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Mońia A. R. Martins,†,‡ Pedro J. Carvalho,† Andre ́ M. Palma,† Urszula Domanśka,‡
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ABSTRACT: The knowledge of critical properties is fundamental in engineering
process calculations for the estimation of thermodynamic properties and phase
equilibria. A literature survey shows a large number of methods for predicting critical
properties of different classes of compounds, but no previous study is available to
evaluate their suitability for terpenes and terpenoids. In this work, the critical
properties of terpenes and terpenoids were first estimated using the group-
contribution methods of Joback, Constantinou and Gani, and Wilson and Jasperson.
These were then used to calculate densities and vapor pressure through the equations
of state Peng−Robinson (PR) and Soave−Redlich−Kwong (SRK) and then
compared with the experimental values. On other hand, density and vapor pressure
experimental data were used to estimate the critical properties directly by the same
equations of state (EoSs), allowing a comparison between the two estimation
procedures. For this purpose densities for 17 pure terpenes and terpenoids were here
measured at atmospheric pressure in the temperature range (278.15 to 368.15) K. Using the first approach, the best combination
is the Joback’s method with the Peng−Robinson EoS, despite the high relative deviations found for vapor pressure calculations
and difficulties to predict density at low temperatures. Following the second approach, the set of critical properties and acentric
factors estimated are able to adequately correlate the experimental data. Both equations show a similar capability to correlate the
data with SRK EoS presenting a global %ARD of 3.16 and 0.62 for vapor pressure and density, respectively; while the PR EoS
presented 3.61 and 0.66, for the same properties, both giving critical properties estimates also closer to those calculated by the
Joback method, which is the recommended group-contribution method for this type of compounds.

1. INTRODUCTION

Terpenes, and their oxygenated forms called terpenoids, are the
most diverse class of natural compounds with more than 55000
different structures reported.1,2 They represent the oldest
known biomolecules and are components of volatile floral and
fruit scents. Despite the diversity of their structures and
function, all terpenes and terpenoids derive from the common
5-carbon building block, isoprene.3

Because of their exceptional importance, a result of their
many biological roles in nature, these compounds have been
widely used since the Egyptians.1 Many applications for human
society developments are known in the areas of pharmaceut-
ical,4 food,3,5 and the cosmetic industries,6 which have been
exploring these compounds for their multiple beneficial roles as
medicines, flavor enhancers, and fragrances.1 Terpenes have
also been studied with great interest because of their roles in
the atmosphere, since the annual global emission of isoprene
was estimated at 500 megatonnes.7

Despite being widely used and investigated by researchers
there is still an enormous lack of experimental thermodynamic

properties for systems containing terpenes. Aqueous solubil-
ities, vapor pressures, and octanol−water partition coefficients,
required to assess environment fate and transport, and critical
properties, used as the basis for the estimation of a large variety
of thermodynamic, volumetric, and transport properties using
the corresponding states principle are required.
Critical temperatures and pressures provide valuable

information for the estimation of vapor pressures and are
essential for the description of pure component and mixture
behavior by equations of state (EoS).8 However, their
experimental determination is complex, expensive, and in
many cases impossible, since the large and strongly associating
components usually decompose before the critical point. Thus,
experimental data are usually only available for the smaller
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molecules, and predictive methods must be used for the more
complex substances.9−13

Considering terpenes, to the best of our knowledge, only the
critical volume and temperature for limonene, α-pinene, and 3-
carene have been published in the open literature,14 and the
results are considerably uncertain since terpenes are unstable at
their critical point.15 Moreover, Poling et al.16,17 presents the
critical temperature of thymol and L(−)-menthol and the
critical temperature and pressure of p-cymene. As seen in the
literature, when critical properties of terpenes are required,
most authors use group contribution methods to estimate
them.18−20

Because of their practical and theoretical importance, the
estimation of critical properties has attracted the interest of
researchers and a wide variety of estimation methods are
available in the open literature. Riedel21 and Lydersen22 were
the first to develop group-contribution methods for critical
properties estimation, followed by many others.9−11,23−33

Moreover, there are also publications related with the use of
quantitative structure property relation (QSPR) correlations,
and popular mathematical methods like neural networks. A
broad overview of these methods together with a detailed
discussion of their reliability have been published during the
past years.17,34 In addition, some authors have evaluated the
performance of models utilizing a large common set of
experimental data.8

Owing to the scarcity of experimental critical data for
terpenes, the use of group-contribution schemes seems to be
the adequate approach to obtain quick and reliable estimations.
Most of the techniques require only the molecular structure
and, additionally, other properties such as the normal boiling
point.17 The main issue is how the different estimated values
compare and what is their performance in terms of volumetric
properties or vapor pressure estimations through a cubic
equation of state (EoS).
If accurate critical properties can be found, their use in

corresponding state methods, such as the Lee−Kesler
generalized correlation35 and cubic Equations of State,36−39 is
useful for the prediction of thermodynamic properties and
phase equilibria. These EoSs play an important role in chemical
engineering design and nowadays, the Peng−Robinson (PR)39

and Soave−Redlich−Kwong (SRK)38 equations of state are the
most widely used in process simulators such as Aspen-Plus or
GPROMS.40 Several advantages of these EoSs are related to
how they can accurately and easily represent the relationship
between temperature, pressure, and compositions in binary and
multicomponent systems, requiring only the critical properties
and acentric factor as generalized parameters.
The aim of this work is to evaluate the best set of critical

properties (critical temperature, critical pressure), and acentric
factor, for terpenes and terpenoids to be used with the Soave−
Redlich−Kwong38 and Peng−Robinson39 equations of state.
Two approaches were followed (Figure 1):

1. Apply the estimated critical properties using the group
contribution methods developed by Joback,9 Constanti-
nou and Gani,11 and Wilson and Jasperson,23 to calculate
densities and vapor pressure through equations of state,
and compare both experimental and calculated sets.

2. Use experimental densities and vapor pressures to
estimate the critical properties by the same equations
of state.

Density data were here measured experimentally at
atmospheric pressure, while vapor pressure values were taken
from the literature.

2. EXPERIMENTAL SECTION
2.1. Chemicals. Detailed information about the terpenes

and terpenoids investigated in this work is presented in Table 1.
Compounds were used without any further purification.

2.2. Density Measurements. Density measurements of
the pure terpenes and terpenoids were carried out at
atmospheric pressure and in the (278.15 to 368.15) K
temperature range, using an Anton Paar DMA 4500
vibrating-tube densimeter (Graz, Austria). Two integrated Pt
100 platinum thermometers provided good precision of the
internal control of temperature (±0.01 K) and the densimeter
includes an automatic correction for the viscosity of the sample.
The apparatus is precise to within ±1 × 10−5 g·cm−3 and the
overall uncertainty of the measurements was estimated to be
better than ±5 × 10−5 g·cm−3. Additional details related with
the equipment can be found elsewhere.42 The density of (R)-
(+)-limonene and p-cymene was measured using an automated
SVM 3000 Anton Paar rotational Stabinger viscometer−
densimeter (temperature uncertainty: ±0.02 K; absolute
density uncertainty: ±5 × 10−4 g·cm−3) at atmospheric pressure
and in the (278.15 to 368.15) K temperature range.

3. MODELS
3.1. Critical Properties. The following sections will briefly

describe the methods used in this work to estimate the critical
temperature, Tc, and the critical pressure, Pc, of terpenes and
terpenoids, namely Joback (1984; 1987),9,29 Constantinou and
Gani (1994),11 and Wilson and Jasperson (1996).23

3.1.1. Joback Method. Joback9,29 proposed a group-
contribution method based on the Lydersen’s group-contribu-
tion scheme,22 adding new functional groups, and establishing
new parameter values. In this method no interactions between
groups is assumed and the elemental contributions are mainly
determined by the bonds within and among small groups of
atoms. Table S1 of Supporting Information presents the
structural groups and their respective contributions for each
property estimated in this work. For Tc a value of the normal
boiling point, Tb, is needed (Table 1).

3.1.2. Constantinou and Gani (CG) Method. In 1994,
Constantinou and Gani11 developed an advanced group-

Figure 1. Schematic representation of the procedure followed in this
work.
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contribution method based on UNIFAC and in a two level
estimation scheme. The basic level has contributions from first-
order functional groups and the next level has second-order
groups, which provide further information about the molecular
structure of the compound. Table S2 of the Supporting
Information presents the set of groups and the respective
contributions for each property used in this work.
3.1.3. Wilson and Jasperson Method. The method reported

by Wilson and Jasperson (WJ)23 uses the nature of the atoms
involved to determine the elemental contributions. It can be
applied to both organic and inorganic species. The first order
method uses atomic contributions along with boiling point and
number of rings, while the second order method also includes
group contributions. Values of the contributions used in this
work are given in Table S3 of the Supporting Information.

3.2. Acentric Factor. Along with the critical properties, a
commonly used pure component constant for property
estimation is the acentric factor, ω. According to Poling et
al.,17 the most accurate technique to estimate the acentric factor
is to use the critical constants.

3.3. Equations of State (EoSs). EoSs are used to relate
temperature, pressure, and volume, the macroscopically
measurable properties in a system. In this work, Soave−
Redlich−Kwong38 and the Peng−Robinson39 EoSs were
selected.
Along this work, the accuracy of the estimations was

evaluated by using the statistical parameter average relative
deviation (%ARD):

∑= −

=N
X X

X
%ARD

1
100

i

N

1

exp calc

calc
(1)

Table 1. Names, Structures, Supplier, Molar Mass (M), Boiling Pointsa (TBP) and Mass Fraction Purities (Declared by the
Supplier) Of the Terpenes and Terpenoids Used

aTaken from Yaws.41
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where Xexp and Xcal refer to the experimental and calculated
property, respectively, and N is the number of data points.

4. RESULTS AND DISCUSSION
4.1. Density Measurements. Density measurements for

the terpenes and terpenoids here studied were carried out in
the temperature range (278.15 to 368.15) K and at atmospheric
pressure. Results are reported in the Table S4 of the Supporting
Information and depicted in Figure 2. As expected the density

decreases linearly with increasing temperature. In the studied
temperature range, eugenol is the compound presenting higher
density, while (R)-(+)-limonene is the less dense compound.
The phenylpropene eugenol is the only compound with
densities higher than 1 g·cm−3 throughout the temperature
range studied.
Although new density data of terpenes and terpenoids were

measured in this work, it should be remarked that many other
authors already reported this property for the same terpenes at
different temperatures. However, no data were found for
carvacrol, thymol, or α-pinene oxide. The maximum relative
deviations between the experimental values measured in this
work and those reported in the literature are presented in
Figure 3 and Table 2. As can be seen a good agreement is found
for all compounds, with an average relative deviation of 0.14%
and a maximum relative deviation of 0.62%.

4.2. Critical Properties and Acentric Factor. I. Estima-
tion of Critical Properties Using Group Contribution
Methods and EoS. Following the approach described before,
the critical properties of terpenes and terpenoids were
estimated using the group contribution methods of Joback,9

Constantinou and Gani (CG),11 and Wilson and Jasperson
(WJ).23 Results are shown in Table 3, alongside with the
acentric factor, and a structural analysis is presented in Figure 4.
Joback and CG methods cannot be applied to all the substances
studied due to the absence of some groups.
Figure 4 shows a comparison between the critical properties

estimated by the various methods. Some discrepancies between
the results, possibly related with limitations associated with
each method, some which were previously observed by other
authors,63 are identified. When the different methods are
compared, acentric factors present higher variability than the
critical properties, especially for aromatic monocyclic terpenes,
with eugenol being a patent outlier. Regarding critical
temperatures and pressures, differences are more noticeable
for (S)-(+)-carvone and (−)-menthone. Noncyclic compounds
have the lowest dispersion indicating that linear compounds are
more easily described by the group contribution methods
available. Critical pressures from Joback method are usually
larger than those by the CG and WJ methods, while generally it
is clear that the Joback and WJ methods present, for this set of
compounds, closer results among the methods tested.
In his initial study, Joback employed only 41 molecular

groups, which oversimplifies the molecular structure, thus
making several types of isomers indistinguishable. Overall this is
insufficient to capture the structural effects of organic molecules
and is the main reason for some inaccuracy of the method.
Moreover, in CG method a group appearing in an aliphatic ring
is considered equivalent to its nonring counterpart. These
groups cannot distinguish between special configurations such
as multiple groups located close to each other and resonance
structures. The WJ method requires additional information
apart from structure and boiling point, what makes it more
complex and sensitive to errors.
As pointed out, all group contribution methods present

weaknesses. Therefore, to choose the best model to represent

Figure 2. Density, ρ, of pure terpenes and terpenoids as a function of
temperature and at 0.1 MPa.

Figure 3. Percentage relative deviations between density data
determined here and those from literature (references in Table 2).
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terpenes and terpenoids, the estimated sets of Table 3 were
used to calculate densities and vapor pressures through the
Soave−Redlich−Kwong and Peng−Robinson EoSs. The
calculated values were compared with the experimental, and a
global summary is displayed in Figure 5. Individual %ARD
values for each substance studied are presented in Table S5 of
the Supporting Information.
Globally, the PR EoS presents better results than the SRK

EoS. Regarding the group-contribution methods, for both

properties, the smaller error was obtained with Joback. It is
important to emphasize that the error obtained for vapor
pressures is much higher than that for density, but the change
of vapor pressure with temperature is far more pronounced and
hard to describe in broader temperature ranges than the change
in density.
So far the best combination found is the PR EoS with the

Joback method. Thus, in order to further investigate the results
obtained, calculated and experimental densities and vapor
pressures, for some terpenes and terpenoids presenting
consistent data, are depicted in Figure S2 and S3 of the

Table 2. Maximum Relative Deviations between the Experimental Values Measured in This Work and Those Reported in the
Literaturea

substance maximum relative deviation (%) substance maximum relative deviation (%)

(−)-menthone 0.5943 (−)-isopulegol 0.3044

(1R)-(−)-fenchone 0.02,45 0.04,46 0.0147 linalool 0.62,44 0.11,20 0.07,48 0.02,49 0.03,50 0.05,51 0.0952

(S)-(+)-carvone 0.14,48 0.1653 L(−)-menthol 0.1043

eucalyptol 0.05,54 0.05,55 0.01,56 0.04,57 0.06,50 0.0658 (R)-(+)-limonene 0.25,46 0.20,59 0.24,48 0.41,49 0.0551

DL-citronellol 0.1344 α-pinene 0.22,59 0.19,51 0.14,58 0.1160

eugenol 0.02,61 0.0162 β-pinene 0.46,59 0.02,48 0.01,58 0.1460

geraniol 0.2644 p-cymene 0.03,58 0.1160

aTerpenes and terpenoids vapor pressures (liquid−vapor) used in this work were collected from literature, Figure S1. Because of the lack of vapor
pressure data of α-pinene oxide, this compound was not considered in the following calculations.

Table 3. Critical Properties of Terpenes and Terpenoids Estimated with Different Contribution Methods

Tc/K Pc/MPa ω

Joback CG WJ Joback CG WJ Joback CG WJ

(−)-menthone 689.70 679.35 727.31 2.60 2.43 2.79 0.412 0.459 0.218
(1R)-(−)-fenchone 679.18 a 707.95 3.08 a 2.81 0.388 a 0.189
(S)-(+)-carvone a 688.74 772.76 a 2.40 3.16 a 0.619 0.198
carvacrol 722.20 734.81 716.34 3.44 2.85 2.93 0.581 0.408 0.553
eucalyptol 661.05 a 635.70 3.02 a 2.44 0.339 a 0.432
DL-citronellol 657.87 675.94 672.09 2.45 2.19 2.30 0.848 0.591 0.657
eugenol 735.58 772.46 733.37 3.58 2.71 2.93 0.676 0.306 0.599
geraniol 671.67 682.12 684.75 2.57 2.18 2.42 0.820 0.617 0.648
isopulegol 656.76 682.75 667.43 2.77 2.36 2.56 0.698 0.398 0.558
linalool 633.30 650.00 639.84 2.58 2.16 2.26 0.755 0.494 0.612
L(−)-menthol 661.63 679.32 672.52 2.66 2.38 2.50 0.716 0.496 0.580
R-(+)-Limonene a 639.85 649.99 a 2.41 2.72 a 0.394 0.373
Thymol 715.83 734.76 710.02 3.44 2.84 2.91 0.581 0.367 0.549
α-pinene a 657.01 620.56 a 3.37 2.60 a 0.224 0.354
β-pinene a 651.26 634.87 a 3.22 2.66 a 0.329 0.363
p-cymene 656.89 664.29 655.59 2.91 2.47 2.84 0.359 0.249 0.358

aThe GC method cannot be applied due to the absence of some groups.

Figure 4. SRK-PR temperature difference (ΔT/K) and critical
pressure and acentric factor ratio for the different contribution
methods and compounds studied.

Figure 5. Global average relative deviation between the experimental
and the predicted densities and vapor pressures, calculated using the
PR and SRK EoS, with critical properties estimated by Joback, CG,
and WJ methods.
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Supporting Information, respectively. In general, the approach
is able to establish a ranking for the magnitude of the density
and vapor pressure values of the different terpenes, in
conformity to the experimental observed rank, and a correct
temperature trend for vapor pressures (Figure S3 of the
Supporting Information). However, concerning the densities at
low temperatures the correct temperature dependency is not
always obtained showing that this cubic EoS should be used
with precaution to estimate densities of liquids. Both EoS
combined with the three group contribution methods here
studied led to incorrect temperature dependency descriptions
of the terpenes isopulegol, (−)-menthone, (S)-(+)-carvone,
carvacrol, DL-citronellol, eugenol, geraniol, and linalool. More-
over, with the use of the SRK EoS, the experimental densities
are always higher than the calculated values, while the
calculated vapor pressures are in general higher than the
experimental values. The same is observed using the EoS PR,
excepting when using the critical properties estimated by the
Joback method, for which the calculated densities are often
higher than the experimental ones. The use of a constant
volume translation could reduce the differences between the
experimental and calculated liquid densities.64,65 However, this
approach was not followed as the main goal here is to compare
the group-contribution methods.
II. Estimation of Critical Properties Using Experimental

Data and EoS. In the second approach proposed, experimental
densities and vapor pressures were used to estimate the critical
properties and the acentric factor directly by Soave−Redlich−
Kwong and Peng−Robinson EoSs (Table 4). The critical
properties obtained in the previous section were used as initial
estimates, and the calculations were performed until the
minimum error between experimental and estimated data was
obtained (eq 1). The values of the estimated critical properties
are generally in the same range to those estimated by group
contributions methods.
In Figure 6 the critical SRK-PR temperature difference and

critical pressure and acentric factor property ratio between the
two EoSs applied is displayed. While critical pressures and
temperatures are usually higher in the SRK equation than in the
PR equation, acentric factors are almost always lower.
Individual %ARD between the calculated and experimental

densities and vapor pressures using SRK and PR EoSs are

presented in Figure 7. Globally both equations show a similar
correlation capability, with the SRK EoS presenting an %ARD
of 3.16 and 0.62% for vapor pressure and density, respectively;
while the Peng−Robinson EoS presented 3.61 and 0.66%, for
the same properties.
The vapor pressure of DL-citronellol, geraniol, (−)-isopule-

gol, and p-cymene show higher %ARD values. Table S6 shows
that there is a decrease followed by an increase in the %ARD
with the temperature, indicating an intersection of the series.
For p-cymene the %ARD are randomly distributed with
temperature. These are compounds with very low vapor
pressures or compounds for which data are available in a larger
temperature range. This somehow stresses the difficulty of
measuring vapor pressure and the need of new experimental
data in this field.
Figures S4 and S5 of the Supporting Information show a

comparison between calculated and experimental densities and
vapor pressures, for some terpenes and using the Peng−
Robinson EoS. Concerning vapor pressure, this second
approach is able to establish a ranking for the magnitude of
values in conformity to the experimental observed rank, and a
correct temperature trend, while for density an important

Table 4. Critical Properties and Acentric Factor of Terpenes Estimated According to Approach II

SRK PR

Tc/K Pc/MPa ω Tc/K Pc/MPa ω

(−)-menthone 702.09 3.16 0.391 684.83 2.75 0.453
(1R)-(−)-fenchone 671.30 3.36 0.403 675.00 3.02 0.403
(S)-(+)-carvone 743.14 3.65 0.389 724.76 3.17 0.452
carvacrol 744.38 3.69 0.479 727.07 3.20 0.542
eucalyptol 643.72 3.10 0.398 636.37 2.75 0.432
DL-citronellol 698.11 2.94 0.650 699.27 2.64 0.651
eugenol 771.00 3.87 0.477 780.03 3.55 0.470
geraniol 679.01 3.02 0.770 677.01 2.66 0.782
isopulegol 690.01 3.22 0.490 689.05 2.86 0.500
linalool 624.38 2.74 0.751 615.43 2.41 0.803
L(−)-menthol 659.80 2.94 0.713 647.03 2.56 0.779
R-(+)-Limonene 655.51 3.27 0.385 655.50 2.93 0.395
thymol 713.60 3.57 0.576 699.92 3.12 0.634
α-pinene 629.57 3.23 0.338 615.39 2.83 0.392
β-pinene 642.53 3.34 0.345 635.97 2.95 0.372
p-cymene 673.01 3.44 0.311 656.06 2.99 0.367

Figure 6. SRK-PR temperature difference (ΔT/K) and critical
pressure and acentric factor ratio between Soave−Redlich−Kwong
and Peng−Robinson EoSs for the compounds studied.
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improvement is observed when compared with results shown
before.
Methods Comparison. Comparing the critical properties

and the acentric factor obtained by the group contribution
methods and the EoS (Table 5) shows that the differences

between critical temperatures are minor. The absolute error
obtained for critical pressure shows higher deviations between
the contribution methods and the EoS SRK. The opposite is
verified for acentric factors; however, the effect is less
pronounced.
4.3. Literature Analysis. For terpenes and terpenoids,

experimental critical data are very rarely available, as only one
work was found in the open literature.14 Additionally, Poling et
al.16,17 display the critical temperature of thymol and L(−)-
menthol and the critical temperature and pressure of p-cymene.
The reason for this is that high molecular weight and strongly

associating components readily decompose before the critical
point is reached. This makes experimental measurements rather
difficult and experimental errors very considerable. Table 6
presents, however, a comparison of critical temperatures
estimated by the methods studied in this work, with the few
experimental results, and some of the estimated values found in
the literature for the same compounds. Poling et al.17 also
presents the critical pressure for p-cymene (2.8 MPa) that is in
the same order of the critical pressures proposed in this work
and pretty close to the values given by the Joback and WJ GC
methods.
Within this very limited set of experimental values, and

taking into account the decomposition problem of this class of
compounds, any further analyses are premature. Regarding the
estimated literature values, these are included in order to show
the high variance of the critical properties values proposed in
the literature, which establishes the importance of finding
rational recommended values for the critical properties of
terpenes and terpenoids

4.4. Validation. To validate the proposed sets of critical
properties, these were used to describe the vapor−liquid
equilibria (VLE) of mixtures of terpenes or mixtures of
terpenes with supercritical CO2, using both equations of state
SRK and PR. To perform these studies only a binary interaction
parameter is estimated from the experimental data available.
Table 7 shows the average relative deviation found when

correlating the experimental equilibrium temperatures reported
by Nadais and Bernardo-Gil67 on the VLE of α-pinene + s(−)-
limonene at different pressures, while an example of the fitting
is displayed in Figure 8. Results show that the pure components
parameters here proposed guarantee a very satisfactory fit of the
VLE of mixtures of terpenes.

Figure 7. Average relative deviation between the experimental and the predicted densities and vapor pressures, calculated using the SRK and the PR,
with critical properties estimated by the same EoS.

Table 5. Critical Properties and Acentric Mean Absolute
Error between Those Calculated by Group Contribution
Methods and Those Estimated by the SRK and PR EoS

PR SRK

Tc/K Joback 17.61 17.09
CG 19.58 17.68
WJ 19.39 18.18

Pc/MPa Joback 0.15 0.33
CG 0.45 0.74
WJ 0.23 0.61

ω Joback 0.08 0.08
CG 0.16 0.12
WJ 0.10 0.09
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Another test was performed using the solubility data of
supercritical CO2 in limonene and/or linalool measured by
Vieira de Melo et al.,68 that was computed using the critical
properties estimated by methodology II and the SRK and PR

EoSs. Additionally, since Joback is the suggested GC method
for terpenes and terpenoids (methodology I), the critical
properties obtained by this method for linalool were used to
perform the same calculations. The average relative deviation
between the experimental and the calculated pressures is
presented in Table 8. As can be observed at least for the binary
systems the calculations are in very good agreement with the
experimental data. It also shows that replacing critical
properties estimated from pure component vapor pressure
and density data, to those calculated by Joback method,
maintains the quality of the fit, strongly supporting the use of
the Joback method for this type of compounds.

5. CONCLUSIONS

In this work three group-contribution methods for the
estimation of critical properties were evaluated for terpenes
and terpenoids. As expected, the variance between the results is
high and therefore, their suitability is tested through cubic
equations of state, calculating densities and vapor pressure, and
comparing with experimental data. Results indicate that the
best combination is the Joback method and the Peng−
Robinson EoS. Vapor pressure calculations globally showed
higher average relative deviations between the predicted and
the experimental values when compared to density predictions.

Table 6. Comparison of Estimated and Experimental Critical Temperatures

Tc/K (R)-(+)-limonene α-pinene thymol L(−)-menthol p-cymene

this work Joback 715.83 661.63 656.89
CG 639.85 657.01 734.76 679.32 664.29
WJ 649.99 620.56 710.02 672.52 655.59
SRK 655.51 629.57 713.60 659.80 673.01
PR 655.50 615.39 699.92 647.03 656.06

experimental 653.014 644.014 698.016 694.016 652.017

Yaws66 640.0, 630.0 632.0, 644.0 a a a
aNot available.

Table 7. Average Relative Deviation between the Experimental67 and the Predicted Temperatures of the VLE of the System α-
Pinene + s(−)-Limonene, Calculated Using the SRK and the PR Equations of State, with the Different Sets of Critical Properties
(CPs). kij Refers to a Binary Interaction Parameter for the Energy of the Cubic Equation

SRK PR

CP SRK PR WJ CG SRK PR WJ CG

kij −0.016 −0.042 −0.015 −0.022 −0.045 −0.019 −0.017 −0.026
40 kPa

%ARD 0.238 0.321 0.206 0.278 0.311 0.324 0.241 0.353
66.7 kPa

%ARD 0.320 0.309 0.237 0.228 0.359 0.330 0.240 0.224
101.3 kPa

%ARD 0.366 0.353 0.135 0.222 0.383 0.341 0.160 0.240
average 0.300 0.327 0.195 0.247 0.346 0.331 0.217 0.281

Figure 8. Experimental67 (points) and calculated (lines) vapor−liquid
equilibrium of α-pinene + s(−)-limonene at different pressures. Lines
were calculated using the SRK EoS, and the critical properties were
obtained by the same EoS through methodology II.

Table 8. ARD between the Experimental68 and the Predicted Pressure for the VLE of the System CO2 + Linalool and/or
Limonene, Calculated Using the Critical Properties Obtained by Methodology II and the Joback GC Method, at 323.15 K. The
Binary Interaction for the Energy of the Cubic Equation (kij) Is Presented between Brackets

%ARD SRK SRK + Jobacka PR PR + Jobacka

CO2 + linalool 2.495 (0.080) 2.672 (0.083) 2.627 (0.090) 2.690 (0.081)
CO2 + limonene 2.815 (0.081) b 2.484 (0.089) b
CO2 + linalool + limonene 9.023 (0.307) 9.044 (0.290) 13.120 (0.059) 13.273 (0.059)

aThe linalool critical properties used were the ones obtained using the GC method Joback-methodology I. For limonene, the CPs obtained through
methodology II were used. bJoback-GC method cannot be applied to limonene.
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However, density predictions show problems at low temper-
atures. In the second part of this work, experimental densities
and vapor pressures were used to estimate the critical
properties and the acentric factor directly by the Soave−
Redlich−Kwong and Peng−Robinson EoSs. The two equations
show similar correlation ability for densities and vapor
pressures: SRK EoS presents a global %ARD of 3.16 and
0.62 for vapor pressure and density, respectively, while for the
Peng−Robinson EoS the corresponding values are 3.61 and
0.66. Both EoSs give critical property estimates closer to those
calculated by the Joback method, which is the preferred for this
type of compounds. The usefulness of the estimated pure
compound properties has been validated through the
description of low-pressure VLE data in binary terpene
mixtures and solubility data of supercritical CO2 in limonene
and/or linalool.
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