, ultrasound technol-
ogy will continue to expand as a tool for management practices that affect the 
productivity and profitability of the meat industry (Moeller, 2002; Li, 2010). One 
good example of this is the use of ultrasound technology, coupled with current 
selection methods and molecular tools, to speed up genetic progress in meat traits 
(MacNeil  et al ., 2010; Nalaila  et al ., 2011). Despite the impressive advances in 
ultrasound systems, mainly in the last decade for all meat species, some techno-
logical aspects have the potential for further improvement in the near future. As 
in the past, current developments in ultrasound technology originate in the field 
of medicine, particularly from the very dynamic and expanding field of image 
diagnostics (Stouffer, 2004; Thompson, 2010). Although the needs of the medi-
cal sector are quite different from those of the animal science sector, the same 
medical ultrasound equipment can still be easily used animal science protocols 
(Stouffer, 2004). Therefore, some of the developments in the medical field may be 
potentially useful for animal science too. Increasing ultrasound processing capa-
bility (King, 2006; Wells, 2006), improvements in image quality (Szabo, 2004; 
Smith  et al ., 2008b; Whitsett, 2009), better portability (Ault and Rosen, 2010; 
Thompson, 2010; Bret  et al ., 2011), capacity for online analysis and image stor-
age (Whitsett, 2009; Li, 2010) and reduction of equipment and operational costs 
(Szabo, 2004) are the features that will have the biggest impact on the evaluation 
of carcass composition and meat traits. In fact, these improvements will allow an 
increase in the speed of the RTU data collection process either on the farm or at 
the slaughterhouse. Additionally, faster image analysis and accurate results lead to 
more information being available along the entire production chain (from stable 
to table), which helps the industry to better understand and accurately describe 
the meat products, hence driving improvements in meat quality and productivity 
(Bindon, 2002; Li, 2010).  
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 11.8.1     Prospects for the development of novel ultrasound scanning 
techniques 

 Advances in ultrasound such as synthetic aperture focusing, also known as zone 
sonography (Wells, 2000; Lyons, 2004), and elastrography (O’Brien and Holmes, 
2007; Whitsett, 2009) are likely to be employed in animal science in the future. 
The zone sonography technology allows faster image acquisition and high image 
quality, which will prove particularly useful in situations in which multiple images 
of a subject are required during a scanning session. Elastrography is a technology 
with the potential to improve the accuracy with which marbling can be predicted. 
The use of three-dimensional (3-D) ultrasonography is another imaging technique 
with promising applications in the evaluation of carcass composition and meat 
traits. As stated by several authors (Mitchell  et al ., 2001; Kvame and Vangen, 
2006; Monziols  et al ., 2006; Alston  et al ., 2009), the use of volume measurements, 
along with image techniques such as MRI and CT, is an attractive approach for 
predicting carcass composition and meat traits. Although 3-D ultrasound is more 
costly than conventional ultrasound, it is not prohibitively expensive when incor-
porated into large breeding programmes. 

 Despite the impressive advances in ultrasound systems, the software and algo-
rithms still need to be constantly reviewed, and comparisons between systems 
will still be necessary to find the most suitable means of predicting carcass com-
position and meat traits for all producing species (Williams, 2002). Future devel-
opments in molecular genetics, together with more efficient data collection and 
dissemination using web-based databases, will increase the value of RTU technol-
ogy for acquiring information on carcass composition and meat traits (MacFarlane 
and Simm, 2008; Bertrand, 2009).    

 11.9     Conclusion 
 Real-time ultrasonography imaging is a versatile and dynamic technology with 
many current and potential applications in animal science research and animal 
production. The attributes of the RTU technique have led to its current wide-
spread use in animal science for the  in vivo  prediction of carcass composition and 
meat traits in several species. The results obtained with RTU are likely to play a 
major role in the meat industry by providing accurate and objective carcass and 
meat traits information in live animals. In the future, it is probable that modern 
ultrasound techniques will continue to be used in animal science, bringing about 
further advances in value-based marketing and in precision meat production 
systems. Research will be focused on developments in ultrasound practicabil-
ity, portability, cost and public acceptability, and the rapidly advancing field of 
molecular genetics and the dissemination of web-based databases will further 
expand the capabilities of RTU as a tool for evaluating carcass composition and 
meat traits.     
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