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Abstract Although building structures can be perceived as a combination of primary frames in two orthogonal
directions, they are three-dimensional systems that usually present a very complex dynamic behavior due to
irregular geometric configurations, in particular due to plant stiffness or mass eccentricities. This asymmetric
geometry results in coupled lateral–torsional motion produced by wind and seismic loading with consequences
in the design of lateral and corner columns. A considerable amount of research effort has been devoted to
develop structural control systems to reduce the effects of plan asymmetries and to improve the dynamic
behavior of these buildings. This paper presents a numerical analysis of a semi-active control system with MR
dampers designed to reduce lateral–torsional responses of a plan asymmetric building structure excited by El
Centro NS earthquake ground motion. A parametric study comprising passive and semi-active control modes
is given to demonstrate the effectiveness of the proposed control system with respect to uncontrolled case.
The numerical results prove the efficiency of the semi-active control system and its potential use in mitigating
coupled lateral–torsional structural responses.

Keywords Structural control · Asymmetric structures · Semi-active control · MR dampers

1 Introduction

Simplified methods for seismic design of buildings are usually based on the lateral motion of the structural
system, assuming that it can be modeled by frames in two orthogonal directions. The torsional component
can be introduced in the design process using the rigid diaphragm approach in which floor diaphragms are
assumed rigid in their own plane to obtain a more accurate representation of the seismic response. However,
building structures are complex systems that typically present plan and/or elevation asymmetries as a result of
irregular stiffness, strength and/or mass distribution. For instance, plan asymmetries generate correlated plan
translations and rotations that lead to an irregular deformation distribution demand among resisting planes
namely at the corner columns. As a consequence, there is an increase in force and ductility demand leading
to different damage in these elements that generates structural systems with uneven distribution of strength
with a large resistant capacity in some load-resisting planes. It should be noted that nowadays, the availability
of powerful computational tools has made possible to model complex three-dimensional structures to include
combined lateral–torsional motion with high degree of accuracy.
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The complex response of irregular building structures can be significantly attenuated using a wise distrib-
ution of the structural elements and/or properties that can be modified through the height of the structure in a
stepwise fashion at prescribed story levels. Another possible approach is to use control systems to reduce the
effects of coupled lateral–torsional motion due to wind or earthquake loading. In fact, a considerable amount
of research effort has been devoted over the last 20years on developing smart control systems for vibration
reduction of structures, in particular simplified structural systems with regular geometry. It has been shown that
supplemental energy dissipation systems represent an effective approach to reducing the magnitude of both
plan translations and rotations in irregular building structures [1–6]. The performance of these control systems
can be considerably improved using active or semi-active actuators which can deal with structural nonlineari-
ties, variations in the dynamic loading and modifications of the properties of structural elements. Among the
different vibration control technology available, magnetorheological (MR) fluid-based devices seem to have
the suitable features to develop simple, efficient and cost-effective semi-active control systems for vibration
mitigation in civil structures. MR fluids are essentially non-colloidal suspensions of micro-sized magnetisable
particles in an inert base fluid along with some additives. The yield strength of MR fluids can be directly modi-
fied in the presence of a magnetic field making them particularly adequate to develop control devices in which
controlled fluid motion is required such as smart dampers. Thus, MR dampers present a variable damping with
the ability to transmit force in a controlled manner in accordance with a prescribed magnetic field, improving
their energy dissipation performance compared with traditional dampers. This constitutes an important feature
to develop enhanced control systems for many engineering applications, such as the dynamic response of
both regular and irregular building structures. In this regard, several studies had already been conducted to
investigate the effectiveness of these semi-active actuators to control lateral–torsional coupled responses of
asymmetric building structures [7–9].

This paper is devoted to evaluate the effectiveness ofMRdampers tomitigate the combined lateral–torsional
response of a three-dimensional asymmetric-plan structure under seismic excitation.

The numerical formulation and the dynamic behavior of irregular building structures are initially addressed.
The principle of operation of a semi-active control system with MR dampers for a two-story, one-bay building
structure with one-way asymmetric structural plan under an unidirectional earthquake ground motion is also
presented. In this case, two MR dampers installed between the base and the first floor with a symmetric
distribution with respect to the earthquake loading direction are used in passive and semi-active control modes.
Numerical simulations are carried out to evaluate the effectiveness of MR dampers in mitigating coupled
lateral–torsional motions of the asymmetric building structure. The results for the passive and semi-active
configurations are compared with those of the uncontrolled case. Finally, the effectiveness of each control
mode is analyzed and evaluated emphasizing the main advantages and limitations of each methodology in
controlling the response of the irregular structure. This paper is based upon Braz-César and Barros [10], but
the current paper has been enhanced, including new performance criteria to better evaluate the effectiveness
of the proposed semi-active control system.

2 Numerical formulation

A two-story three-dimensional building structure subjected to a unidirectional seismic excitation will be used
to study the performance of a control system with MR dampers. The schematic representation of the model
is shown in Fig. 1. In this case, two MR dampers are located at the first floor level, which can be operated
in passive and semi-active configurations. The floor diaphragm can be considered rigid in its own plane, and
therefore, the dynamic analysis is conducted using a lumpedmass model where the whole storymass is lumped
at the floor level.

Due to the rigid diaphragm approximation, the response of the structure can be described by three degrees-
of-freedom (DOFs) per floor, i.e., two orthogonal translations and a rotation about the vertical axis, resulting
in a six DOFs system. Thus, the displacement vector can be expressed as

X (t) = {x1(t), y1(t), θ1(t), x2(t), y2(t), θ2(t)}T (1)

where xi (t) and yi (t) denotes the displacements of the center of mass of the i th floor in the x- and y-directions,
respectively, and θi (t) is the vector of rotations of the i th floor about the vertical axis. The asymmetric con-
figuration of the two-story structure is obtained by adding an eccentric point mass ma in both floors as shown
in Fig. 2. The resultant system has a symmetric mass distribution on the y-direction and a non-symmetric
distribution with respect to the x-axis, which is characterized by the mass eccentricity ey depicted in Fig. 2.
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Fig. 1 Two-story building under unidirectional seismic excitation with two MR dampers

Fig. 2 Floor slab with asymmetric mass distribution

The equation of motion of the building structure subjected to unidirectional earthquake excitation and
including the control devices or control forces is given by

MẌ(t) + CẊ(t) + KX (t) = −Mλẍg(t) + � f (t) (2)

where M, C and K are the mass, damping and stiffness matrices, respectively. The seismic loading ẍg (i.e., in
the x-direction) is applied in the structural system using the location vector

λ = {1, 0, 0, 1, 0, 0}T (3)

The force vector describing the two control forces is given by

f (t) = {
fc,1(t), fc,2(t)

}T (4)
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and the correspondent location matrix can be expressed as
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Since the slab has a rigid body motion, the mass matrix represents a lumped system with two masses with
mass eccentricities ey and ex = 0. Moreover, the additional point mass ma has a negligible rotational inertia,
and therefore, the mass matrix is expressed as
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wheremi and Ii represent the lumped masses and moments of inertia of the i th floor, respectively (with i = 1,
2). The stiffness matrix is expressed in accordance with the displacement vector as
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where

Kxi =
4∑

j=1

kx j , Kyi =
4∑

j=1

kyj , Kθ i = l2y
4
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kx j + l2x
4

4∑

j=1

kyj for i = 1, 2 (8)

are the stiffness coefficients (the coordinates xi and yi can be expressed in terms of the in-plane dimensions
of the floor slab lxi and lyi in the x- and y-directions, respectively). The damping matrix can be constructed
from the mass and stiffness matrices using the so-called proportional damping, which can be expressed as

C = αM + βK (9)

where α and β are coefficients that can be determined from two vibration modes of the system. The state space
equation of the controlled structure can be defined as

ż(t) = Az(t) + B f (t) + Eẍg(t) (10)

where z(t) = {X (t), Ẋ(t)}T is the state space vector, A is the system matrix, B is an additional matrix
accounting for the position of the control forces in the structure, f is a column vector with the control forces
(same as Eq. 4) and E is the input vector that accounts for the location of the earthquake loading, which are
given by

A =
[
0 I
−M−1K −M−1C

]
, B =

[
0
M−1�

]
, E =

[
0
−λ

]
(11)
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Table 1 Parameters of the two-story building structure

Parameter Value Parameter Value

Aspect ratio of the floor slab (ly/ lx ) 0.75 Damping ratio for the first and fourth modes (ζ1, ζ4) 2 (%)
Lumped mass of the first floor (m1) 1750 kg Polar moment of inertia (first floor), I1 3646 (kgm2)
Lumped mass of the second floor (m2) 1750 kg Polar moment of inertia (second floor), I2 3646 (kgm2)
Lateral stiffness of each column (kx j ) 1050 kN/m Lateral stiffness of each column, kyj 355 (kN/m)

Fig. 3 Time-scaled El Centro NS earthquake ground motion (0.5t)

The response of the system can be determined using the state space output vector

ŷ(t) = Ĉz(t) + D̂ f (t) + F̂ ẍg(t) (12)

where matrices Ĉ, D̂, and F̂ are computed as
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⎡
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when displacements, velocities and accelerations of each floor/mass are being monitored. The output vector
can be defined in accordance with the necessary output signals.

3 Case study

The following example presents a numerical analysis of a two-story asymmetric structure under unidirectional
seismic loading to investigate the effectiveness of the semi-active control systemwith twoMR dampers located
between the base and the first floor. The properties of the lumped mass structure are given in Table 1.

In this case, the asymmetric configuration of the structural system is achieved by adding an eccentric point
mass ma = 250 kg in both floors (see Fig. 3). The damping matrix can be constructed in accordance with the
formulation presented in Eq. 9, in which α = 0.476685 and β = 0.000671.

The N-S component of the El Centro 1940 ground motion (peak acceleration of 3.42 m/s2) will be used
as the unidirectional seismic excitation. The mass and stiffness properties were defined in such a way that the
building structure represents a reduced scale model (1:2). Thus, the earthquake time history was scaled in time
by a factor of 0.5 to characterize the magnitude of displacements that would be observed in experiments tests.
In this case, the time was scaled to 20% of the full-scale earthquake time history as displayed in Fig. 3.

A numerical model of a small-size commercial MR fluid damper RD-1005-3 manufactured by LORD
Corporation is used in this study. This MR damper has been widely studied to design semi-active control
systems for a wide variety of engineering applications and also to investigate and derive numerical models
for this type of devices. The nonlinear hysteretic behavior of MR dampers can be modeled by parametric and
nonparametric models. A well-known parametric model is the modified Bouc–Wen model illustrated in Fig. 4.

According to the mechanical arrangement depicted in Fig. 4, the predicted damper force FMR produced
by the MR damper can be computed from

FMR = ρs + c′
0(ẋ

′ − ẏ′) + k′
0(x

′ − y′) + k′
1(x

′ − x ′
0) = c′

1 ẏ
′ + k′

1(x
′ − x ′

0) (14)
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Fig. 4 Modified Bouc–Wen or Spencer model [11]
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is dependent on the evolutionary variable

ṡ = δ ẋ ′ − ζ
∣
∣ẋ ′∣∣ s |s|n−1 − γ ẋ ′ |s|n (16)

In this formulation, k′
1 and c

′
0 are the accumulator stiffness and the viscous damping observed at larger velocities,

respectively. The parameter c′
1 is used to produce the roll-off that is observed in the experimental data at low

velocities, k′
0 is used to control the stiffness at large velocities and x ′

0 is the initial displacement associated
with the nominal damper force f0 due to the accumulator. Parameters ζ, γ, δ and n are used to control the
linearity in the unloading and the smoothness of the transition from the pre-yield to the post-yield region. Some
of the modified Bouc–Wen parameters can be described by constant values, i.e., they are current-independent
parameters. To take into account the influence of the magnetic field, parameters ρ, c′

0 and c
′
1 are usually defined

as a linear function of the current, i.e., they are current-dependent parameters described by

ρ(u) = ρa + ρbu (17)

c′
0(u) = c′

0a + c′
0bu (18)

c′
1(u) = c′

1a + c′
1bu (19)

Besides, to accommodate the dynamics involved in theMRfluid reaching rheological equilibrium, the following
first-order filter is used

u̇ = −η(u − v) (20)

in which the applied current u is described with a time delay relative to the desired current v and η is the
time constant of the first-order filter. The model parameters of a RD-1005-03 MR damper were identified
based on experimental data [12]. The current-independent parameters are: δ = 10.013, ζ = 3.044mm−2,
γ = 0.103mm−2, k′

0 = 1.121N/mm, f0 = 40N (related to x ′
0) and n = 2 (pre-defined parameter). It was

found that the current-dependent parameters can be described by polynomial functions as follows

ρ(u) = −826.67u3 + 905.14u2 + 412.52u + 38.24 [N/mm] (21)

c′
0(u) = −11.73u3 + 10.51u2 + 11.02u + 0.59 [N s/mm] (22)

c′
1(u) = −54.40u3 + 57.03u2 + 64.57u + 4.73 [Ns/mm] (23)

and finally, the first-order filter is described by η = 140 s−1.
A set of numerical simulations was carried out to determine the responses of the two-story asymmetric

system. Initially, the response of the uncontrolled structure was obtained from Eq. 10 by setting fc = 0 (i.e.,
no control forces). The response of the uncontrolled system will be used as the reference signal to evaluate the
performance of the passive and semi-active control systems. A new numerical simulation was carried out to
obtain the responses of the structure using the MR dampers in a passive OFF mode (zero current input) and
passiveONmode (maximumvalue of the operating current). In this case, the actuators act on the first floor/mass
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Fig. 5 Block diagram of the clipped-optimal LQG controller

in a passive control mode (i.e., as passive energy dissipation devices) producing two passive control forces fc1
and fc2 along the x-direction. Finally, the MR dampers are used as semi-active actuators in combination with
a traditional optimal LQG controller. Each control mode is intended to reduce the coupled lateral–torsional
response of the structural system.

All the simulations were carried out in MATLAB/Simulink. The block diagram of the semi-active LQG
control system for the two-story building structure is shown in Fig. 5. The controller uses floor accelerations
and displacements across the dampers to compute the control signal. Indeed, a semi-active control strategy
based on acceleration feedback seems to bemore reliable for structural control applications instead of full-state
feedback or velocity feedback controllers.

The clipped-optimal (CO) algorithm represents a traditional semi-active control strategy for MR dampers.
This classical controller has proved capable of exploring in a very efficient manner the potential of these semi-
active actuators, in particular the variable damping force. The main objective of the semi-active controller for
MR dampers is to append n force feedback loops to induce each device to produce approximately a desired
control force [13–16]. In order to do this, the control strategy combines two controllers:

• A primary controller that includes an optimal control unit which is responsible for determining the optimal
or desired control forces of an ideal active control system that should be applied to the structure to reduce
the system response;

• A secondary controller or bistate selector (clipping system). Since only the current/voltage applied to the
current driver of the MR damper can be directly controlled, this controller has the function to generate the
corresponding control signal in the form of a bistate control output by clipping the optimal control forces.
This accounts for the nonlinear nature of MR dampers, ensuring that they only produce dissipative forces
(i.e., by adapting the ideal control action to the semi-active nature of the actuator).

In this case, the primary controller uses a linear quadratic Gaussian (LQG) regulator to compute the optimal
control forces. The LQG controller combines a linear quadratic regulator (LQR) with a Kalman filter or linear
quadratic estimator (LQE). The Kalman filter is used to reconstruct the state vector based on a few output
measurements of a noisy system, and then, the LQR component is used to compute the optimal input signal
based on the estimated state vector. The observer gain L must be adjusted to achieve the required performance.
A high gain allows the filter to follow the observations more closely, while a low gain follows the predictions
more closely. This is accomplished by setting

Qw = qw Ie, Rv = rv Im (24)
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where Ie and Im are identity matrices related to the number of excitation inputs and measurement signals,
respectively. Finally, the LQG controller is a combination of a Kalman filter (or a LQE) with a linear quadratic
regulator (LQR), i.e.,

˙̂x = (A − LĈ)x̂ + Bû + L ŷ

û = −Gx̂ (25)

where G and L are the LQR and LQE gain matrices, respectively, that need to be adjusted to obtain the desired
control action. The solution is based on the separation principle in which the full-state feedback controller (i.e.,
the LQR) and the Kalman filter are designed independently and then combined to form the LQG compensator.

The selection of Qw and Rv depends on the level of accuracy attributed to the model and the measurements.
For an accurate system model measured with poor sensors, one should probably select Qw to be larger than
Rv, while for a poorly modeled system with accurate measurements, one should probably choose Rv to be
larger than Qw. A common approach is to set one of the tuning parameters and adjust the other parameter
until the result is satisfying. The key is to have a Kalman filter that removes as much noise as possible without
being too slow to adapt to changes.

The secondary controller is used to convert the control forces estimated by the primary controller into a bis-
tate control signal (bang–bang/on–off controller) to command theMR actuators. The damping forces generated
by the MR dampers are dependent on the local responses of the structural system, and therefore, the devices
cannot always produce the desired optimal control forces. Consequently, only the control voltage/current can
be directly controlled to change the damper force and a force feedback loop is then incorporated in the control
algorithm to make the MR damper to generate approximately the desired optimal control force. To achieve
this objective, the following command signal algorithm is applied

FMR =
{
fc, fc · ẋ ′ < 0
0, otherwise (26)

When the MR damper is delivering the desired optimal force, the operating voltage/current should remain the
same. If the magnitude of the damper force is smaller than the magnitude of the desired optimal force and the
two forces have the same sign, the voltage/current applied to the current driver is increased to the maximum
level. Otherwise, the commanded voltage is set to zero. The algorithm for selecting the command signal for
the i th MR damper can be stated as

vi = VmaxH [( fci − fi ) fi ] (27)

where Vmax is the saturation voltage/current of the MR damper, fci is the desired optimal control force, fi is
the measured damper force and H is the Heaviside step function.

Hence, the clipped-optimal LQG control algorithm is a semi-active controller that combines a LQGmethod
with a bistate selection unit. The linear optimal controller is used to compute the desired control force f based
on the measured structural responses y and control force vector f applied to the structure through the semi-
active device. Next, a secondary controller comprising a clipping unit generates a bistate control signal based
on the optimal force calculated by the first controller so that it can be adapted to the dissipative nature of the
MR damper allowing this actuator to generate approximately the desired control force [13–16]. To illustrate the
application of the type of control scheme, in the present example it is assumed that acceleration measurements
and displacement across the dampers are the only state variables available to design the optimal controller. A
probable location of the accelerometers is depicted in Fig. 6.

The translational and rotational response of the asymmetric structure is described by four accelerometers
on each floor, two on the x-direction and two on the y-direction, with a total of eight accelerometers. Addi-
tionally, two displacement sensors (e.g., two LVDTs) are used to measure the displacements across the two
dampers, which represent the displacement of each corner of the first floor slab in the x-direction. These sensor
measurements define the output response vector

ŷ = {
x1,1, x1,2, ẍ1,1, ẍ1,2, ÿ1,1, ÿ1,2, ẍ2,1, ẍ2,2, ÿ2,1, ÿ2,2

}T (28)

The Kalman gain L is calculating by adjusting Qw and Rv. It is assumed that each sensor has identically
distributed and statistical independent Gaussian white noise and therefore the covariance between the mea-
surement noise and the process noise. Since the measurement noise is equal and independent for all outputs, Rv
is a diagonal matrix. Then, Qw is tuned through qw until the LQE output is adequate. Likewise, the weighting
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Fig. 6 Location of the measurement sensors in each floor (Eight accelerometers and two LVDTs)

Table 2 Peak responses under the time-scaled El Centro earthquake (0.5t)

Control strategy x (cm) ẋ (cm/s) ẍ (cm/s2) θ (rad) θ̇ (rad/s) θ̈ (rad/s2) drift (cm) �θ/h(rad) f(N)

Uncontrolled 1.005 28.30 813 8.6e−4 0.028 0.901 1.005 8.6e−4 –
1.652 42.76 1211 1.4e−3 0.041 1.395 0.658 5.2e−4 –

Passive 0.933 25.61 728 7.6e−4 0.024 0.805 0.933 7.6e−4 213
OFF 1.523 39.40 1100 1.2e−3 0.036 1.227 0.603 4.6e−4 183
Passive 0.540 15.03 462 3.8e−4 0.0125 0.513 0.540 3.8e−4 1546
ON 0.857 24.43 837 6.3e−4 0.0199 0.691 0.367 2.5e−4 1459
Clipped-Optimal 0.527 13.55 531 3.3e−4 0.0119 0.524 0.528 3.3e−4 1421
LQG controller 0.819 23.77 729 6.0e−4 0.0191 0.738 0.346 2.7e−4 1416

The first and second lines represent the peak responses for the first and second floors, respectively (first and second MR dampers
in the case of the damper force). Passive OFF represents zero current input, and passive ON represents the maximum operating
current

matrices Q and r of the LQR controller must be adjusted in order to determine the state gain matrix G. In the
present case, different configurations of the weighting matrix Q and the control parameter r were evaluated
by measuring the effect of each combination in the system response. The following weighting parameters
provided the best results in reducing the structural responses of the asymmetric system

Q =
[
K 0
0 0

]
; R = r

[
1 0
0 1

]
; r = 2 × 10−5 (29)

It is important to note that the performance of the optimal controller is dependent on the selection of the
weighting matrices. Thus, the results attained with the proposed LQG controller could be further improved by
optimizing the weighting parameters with advanced search/optimization tools or soft computing techniques
such as genetic algorithms or neural networks.

4 Results

A comparison of the peak responses of each control mode to those of the uncontrolled system is summarized
in Table 2 (numbers in bold indicate reference and lower values). The results show the effectiveness of the
proposed semi-active control system in reducing the coupled lateral–torsional response of the three-dimensional
structure. In this case, the semi-active system outperforms the passive control modes in almost all peak
responses (with exception of the angular acceleration, although with a significant reduction compared with the
uncontrolled case). The results also show that using the MR dampers in a semi-active configuration results in
lower peak drifts compared with the passive ON configuration. Regarding the passive control mode, it can be
seen that the passive OFF configuration has almost a reduced effect in the system response (around 10%). The
passive ON mode has a major effect in the system response that results in peak responses being significantly
reduced especially the torsional motions (around 55%). As to be expected, themaximum passive control action
is achieved by keeping the MR damper permanently switched on, which is clearly observable in the results of
the numerical analysis.

In general, the LQG controller is able to reduce both translational and torsional responses of the asymmetric
structure, offering significant performance gains in controlling the torsionalmotion of the floor decks. Although
in some cases the passive configuration performed slightly better than the semi-active system, the latter present
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Table 3 Evaluation criteria for the structural responses (peak ratios)

Evaluation criterion Description

J1 = max
t,i

( |xi,c(t)|
|xmax,u (t)|

)
Maximum peak floor displacement ratio whereby the floor displacements over time are
normalized by the maximum peak uncontrolled displacement

J2 = max
t,i

( |ẋi,c(t)|
|ẋmax,u (t)|

)
Maximumpeak floor velocity ratiowhereby the floor velocities over time are normalized
by the maximum peak uncontrolled velocity

J3 = max
t,i

( |ẍi,c(t)|
|ẍmax,u (t)|

)
Maximum peak floor acceleration ratio whereby the floor accelerations over time are
normalized by the maximum peak uncontrolled acceleration

J4 = max
t,i

( |θi,c(t)|
|θmax,u (t)|

)
Maximum peak floor rotation ratio whereby the floor rotations over time are normalized
by the maximum peak uncontrolled rotation

J5 = max
t,i

( |θ̇i,c(t)|
|θ̇max,u (t)|

)
Maximum peak floor angular velocity ratio whereby the floor angular velocities over
time are normalized by the maximum peak uncontrolled angular velocity

J6 = max
t,i

( |θ̈i,c(t)|
|θ̈max,u (t)|

)
Maximum peak floor angular acceleration ratio whereby the floor angular accelerations
over time are normalized by the maximum peak uncontrolled angular acceleration

Subscript i = 1, 2 denotes the story index and subscripts c and u represent controlled and uncontrolled cases

Table 4 Evaluation criteria for the structural responses (RMS ratios)

Evaluation criterion Description

J7 = max
t,i

( ||xi,c(t)||
||xmax,u (t)||

)
MaximumRMS floor displacement ratio, which is given in terms of the maximumRMS
absolute displacement over time with respect to the uncontrolled case

J8 = max
t,i

( ||ẋi,c(t)||
||ẋmax,u (t)||

)
Maximum RMS floor velocity ratio, which is given in terms of the maximum RMS
absolute velocity over time with respect to the uncontrolled case

J9 = max
t,i

( ||ẍi,c(t)||
||ẍmax,u (t)||

)
Maximum RMS floor acceleration ratio, which is given in terms of the maximum RMS
absolute acceleration over time with respect to the uncontrolled case

J10 = max
t,i

( ||θi,c(t)||
||θmax,u (t)||

)
Maximum RMS floor rotation ratio, which is given in terms of the maximum
RMS absolute rotation over time with respect to the uncontrolled case

J11 = max
t,i

( ||θ̇i,c(t)||
||θ̇max,u (t)||

)
Maximum RMS floor angular velocity ratio, which is given in terms of the maximum
RMS absolute angular velocity over time with respect to the uncontrolled case

J12 = max
t,i

( ||θ̈i,c(t)||
||θ̈max,u (t)||

)
MaximumRMSfloor angular acceleration ratio,which is given in terms of themaximum
RMS absolute angular acceleration over time with respect to the uncontrolled case

J13 = max
t,i

( ||di,c(t)||
||dmax,u (t)||

)
Maximum RMS inter-story drift ratio, which is given in terms of the maximum RMS
absolute inter-story drift over time with respect to the uncontrolled case. Inter-story
drift di = δi/hi

Subscript i = 1, 2 denotes the story index and subscripts c and u represent controlled and uncontrolled cases

overall the best performance. The proposed controller presents a performance improvement in reducing the
peak responses exhibiting the best overall performance when compared with the passive configurations. The
maximum ratios of the peak responses attained with this controller are generally smaller than that of passive
ON configuration, with the significant exception of the angular acceleration of the second floor. Besides, the
peak control force achieved by the clipped-optimal LQG algorithm has the lowest value (1416 kN).

Next, a new set of evaluation criteria including normalized and RMS responses and also control require-
ments was used to complete the performance assessment of each control mode. The first six criteria (J1 to J6)
are based on the peak responses as shown in Table 3.

The next six criteria (J7 to J13) are related to the RMS structural responses (see Table 4). In these equations,
| · | denotes the absolute value and || · || is the L2 norm given by

‖·‖ =
√

1

t f

∫ t f

0
[·]2 dt (30)

where t f = tmax represents the total excitation duration and t f represents a sufficient large time to allow
the response to attenuate. Finally, the last three performance indices (J14 to J16) are intended to evaluate the
effectiveness of the MR dampers (Table 5).
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Table 5 Evaluation criteria for the MR dampers (actuators)

Evaluation criterion Description

J14 = max
t, j

( | f j (t)|
W

)
Maximum control force generated during the control action
normalized by the weight of the structure (where W represents the
total weight of the structure)

J15 = max
t, j

(∑
j Pj (t)

ẋmax·W
)

Maximum control power normalized by (ẋmax · W ), i.e., the
uncontrolled velocity times the weight of the structure

J16 = max
t, j

(∑
j

1
t f

∫ t f
0 Pj (t)

ẋmax·W

)

Total power required to control the response of the structure
normalized by (ẋmax · W ) with actuator index j= 2

Table 6 Results of the evaluation criteria for each control strategy

Evaluation criteria Passive control

Passive OFF Passive ON CO-LQG

Peak responses J1 0.922 (78%) 0.519 0.496 (−4%)
J2 0.921 (61%) 0.571 0.556 (−3%)
J3 0.908 (31%) 0.691 0.602 (−13%)
J4 0.892 (94%) 0.459 0.441 (−4%)
J5 0.877 (80%) 0.488 0.468 (−4%)
J6 0.879 (77%) 0.496 0.529 (7%)

RMS responses J7 0.861 (127%) 0.380 0.386 (2%)
J8 0.859 (131%) 0.372 0.377 (1%)
J9 0.862 (116%) 0.400 0.412 (3%)
J10 0.855 (146%) 0.347 0.339 (−2%)
J11 0.852 (142%) 0.352 0.356 (1%)
J12 0.849 (125%) 0.378 0.433 (15%)
J13 0.860 (132%) 0.371 0.383 (3%)

Control J14 5.4e−3 (−86%) 0.039 0.038 (−3%)
J15 6.0e−3 (−78%) 0.027 0.024 (−11%)
J16 1.1e−3 (−58%) 2.6e−3 2.4e−3 (−8%)

Values under parenthesis are the percentage of reduction with respect to the passive ON case

The results achieved for each control configuration are presented in Table 6. It should be noted that small
values of the evaluation criteria are generally more desirable and indicate a better performance of the control
system under analysis. Thus, the results highlight the effectiveness of the semi-active systems in reducing peak
responses but also reveal the low performance of the proposed controllers with respect to the RMS values of
the system responses in comparison with best passive control configuration.

As can be seen, the overall performance of the clipped-optimal LQG controller outperforms the passive ON
mode showing a significant peak response reduction in the translational displacement of the second floor (up
to 13% compared with the passive ON mode). On the other hand, the normalized peak inter-story rotation is
higher than that achieved with the best passive configuration. Regarding the RMS responses, the performance
of the semi-active controller is not as good as the passiveON configuration. However, the performance obtained
with the clipped-optimal LQG has almost the same RMS values of the best passive control mode (in some
cases, it is slightly better than the passive system, e.g., J10). In addition to the peak responses reduction, what
stands out in this study is the improvement in power requirements of the control system when the semi-active
controller is used to command the MR dampers. The proposed semi-active controller shows an important
decrease in the total power required to control the response of the structure (in this case is around 8%). Hence,
the semi-active operation of this type of actuators offers improved power efficiency while producing a better
peak response reduction than that of the passive modes.

5 Conclusions

This paper has presented a numerical analysis of a semi-active control system to reduce coupled lateral–
torsional response of an asymmetric building structure using MR dampers. The performance of the control
system was evaluated by comparing the responses due to El Centro earthquake excitation for passive and



904 M. Braz-César, R. Barros

semi-active configurations with the corresponding uncontrolled response. It was verified that the proposed
semi-active optimal controller allows a more efficient management of the actuators presenting in general a
better performance than the passive control modes. Hence, it can be concluded that the semi-active control
system outperforms a fully passive system allowing a considerable reduction in combined lateral and torsional
motion of the three-dimensional plan asymmetric structure using only two MR dampers in a non-collocated
configuration. Further research must be carried out to validate the application of these MR damper-based
control systems to a wide range of structural configurations and with different semi-active controllers.
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