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Abstract

Hancornia speciosa Gomes (Apocynaceae) is a fruit tree, popularly known as mangabeira,
and it is widely distributed throughout Brazil. Several parts of the plant are used in folk medi-
cine, and the leaf and bark extracts have anti-inflammatory, antihypertensive, antidiabetic, and
antimicrobial properties. In this study, we investigated the chemical composition of the ethano-
lic extract of Hancornia speciosa leaves (EEHS) and its antioxidant, antimicrobial, and cyto-
toxic activities as well as the mechanisms involved in cell death. The chemical compounds
were identified by liquid chromatography coupled to mass spectrometry (LC-MS/MS). The
antioxidant activity of the EEHS was investigated using the method that involves the scaveng-
ing of 2,2-diphenyl-1-picrylhydrazyl free radicals as well as the inhibition of oxidative hemolysis
and lipid peroxidation induced by 2,2’-azobis (2-amidinopropane) in human erythrocytes. The
antimicrobial activity was determined by calculating the minimum inhibitory concentration, min-
imum bactericidal concentration, minimum fungicidal concentration, and zone of inhibition.
Kasumi-1 leukemic cells were used to assess the cytotoxic activity and mechanisms involved
in cell death promoted by the EEHS. The chemical compounds identified were quinic acid,
chlorogenic acid, catechin, rutin, isoquercitrin, kaempferol-rutinoside, and catechin-pentoside.
The EEHS demonstrated antioxidant activity via the sequestration of free radicals, inhibition of
hemolysis, and inhibition of lipid peroxidation in human erythrocytes incubated with an oxidiz-
ing agent. The antimicrobial activity was observed against American Type Culture Collection
(ATCC) and hospital strains of bacteria and fungi, filamentous fungi and dermatophytes. The
cytotoxic activity of the EEHS was induced by apoptosis, reduction of the mitochondrial mem-
brane potential, and activation of cathepsins. Together, these results indicate the presence of
phenolic compounds and flavonoids in the EEHS and that their antioxidant, antimicrobial, and
cytotoxic activities in acute myeloid leukemia cells are mediated by apoptosis.
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Introduction

The cerrado region (Brazilian Savannah) of Brazil covers approximately 2 million km? and
corresponds to approximately 22% of the Brazilian territory [1]. This biome has a wide variety
of medicinal plants used in folk medicine. Many of these plants have been investigated, and
their antioxidant [2], antimicrobial [3], antidiabetic [4], anti-inflammatory [5], and cytotoxic
[6] activities, among others, have been scientifically proven.

One of the medicinal plants found in the Brazilian cerrado is Hancornia speciosa Gomes
(Apocynaceae), popularly known as mangabeira. In this species, the roots have antihyperten-
sive and wound-healing activities [7]; the bark has antidiabetic, anti-obesity, antimicrobial,
and gastroprotective activities [3,8,9]; the latex has anti-inflammatory activity [10]; and the
leaves have antihypertensive [11], vasodilator [12,13], anti-inflammatory [14,15], and antidia-
betic [4] activities and are used for treatment of dysmenorrhea [16].

Presently, there is a growing demand for natural products with therapeutic activities,
including antioxidant activity, which can overcome the harmful effects of free radicals [17],
and low toxicities compared with synthetic antioxidants that are widely used in food products,
cosmetics, and drugs [18,19].

Among the main chemical compounds responsible for the antioxidant activities of medici-
nal plants, phenolic compounds and flavonoids are the most prominent because of their roles
against oxidative stress [20,21].

These compounds also have antimicrobial activities [22]. These properties have attracted
scientific interest because 60% of the antimicrobial drugs discovered in the past few decades
are of natural origin [23]. Furthermore, the number of pathogens that are resistant to commer-
cial antimicrobials has increased [24].

In addition, compounds derived from natural sources have great potential as anticancer
drugs, and 51% of the drugs currently available for treatment of this pathology are directly or
indirectly derived from natural products [23]. Among these compounds, phenolic compounds
and flavonoids from several plant species have cytotoxic activities against different cell lines,
including leukemic cell lines [2,25,26].

In this context, the aim of this study was to determine the chemical composition of the etha-
nolic extract of Hancornia speciosa Gomes leaves and evaluate its antioxidant, antimicrobial,
and cytotoxic activities in vitro using the acute myeloid leukemia cell line Kasumi-1.

Materials and Methods
Ethics of Experimentation

The H. speciosa Gomes leaves were collected following the identification of the plant and
authorization of the SISBIO (Sistema de Autorizagdo e Informagio em Biodiversidade, permit
number 54470-1). The protocol to collect of human peripheral blood, was approved by the
Research Ethics Committee (Comité de Etica em Pesquisa; CEP) of the University Center of
Grande Dourados, Brazil (CEP process number 123/12). All subjects provided written
informed consent for participation.

Plant Material and Extract Preparation

The H. speciosa Gomes leaves were in Dourados, Mato Grosso do Sul (S 21°59” 41” and W 55°
19’ 24”), Brazil, oven-dried with the air circulation at a temperature of 45 + 5°C, and then
ground in a Willy-type knife mill. An exsiccated sample was deposited in the Herbarium of the
Federal University of Grande Dourados, Mato Grosso do Sul, Brazil, with registration number
4774.
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The extract was then prepared by macerating the plant material in an ethanol 96% (1:10)
mixture at room temperature for 14 days. Then, the extract was filtered, the filtrate was con-
centrated in a rotary vacuum evaporator (Gehaka, Sao Paulo, SP, Brazil), freeze-dried to obtain
a calculated specific yield of 28%, and the final freeze-dried ethanol extract of H. speciosa
Gomes (EEHS) was stored at—20°C protected from light.

Chemical Analysis

Determination of total flavonoids and phenolic compounds. The content of phenolic
compounds in the EEHS was determined using the Folin-Ciocalteu colorimetric method, as
detailed by Meda et al. [27], with some modifications. The EEHS (200 pg/mL) was diluted in
absolute ethanol, and a 0.5-mL aliquot was added to 2.5 mL of Folin-Ciocalteu reagent (diluted
1:10 with distilled water). This solution was allowed to stand for 5 min at room temperature.
After this period, 2 mL of a 14% sodium carbonate solution was added to the samples, the mix-
ture was incubated for 2 h at room temperature, and the absorbance was read at 760 nmina T
70 UV/VIS spectrophotometer (PG Instruments Limited, UK). A standard curve was prepared
using gallic acid in the concentration range of 0.4-11.0 ug/mL. The total amount of phenolic
compounds was expressed in milligrams of gallic acid equivalents (GAE) per gram of the
EEHS.

The total flavonoids present in the EEHS were determined according to the method
described by Liberio et al. [28], with some modifications. Briefly, 4.5 mL of a hexahydrate alu-
minum chloride solution (AICl3-6H,0) at 2% in absolute methanol was mixed with 0.5 mL of
the EEHS (200 pg/mL). The mixture was incubated for 30 min at room temperature, and the
absorbance was read at 415 nm in a T 70 UV/VIS spectrophotometer (PG Instruments Lim-
ited, UK). A standard curve was prepared using quercetin in the concentration range of 0.4-
11.0 pg/mL. The total flavonoids were expressed in milligrams of quercetin equivalents (QE)
per gram of the EEHS. All experiments were performed in triplicate.

Determination of phenolic compounds in the EEHS using HPLC-DAD-MS/MS. A 1pL
aliquot of the EEHS (1 mg/mL) was analyzed via high-performance liquid chromatography
with diode-array detection (HPLC-DAD; Shimadzu, Japan) coupled to a high-resolution mass
spectrometer (model micrOTOF-Q IIII, Bruker, Germany). A C-18 column (Kinetex, 2.6 y,
150 x 2.2 mm) protected by a pre-column of the same material was used. The mobile phases
used were water (phase A) and acetonitrile (phase B), both containing 1% acetic acid. The fol-
lowing gradient elution was used: 0-2 min. at 5% B, 2-20 min. at 5%-80% B, and an additional
10 min for column washing and re-equilibration. The flow rate was 0.2 mL/min. The mass
spectrometer parameters were as follows: capillary voltages of the electrospray ionization sys-
tem (ESI) of 3500 V (negative mode) and 4500 V (positive mode). The capillary temperature
was 200°C, the collision energy was variable for the MS/MS experiments, and data were
obtained in the positive and negative ion modes. The negative mode was chosen because it
generated more data than the positive mode. Trifluoroacetic acid sodium salt was used as the
internal calibrant. The compounds quinic acid, chlorogenic acid, catechin, rutin, and isoquer-
citrin were identified by comparison with commercial standards (Sigma-Aldrich).

Antioxidant activity

Scavenging of DPPH free radicals. The scavenging of stable DPPH radicals was evalu-
ated using the method detailed by Gupta and Gupta [29], with some modifications. Briefly,
200 pL of the EEHS (100-1000 pg/mL) was mixed with 1.8 mL of an ethanol solution of 0.1
mM DPPH. The mixture was homogenized and incubated for 30 min at room temperature in
the dark. The absorbance was read at 517 nm in a T 70 UV/VIS spectrophotometer (PG
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Instruments Limited, UK). Ascorbic acid and butylated hydroxytoluene (BHT) were used as
the antioxidant standards. Three independent experiments were performed in duplicate. The
percentage of free radical-scavenging activity was expressed with the following formula: 1—
(ADSsampte/ ADS.onrol) X 100.

Antioxidant assay in human erythrocytes

Inhibition assay of AAPH-induced hemolysis. The protection against hemolysis pro-
moted by the EEHS were evaluated using the method described by Valente et al. [30], with
some modifications. The tests were conducted with erythrocyte suspensions (2.5%) previously
incubated at 37°C for 30 min in the presence of different concentrations of ascorbic acid or the
EEHS (50-125 pg/mL). After this period, 2.2’-azobis-2-amidinopropane (AAPH) at a concen-
tration of 50 mM was added to the samples subjected to hemolysis induction. This mixture
was incubated at 37°C for 4 h with frequent stirring. The negative control consisted of erythro-
cytes incubated with ethanol at a final concentration of 0.6%. After every 60-min incubation
period, samples were centrifuged at 1500 rpm for 10 min, and an aliquot of each supernatant
was collected and diluted in saline solution. Subsequently, the absorbance was read at 540 nm
in a T 70 UV/VIS spectrophotometer (PG Instruments Limited, UK). Three independent
experiments were conducted in duplicate. The percentage of hemolysis was measured using
the following formula: A/B x 100, where (A) corresponds to the sample absorbance and (B)
corresponds to the total hemolysis (erythrocytes incubated with distilled water).

Inhibition of malondialdehyde production. The effect of the EEHS on the inhibition of
the production of malondialdehyde (MDA), a by-product of lipid peroxidation, was evaluated
by incubation of a human erythrocyte suspension (5%) in 50 mM of the oxidizing agent
AAPH [31]. The suspension was pre-incubated at 37°C for 30 min in the presence of ascorbic
acid or the EEHS (100 ug/mL). Afterwards, 50 mM AAPH was added, and the mixture was
maintained at 37°C for 3 h with frequent stirring. The negative control consisted of erythro-
cytes incubated with ethanol at a final concentration of 0.6%. After the incubation period, the
samples were centrifuged at 1500 rpm for 10 min. Aliquots (500 uL) of the supernatants were
transferred to test tubes containing 1 mL of 10 nmoL thiobarbituric acid (TBA). The standard
solution consisted of 500 pL of 20 mM MDA in 1 mL of TBA. The samples were incubated at
96°C for 45 min. After the samples were cooled for 15 min, 4 mL of n-butyl alcohol was added
to each sample, and the samples were centrifuged at 3000 rpm for 5 min. The supernatants
were read at 532 nm in a T 70 UV/VIS spectrophotometer (PG Instruments Limited, UK).
Two independent experiments were conducted in triplicate. The MDA levels in the samples
were expressed in nmol/mL using the following formula: sample absorbance x (20 x 220.32/
standard absorbance).

Antimicrobial activity

Microbial growth. The antimicrobial activity of the EEHS was evaluated using gram-neg-
ative bacteria (Klebsiella pneumoniae and Proteus mirabilis), gram-positive bacteria (Staphylo-
coccus aureus), and the yeast Candida albicans. All microorganisms used were certified by the
American Type Culture Collection (ATCC) and the Agricultural School (Escola Superior
Agrdria, ESA) of Braganga, Portugal. The tested strains were initially cultured in Muller-Hin-
ton broth containing 20% glycerol and were stored at -70°C. Before experimental use, each
sample was subcultured overnight in liquid nutrient broth (for the bacterial strains) or peptone
dextrose liquid medium (for the yeast strain). The inocula were diluted in saline solution and
adjusted to a 0.5 McFarland standard. Each dilution was confirmed by spectrophotometric
readings at 540 nm for bacterial strains and 640 nm for yeast strains in a Unicam Helios Alpha
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UV-VIS spectrophotometer (Thermo Spectronic, Cambridge, UK) [32]. Aliquots of different
bacterial inocula (10 colony forming units (CFU)/mL) and yeast inocula (10° CFU/mL) were
added to the microplates for evaluation of antimicrobial activity.

Minimum inhibitory concentration. The minimum inhibitory concentrations of the
EEHS as well as the controls, gentamicin (antibiotic) and amphotericin B (antifungal), were
determined using a microdilution assay, as described by Morais et al. [33]. Antimicrobial
assays were conducted using nutrient broth (NB) (for the bacterial strains) or yeast peptone
dextrose (YPD) liquid medium (for the yeast strain) in 96-well microplates. The EEHS was sol-
ubilized in dimethylsulfoxide (DMSO) at 70% (final concentration of DMSO of 0.27%), and
serial dilutions were prepared with concentrations between 0.78 and 100 mg/mL. The inocula
were added to all wells except for the negative controls, and the microplates were incubated at
37°C for 24 h (for the bacterial strains) or 25°C for 48 h (for the yeast strain). DMSO was used
as the control. The antimicrobial activity was detected by adding 20 uL of 1% 2,3,5-triphenyl-
2H-tetrazolium (TTC). The minimum inhibitory concentration (MIC) was defined as the low-
est concentration of the sample capable of inhibiting microbial growth, as indicated by the
TTC staining. The MIC was calculated after collecting a 20uL aliquot from each well where
color changes were not observed and transferring it to NB or YPD medium for 24 h at 37°C
(for the bacterial strains) or 48 h at 25°C (for the yeast strain). The lowest concentration that
did not result in growth after subculturing was defined as the minimum bactericidal concen-
tration (MBC) or minimum fungicidal concentration (MFC). Assays were performed in tripli-
cate for each microorganism.

Inhibition of fungal growth. Pure cultures of fungal isolates were obtained from the
Microbiology Laboratory of ESA. The agar diffusion technique was used to evaluate the activ-
ity of the EEHS against the filamentous fungi Colletotrichum acutatum ESA12, Fusarium cul-
morum ESA23, and Mucor piriformis ESA43, as well as the dermatophytes Microsporum canis
ESA28, Microsporum audouinii, and Trichophyton sp. After autoclaving, potato dextrose agar
(PDA) was incorporated into the EEHS at final concentrations of 5 mg/mL and 10 mg/mL, fol-
lowed by plating onto Petri dishes. Tartaric acid at 1% and chloramphenicol at 0.1 g/L were
added to the PDA. Subsequently, a 5-mm culture disc of each fungal strain tested was trans-
ferred to the center of the dishes. The discs were obtained from the edges of colonies previ-
ously grown for seven days on PDA. The plates were incubated at 25 + 2°C for 72 h. After this
period, the diameters of the fungal growth zones were measured [34]. Assays were performed
in duplicate for each microorganism.

Cytotoxic activity

Cell lines and culture conditions. The acute myeloid leukemia cell line Kasumi-1 was
cultured in RPMI 1640 medium (Gibco; Rockville, MD, USA) supplemented with 10% fetal
bovine serum (FBS) (CULTILAB, Brazil), 100 U/mL of penicillin, and 100 pg/mL of strepto-
mycin, and it was incubated in a humidified atmosphere at 37°C and 5% CO,.

Assay with Annexin V and propidium iodide. The cytotoxic activity was evaluated using
the method described by Paredes-Gamero et al. [35], with some modifications. Cells were
plated onto 96-well microplates (10 cells/mL) in RPMI 1640 supplemented with 10% FBS in
the absence or presence of the EEHS (25-200 pg/mL) for 24 h in a humidified atmosphere at
37°C and 5% CO,. After this period, the cells were washed with PBS and resuspended in
Annexin buffer (0.01 M HEPES, pH = 7.4, 0.14 M NaCl and 2.5 mM CaCl,). Annexin V conju-
gated with fluorescein isothiocyanate (FITC) and propidium iodide (PI) was added to each cell
suspension according to the manufacturer’s instructions, and each suspension was incubated
for 20 min at room temperature. The stained cells were analyzed using an Accuri C6 flow
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cytometer (Becton Dickinson, NJ, USA) and Accuri C6 software (Becton Dickinson). A total
of 4000 events were collected per sample.

Evaluation of the mitochondrial membrane potential. Changes in the mitochondrial
membrane potential were assessed using 5,5,6,6-tetrachloro-1,1’,3,3’-tetraethylbenzimidazo-
lylcarbocyanine iodide (JC-1, Molecular Probes; Eugene, OR, USA) following the method
described by de Moraes et al. [36]. JC-1 is a cationic marker with a membrane potential-depen-
dent accumulation in the mitochondria, indicated by the change of the fluorescence emission
from red (590 nm) to green (520 nm). The cells labeled red indicate a higher mitochondrial
membrane potential, whereas those labeled green indicate a lower potential. To this end,
Kasumi-1 cells were seeded in 24-well plates (10° cells/mL) in medium containing 10% FBS
and were treated with the ICs, (ug/mL) of the EEHS or carboxycyanide-4-(trifluoromethoxy)-
phenylhydrazone (10 pM) (control) for 24 h in a humidified atmosphere at 37°C and 5% CO,.
Subsequently, the cells were centrifuged and incubated with JC-1 (1 pg/mL) for 15 min at
room temperature. Fluorescence was detected in an Accuri C6 flow cytometer (Becton Dickin-
son, USA) using Accuri C6 software (Becton Dickinson, USA). A total of 4000 events were col-
lected per sample.

Effect of inhibitors on EEHS-induced cell death. Kasumi-1 cells were plated onto
96-well microplates (10° cells/mL) containing RPMI 1640 supplemented with 10% FBS in the
presence of 20 uM of the pan-caspase inhibitor Z-Val-Ala-Asp-(O-methyl)-fluoromethyl
ketone (Z-VAD-FMK), 20 uM of necrosis inhibitor necrostatin-1 (NEC-1), 20 uM of cathepsin
inhibitor trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E64), and 50 pM of reac-
tive oxygen species inhibitor N-acetyl-L-cysteine (NAC), and it was incubated in a humidified
atmosphere at 37°C and 5% CO, for 60 min. Afterwards, 160 ug/mL of the EEHS was added to
each sample, and the mixture was incubated for 24 h. Then, the cells were washed with PBS,
resuspended in Annexin buffer (0.01 M HEPES, pH = 7.4, 0.14 M NaCl and 2.5 mM CaCl,)
and incubated for 20 min at room temperature after the addition of annexin V-FITC and pro-
pidium iodide (PI) (Becton Dickinson, Franklin Lakes, NJ) according to the manufacturer’s
instructions. The analyses were performed using an Accuri C6 flow cytometer (Becton Dickin-
son) and Accuri C6 software (Becton Dickinson), with 4000 events collected per sample.

Statistics

All data are show as the mean + standard error of mean (SEM) and for statistical significant
differences between the groups, using the ¢-test for comparison between two groups, using the
Prism 6 GraphPad software. The results were considered significant when p * P < 0.05, **

P < 0.0l e*** P < 0.001.

Results
Chemical composition

The concentrations of phenolic compounds and total flavonoids in the EEHS were 179 + 2.9
mg GAE/g of extract and 29 + 1.1 mg QE/g of extract, respectively. The chemical profile of the
extract was determined using HPLC-DAD-MS/MS (Fig 1 and Table 1) and indicated the pres-
ence of quinic acid (1), chlorogenic acid (2), catechin (3), rutin (6), and isoquercitrin (7),
which were identified by comparison with authentic standards. In addition, two other hetero-
sidic flavonoid derivatives were characterized, kaempferol-rutinoside (8), and their fragmenta-
tion patterns were similar to those of rutin but differed in the absence of a hydroxyl group in
the flavonoid. They were identified through the fragment with an m/z of 285.0393 (C,5HOg).
Compound 10 had a UV spectrum similar to that of catechin and was found at an m/z of
435.1282, consistent with the molecular formula C,;H,30,0 and corresponding to the addition

PLOS ONE | DOI:10.1371/journal.pone.0167531 December 1,2016 6/19



@° PLOS | ONE

Pharmacological Effects of Hancornia speciosa Leaves

Intens,|

x10 6 Hancornia speciosa - EEHS - BPC - MS
o 1 -MS2(609.1475), 38.3eV|
6 s 3000297
A, Y
-MS2(353.0862), 31.3eV
1 191.}7’559 L 1
4 1789981 09,419
24 ) ‘ )
2 789
e W]
Inteng.
[mAU] 5 EEHS - UV - 320 nm
80 352
N V- 2
o] 324
60
40
20 '
o LM M MNJL_M‘
_0 é ‘!l é é 1‘0 1‘2 16 1‘8 Time [mi‘n]

Fig 1. Chemical composition. Chromatograms obtained by HPLC-DAD-MS/MS (negative ion mode) indicating the presence of phenolic compounds in the

EEHS. The enlarged figures correspond to the MS/MS spectra of the following main compounds: chlorogenic acid (peak 2) and rutin (peak 6).
doi:10.1371/journal.pone.0167531.9001

Table 1. Phenolic compounds identified from the HPLC-DAD-MS/MS of the ethanolic extract of Hancornia speciosaleaves.

ID | RT[min]
0.8
5.8
8.1
8.8
9.2
9.5
9.6
9.9
10.1
10.6

© 00N O~ W N =

-
o

Molecular Formula

C7H1206
C16H1809
C15H1406
C16H20010
C17H22010
Ca7H30016
C21H20012
Ca7H30015
C24H2009
C21H24010

[M-H[
191.0565
353.0878
289.0704
371.0967
385.1132
609.1476
463.0867
593.1494
451.1017
435.1282

* identified by comparison with an authentic standard

doi:10.1371/journal.pone.0167531.t1001

Error PPM

-2.1
1.5
—2.8
—3.0
-0.7
3.3
-2.1
-2.1
2.7
-3.4

MS/MS

191.0556; 173.044; 161.0228
249.0615

249.0578

300.0303; 271.0251

300.0265

285.0393; 284.0313; 255.0291

Compound
Quinic acid*
Chlorogenic acid*
Catechin*

Unknown

Unknown

Rutin*

Isoquercetrin®
Kaempferol-rutinoside

341.0638; 231.0281; 217.0127; 189.0202; 177.0175 | Unknown

273.0779; 167.0310

Catechin-pentoside
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of a pentose to catechin. These fragmentation patterns allowed the characterization of this
molecule as a catechin-pentoside derivative.

Antioxidant activity

Scavenging of DPPH free radicals. The EEHS had a higher DPPH free radical-scaveng-
ing activity than did the lipophilic antioxidant standard BHT; however, the scavenging activity
of the EEHS was lower than that of the hydrophilic antioxidant standard ascorbic acid. The
ICs, of the EEHS was 7.1-fold lower than that of BHT and 3.2-fold higher than that of ascorbic
acid. The maximum scavenging activity of the EEHS (in ug/mL) was 5-fold higher than that of
ascorbic acid and 5-fold lower than that of BHT (Table 2).

Protective effect of the EEHS against AAPH-induced hemolysis. The protective effect
against AAPH-induced hemolysis was evaluated for the EEHS. With regard to the protection
against AAPH-induced hemolysis, ascorbic acid prevented erythrocyte hemolysis within 180
minutes in a concentration-dependent manner (Fig 2A-2C). The EEHS protected erythrocytes
incubated with AAPH for up to 240 min and decreased hemolysis by 20.1% and 21.4% at con-
centrations of 100 pg/mL and 125 ug/mL, respectively (Fig 2A-2D).

Inhibition of malondialdehyde production. The antioxidant properties of the EEHS
were also evaluated by determination of the inhibition of the production of MDA, which is the
by-product of lipid peroxidation of erythrocyte membranes induced by AAPH. Treatment of
erythrocytes with ascorbic acid and the EEHS at the lowest concentration able to inhibit hemo-
lysis (100 pg/mL) for 3 h decreased the MDA levels by 88% and 63%, respectively, compared
with the control group incubated with AAPH alone (Fig 3).

Antimicrobial activity

Minimum inhibitory concentration. Table 3 shows that the EEHS was effective against
all of the microorganisms evaluated, including a gram-positive strain (S. aureus) and a gram-
negative strain (P. mirabilis). However, it presented bacteriostatic and fungistatic activity
against a gram-negative strain (K. pneumoniae) and the yeast Candida albicans, respectively.
In addition, all ATCC strains were more sensitive to the action of the EEHS compared with
hospital strains, except for K. pneumoniae and C. albicans, which showed the same MIC.

Fungal growth inhibition assay. The EEHS inhibited the growth of filamentous fungi
and dermatophytes compared with the solvent (control). The filamentous fungal species most
sensitive to the action of the EEHS was M. piriformis, which was inhibited at EEHS concentra-
tions of 5 mg/mL and 10 mg/mL. The EEHS inhibited strains F. culmorum and C. acutatum
only at the highest concentration evaluated (Fig 4A). The dermatophyte species most sensitive
to the action of the EEHS was M. canis, which was inhibited at the concentrations of 5 mg/mL
and 10 mg/mL. M. audouinii was sensitive to the 10 mg/mL concentration of the EEHS. At the
concentrations tested, the EEHS did not affect the growth of Trichophyton sp. (Fig 4B).

Table 2. IC5, of the ethanolic extract of Hancornia speciosa Gomes leaves (EEHS) compared with the
antioxidant standards ascorbic acid and butylated hydroxytoluene (BHT) along with the percentage
of maximum scavenging activity of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH).

DPPH ICs0 (Hg/mL) Maximum Activity
% Hg/mL
Ascorbic acid 29+0.8 96.6+0.3 10
BHT 66.1+23.6 95.1+0.5 500
EEHS 9.4+0.8 94.8+0.8 50

doi:10.1371/journal.pone.0167531.t002
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Fig 2. Effects of EEHS on the inhibition of hemolysis of human erythrocytes induced by AAPH. The groups
were evaluated at (A) 60, (B) 120, (C) 180, and (D) 240 min of incubation. The controls consisted of an erythrocyte
suspension (2.5%) incubated with AAPH alone. Values are expressed as the mean + SEM of three independent
experiments performed in duplicate. * P < 0.05 when the treated groups were compared with the AAPH group
(erythrocytes incubated with AAPH alone) during the respective incubation periods.

doi:10.1371/journal.pone.0167531.g002

Cytotoxic activity

Cell death profile. The evaluation of the cytotoxicity of the EEHS in Kasumi-1 cells
labeled with annexin V-FITC/PI indicated a decrease in the viability of tumor cells in late apo-
ptosis (Fig 5B and 5C) by 21.6% and 78.7% at concentrations of 100 ug/mL and 200 pug/mL,
respectively, and the ICs, was 160 pg/mL (Fig 5A).

Evaluation of the mitochondrial membrane potential. The analysis of the effects of the
EEHS (ICs = 160 pg/mL) on the mitochondrial membrane potential in Kasumi-1 cells in 24 h
using the JC-1 fluorescent marker indicated a decrease in the potential by 98.4% (Fig 6A and 6B).

Effect of inhibitors on EEHS-induced cell death. The inhibitors E64 and NAC were
effective in inhibiting the EEHS-induced death (IC5, = 160 pg/mL) of Kasumi-1 cells treated
for 24 h. However, in this study, the apoptosis inhibitor Z-VAD-FMK and necrosis inhibitor

NEC-1 were ineffective in inhibiting cell death (Fig 7A and 7B).
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Fig 3. Effects of the EEHS on the inhibition of lipid peroxidation induced by AAPH. The control corresponds
to erythrocytes incubated with AAPH alone. Values are expressed as the mean + SEM of two independent

experiments performed in duplicate. *** P < 0.001 when the treated groups were compared with the AAPH group
(erythrocytes incubated with AAPH alone).

doi:10.1371/journal.pone.0167531.g003

Discussion

Plant extracts are naturally occurring products with complex chemical compositions. These
compounds are responsible for the biological activity of the extracts and can act alone or syner-
gistically. Previous phytochemical studies with leaves of H. speciosa identified several

Table 3. Minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) of the

EEHS and controls.

EEHS mg/mL Gentamicin mg/mL Amphotericin B mg/mL
Microorganism MIC MBC/MFC MIC MBC MIC MFC
S. aureus (ATCC 43300) 0.78 3.12 0.0312 0.0625 - -
P. mirabilis (ATCC 25933) 3.12 6.25 0.0625 0.0625 - -
K. pneumoniae (ATCC 13883) 12.5 ND 0.00012 0.00012 - -
C. albicans (ATCC 10231) 6.25 ND - - 0.0020 >0.003
S. aureus (ESA) 3.12 6.25 0.125 0.125 - -
P. mirabilis (ESA) 6.25 12.5 0.00049 0.00049 - -
K. pneumoniae (ESA) 12.5 ND 0.0039 0.0039 - -
C. albicans (ESA) 6.25 ND - - 0.0021 >0.003
ATCC, American Type Culture Collection; ESA, Agricultural School, Braganga, Portugal.
ND, Not detected; -, Unvalued.
doi:10.1371/journal.pone.0167531.t003
PLOS ONE | DOI:10.1371/journal.pone.0167531 December 1,2016 10/19
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Fig 4. Zone of inhibition of filamentous fungi. Growth inhibition by the EEHS (5 mg/mL and 10 mg/mL) in the (A) filamentous fungal species Colletotrichum
acutatum ESA12, Fusarium culmorum ESA23, and Mucor piriformis ESA43 and (B) dermatophytes Microsporum canis ESA28, Microsporum audouinii, and
Trichophyton sp. (in mm). Values are expressed as the mean + SEM of duplicate experiments. * P < 0.05, ** P <0.01, and *** P < 0.001 when the treated
groups were compared with the control group (3.3% DMSO).

doi:10.1371/journal.pone.0167531.9004

compounds, including L-(+)-bornesitol, quinic acid, chlorogenic acid, and flavonoids derived
from kaempferol and rutin [4,37,38,39]. In this study, several phenolic derivatives were identi-
fied in the UV spectrum of the EEHS (Fig 1), and rutin along with chlorogenic acid were the
major compounds in the extract. The amounts of total flavonoids and phenolic compounds in
natural products are important parameters to be considered when assessing the quality and
biological potential of natural products [40]. In this study, the concentration of total phenolic
compounds in the EEHS was higher than that in the extract of H. speciosa fruit [41]. Phenolic
compounds are hydrogen donors capable of directly scavenging free radicals and reducing oxi-
dative damage [42,43], which makes them potent antioxidants. In other medicinal plant
extracts, these compounds also activated endogenous antioxidant systems and inhibited the
lipid peroxidation of human erythrocytes [2, 44]. Among the phenolic compounds, flavonoids
are the most prominent because of their potent antioxidant activity [45].

The analysis of the direct scavenging of free radicals indicated that the EEHS was more
effective than BHT, a synthetic antioxidant used in a wide variety of food products [46] and
cosmetics [47]. The free radical-scavenging capacity of the EEHS was higher than that of the
extracts of H. speciosa fruit [41], which may be attributed to the higher concentration of phe-
nolic compounds in the leaf extract. In addition, the effects of the antioxidant activity in a bio-
logical model in vitro were evaluated in human erythrocytes subjected to lipid peroxidation by
the action of free peroxyl radicals generated by the oxidizing agent AAPH. These radicals
cause erythrocyte hemolysis via the oxidation of lipids and proteins of the cell membranes
[48]. The EEHS demonstrated a sustained ability to protect against AAPH-induced hemolysis.
The inhibition of lipid peroxidation was also determined by the quantification of the levels of
MDA, which is a marker of oxidative damage to the lipids found in the erythrocyte mem-
branes [49]. Umarani et al. [50] reported that the flavonoid rutin, also present in the EEHS,
promoted the inhibition of lipid peroxidation in the heart tissue of rats subjected to oxidative
stress. Henneberg et al. [51] reported the ability of rutin to sequester reactive oxygen species in
human erythrocytes subjected to oxidative damage. Protection against lipid peroxidation pro-
moted by the EEHS may be associated with its direct role in the scavenging of peroxyl radicals

PLOS ONE | DOI:10.1371/journal.pone.0167531 December 1,2016 11/19
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doi:10.1371/journal.pone.0167531.9005
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doi:10.1371/journal.pone.0167531.g007

or the modulation of endogenous antioxidant mechanisms, including the activation of the
enzymes glutathione, catalase, and superoxide dismutase [2,48].

In addition to the antioxidant activity, phenolic compounds have antimicrobial activity via
several mechanisms, including adsorption to and disruption of microbial membranes, ion
deprivation, enzyme interaction, and interaction with membrane transporters [52,53,54].

Amin et al. [22] found that quercetin derivatives, such as those present in the EEHS, were
active against methicillin-resistant S. aureus strains. Previous studies with extracts of H. spe-
ciosa bark reported antimicrobial activity against gram-positive bacteria (S. aureus) and gram-

PLOS ONE | DOI:10.1371/journal.pone.0167531 December 1,2016 13/19



@° PLOS | ONE

Pharmacological Effects of Hancornia speciosa Leaves

negative bacteria (H. pylori) [3]. In this study, the EEHS presented antimicrobial activity
against ATCC and hospital strains. The bactericidal action of the extract was observed against
gram-positive and gram-negative bacteria. However, gram-negative bacteria are more resistant
than gram-positive bacteria [55]. The bacterial cell wall, particularly in gram-negative bacteria,
is an effective barrier against candidate drug molecules. This barrier is strongly polar and con-
tains efflux pumps that act as a resistance mechanism, ejecting the compounds that pass
through the outer membrane [56]. Al-Fatimi et al. [57] and Sahreen et al. [58] reported that
plant extracts effective against gram-negative bacteria contained polar compounds that could
interact with the chemical composition of the bacterial cell wall structure, thus promoting its
effects.

The EEHS also presented fungistatic activity against the yeast C. albicans and inhibited the
growth of filamentous fungi as well as dermatophytes. The presence of condensed tannins in
the EEHS, particularly catechins, may explain the observed antifungal activity because these
compounds can inactivate adhesion proteins, transporters, and enzymes [52].

Fungi promote superficial infections, which are common in elementary school children
[59], and invasive infections, which are considered one of the leading causes of morbidity and
mortality in immunocompromised patients [60]. The opportunistic nature of these infections
increases the risk of infections in patients with prolonged neutropenia, lymphopenia, bone
marrow transplants, and diabetes as well as those treated with corticosteroids [61].

Plants with antimicrobial activity also present cytotoxic activity by promoting death in vari-
ous tumor cell lines [62] via different mechanisms. The primary routes of cell death are apo-
ptosis, autophagy, and necrosis, and deaths by apoptosis and autophagy are considered
programmed cell death mechanisms, whereas necrosis is considered an unregulated cell death
mechanism [63]. However, cell death by necrosis may be regulated by a process known as
necroptosis [64]. Previous studies indicated that the extracts of leaves, branches, fruit, and fruit
latex of H. speciosa presented low toxicities towards the human tumor cell lines HCT-8 (colon
carcinoma), MDA-MB-435 (melanoma), and SF-295 (glioblastoma) [65]. Moreover, our
results indicated that the EEHS was effective in acute myeloid leukemia cells, and the cytotoxic
activity was concentration-dependent and mediated by apoptosis. Martin et al. [66] found that
the presence of phosphatidylserine in cell death assays with annexin V-FITC is considered an
early event of apoptosis. Cell labeling with propidium iodide, which binds to DNA, is only
observed during membrane damage, which occurs in late apoptosis or early necroptosis [67].
The flavonoids that are catechin and quercetin derivatives have potent cytotoxic activities and
cause apoptosis using mitochondrial pathways in human leukemic cell lines, including mono-
cytic leukemia (U937), erythroleukemia (K562), and promyelocytic leukemia (HL-60) [25].
Therefore, the presence of flavonoids in the EEHS can be directly associated with the cytotox-
icity of the extract.

The EEHS decreased the mitochondrial membrane potential. Similarly, previous studies on
cell viability reported the apoptotic activity of plant extracts in leukemic cell lines via reduction
of the mitochondrial membrane potential [2,31,68].

Mitochondria-mediated apoptosis occurs in response to various death stimuli, including
activation of tumor suppressor proteins and oncogenes, DNA damage, chemotherapeutic
agents, nutritional deprivation, and ultraviolet radiation [69]. In these cases, apoptosis can
occur via the intrinsic (mitochondrial-mediated) or extrinsic apoptotic pathways, both of
which are caspase-dependent. Moreover, in vitro studies demonstrated that caspase-indepen-
dent apoptosis can be regulated by lysosomes and endoplasmic reticulum [70]. Assessing the
mechanism by which the EEHS promoted cell death, using cell death inhibitors, indicated the
involvement of cysteine proteases (cathepsins). These results suggest that the EEHS promotes
apoptosis via cathepsins because these enzymes induce apoptosis of tumor cells in a caspase-
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dependent and caspase-independent manner [71]. The EEHS promoted caspase-independent
apoptosis considering that the pan-caspase inhibitor Z-VAD-FMK did not inhibit the cyto-
toxic activity of the extract. Cathepsins can also promote apoptosis by directly causing catalysis
and proteolytic degradation of various substrates involved in cell death [72,73,74]. Antitumor
agents such as vincristine, a naturally occurring alkaloid identified and isolated from plants of
the genus Vinca, induce changes in the permeability of the lysosomal membrane and promote
the release of cathepsins into the cytoplasm [75, 76]. Lysosomal cathepsins can act directly in
the mitochondria by stimulating the release of cytochrome C and producing reactive oxygen
species. The latter has direct and indirect effects on lysosomes [77] and causes progressive
destabilization of the membranes of intracellular organelles, including lysosomes and mito-
chondria [78]. In this context, the EEHS strongly decreased the mitochondrial membrane
potential and formation of reactive oxygen species, as shown by the inhibition of cell death
using NAC, an inhibitor of these molecules.

Together, these results indicate that phenolic acids and flavonoids are present in the EEHS
extract, and the antioxidant, antimicrobial, and cytotoxic activities of these compounds in
acute myeloid leukemia cells are mediated by apoptosis via a decrease in the mitochondrial
potential and cathepsin activation.
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