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A B S T R A C T

There is currently an emerging production of olive oil in Brazil but it is still poorly characterized. In this study,
we performed a comparative analysis of minor bioactive constituents (CoQ10, tocopherols and phenolic com-
pounds) in extra virgin olive oil from different regions of Brazil and Spain, of Arbequina cultivar. Significant
variations (P < 0.05) in the concentration of the compounds analyzed were observed among oils from the
different growing areas, not only between Spanish and Brazilian samples but also within zones of the same
country. All the oils analyzed showed a high content of CoQ10, which ranged from 48 to 85 mg/L. The α −
tocopherol was the major isomer quantified and three main groups of phenolic compounds were identified:
flavonoids (apigenin, luteolin), phenolic acids (naringenin, p-coumaric acid, vanillic acid) and phenolic alcohols
(hydroxytyrosol). Climatic and geographic factors of the production zones greatly influenced the minor fraction
composition; positive relationships between altitude and the level of CoQ10, tocopherols and phenolic com-
pounds of the oils were observed, whereas a negative correlation with rainfalls was found. Chemometric analyses
demonstrated that oils were differentiated by the chemical composition and origin area and that polyphenols
(particularly hydroxytyrosol) held the major weight in the oil classification.

1. Introduction

It is well known that chemical composition of olive oils consists of
major (saponifiable fraction) and minor constituents (unsaponifiable
fraction). The minor constituents, despite present in lower amounts (up
to 2%), are a complex mixture of more than 230 compounds (Lopez
et al., 2014; Servili et al., 2014). Among them, phenolic compounds and
tocopherols are of great interest, mainly due to their nutritional value,
antioxidant potential and health benefits.

The phenolic compounds are secondary plant metabolites that have
one phenol ring (phenolic acids/phenolic alcohol) or several aromatic
rings with one or more hydroxyl groups (polyphenols) (Ignat et al.,
2011; Lopez et al., 2014). Over the last few decades, multiple biological
properties, providing antioxidant, anti-inflammatory, chemopreventive

and anti-cancer benefits, as well as sensorial proprieties has been at-
tributed to phenol compounds of olive oils (Servili et al., 2014). Re-
cently, their protective effect over blood lipids from oxidative stress has
been recognized by the European Food Safety Authority (EFSA, 2011),
thus stimulating, even more, the interest for olive oil polyphenols and
allowing the use of its health claims (Reboredo-Rodríguez et al., 2016;
Martín-Peláez et al., 2013). Tocopherols are known as lipophilic phe-
nols that include 8 occurring forms: 4tocopherols and 4 tocotrienols (α,
β, γ and δ). In extra virgin olive oil (EVOO), the most predominant is
the α-tocopherol (up to 90% of total), recognized as the most active
form of vitamin E in mammals, although different factors such as cul-
tivar and geographic location of the olive trees may influence its con-
centration (Lopez et al., 2014; Kalogeropoulos and Tsimidou 2014).
These natural antioxidants not only provide nutritional value to virgin
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olive oils but also contribute to its stability, protecting from oxidation
(Lopez et al., 2014; Kalogeropoulos and Tsimidou, 2014).

Another minor compound with great value is the coenzyme Q10
(CoQ10), an endogenous lipophilic compound that is involved in es-
sential cell regulations and modulations, mainly in the mitochondrial
respiratory chain (Jankowski et al., 2016; Thanatuksorn et al., 2009). In
the body it exists in either oxidized (ubiquinone) or reduced form
(ubiquinol); mainly in its reduced form it is recognized as an effective
endogenous antioxidant, although an antioxidant role of the oxidized
form cannot be discarded (Pravst et al., 2010; Jankowski et al., 2016).
Additionally, it has the ability to recycle α-tocopherol by sparing or
regeneration (Pyo, 2010). Due to redox reactions, continuous conver-
sion between ubiquinone and ubiquinol takes place in vivo and, more-
over, ubiquinone is also reduced during or following the intestinal
absorption (Pravst et al., 2010). Therefore, the functions of CoQ10 are
not affected by the form in which it is consumed (Pravst et al., 2010).
Most of the CoQ10 in the human body is from endogenous synthesis, but
levels decline progressively with increasing age and should be replaced
daily by nourishment (Jankowski et al., 2016). In this sense, the EVOO
consumption may be a dietary natural source for increasing intake of
CoQ10 (Venegas et al., 2011; Žmitek et al., 2014). A wide range of
possible benefits for human health has been reported for CoQ10 (Pravst
et al., 2010; Jankowski et al., 2016; Turunen et al., 2004). The levels of
these minor bioactive constituents are variable in EVOO. These varia-
tions have been attributed to different factors, including agronomic and
technological practices, cultivar, ripening stage, climate conditions and
geographic origin (Servili et al., 2009; Laincer et al., 2016). Never-
theless, factors influencing the CoQ10 content of olive oils have been
scarcely investigated (Žmitek et al., 2014).

In recent years, the demand of olive oils is rising over the world, and
emerging countries such as Brazil are beginning to produce it. Actually,
the Arbequina cultivar is one of the most cultivated in Brazil, and data
on physicochemical properties, oxidative stability and fatty acid profile
of Arbequina Brazilian oils have been recently published by our re-
search group (Borges et al., 2017). However, little is known about how
geographic and climate conditions may affect the minor components of
the olive oils in Brazil (Ballus et al., 2014, 2015). Also, there is a lack of
information about the similarities and differences between the newly
introduced and the autochthonous cultivars. Moreover, to our knowl-
edge, nothing has been published about CoQ10 levels of Brazilian olive
oil and very little about specific varieties in Spain (Žmitek et al., 2014).
Finally, there is also a lack of information of the relationship between
CoQ10 with other bioactive constituents such as phenolic compounds
and tocopherols. With this background, the aims of this work were: i) to
characterize the minor constituents CoQ10, tocopherols and individual
phenolic compounds of monovarietal Arbequina olive oil produced in
Brazil; (ii) to compare it with the olive oils from the same cultivar
produced in different regions of Spain and (iii) to classify the oil

samples according to their geographic origin, on the basis of the ana-
lyzed variables and by applying chemometric analysis.

2. Materials and methods

2.1. Chemicals

All chemical products, standards and solvents for the analysis per-
formed were analytical reagent grade or higher purity (Sigma-Aldrich,
St. Louis, MO, USA) and Milli Q water (Millipore, Bedford, MA) was
used throughout the assays. CoQ10 from Sigma-Aldrich (code: C9538)
was used to prepare standard solutions of different concentrations.

2.2. Samples

EVOO from Arbequina cultivar was analyzed. Nine regions of olive
oil production in Spain (Granada, Jaén, Málaga, Cádiz, Sevilla,
Albacete, Toledo, Valladolid and Lérida, samples 1 to 9) and two re-
gions in Brazil (Rio Grande do Sul and Minas Gerais, samples 10 and
11) were selected to obtain the EVOO samples. The olives were har-
vested always at the early stage of harvest; the harvest date was: late
October to mid-November of 2014 for Spanish samples and March to
early April of 2015 for Brazilian samples. The oil was extracted within
24 h, under a two-phase extraction system. The oils (n = 3 from each
producing region) were directly donated by the producers, adequately
packaged for preserving from light and high temperatures and sent to
CSIC laboratories (Granada, Spain) to perform the analysis. As was
shown previously (Borges et al., 2017), samples meet quality standards
established by European Union regulation n° 2568/91 for extra virgin
olive oil. The geographic coordinates (latitude and longitude), altitude
(m), annual mean temperatures (°C), annual rainfalls (mm) and
minimum and maximum mean temperatures (°C) of the different pro-
ducing areas of Arbequina virgin olive oils are depicted in Table 1.

2.3. Determination of CoQ10

The samples were analyzed according to Venegas et al. (2011). A
quantity of 990 μL of 1-propanol was mixed with 10 μL of the oil, vortex
and centrifuged at 11300g for 5 min at room temperature. The sub-
sequent supernatant was diluted 1/500 in 1-propanol prior to HPLC
injection. CoQ10 present in the oil extract were separated by reversed-
phase high-performance liquid chromatography (HPLC, Gilson, WI)
with a C18 symmetry column (3.5 μm, 4.6 × 150 mm) (Waters Chro-
matography, Barcelona, Spain) using a mobile phase consisting of me-
thanol, ethanol, 2-propanol, acetic acid glacial (500:500:15:15), and
50 mM sodium acetate at a flow rate of 0.9 mL/min. The electro-
chemical detector consisted of an ESA Coulochem III with the following
setting: guard cell (upstream of the injector) at +900 mV and

Table 1
Geographic coordinates (Latitude and Longitude), altitude (m), annual mean temperatures (°C), annual rainfalls (mm) and minimum and maximum mean temperatures (°C) of the
different locations of Arbequina virgin olive oils from Spain (1–9) and Brazil (10, 11).

Oil Sample Location Latitude Longitude Altitude Mean Temperatures Rainfall Minimum Temperature Maximum Temperature

1 Granada 37° 03′ N 3° 36′ W 905 17 385 7 26
2 Jaén 38° 03′ N 3° 29′ W 580 17 422 9 26
3 Málaga 37° 06′ N 4° 22′ W 883 20 411 13 27
4 Cádiz 36° 43′ N 6° 01′ W 47 19 636 13 24
5 Sevilla 37° 17′ N 4° 53′ W 416 19 598 11 27
6 Albacete 39° 00′ N 1° 54′ W 677 13 293 6 25
7 Toledo 39° 53′ N 4° 28′ W 459 14 391 7 26
8 Valladolid 41° 53′ N 5° 00′.W 845 13 394 −1 27
9 Lérida 41° 36′ N 0° 35′ W 168 14 677 6 21
10 Rio Grande do Sul 30° 00′ S 52° 52′ W 88 16 1691 3 22
11 Minas Gerais 22° 18′ S 42° 22′W 1310 17 1330 14 21

Geographic coordinates (latitude, longitude and altitude) proximate to olive grove were found using Google Earth program (Google Inc, USA). Climatic data of temperature and rainfall
were supplied by the Spanish Meteorology Agency (Aemet, 2015) and the National Meteorology Institute of Brazil (INMET, 2015).
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conditioning cell at −600 mV (downstream of the column) followed by
the analytical cell at +350 mV. While this method is able to detect
CoQ10 in its reduced (ubiquinol) and oxidized (ubquinone) form, ubi-
quinol was not detected in our conditions of extraction and analysis.
The CoQ10 concentrations of the oxidized form were estimated by
comparison of the peak areas with those of standard solutions of known
concentrations (0, 25, 100, 300, and 600 ng/mL). Values of calibration
curve are reported in Supplementary Table S1 in the online version at
DOI: http://dx.doi.org/10.1016/j.jfca.2017.07.036. The results were
expressed in mg per L of sample.

2.4. Determination of tocopherols

The tocopherols isomers were determined as described by Rueda
et al. (2016). Briefly, 1 g of oil was dissolved in 25 mL n-hexane. The
samples were analyzed by an HPLC system (Water Alliance 2695 se-
parations module, Milford, MA) equipped with a silica column
(4 mm× 250 mm) and eluted with hexane: isopropanol (99.25:0.75 v/
v) at a flow rate of 1 mL/min during 25 min. The tocopherols were
detected by fluorescence (Water 2475) with excitation wavelength at
290 nm and emission wavelength at 330 nm. A calibration curve using
external standards (α-, β-, γ-, and δ-tocopherols) was used for quanti-
fication. The results were expressed as mg per kg of sample.

2.5. Individual phenolic compounds

The individual phenolic fraction of samples was performed after an
extraction with methanol/water (80:20) according to the International
Olive Oil Council (IOOC, 2009). The extracts were analyzed by UPLC-
TOF-MS following the method validated by Rivas et al. (2013). The
UPLC system consisted of a AcQuity UPLC equipped with a binary
pump system (Waters, Milford, MA, USA) using a AcQuity UPLC BEH
C18 column (1.7 mm, 2.1 mm x 100 mm inner diameter). The column
was kept at 40 °C and the flow rate was 0.4 mL/min. The mobile phase
was composed by eluent A, MilliQ water with formic acid (0.1%) and
eluent B, methanol with formic acid (0.1%). The elution started at 5%
of eluent B for 1 min, then was linearly increased to 100% of eluent B in
11 min and kept isocratic for 5 min; then, it got back to initial condi-
tions in 0.1 min; the equilibration time was 2.9 min. The injection vo-
lume was 7 μL, and all samples were filtered through 0.22 mm before
chromatography. The UPLC was coupled to a Micromass/Waters LC-
TPremier XE benchtop orthogonal acceleration time-of-flight (oa-TOF)
mass spectrometer equipped with an ESI interface. Parameters for
analysis were set using negative ion mode with spectra acquired over a
mass range from m/z 100 to 1000. The optimum values of the elec-
trospray ionization MS parameters were as follows: capillary voltage
2.6 kv; drying gas temperature 200 °C, desolvation gas flow 800 L/h.
For optimum detection resolution, a solution was prepared of 1 mg/L

leucine enkephalin in acetotrinile/H2O (1:1, v/v) containing 0.1%
formic acid continuously infused at a flow rate of 0.05 mL/min by an
external rotary pump. This solution was also used for continuous cali-
bration of the equipment, as its perfusion is simultaneous to that of the
sample and served as a reference. Mass calibration was performed using
a solution of sodium formate (containing 0.05 of formic acid and 5 mM
of sodium hydroxide in iso- propanol/H2O 9:1, v/v). Accurate mass
data of molecular ions were processed with MassLynxs (Waters).

Analytical parameters of the methods used are shown as
Supplementary file.

2.6. Statistical analysis

Results were analyzed by analysis of variance (one-way ANOVA),
with the geographic origin of oils (regions 1–11) as the main factor.
Tukey’s test was used to compare mean values between oils from the
different regions, and differences were established at P < 0.05. The
relationships of the different variables with the climate characteristics
and the altitude of the producing regions were evaluated by Pearson’s
coefficient. These statistical calculations were carried out using SPSS
version 21.0 (IBM Corporation, New York, USA).

In addition, chemometric analysis was performed including all the
minor bioactive compounds evaluated in the present study (CoQ10;
tocopherols − α, β, γ and phenolic compounds). In a first explorative
step a hierarchical clustering analysis (HCA) was carried out to identify
eventual similarities between the olive oils samples of different geo-
graphic origin, by calculating multidimensional squared Euclidean
distances of scores applying the single linkage-clustering method.
Posteriorly, to reduce the variables into a small number of factors and
explore the contribution of variables to oil differentiation, a factorial
analysis (FA) using a varimax rotation was applied. All the chemo-
metric analysis were performed using Stat Graphics Centurion XV
software (Stat Point Technologies, Inc., USA, 2006).

3. Results and discussion

3.1. CoQ10

The levels of CoQ10 are shown in Fig. 1. According to Pravst et al.
(2010), foods containing over than 46 mg CoQ10/L of olive oil are
considered a very rich source of CoQ10. Therefore, all the samples
evaluated in the present study may be classified as very rich CoQ10

sources. As shown in Fig. 1, statistical differences (P < 0.01) were
found among CoQ10 content of the samples ranging between
85.3 ± 5.8 mg/L (region 1, corresponding to Granada, Spain) and
48.7 ± 1.6 mg/L (region 9, Lérida, Spain) (mean ± SE). Brazilian oils
showed intermediate values of 49.5 ± 2.3 mg/L and 60.0 ± 1.9 mg/
L, for areas 10 and 11, respectively. There is limited information about

Fig. 1. Coenzyme Q10 levels of Arbequina olive oils from Spain (1–9) and
Brazil (10–11). (values are means ± SE, n = 3). Different letters indicate
significant differences (ANOVA and Tukey test, P < 0.05).
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CoQ10 content in monovarietal EVOO. A previous study comparing
different cultivars from several countries (Žmitek et al., 2014) showed
that CoQ10 is greatly driven by genetic factors; the highest content was
observed in the cultivar Hojiblanca (98 mg/L), followed by Picual
(63 mg/L) and Arbequina (58 mg/L). Values of 77.5 mg/L of CoQ10

content have been found in Spanish EVOO of Picual cultivar (Venegas
et al., 2011), similarto the highest levels detected among oils in the
present assay (samples from Spanish locations 1, 2, 3 and 6). Higher
values, above 90 mg/L, have been observed in commercial Italian
EVOO (Cabrini et al., 2001).

These findings support that EVOOs are one of the best natural
sources of dietary CoQ10 (Žmitek et al., 2014). Since the current intake
of CoQ10 in developed countries is not sufficient to compensate the age-
related decline (Žmitek et al., 2014), promoting the intake of EVOO
may be a good alternative to supplementation.

In addition to genetic factors, the CoQ10 content of oils may be af-
fected by geographic and climate conditions, as was supported by the
results of the present assay, in which significant differences were found
between oils from the same cultivar. In this sense, statistical correla-
tions (P < 0.01) were found between CoQ10 content and geo climate
factors of production areas, positive with altitude (r = 0.461) and
maximum temperature (r = 0.484) and negative with rainfalls
(r = −0.494). Accordingly, the areas of low rainfall and high altitude
(Table 1), such as Granada (region 1), produced the oil with the highest
CoQ10 content. In the same line, high rainfall levels in Brazilian
growing areas (regions 10 and 11) could have a negative effect on the
CoQ10 content of oils, although in the case of oil from region 11 this
effect seems to be partly counteracted by the positive influence of the
high altitude.

3.2. Tocopherols

Table 2 shows tocopherols content (α, β, γ and total) for Arbequina
EVOO from Spain (1–9) and Brazil (10–11). The major isomer quanti-
fied was α-tocopherol, representing more than 98% of the total, ranging
from 92 to 208 mg/kg of oil, followed by lower amounts of β
(0.8–1.9 mg/kg) and γ (0.7–2.15 mg/kg) fractions. No detectable va-
lues of δ- tocopherol were observed.

The content of the tocopherol fractions differed between EVOO
samples from the different regions (P < 0.05). Values of Brazilian oils
were within the range found for Spanish samples, with the only ex-
ception of the γ −isomer, which was lower among Brazilian oils. Thus,
it was shown that the Arbequina oils newly introduced in Brazil have
similar tocopherol content that the oils from the autochthonous Spanish
cultivar.

In general, α-tocopherol concentration found in the present assay is
similar to the values reported for Arbequina EVOO from Spain and the

introduced from Argentina, Tunisia and Turkey, which vary from 150
to 300 mg/kg (Beltrán et al., 2010; Dabbou et al., 2010; López-Cortés
et al., 2013; Torres et al., 2009; Uluata et al., 2016; Yousfi et al., 2012).
The lowest contents of α-tocopherol among samples of the present
study were found in Spanish locations 4 (Cádiz) and 9 (Lérida). The low
tocopherol level in oil of location 4 could be related tothe low oxidative
stability (5.32 h, measured by the Rancimat method) previously de-
scribed in oils from this region (Borges et al., 2017). Large variations in
α-tocopherol content have been observed in Brazilian Arbequina EVOO
from Minas Gerais depending on the harvest year (62 and 201 mg/kg
for crop years 2010 and 2011, respectively) (Ballus et al., 2014). Thus,
values of 147 and 171 mg/kg found in Brazilian samples in the present
study (zones of Rio Grande do Sul and Minas Gerais, respectively) were
within this wide range.

Some previous data show that tocopherol content of olive oils has a
genetic component, i.e. it is highly depending on cultivar, but it may
also be affected by climatic conditions, mainly temperature, rainfalls
and altitude (Beltrán et al., 2010; Dabbou et al., 2009; Ilyasoglu et al.,
2016). Therefore, the growing location area, with different conditions
of rainfall and temperature, influence the tocopherol content and
composition of the oils (Aguilera et al., 2005), in agreement with pre-
sent results. In addition, significant correlations were verified relating
geo climate conditions with tocopherol content of the samples
(Table 4). In concordance with previous research reporting increased
tocopherol levels in dry crop seasons (Beltrán et al., 2010; Ilyasoglu
et al., 2016), our findings show a negative relationship between rain-
falls and γ (P < 0.01) and total tocopherol content (P < 0.05). On the
contrary, some authors do not observe a consistent influence of rainfalls
on tocopherol levels in Tunisian oils (Dabbou et al., 2009), since the
effects of climatic conditions on tocopherols seem to be cultivar-de-
pendent (Beltrán et al., 2010).

Relationships between the temperature of the growing area and
tocopherols have been scarcely studied. In the present study, conflictive
correlations among temperature and tocopherols were found, since they
were negative with the mean (for α-, γ- and total) and minimum tem-
peratures (for γ-) and positive with maximum temperatures (for α- and
total tocopherols) (Table 4). That means that annual mean temperature
of the growing zone significantly affects the tocopherol content, but
peaks of cold and heat also seem to disturb this variable. Regarding the
altitude effects, some authors observe increased tocopherol content in
olive oils with increasing the altitude (Dabbou et al., 2009) and, thus,
altitude has been proposed as an important factor to be considered in
tocopherol level of oils (Kalogeropoulos and Tsimidou, 2014). In this
line, positive correlations of altitude with tocopherol concentration of
the oils have been found in our study (Table 4). However, oils from
areas with the highest altitude were not those with the highest toco-
pherol content, which suggests that altitude has not a definitive influ-
ence and could be counteracted by effects of other geo climatic factors.

As was reported before, the climate conditions have primarily an
effect on biochemical reactions during growth and ripening, mainly in
some enzymatic reactions that are essential for the tocopherol synthesis
(Beltrán et al., 2010; Ilyasoglu et al., 2016). In this sense, increasing the
tocopherol content could be an auto-protection mechanism of plants
against some stress conditions, such as water stress (Beltrán et al.,
2010). However, there is a maximum level depending on the fruit de-
velopment (Georgiadou et al., 2015). In this line, our results show that
climate factors are linked to tocopherols content and may impact them,
but the influence of other factors providing synergic or antagonist ef-
fects, as the maturation index, cannot be discarded.

3.3. Phenolic compounds

The concentration of phenolic compounds (apigenin, luteolin, nar-
ingenin, p-coumaric acid, vanillic acid and hydroxytyrosol) of olive oil
samples from different geographical areas of Spain and Brazil is shown
in Table 3. Statistical differences between samples (P < 0.05) were

Table 2
Tocopherols content (mg/kg) of Arbequina olive oils from Spain (1–9) and Brazil (10–11).

α-Tocopherol β- Tocopherol γ − Tocopherol Total

Regions
1 179 e 1.00 a,b,c 1.90 e 182 e
2 202 f 1.03 b,c 0.90 a,b,c 204 f
3 157 c,d 0.85 a,b 1.15 d 159 c,d
4 92 a 0.80 a 0.75 a 93 a
5 164 d 0.90 a,b,c 0.73 a 166 d
6 198 f 1.05 b,c 1.13 c,d 200 f
7 208 f 0.85 a,b 1.00 b,c,d 210 f
8 167 d,e 0.85 a,b 2.15 f 170 d,e
9 128 b 0.75 a 1.05 c,d 130 b
10 147 c 0.85 a,b 0.70 a 148 c
11 171 d,e 0.90 a,b,c 0.80 a,b 173 d,e
SEM 0.87 0.01 0.01 0.86

Means values in each column with different letters are significantly different between
regions or countries (n = 3, ANOVA and Tukey test, P < 0.05).
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found in all individual compounds. Strong differences were observed
between Brazilian oils, being the content of all phenolic compounds
always higher in sample 10 than sample 11. Three main groups of
phenolic compounds were identified: flavonoids (apigenin, luteolin),
phenolic acids (naringenin, p-coumaric acid, vanillic acid) and phenolic
alcohols (hydroxytyrosol). Flavonoids were the major group, ranging
from 93 to 36% of the total quantified, followed by phenolic acids
(10–30% of the total), with the exception of samples from location 3
(with 14% of flavonoids and only 2% of phenolic acids). The highest
levels of hydroxytyrosol were found in oils from Spanish locations 3
(1500 μg/kg, contributing 83% to the total phenols examined) and
Brazilian region 10 (1050 μg/kg, 31% of the total). The Brazilian
sample 11 showed a different profile of phenolic compounds in com-
parison with the other samples; with equilibrate quantities of the
quantified phenolic groups.

Current data show a large variation of phenolic content for EVOO
samples, ranging between 50 and 940 mg/kg (Servili et al., 2014).
Nevertheless, available data in the literature are very difficult to com-
pare, since different methods have been used to separate, identify and
quantify the phenolic compounds in EVOO samples around the world
(Ballus et al., 2015). Besides, commercial standards are not totally
available and some of these compounds are identified and quantified on
the basis of other ones with similar structures (Ballus et al., 2015;
Bakhouche et al., 2013). In this sense, nowadays there is not an official
method able to show a complete profile of phenolic compounds and
satisfy the new health claims on olive oil phenols, although the scien-
tific community has been working on developing it (Reboredo-
Rodríguez et al., 2016).

In accordance with data of the present study, flavonoids (apigenin,

luteolin) and phenolic acids (p-coumaric acid, vanillic acid) have been
previously found in Arbequina cultivar (Bakhouche et al., 2013; Rivas
et al., 2013; Yousfi et al., 2012). However, up to our knowledge, nar-
ingenin was not reported yet in Arbequina oil, but was recently de-
tected in oleaster, leaves, olive barks, wastewater and EVOO of Em-
peltre and Arauco cultivars from Argentina (Bouarroudj et al., 2016; De
Fernandez et al., 2014; Leouifoudi et al., 2014; Tóth et al., 2015). On
the other hand, hydroxytyrosol is one of the most important phenolic
compounds in olive oils (Bakhouche et al., 2013) and it has been widely
associated with the high antioxidant capacity in EVOO (Servili et al.,
2014). Accordingly, Arbequina oils from region 3 (Málaga, Spain) have
a high resistance to oxidation (15.85 h of oxidative stability, by the
Rancimat method) (Borges et al., 2017). The health beneficial proper-
ties of hydroxytyrosol have been recognized by the EFSA (EFSA, 2011).
Concerning geographical area and climate conditions, several authors
have studied the relationship of phenolic compounds with them
(Bakhouche et al., 2013; Dabbou et al., 2009; Ilyasoglu et al., 2016). In
this line, positive correlations between altitude and some of the ana-
lyzed phenolic compounds such as naringenin (r = 0.458), p-coumaric
acid (r = 0.578) and hydroxytyrosol (r = 0.618) were found in our
study (Table 4). In agreement, Dabbou et al. (2009) attribute variations
of phenolic profile of Tunisian EVOO to the geographic area char-
acteristics, particularly to altitude. Furthermore, scientific data have
shown that water status also influence the phenolic profile of the olive
oils, but the effect may differ depending on the compounds, since the
enzymes involved in the biosynthetic pathway of phenolic compounds
are affected by water stress conditions in a different way (Ilyasoglu
et al., 2010; Stefanoudaki et al., 2009). Thus, correlations between
climatic conditions and minor olive oil compounds may be explained

Table 3
Phenolic content (μg/kg) of Arbequina olive oils from Spain (1–9) and Brazil (10–11).

Phenolic content

Flavonoids Phenolic acids Phenol alcohols

Apigenin Luteolin Naringenin p-Coumaric acid Vanillic acid Hydroxytyrosol

Regions
1 265 e,f 858 c,d 25.0 a,b 55.0 c 119 c 90.0 a,b
2 309 f,g 1054 d,e 51.5 c,d 59.0 c 59.5 b 287 d,e
3 26.0 a 241 a,b 30.0 b n.d n.d 1500 g
4 204 b,c 773 c 16.5 a 24.5 a,b 28.5 a 3.00 a
5 161 b 463 b 63.5 d 13.5 a n.d 379 e
6 326 g 1257 f,g 50.0 c 97.0 e 124 c 251 c,d,e
7 424 h 1148 e 56.0 c,d 94.0e 121 c 161 b,c,d
8 184 b,c 748 c 16.0 a 91.0 e n.d 204 b,c,d
9 236 d,e 1236 f,g 58.5 c,d 31.0 b 70.0 b 149 b,c
10 398 h 1482 g 133 e 228 f n.d 1050 f
11 15.0 a 92.0 a 21.0 a,b 74.0 d n.d 92.0 a,b
SEM 40.3 133 10.1 18.7 16.2 8.1

Means values in each column with different letters are significantly different between regions or countries (ANOVA and Tukey test, P < 0.05).

Table 4
Pearson’s correlation coefficient (r) between climate variables and altitude and analytical parameters (Coenzyme Q10, Tocopherols and Phenolic content).

Altitude Temperature Rainfalls Minimum temperature Maximum temperature

Coenzyme Q10 0.461** 0.060 −0.494** 0.073 0.484**
α Tocopherol 0.543** −0.361* −0.316 −0.219 0.385*
β Tocopherol 0.376* −0.074 −0.257 −0.020 0.307
γ Tocopherol 0.437** −0.396* −0.446** −0.588** 0.309
Total 0.547** −0.365* −0.321* −0.226 0.389*
Apigenin 0.314 −0.390* −0.249 0.097 −0.179
Luteolin 0.315 −0.456** −0.207 0.075 −0.374*

Naringenin 0.458** 0.000 0.286 0.439* −0.440*

p-Coumaric acid 0.578** −0.364* 0.417* −0.021 −0.534*

Vanillic acid −0.037 −0.470** −0.511** −0.191 0.066
Hydroxytyrosol 0.618** 0.466** 0.064 0.563** 0.066

Symbols indicate significant correlations (* P < 0.05, ** P < 0.01).
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mainly by the effects in enzymatic activity reactions during the growth
and ripening of olive fruits (Ilyasoglu et al., 2016). Accordingly, re-
lationships between climate variables of temperature and rainfalls and
phenol composition of oils were found in the present assay (Table 4).

3.4. Chemometric analyses

A hierarchical cluster analysis (HCA) was applied as an initial ap-
proach for grouping samples that share common characteristics ac-
cording to the analyzed variables. HCA was obtained using the
Euclidean distance of scores as a similarity criterion and the results are
shown in Fig. 2A. The dendogram plot defined five distinctive clusters.
Firstly, three separated cluster were observed for samples from Rio
Grande do Sul (10), Valladolid (8) and Málaga (3).The fourth cluster
was composed by the oils from Cádiz (4), Lérida (9), Sevilla (5) and
Minas Gerais (11). The last one was represented by the samples from
Granada (1), Jáen (2), Albacete (6) and Toledo (7). It was observed that

oil from Rio Grande do Sul showed the biggest Euclidean distance (high
significance clustering), i.e the lowest similarities comparing with the
other groups.

In the factorial analysis, three factors justifying 76% of total var-
iance were obtained (F1 33%, F2 29%, F3 14%). F1 was explained
mainly by phenolic compounds (apigenin 0.92; luteolin 0.92; nar-
ingenin 0.81 and p-coumaric acid 0.77), F2 was composed by CoQ10

(0.84) and tocopherols (α 0.83; β 0.83 and γ 0.36), while F3 was mainly
characterized by hydroxytyrosol (−0.87) and vanillic acid (0.66).
According to these factors, a spatial representation of the oils was ob-
tained (Fig. 2B). A clear separation of sample 10 was observed mainly
due to F1 and F3, and thus, related with the different content of poly-
phenols in this oils compared with the other samples, particularly lu-
teolin, p-coumaric acid and hydroxytyrosol. Also according to F1 and
F3, samples from locations 1, 2, 6 and 7 showed evident proximity. The
remainder oils were relatively grouped but, among them, samples from
Málaga (3) were slightly away from the other locations, which may be

Fig. 2. A- Dendrogram plot showing the conglomeration of olive oil samples from Spain (1–9) and Brazil (10–11) obtained by clustering of CoQ10; tocopherols − α, β, γ and phenolic
compounds showing. B- PCA 3D plot obtained from CoQ10; tocopherols − α, β, γ and phenolic compounds representing the distribution of olive oil samples from Spain (1–9) and Brazil
(10–11).
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associated with its high level of hydroxytyrosol. This entirely means
that F2 (governed by CoQ10 and tocopherols) was not able to differ-
entiate EVOO samples clearly, according to the content of lipophilic
compounds in the samples. However, F2 and particularly F3, with a
strong impact of hydroxytyrosol, could classify the samples in three
separated blocks, as commented. Thus, phenolic compounds were a
useful tool to delimitate EVOO samples from different geographic areas.
In general terms, HCA was confirmed by the factorial analysis, which in
turn showed the weight of the variables in the classification of the oil
samples.

4. Conclusions

Findings of the present study contribute to increasing the knowl-
edge of the EVOO grown in Brazil, a country with an incipient pro-
duction of olive oil but with great potential for its cultivation. In ad-
dition, comparative information with the original cultivar produced in
Spain is reported. Significant differences in the minor fraction compo-
sition (CoQ10, tocopherols and phenolic compounds) were observed not
only between Spanish and Brazilian Arbequina oils but also between
oils from the different producing areas within each country. A high
level of CoQ10 content of olive oils was observed, especially among
Spanish oils. Climatic and geographic factors of the production zones
seem to greatly affect the content of the parameters analyzed; positive
relationships of the altitude with the level of CoQ10, tocopherols and
phenolics of the oils were observed, whereas negative correlation with
rainfalls werealso shown. Chemometric analyses demonstrated that oils
were differentiated according to chemical composition and origin area,
and that polyphenols (particularly hydroxytyrosol) held the major
weight in the oil classification.

The influence of other factors than those considered in the present
study, such as the ripeness index of olives, cannot be discarded, and
therefore, the lack of this information may be considered as a limitation
of the study.
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Yousfi, K., Weiland, C.M., Garcıá, J.M., 2012. Effect of harvesting system and fruit cold
storage on virgin olive oil chemical composition and quality of superintensive cul-
tivated 'Arbequina' olives. J. Agric. Food Chem. 60 (18), 4743–4750.

Žmitek, K., Rodríguez Aguilera, J.C., Pravst, I., 2014. Factors influencing the contents of
coenzyme Q10 and Q9 in olive oils. J. Agric. Food Chem. 62 (14), 3211–3216.

T.H. Borges et al. Journal of Food Composition and Analysis 63 (2017) 47–54

54

http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0155
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0155
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0155
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0160
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0160
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0165
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0165
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0165
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0170
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0170
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0170
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0175
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0175
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0175
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0180
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0180
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0185
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0185
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0190
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0190
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0190
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0190
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0195
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0195
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0195
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0200
http://refhub.elsevier.com/S0889-1575(17)30202-8/sbref0200

	Comparative analysis of minor bioactive constituents (CoQ10, tocopherols and phenolic compounds) in Arbequina extra virgin olive oils from Brazil and Spain
	Introduction
	Materials and methods
	Chemicals
	Samples
	Determination of CoQ10
	Determination of tocopherols
	Individual phenolic compounds
	Statistical analysis

	Results and discussion
	CoQ10
	Tocopherols
	Phenolic compounds
	Chemometric analyses

	Conclusions
	Conflicts of interest
	Acknowledgements
	References




