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Braganca̧, Portugal

*S Supporting Information

ABSTRACT: The solid−liquid equilibria phase diagrams of
eight eutectic systems formed by choline chloride and fatty
acids, or fatty alcohols, were measured to characterize the
nonideality of the liquid phase of these systems, commonly
reported in the literature as examples of type III deep eutectic
solvents (DESs), and to evaluate the best modeling approaches
to their description. Most of these systems are shown to
present only slight deviations from ideal behavior, resulting
from a fine balance of the hydrogen bonding between the
hydroxyl/carboxylic groups with the chloride anion and the
interactions present in the pure compounds. The phase
diagrams measured were modeled with an associative equation of state (EoS) and a gE model. As an EoS, the perturbed-chain
statistical associating fluid theory (PC-SAFT) was used, and this model was able to accurately describe the experimental data and
to provide reliable estimates of the eutectic points using just a single binary temperature-dependent interaction parameter that
often correlates with the acid/alcohol chain length. The performance of PC-SAFT was further compared with the gE model, a
non-random two-liquid model (NRTL), and was found to provide a better description of the experimental data, especially for the
more nonideal systems. Ultimately, the data gathered, and the molecular modeling, allowed the discussion of the behavior of fatty
acids or fatty alcohols as hydrogen bond donors in choline chloride-based DESs.

1. INTRODUCTION

Deep eutectic solvents (DESs) exhibit a wide range of
properties which make them an attractive family of solvents
for different applications in catalysis, organic synthesis,
dissolution and extraction processes, electrochemistry, and
material chemistry.1,2 The most common components used in
DES formulations are quaternary ammonium salts, particularly
choline chloride ([Ch]Cl), because of its low toxicity,
biodegradability, and economic synthesis, combined with
urea,3,4 carboxylic acids,5−7 alcohols or polyols,8−11 amino
acids,12 or sugars.13,14

Even though a large number of DESs have been reported in
the literature, the actual number of solid−liquid phase diagrams
investigated is surprisingly small despite the important
information they can provide on the donor−acceptor
interactions and the range of compositions and temperatures
for using these solvents in processes.3,5,12 This limits the
development of models to describe the properties and behavior
of these solvents, in particular their liquid-phase nonideality and

thus the ability to design new DESs using computer-aided
molecular design approaches instead of the trial and error
currently used. Additionally, in order to screen solvents with
particular characteristics and specific ranges of eutectic
temperatures, knowledge of the relation between the structural
characteristics of the compounds and the eutectic points is
necessary. Thus, studies of solid−liquid phase diagrams focused
on comparable systems (same functional groups and different
chain lengths, same chain lengths and different functional
groups, etc.) are required. Moreover, although carboxylic acids
and alcohols are commonly reported as possible hydrogen
bond donors (HBDs) for the formation of type III DESs,5−11

the liquid-phase nonideality of fatty acids/alcohols:[Ch]Cl
based DESs was never investigated.
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In our previous work,7 the formation of DESs composed of
symmetrical tetraalkylammonium chlorides and fatty acids was
reported, but the different chemical structure of [Ch]Cl and the
presence of one additional hydroxyl group in the DES moiety
can significantly influence the interactions between the DES
constituents. Therefore, in this work, the solid−liquid phase
diagrams of eight different eutectic mixtures formed by choline
chloride and fatty alcohols or fatty acids are reported. The
experimental data were measured using a visual detection
technique, and their thermodynamic consistency was analyzed
using tests recently proposed in the literature.15−17 The phase
diagrams measured were then modeled using the perturbed-
chain statistical associating fluid theory (PC-SAFT) equation of
state (EoS)18 which is able to explicitly account for the
association between the DES constituents. The performance of
this advanced EoS was compared with non-random two-liquid
model (NRTL),19 which is an activity coefficient model using a
similar or higher number of binary parameters than usually
applied in PC-SAFT. Finally, the modeling results of the solid−
liquid equilibrium of these systems were then used to assess the
nonideality of the liquid phase that is paramount to understand
the nature of a DES.

2. MATERIALS AND METHODS
2.1. Materials. Source and purity of the compounds used in

this work are detailed in Table 1. Experimental melting
temperatures for the fatty alcohols and fatty acids measured in
this work are also compared with literature values in Table 1,
showing a good agreement. For [Ch]Cl, the melting properties
proposed in our previous work were used.17 [Ch]Cl was
purified before use under vacuum (0.1 Pa and 298 K) and
constant stirring, for at least 72 h. The water content was
measured using a Metrohm 831 Karl Fischer coulometer, with
the analyte Hydranal Coulomat AG from Riedel-de Haen̈, and
was found to be below 700 ppm. Mixtures of choline chloride
with 1-decanol and 1-dodecanol were also prepared; however,
these mixtures separated into two liquid phases and thus were
excluded from investigations within this work.
2.2. Methods. The solid−liquid phase diagrams were

measured using a melting point device model M-565 by Bucchi
(100−240 V, 50−60 Hz, 150 W) with a temperature resolution
of 0.1 K. A temperature gradient of 0.1 and 0.5 K·min−1 was
used for pure components and binary mixtures, respectively. All
samples were measured at least two times. Mixtures were
prepared at room temperature inside a dry-argon glovebox,
using an analytical balance model ALS 220-4N from Kern with
an accuracy of ±0.002 g. Whenever possible mixtures were
heated under stirring until complete melting and then
recrystallized and mashed. The powder was filled into a glass

capillary. The estimated reproducibility of the measurements is
of 1.3 K.

3. THEORY

3.1. PC-SAFT. Modeling the phase equilibrium and
thermodynamic properties of complex systems like DESs, in
which molecules exhibit associative interactions, is still a
challenging task although needed in chemical industry and
academia. Clearly the most apparent progress toward the
development of EoSs with such capabilities is achieved through
the application of statistical mechanics. EoSs based on statistical
mechanics are able to explicitly account for the influence of
different structural effects and interactions (e.g., anisotropic
association and electrostatics) on the thermodynamic proper-
ties and phase behavior. A concept of such EoS was proposed
by Chapman et al.22−25 based on Wertheim’s first-order
thermodynamic perturbation theory,26−29 statistical associating
fluid theory (SAFT) . In the framework of SAFT, molecules are
modeled as associating chains formed of equally sized bonded
spherical segments with short-range attractive sites. SAFT-type
EoSs are generally written as a sum of different contributions to
the residual Helmholtz energy, Ares, defined as the difference
between the system’s Helmholtz energy and that of an ideal gas
at the same molar density and temperature:
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Several modifications have been proposed to the original
SAFT model which essentially correspond to different choices
for the monomer fluid and different theoretical approaches for
the calculation of its Helmholtz energy. PC-SAFT18 is among
the most prominent modifications of SAFT and has already
been applied to model DESs.7,30,31 PC-SAFT considers a hard-
chain, rather than a hard-sphere, as the reference system for the
application of the perturbation theories to obtain the dispersion
contribution; thus, the residual Helmholtz energy is written as
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In eqs 1−3, the superscripts refer to the residual, ideal,
monomer, chain formation, associative interactions, hard chain
fluid, and dispersive interactions terms (res, id, mono, chain,
assoc, hc, and disp, respectively) while N, kB, and T stand for

Table 1. Source, Purity, and Melting Properties of the Chemicals Used in This Work

Tfus (K)

compound source mass purity % exptl lit. ΔfusH (J·mol−1)

[Ch]Cl Acros Organic 98 − 59717 430017

1-tetradecanol Aldrich 97 311.7 ± 0.3 311.1020 4581020

1-hexadecanol Aldrich 99 324.4 ± 0.2 322.9021 6096021

1-octadecanol Aldrich 99 332.9 ± 0.4 331.3421 6535021

capric acid Alfa Aesar 99 304.8 ± 0.2 305.4820 275007

lauric acid Acros Organics 99 317.5 ± 0.3 318.4820 346907

myristic acid Acros Organics 99 327.0 ± 0.2 328.9320 457507

palmitic acid Riedel de Haen 98 336.8 ± 0.2 336.3621 510207

stearic acid Acros Organics 97 343.7 ± 0.3 344.0421 613607
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number of molecules, Boltzmann constant, and the system’s
absolute temperature, respectively.
In order to fully characterize an associating compound as

those present in DESs, five pure-component PC-SAFT
parameters are required: three nonassociating parameters
(namely, the number of segments, mi

seg; the segment diameter,
σi; the dispersive energy between segments, ui) and two
association parameters (energy and bonding volume, εAiBi and
κAiBi, respectively). Moreover, an association scheme has to be
specified for each associating component defining both the
number and type of associative sites and the allowed
interactions.
When dealing with mixtures the conventional Lorentz−

Berthelot combining rules are used to determine the size and
energy parameters between unlike segments. Here, one
adjustable binary interaction parameter, kij, is introduced
when needed to account for deviations of the cross-dispersion
energy from its value obtained by the geometric mean.

σ σ σ= +1
2

( )ij i j (4)

= −u k u u(1 )ij ij i j (5)

In this work, this was the only binary interaction parameter
used to describe the phase diagrams of all the studied systems
using a temperature-dependent expression for kij.

= + − ×_ _k k T k( /K 298.15)ij ij ija T (6)

Simple combining rules, proposed by Wolbach and
Sandler,32 are applied to obtain the cross-association parame-
ters:
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3.2. PC-SAFT Pure-Component Parameters. Several
authors have reported the use of PC-SAFT to model IL
solutions,31,33−35 where, to each IL molecule, two association
sites are considered, which is referred to the 2B association
scheme mimicking the IL-cation and the IL-anion. Therefore,
the molecular parameters for [Ch]Cl were directly taken from
Zubeir et al.31 and are reported in Table 2.
Fatty acids and fatty alcohols have extensively been studied in

the literature,36 and PC-SAFT pure-component parameters for
them are available except for 1-octadecanol. For the latter, PC-
SAFT parameters were regressed in the present work from
pure-fluid liquid densities and vapor pressures in a wide
temperature range. By keeping the same association scheme
(2B) applied by Albers et al.36 and Pontes et al.7 for fatty acids
and fatty alcohols, PC-SAFT was able to accurately describe the
experimental data. This is depicted in Figure 1, showing similar
average absolute relative deviations (%AARD as defined in eq 9,
where exp and calc superscripts denote experimental and
calculated values, respectively; X stands for the thermodynamic
property evaluated, and Nexp is the total number of
experimental data points) to those reported in the literature
for other fatty alcohols (%AARD of 2.55% and 0.56% for vapor
pressures and liquid densities, respectively). The pure-
component parameters used for the different fatty acids and
alcohols studied in this work are presented in Table 2.

Table 2. PC-SAFT Pure-Component Parameters Used in This Work Using the 2B Association Scheme According to Huang and
Radosz39

component Mw (g/mol) mi
seg σi (Å) ui (K) εAiBi (K) κAiBi

[Ch]Cl31 139.62 13.02 2.368 228.07 8000 0.2
capric acid7 172.26 7.1472 3.3394 242.46 2263.0 0.02
lauric acid36 200.32 7.2547 3.5244 252.97 3047.5 0.00338
myristic acid36 228.37 7.4126 3.6719 256.48 2252.5 0.04399
palmitic acid7 256.42 7.5599 3.8092 267.52 2291.4 0.02
stearic acid7 284.48 7.6146 3.9536 275.20 2351.6 0.02
1-tetradecanol36 214.39 5.5424 4.0630 275.42 3551.5 0.00076
1-hexadecanol36 242.45 6.1909 4.0764 273.14 3650.5 0.000747
1-octadecanola 270.50 6.5794 4.1645 278.15 3555.2 0.00265

aParameters regressed in this work.

Figure 1. (A) Vapor pressures and (B) liquid densities for 1-octadecanol. The symbols represent experimental data taken from DIPPR database,37

while the solid lines depict the PC-SAFT modeling results using parameters from Table 2.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b02382
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acs.iecr.7b02382


Figure 2. continued
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The consistency of the parameters proposed for 1-
octadecanol was analyzed through the correlation of the
nonassociating parameters with the molecular weight as
typically performed for a homologous series,36,38 and
coefficients of determination (R2) very close to unity were
obtained:
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3.3. Non-random Two-Liquid Model. Proposed by
Renon and Prausnitz, NRTL19 is a local composition activity
coefficient model. Its parameters are “energy differences”
(between cross and self-interactions) and an additional
parameter, αij, the so-called nonrandomness factor, that is
often treated as an additional adjustable parameter. NRTL has
been applied with success to correlate solid−liquid equilibrium
(SLE), vapor−liquid equilibrium (VLE), or liquid−liquid
equilibrium (LLE) experimental data of a vast variety of
systems, and although for moderately nonideal systems it offers
no advantages over the simpler Margules or van Laar equations,
for strongly nonideal mixtures, NRTL often gives a better
representation of experimental data. Moreover, many works
have been published where the NRTL equation was
satisfactorily applied to correlate the LLE of systems containing
DESs.40−45

In this work, the NRTL equation is used in its simplest form
(without temperature dependency) to correlate the phase
diagrams measured, and the expression for the excess Gibbs
energy of a binary mixture is given by eq 13 with the activity
coefficients given by eq 14.
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3.4. Solid−Liquid Equilibria. The solubility of a single
solute i (xi) in a liquid solvent can be described by the
following simplified equation:

γ =
Δ
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where γi
l is the activity coefficient of component i in the liquid

phase (in this work calculated either with PC-SAFT or NRTL),
T the system absolute temperature, R the universal gas constant
(R = 8.314 J·K−1·mol−1), and ΔfusCpi the difference between
the heat capacity of liquid and solid phases; ΔfusHi and Tm,i are
the melting enthalpy and temperature of the solute,
respectively.
This equation assumes that the solid phases of each

compound are immiscible and crystallize independently (xi
sγi
s

= 1) as expected from a eutectic-type phase diagram. Moreover,
in general the last term has a negligible value when compared
with the first46,47 and thus was not considered in this work. The
melting temperatures and enthalpies used in this work are
reported in Table 1.

4. RESULTS
The solid−liquid phase diagrams measured in this work for the
systems [Ch]Cl + fatty acids and [Ch]Cl + fatty alcohols are
depicted in Figures 2 and 3, respectively. All the systems
exhibited a phase behavior characterized by a single eutectic
point at a temperature much lower than the melting
temperature of pure [Ch]Cl, but surprisingly close to the
melting temperature of the nonionic compound. The detailed
experimental data are reported in the Supporting Information
(Tables S1 and S2) for completeness. Data consistency was
checked using tests proposed by Cunico et al.16 and Kang et
al.15 (detailed in the Supporting Information), and the results
obtained are reported in Table S3. Values of the parameter Q1

Figure 2. Solid−liquid phase diagrams for the binary mixtures composed of [Ch]Cl and (A) capric acid, (B) lauric acid, (C) myristic acid, (D)
palmitic acid, (E) stearic acid. ▲ and ● represent the fatty acid and [Ch]Cl experimental solubility curves measured in this work, while the lines
depict the modeling results, namely, red dashed line, ideal; solid black line, PC-SAFT; and solid green line, NRTL.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b02382
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.7b02382/suppl_file/ie7b02382_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.7b02382/suppl_file/ie7b02382_si_001.pdf
http://dx.doi.org/10.1021/acs.iecr.7b02382


(Kang et al.15) are greater than 0.5 for all systems, indicating
that the quality of all data series passes this consistency. The
pure component parameter, Q2, of the consistency test
proposed by Cunico et al.16 shows low values (<0.1) for all
the systems. However, these results suppose temperature
differences, Δt1 + Δt2 ≤ 0.02 K, which are, in fact, acceptable
errors. The value of the global consistency parameter, Q3

(Cunico et al.16) is >0.3 for all the data series, so the values
of the normalized root squared mean errors (nRSME) are
always <2%, which is acceptable. The system capric acid + [Ch]
Cl presents the lowest quality factors, while the binary palmitic
acid + [Ch]Cl shows the highest. These results of the two

consistency analysis validate the experimental data presented in
this work. The experimental activity coefficients of each
compound in the liquid phase were estimated from the solidus
curves using eq 16, and the resulting values are also depicted in
Figures 2 and 3 and numerically reported in the Supporting
Information.
The results obtained show that the binary systems composed

of [Ch]Cl and fatty acids, although commonly reported as
examples of type III DESs, exhibit an almost ideal behavior,
showing only slight positive deviations from the ideal behavior
more evident in the fatty acid solubility curve, as depicted in
Figure 2. The absence of negative deviations to ideality is

Figure 3. Solid−liquid phase diagrams for the binary mixtures composed of [Ch]Cl and (A) 1-tetradecanol, (B) 1-hexadecanol, and (C) 1-
octadecanol. ▲ and ● represent the fatty alcohol and [Ch]Cl experimental solubility curves measured in this work, while the lines depict the
modeling results, namely, red dashed line, ideal; solid black line, PC-SAFT; and solid green line, NRTL.
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strong evidence that the hydroxyl group present in [Ch]Cl
significantly influences the system behavior, because the huge
negative deviations observed in the salt solubility curve for
DESs composed of other quaternary ammonium salts and
carboxylic acids reported by Pontes et al.7 are no longer
observed.
The systems with fatty alcohols show a slightly different

behavior (probably because of a higher mobility of fatty
alcohols when compared to the more rigid fatty acids) with
positive deviations from the ideal behavior observed for the
nonionic compound solubility curve, but exhibiting negative
deviations from the ideal behavior in the [Ch]Cl solubility
curve for the systems with higher chain length alcohols (1-
hexadecanol and 1-octadecanol), suggesting the existence of
favorable interactions between the hydroxyl group and the salt
anion. Part of the negative deviation must also result from
entropic effects due to the large size differences between the
two compounds.
There are several advantages of modeling the measured

phase diagrams, not only to achieve an accurate description of
the experimental data (and reliable estimates of the eutectic
points) but also to find information that can be gauged from
the modeling results on the interactions between the mixtures
components from the activity coefficients of these systems.
Therefore, the eight phase diagrams here reported were
modeled with eq 16 using three different methods: (i)
considering an ideal liquid phase (γi

l = 1), or considering the
nonideality of the liquid phase using activity coefficients
calculated either with (ii) a gE model (NRTL) or (iii) an
advanced association EoS (PC-SAFT). The SLE modeling
results for the three methods are illustrated in Figures 2 and 3
along with the experimental data, and the accuracy of the
different approaches can be evaluated through the deviations
between the calculated melting temperatures, Tcalc, and the
experimental values, Texp. In this work, these deviations
(depicted in Figure 4) are reported in terms of average

absolute deviation (AAD) expressed as eq 17, where Nexp is the
total number of experimental data points for each system.

∑= |Τ − Τ |
=N

AAD (K)
1

(K) (K)
k

N

k k
exp 1

calc exp
exp
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Figures 2 and 3 show that both PC-SAFT and NRTL are
able to provide good descriptions of the SLE phase diagrams
resulting in a considerable decrease of AAD if compared to the
ideal solubility curves, which neglect activity coefficients in eq
16.
As described in section 3.3, NRTL was applied in its simplest

form (without temperature dependence), using the parameters
presented in Table 3. As shown in Table 3, the NRTL form

applied uses three parameters, i.e., two interaction parameters
(a12 and a21) and the so-called nonrandomness parameter α12
that, in spite of having a clear physical meaning is often treated
as an additional adjustable parameter.48 Renon and Prausnitz19

proposed some general rules depending on the compounds’
family for the α12 value within the range 0.2−0.47. In this work,
in order to decrease the number of adjustable parameters
within NRTL, a fixed value of α12 = 0.2 was found to provide
good results for all the systems studied without any systematic
loss of accuracy. Nevertheless, for the systems exhibiting
negative deviations to the ideal behavior in the [Ch]Cl
solubility curve (e.g., [Ch]Cl + 1-hexadecanol and [Ch]Cl +
1-octadecanol), NRTL provides a considerably less accurate
description of the experimental data regardless of the α12
applied. This is mainly due to the fact that NRTL does not
account explicitly for the hydrogen-bonding interactions
present between the two components.
Because of the physical meaning of its parameters, PC-SAFT

provides a more convenient and usually better description of
nonideal systems than NRTL, while providing additional
insights into the systems’ phase behavior and interactions. In
order to obtain a quantitative description of the experimental
data, binary parameters were applied, which are listed in Table
4. These binary parameters were estimated through the
minimization of the AAD(T) in eq 17. By using the pure-
component parameters listed in Table 2 and only one binary

Figure 4. Average absolute deviations (K) for the three modeling
approaches applied in this work.

Table 3. Parameters of the NRTL Equation and Average
Absolute Deviation for Each System Studied in This Work

system α12 a12 a21
AAD
(K)

1-tetradecanol + [Ch]Cl 0.20 64.7 347.4 6.7
1-hexadecanol + [Ch]Cl 0.20 −3287.6 653.1 9.6
1-octadecanol + [Ch]Cl 0.20 −2630.2 662.0 7.9
capric acid + [Ch]Cl 0.20 13571.8 −3457.2 5.2
lauric acid + [Ch]Cl 0.20 −4217.0 7073.1 6.1
myristic acid + [Ch]Cl 0.20 −943.3 795.1 4.0
palmitic acid + [Ch]Cl 0.20 −5102.6 9527.1 2.7
stearic acid + [Ch]Cl 0.20 −4883.8 9995.9 3.2

Table 4. PC-SAFT Binary Interaction Parameters and
Average Absolute Deviation for Each System Studied in This
Work

system kij_a kij_T AAD (K)

1-tetradecanol + [Ch]Cl 0.0135 0.00021 4.4
1-hexadecanol + [Ch]Cl 0.0135 0.00006 4.8
1-octadecanol + [Ch]Cl 0.0135 0.00016 4.7
capric acid + [Ch]Cl −0.0025 0.00010 6.4
lauric acid + [Ch]Cl 0.0025 0.00012 5.2
myristic acid + [Ch]Cl 0.0040 0.00012 2.8
palmitic acid + [Ch]Cl 0.0110 0.00018 1.8
stearic acid + [Ch]Cl 0.0170 0.00020 3.6
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interaction parameter, PC-SAFT is able to accurately describe
the phase diagrams of all the studied systems. As depicted in
Figure 4, for most systems PC-SAFT allows a better description
than NRTL, especially for mixtures [Ch]Cl + fatty alcohols, in
which negative deviations from ideal behavior were observed.
This improved performance of PC-SAFT over NRTL is mainly
due to the fact that PC-SAFT is able to capture complex
nonideal behavior, such as activity coefficients greater than 1 for
one component and lower than 1 for the other component (cf.
Figure 3C). Furthermore, the acid/alcohol solubility curves
only marginally depend on temperature, while the solubility
curve of [Ch]Cl is strongly temperature-dependent. This high
accuracy of PC-SAFT is particularly remarkable because the
[Ch]Cl pure-component PC-SAFT parameters were regressed
from experimental data obtained for very dilute aqueous
solutions near room temperature.31 These parameters were
used in this work to describe the SLE of water-free systems in a
wide temperature and concentration ranges, in which
interactions are very different compared to those observed in
dilute aqueous solutions. However, as a consequence of the
procedure adopted to obtain the [Ch]Cl parameters, some of
the physical features of the salt are not perfectly captured by the
parametrization resulting in negative deviations from the ideal
behavior being systematically predicted by PC-SAFT in the
[Ch]Cl solubility curve while predicting the ideal behavior
experimentally observed for the HBD solubility curve. The

results of such predictions (kij = 0) are depicted in Figures S1
and S2 along with the accurate PC-SAFT correlations.
As both PC-SAFT and NRTL were able to provide a good

description of the phase diagrams measured in this work, they
can further be used to provide estimates of the eutectic points
through the interception of the two solubility curves. The
estimated eutectic points [both in composition (xE) and in
temperature (TE)] and the melting temperature difference
compared to the ideal behavior (ΔTE = Tideal

E − Treal
E ) are

depicted in Figure 5. As can be seen in Figure 5A, PC-SAFT
and NRTL predict similar eutectic compositions for the
systems [Ch]Cl + fatty acids, while the predictions are much
different for the systems [Ch]Cl + fatty alcohols. Clearly, PC-
SAFT provides a smoother dependency on the eutectic
composition for increasing chain lengths as one could expect
from the near-ideal mixture behavior of these systems (all
activity coefficients close to 1). In Figure 5B the predicted
eutectic temperatures show a qualitative agreement between
the two models with PC-SAFT displaying smoother linear
trends for each family (specially for fatty acids). The linear
increases on the eutectic temperatures are expected because
they are mainly affected by the melting temperatures of the
pure nonionic compounds, which usually follow a smooth
increase with increasing chain length. As a consequence, PC-
SAFT predicts almost constant positive and small temperature
differences when compared to the ideal behavior of each family
(Figure 5 C), while in contrast, NRTL predicts a much wider

Figure 5. (A) Eutectic compositions (in mole fraction of nonionic compound), (B) eutectic temperatures, and (C) eutectic temperature difference
to the ideal estimates for the different systems studied. The blue ▲ and ● stand for eutectic points predicted by PC-SAFT for systems containing
fatty alcohols and fatty acids, respectively, while the green ▲ and ● are the eutectic points predicted by NRTL for systems containing fatty alcohols
and fatty acids, respectively. The dashed lines are guides for the eyes.
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range of temperature differences for the studied systems
because of the clear overprediction and underestimation of the
eutectic points for the systems capric acid + [Ch]Cl (Figure
2A) and 1-hexadecanol + [Ch]Cl (Figure 3B), respectively.
The small temperature differences presented in Figure 5C
challenge the current assumption that DESs, because they are
dominated by hydrogen-bond interactions between the two
components, are highly nonideal systems, and that this would
be the reason for the freezing temperature depression observed
on these systems. This suggests that systems that have been
labeled as DESs, without a careful analysis of the liquid phase
nonideality, are indeed just common eutectic mixtures.
Molecular based approaches such as PC-SAFT can provide

insights into the systems’ phase behavior and interactions
because of the physical meaning of its parameters. The pure-
component parameters often correlate with the molecular
weight within a homologous series providing a way to predict
thermo-physical properties and phase behavior for compounds
for which experimental data is not available. In a similar
manner, the binary interaction parameters applied to describe
mixture data often provide useful information regarding the
systems’ interactions. Therefore, for the systems [Ch]Cl + fatty
acids, both kij_a and kij_T were found to be positive and correlate
linearly with the molecular weight of the carboxylic acid
according to the following expressions:

= − =_ _k M R0.0024 (g/mol) 0.0268; 0.9654ij a w acid
2

(18)

= × − ×

=

_
−

_
−k M

R

1.300 10 (g/mol) 3.800 10 ;

0.8989

ij T
5

w acid
5

2 (19)

The positive values observed for kij in the [Ch]Cl + fatty
acids systems denote the systematic overestimation of the
cross-dispersive interactions between [Ch]Cl and the fatty acid.
This is in agreement with the positive deviations from the ideal
behavior observed from the experimental activity coefficients
shown in Figure 2. Moreover, and because of the very limited
number of systems containing fatty alcohols, a fixed value of
kij_a = 0.0135 was applied in this work, and positive values were
also obtained for kij_T. Thus, the same explanations apply to
both [Ch]Cl + fatty acids and [Ch]Cl + fatty alcohol systems.
This kind of semipredictive modeling approach was also

reported in our previous work7 on the modeling of SLE of
DESs composed of symmetrical tetraalkylammonium chlorides
and fatty acids. That work suggested the possible screening of
SLE phase diagrams for eutectic mixtures by correlating binary
parameters with chain length of the acids without the need of
additional experimental data. In our previous work, a binary
interaction parameter (kij_eps) correcting the underestimation of
the mixtures’ cross-association energy given by the Wolbach
and Sandler mixing rules32 was required to accurately describe
the experimental phase diagrams. The values obtained for this
parameter were found to increase (become more negative) with
the increase of the alkyl chains, either of the alkyl chains within
the ammonium salt or of those from fatty acids, suggesting a
strengthening of the hydrogen-bonding interactions and thus
on the negative deviations from ideality that ultimately were
responsible for the huge melting temperature depressions
observed experimentally leading to the formation of DESs.
However, in this work such a parameter was not required to
successfully describe the phase diagrams denoting the

inexistence of stronger hydrogen bonding interactions in the
mixture than those observed in the pure components.
Thus, it is clear that taking into account both the systems

with [Ch]Cl studied in this work and those with symmetrical
tetra alkyl ammonium chlorides reported by Pontes et al.,7

there is a decrease of the nonideality of the liquid phase of
mixtures of fatty acids with quaternary ammonium salts with
the decrease of the salts alkyl chain length and/or with the
introduction of an hydroxyl group in the IL cation, following
the trend

> > >N N N[ ]Cl [ ]Cl [ ]Cl [Ch]Cl3333 2222 1111

This trend is confirmed both experimentally (through the
experimental values of the activity coefficients and the melting
temperature differences observed) but also through the binary
interaction parameter (kij_eps) applied within PC-SAFT that
systematically decreases the cross-association energy of the
systems in that same order:

− > > = =_k N N N([ ]Cl [ ]Cl [ ]Cl 0 [Ch]Cl)ij eps 3333 2222 1111

Hence, the question arising is why does the introduction of an
hydroxyl group in the IL structure, which could be thought to
allow for the formation of additional and stronger interactions
with the HBD, have the opposite effect, leading to more ideal
liquid mixtures. First, as already mentioned and previously
discussed by Ashworth et al.,49 all the possible [Ch]Cl
structures exhibit multiple hydrogen-bonding interactions, and
the lowest-energy conformers feature a strong OH···Cl
interaction (where the OH is only mildly affected by the
charged ammonium center) while the weaker intramolecular
OH−CH hydrogen bonds are also preserved. The presence of
these strong hydrogen bonding interactions in the pure IL, and
the strong hydrogen bonding interactions also present in pure
fatty acids and fatty alcohols,50 makes the difference between
the interactions present in the pure compounds and those
observed for the mixture negligible resulting in the quasi ideal
behavior of the liquid phase and consequently in the absence of
a significant melting temperature depression, particularly visible
in the HBD melting curves.

5. CONCLUSIONS
The SLE phase diagrams for eight eutectic mixtures composed
of [Ch]Cl + fatty acids and [Ch]Cl + fatty alcohols were
measured experimentally using a visual detection technique.
The consistency of the data obtained was evaluated and
guaranteed using two consistency tests. The systems studied
showed a quasi-ideal behavior displaying a eutectic temperature
very close to the eutectic temperature predicted assuming an
ideal liquid phase. These results, when compared to those
obtained studying eutectic mixtures of symmetrical tetraalky-
lammonium chlorides with fatty acids, suggest that the presence
of a hydroxyl group in the choline cation hinders the formation
of stronger interactions with the hydrogen bond donor than
those observed in the pure cholinium chloride, leading to near
ideal liquid mixtures. Therefore, although commonly suggested
as possible HBDs for [Ch]Cl-based DESs, monocarboxylic fatty
acids and fatty alcohols are not able to form hydrogen-bond
interactions with [Ch]Cl strong enough to create large melting
point depressions. These results show that mixtures that have
been labeled as type III DESs based on cholinium chloride and
mono carboxylic acids or alcohols, without a careful analysis of
the liquid phase nonideality, are indeed just common eutectic
mixtures.
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The phase diagrams were modeled by using the NRTL
activity coefficient model and the molecular based PC-SAFT
EoS. Both models were able to provide very good descriptions
of the experimental data allowing for a significant decrease of
the AAD when compared to the ideal solubility curves. Within
NRTL, through the estimation of only two temperature-
independent interaction parameters, a good description was
obtained for most of the systems. However, when negative
deviations from the ideal behavior were observed, the NRTL
performance deteriorates. Contrarily, PC-SAFT, using only one
temperature-dependent binary interaction parameter (that was
correlated with the molecular weight of the HBD), is able to
provide a very good description of the phase diagrams
measured in this work and is able to capture the versatile
behavior of activity coefficients of all species. Moreover, as both
models provided a good description of the SLE phase diagrams,
they were used to estimate the eutectic points (both in
composition and temperature), and PC-SAFT was shown to
provide smoother trends for the eutectic points than NRTL.
The physical meaning of the PC-SAFT binary parameters was
also highlighted, and insights into the systems’ behavior and
interactions were given.
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