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Abstract: The cell-free layer (CFL) is a hemodynamic phenomenon that has an
important contribution to the rheological properties of blood flowing in
microvessels. The present work aims to find the closest function describing
RBCs flowing around the cell depleted layer in a polydimethysiloxane (PDMS)
microchannel with a diverging and a converging bifurcation. The flow
behaviour of the CFL was investigated by using a high-speed video microscopy
system where special attention was devoted to its behaviour before the
bifurcation and after the confluence of the microchannel. The numerical data
was first obtained by using a manual tracking plugin and then analysed using
the genetic algorithm approach. The results show that for the majority of the
cases the function that more closely resembles the CFL boundary is the sum of
trigonometric functions.
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1 Introduction

Blood is a complex fluid composed mainly of suspended red blood cells (RBCs) within
plasma where RBCs are responsible for the supply of oxygen and nutrients to the body
and removal of carbon dioxide and metabolic wastes from tissues. Throughout the years,
several experimental methods were performed in both in vivo (Maeda, 1996; Pries and
Secomb, 1994; Suzuki et al., 1996; Kim et al., 2009) and in vitro (Faustino et al., 2014;
Goldsmith and Turitto, 1986; Lima et al., 2006, 2008, 2009a, 2009b; Rodrigues et al.,
2014) environments, in an attempt to understand the flow behaviour of RBCs in
microchannels and microvessels. These studies have produced significant findings on the
blood rheological properties at a micro-scale level. A hemodynamic phenomenon
observed in both in vivo and in vitro studies is the formation of a marginal cell-free layer
(CFL) at regions adjacent to wall due to the tendency of RBCs to migrate toward the
centre of the microtube (Caro et al., 1978; Garcia et al., 2012; Maeda, 1996). The
existence of a cell depleted layer in microvessels, tend to reduce the apparent viscosity of
blood and by increasing this layer the blood viscosity tend to decrease in both
microchannels and microvessels. Hence, it is important to understand the behaviour of
the CFL in microcirculation as it contributes to the rheological properties of blood
flowing in microvessels, modulates the nitric oxide scavenging effects by RBCs and may
lead to heterogeneous distribution of blood cells in microvascular networks (Fedosov et
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al., 2010; Kim et al., 2009). Additionally, several research studies have developed
microfluidic systems able to perform blood separation using the advantage of the CFL
formation in PDMS microchannels with dimensions smaller than 300 um. Faivre et al.
(2006), Sollier et al. (2010), Yaginuma et al. (2013) and Pinho et al. (2013b) have
demonstrated that the presence of a constriction increases the CFL and as a result they
were able to perform the separation of RBCs from plasma. Therefore, it is also important
to improve our understanding regarding the CFL phenomenon happening in constriction
geometries in order to improve the performance of blood separation microfluidic devices.

Although in vivo and in vitro experiments gives more realistic information on the
flow properties of blood, once validated, physical models and their numerical results are
extremely valuable tools to obtain more insight on the blood rheological properties at a
micro-scale level. Recently due to the advances of the computational techniques and
computing power, several numerical models have been proposed based on a multiphase
approach, in which the blood is considered as a multiphase suspension of deformable
particles and where levels of submodelling for the blood cells behaviour are also taken
into account. Some examples for this type of approach are the boundary element method
(Omori et al., 2011), the immersed boundary method (Bagchi, 2007; Eggleton and Popel,
1998), the lattice Boltzmann method (Dupin et al. 2007) the dissipative particle dynamics
method (Fedosov et al., 2010), the moving particle semi-implicit (MPS) method (Imai
et al., 2010; Tsubota et al., 2006a, 2006b; Gambaruto, 2015) and spring-network model
based on the minimum energy concept (Lima et al., 2009a, 2009b; Nakamura et al.,
2013). Reviews on these numerical methods can be found at Liu et al. (2006), Yamaguchi
et al. (2006) and Lima et al. (2012). Although multiphase approaches are promising
methods, it is still extremely complex to consider the CFL in their numerical models, so
optimisation can be also an important field of study to help in the development of
numerical simulations. In recent years, optimisation algorithms have become increasingly
robust and as a result several researchers have applied this methodology to study
phenomena happening in microfluidic devices. For instance, Bento et al. (2015) have
measured the CFL in a network containing multiple bifurcations and confluences and
they have shown that the function that best fits the CFL was the sum of trigonometric
functions.

The present study tracks RBCs flowing around the CFL and calculates the most
suitable function by using global optimisation technique. The measurements were
performed in a polydimethysiloxane (PDMS) microchannel with a diverging and a
converging bifurcation and all images were obtained by means of a high-speed video
microscopy system.

The paper is organised as follows. Second section shows the materials used in this
work and the methods that were applied in this study. The third section presents the
numerical results and discussion. The last section presents the main conclusions and
some future directions.

2 Materials and methods

2.1 Microchannel geometry

Microchannels were initially developed with a CAD software, where the geometries were
selected taking into account a previous study about the blood flowing through
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microchannels with bifurcations and confluences fabricated by a soft lithography
technique (Leble et al., 2011). In this study, the parent microchannels have a width of
300, 500 and 1,000 pm and the two branches of the bifurcation and confluence
correspond to 50% of the parent microchannel width. Figure 1 shows the configuration of
the network and the regions where the CFL was measured, where RA and RB are the
upper regions of the microchannel and RC and RD are the lower regions.

Figure 1 Schematic representation of the microchannel geometry and location of the sections
where the images were collected and the CFL was measured
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This geometry was used to fabricate the vinyl master moulds by using a soft xurography
technique (Pinto et al., 2015). The moulds were used for the production of PDMS
microchannels. Briefly, the PDMS was obtained by mixing a curing agent (10:1 ratio)
with PDMS prepolymer. By using a spin coater, a residual amount of PDMS with a ratio
20:1 was dispersed on a slide glass. The PDMS was cured in an oven at 80°C for
20 minutes. Then, by using a blade the microchannels were cutted off and the inlet/outlet
holes were done by using a fluid dispensing tip. Finally, to have a strong adhesion of the
materials, the device was placed in the oven at 80°C for 24 hours. More detailed
information about this process can be found at Pinto et al. (2015).

2.2 Working fluids and experimental set-up

The fabricated microchannels were used to study in vitro blood flow with Dextran 40
containing 10% of RBCs. The blood was collected from a healthy sheep and heparin was
added to prevent clotting. Additionally, the cells were separated from blood by
centrifugation.

A syringe pump (Harvard Apparatus PHD ULTRATM) was used to control the flow
rate of the working fluid. To visualise and measure the flow we have used an inverted
microscope (IX71, Olympus) combined with a high-speed camera (i-SPEED LT).
Figure 2 shows the experimental apparatus used to control the flow and to visualise the
CFL within the microchannels. The microfluidic device containing the microchannels
was placed on the stage of the inverted microscope and a pressure-driven flow was kept
constant by means of a syringe pump. All images have a resolution of 800 x 600 pixels
and were recorded at a frame rate of 200 frames/s.
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Figure 2 Experimental apparatus to control and visualise the flow in microchannels produced by
xurography (see online version for colours)

Inverted micrascope

Syringe pump
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2.3 Image analysis

A manual tracking plugin (MTrackJ), of the image analysis software Image J (NIH), was
used to track individual RBC flowing around the boundary of the RBCs core. By using
MTrack] plugin, the centroid of the selected RBC was automatically computed. After
obtaining x and y coordinates of the RBC centroids, the data were exported for the
determination of each individual RBC trajectory (Lima et al., 2008; Pinho et al., 2013a).
Figure 3 shows a trajectory of a RBC flowing around the boundary region between the
CFL and RBC:s core.

Figure 3 A trajectory of a RBC flowing around the boundary region between the CFL and RBCs
core (see online version for colours)
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2.4 Global optimisation method.: genetic algorithm

Genetic algorithms are based on theory of evolution of species from Darwin. This method
allows to find a global minimum in a large search space (Holland, 1975). The genetic
algorithm starts with a set of solutions called population, where the solution is
represented by an individual and the population size is preserved through each
generation. The objective function is evaluated in each individual. Then individuals are
selected according to their objective value. Those selected will be reproduced up
randomly, by using genetic operators such as mutation and crossover. Individuals with
less value have a high probability of being selected whereas the new generation of
individuals may have a minor objective value than the previous generation. The evolution
process is repeated until the stopping criterion is satisfied (Bento et al., 2013, 2015;
Catlin et al., 2011; Kumar et al., 2010). In this work it was implemented the genetic
algorithm proposed by Bento et al. (2013, 2015) using Matlab software.

3 Results and discussion

All videos captured were recorded in four different regions, i.e., region RA and RC
correspond to locations before the bifurcation whereas region RB and RD correspond to
locations after the confluence (see Figure 1). Moreover, this study investigated the CFL
behaviour in three kinds of parent microchannels having widths of 300, 500 and
1,000 um. For all the cases, the flow rate was constant (10 pul/min) and the working fluid
had always a hematocrit (Hct) of 10 %, i.e., containing 10 % of ovine RBCs in the
solution. By using 10 % Hct we were able to track several individual RBCs. In fact 10%
Hct is not far from the real Hct in microcirculation. It is known that, when the size of
vessels becomes smaller the Hct tends to decrease. Additionally, dextran 40 was used to
avoid the sedimentation of the cells.

A manual tracking plugin from Image J was used to track individual RBC flowing
around the boundary region between the CFL and RBCs core. All the selected RBCs
have good enough quality images to track the trajectory of the cells flowing nearby the
RBCs core (see Figure 3). Figures 4, 5 and 6 show representative RBC trajectories in
the different cases under study, i.e., parent microchannels with widths of 300, 500 and
1,000 um at two different regions (region before the bifurcation and after the confluence).

To obtain the numerical data a nonlinear least squares theory was used. In each region
Raw» Rpw, Rcw, and Rp,, for w = 300, 500 and 1,000, we have applied the nonlinear
optimisation problem defined as follows:

. N,
min f(y) = Zk;(Mk -2 (¥, x ))2
s.t. gh(y,xk)ZO Vk=1,...,Np

()

where (x;, M), for k = 1,...,N are the CFL measurement of region R (defined as Ray,
Rgw, Rew, and Rpy, for w = 300, 500 and 1,000). The function g, for 2 = 1,...,3, are
defined as follows:

21 (¥, X) = nX7 + 12X + 3,
&2y, X) = yix+y,, 2
&3(y, x) =sin(y1x)+cos(32x) + 3.
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Figure 4 Trajectories of individual RBCs flowing through a microchannel with the width of
300 um, around the CFL regions, (a) Ra300 (b) Rp300 (¢) Rezoo (d) Rpsoo
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Figure 5 Trajectories of individual RBCs flowing around the CFL in the microchannel with the
width of 500 um at the regions, (a) Rasoo (b) Rpsoo (¢) Resoo (d) Rpsoo
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Figure 6 Trajectories of individual RBCs flowing around the CFL for the regions, (a) Ra1900
(b) Rai000 () Reiooo (d) Rpiooo
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Table 1 Numerical results obtained using a genetic algorithm
Region Function Average Minimun
Raso0 g1 4.90E+05 52.18
22 7.54E+01 31.90
23 7.39E+01 26.89
Rasoo g 1.29E+05 59.82
&2 6.24E+01 38.76
23 7.00E+01 45.07
Rat000 2 2.00E+04 20.8
22} 1.23E+01 6.46
2 2.09E+01 8.89
Ra300 g 8.94E+04 97.17
22} 6.93E+01 30.42
e 7,86E+02 621.43
Rasoo g1 1.37E+05 54.71
2 3.99E+01 20.63
23 3.25E+01 19.64
Rg1000 g1 1.58E+05 50.98
22} 2.73E+01 14.33
23 3.24E+01 11.09
Resoo g1 2.89E+05 42.35
22 4.88E+01 13.86
23 2.45E+01 10.50
Resoo g1 7.30E+04 57.04
22 4.66E+01 32.60
23 3.93E+01 26.63
Rei000 2 1.37E+04 11.36
22 2.16E+01 14.82
g3 2.06E+01 6.42
Rps00 2 4.20E+04 31.76
22 5.42E+01 35.33
23 5.23E+01 14.36
Rpsoo 2 2.87E+04 13.32
2 2.96E+01 19.96
23 2.18E+01 6.78
Rp1000 g1 6.92E+04 58.85
22 4.32E+01 18.71
23 3.50E+01 13.60
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After developing a MatLab code and by applying the genetic algorithm to solve the
optimisation problem (1), it was possible to obtain the numerical results shown in
Table 1. Since the genetic algorithm is a stochastic method, each problem was solved
100 times. Table 1 presents the regions where the problem (1) was applied, the average of
the optimum value and the minimum value obtained in the all 100 runs. The table shows

that the minimum value for most of the cases corresponds to the function g;.

Figure 7 shows an example of two RBCs trajectories flowing in region Rasoo and
Rss00, in a parent microchannel with a width of 500 pm, as well as the functions that have

revealed a better approximation to the RBCs trajectories.

Figure 7 RBCs trajectories flowing in region (a) Rso9 and (b) Rpsgp, with a width of 500 um, as

well as the functions that have showed a better approximation
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Function g, was not displayed mainly because it was the worst approximation solution to
the cells trajectories. Overall, the numerical results suggest that the trigonometric
function (g3) is the one that better resembles the RBCs trajectories and consequently the
CFL boundaries, since for the majority of the cases studied the minimum value was
obtained for this function. The trigonometric function (g;) may be due to oscillations
caused by collisions between neighbourhood cells flowing around the RBCs core. The
only exception was verified in the regions Raso, Ra1000, Re3oo and Rgigeo (Figures 4, 5,
and 6), wherein these regions the best fit was obtained with the function g,. Additionally,
these results also show that the CFL boundary is size independent and its flow behaviour
is not affected by complex geometries such bifurcations and confluences.

4 Conclusions and future directions

In this study, we present a method to measure individual RBCs trajectories flowing
around the CFL region. These cells trajectories are believed to closely resemble the CFL
boundary and they were fitted using three different functions. A genetic algorithm was
used to solve the constrained optimisation problem and the best fit was obtained by using
the function (g3), i.e., a sum of trigonometric functions. This finding corroborates the
results obtained by Taboada et al. (2013) and Bento et al. (2015) and where they have
performed similar studies in microchannels networks and have found that the function
(g3) is the one that best fit to their CFL measurements. As a future work, we will test
other functions and examine a bigger variety of physiological fluids used in vitro blood
studies.
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