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ABSTRACT

1. Freshwater mussels of the family Unionidae are one of the most threatened groups worldwide and have
suffered severe decline over recent decades. Although the freshwater duck mussel, Anodonta anatina (Linnaeus,
1758), is still widespread, this species has shown evidence of recent declines and is already protected in some
European countries.

2. Informed conservation efforts must take into account patterns in genetic diversity and phylogeography. In the
present study, 20 newly developed polymorphic loci were described and tested in seven populations of A. anatina,
belonging to three previously detected divergent mtDNA lineages. The genetic diversity patterns, within and
among A. anatina populations, were evaluated to test their congruence with those lineages.

3. A high genetic differentiation (FST) was found among all populations, with the exception of those in Central
Europe (Germany) and the UK, which were not strongly structured.

4. The present study confirms the division of the species into three evolutionarily significant units corresponding
to the three previously detected mtDNA lineages, which should be managed independently. Furthermore, owing
to the high differentiation among southern European populations, the establishment of distinct management
units for the Guadalquivir, Guadiana and Douro populations in the Iberian Peninsula is also proposed.
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INTRODUCTION

Freshwater bivalves of the order Unionoida, also
known as freshwater mussels, are among the most
threatened faunal groups worldwide (Strayer et al.,
2004; Lopes-Lima et al., 2014). Unionoid mussels
are widespread, colonizing freshwater ecosystems
of all continents except Antarctica. They can
attain very high densities in some habitats (Bogan,
2008) which, together with their filter-feeding
behaviour, make them particularly important in
the transfer of matter and energy from the water
column to the benthos (Strayer et al., 1999). In
addition, these bivalves are important ecosystem
engineers (Gutiérrez et al., 2003), not only through
the indirect effects of filter feeding (e.g. increasing
water clarity), but also by bioturbation and
consequent changes in the sediments (e.g. oxygen,
organic matter, redox potential) and the
production of shells, which function as a substrate
for other species (Vaughn and Hakenkamp, 2001;
Aldridge et al., 2007; Spooner et al., 2013).
Unionoids also provide important services to
humans, such as purification of water, as prey for
several commercial fishes and as a source of food
and other valuable materials (shells and pearls)
(Haag, 2012).

Anodonta anatina (Linnaeus, 1758) is the most
widespread freshwater mussel species in the
Palaearctic, occurring from Portugal and the
British Isles in the west to the Transbaikal region
in the east of Russia (Douda et al., 2013;
Hinzmann et al., 2013). Although this species is
considered common and widespread in most
countries, severe declines have been reported in
some regions and consequentially this species is
listed as Near Threatened or Threatened in
Austria, Germany, Ireland and Romania
(Sárkány-Kiss, 2003; Reischütz and Reischütz,
2007; Byrne et al., 2009; Binot-Hafke et al., 2011).
However, the taxonomy of this species is still
contentious, which may impair the application of
possible conservation measures. Indeed, until the
middle of the 20th century, many malacologists
had split A. anatina into hundreds of regional
species, mainly based on its highly variable shell
characters (Graf, 2010). Nevertheless, by the end
of the 20th century most of these synonymies had

been resolved, merging all these putative species
into A. anatina (Araujo, 2013).

Only recently has the genetic diversity of A.
anatina been described across a large part of its
entire range. Froufe et al. (2014) described the
existence of at least three major mtDNA lineages in
most of its European range, with non-overlapping
geographic distributions and with significant genetic
differences among them. One lineage includes all
Atlantic Iberian populations, the second includes
individuals from the Mediterranean Iberian
Peninsula (Ebro) and Italy and the third includes
the remaining European populations, from the
British Isles in the west to Russia in the east.
Furthermore, the results indicated that A. anatina
has a pronounced genetic substructure within the
Atlantic Iberian lineage, consistent with the
existence of multiple Pleistocene refugia within this
region (for a review see Gómez and Lunt, 2007).
Since the mitochondrial DNA represents only the
maternal lineage and its exclusive use may
introduce errors in phylogenetic studies owing to
phenomena such as hybridization and introgression
(Alves et al., 2006), data from nuclear markers
should be used to complement these results.

Microsatellite markers are ideal for inferring
population structure and dynamics and have been
used frequently in conservation genetics studies of
freshwater mussels with many applications: for
example, to understand the spatial patterns of
genetic diversity, including isolation, gene flow
and migration (Geist et al., 2010a; Mock et al.,
2013); to establish phylogeographical patterns and
the establishment of evolutionary and
management units (Zanatta and Murphy, 2008);
to establish co-evolution patterns between a
freshwater mussel species and its host fish (Zanatta
and Wilson, 2011); to investigate the occurrence
and frequency of multiple paternity (Bai et al.,
2012); and to investigate maximum fertilization
distance among female and male freshwater
mussels (Ferguson et al., 2013).

To date, microsatellite markers have been
developed for few European freshwater mussel
species, i.e. Margaritifera margaritifera (Linnaeus,
1758) (Geist et al., 2003), Unio crassus Philipsson,
1788 (Sell et al., 2013), Potomida littoralis (Cuvier,
1798) (Froufe et al., 2013) and Anodonta cygnea
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(Linnaeus, 1758) (Geist et al., 2010b). Moreover,
with the exception of M. margaritifera (Geist and
Kuehn, 2005; Bouza et al., 2007; Geist et al.,
2010a), no conservation or phylogeographic studies
using these markers have been published so far.
Therefore, the present study aimed: (i) to develop
effective and polymorphic microsatellite markers
for A. anatina; (ii) to compare their usefulness in
identifying discrete evolutionary and management
units with lineages previously described by Froufe
et al. (2014) using mtDNA; and (iii) to characterize
the genetic diversity patterns of the species.

METHODS

Specimens examined and DNA extraction

Small samples from the foot were non-destructively
excised (following Naimo et al., 1998) and placed
directly into 99% ethanol, relocating the mussel
back to its previous position. In total, 140 A.
anatina specimens were collected from seven
different ecosystems (Figure 1, Table 1). Total
genomic DNA was extracted from all individuals
using a standard high-salt protocol following
Sambrook et al. (1989).

Microsatellite development

Total genomic DNA from one A. anatina individual
was sent to Genoscreen (Lille, France) for
microsatellite-enriched library preparation and
sequencing by 454 Genome Sequencer FLX
Titanium (454, Roche Applied Science) using the
method described by Malausa et al. (2011).
Multiple sequences were received in FASTA format
with the respective quality files. PCR reactions were

then designed to amplify the new loci to improve
genotyping throughput as well as cost-effectiveness.

Four sets of nine primer pairs each were chosen
and initially tested, following Froufe et al. (2013),
on 21 individuals (three per population) with PCR
reactions in simplex to validate selected loci and
ascertain optimal annealing temperatures. After
these trials, 20 loci were selected, combined in

Figure 1. Map showing the locations of Anodonta anatina populations
analysed with the microsatellite markers: 1 – Guadalquivir,
2 – Guadiana, 3 – Douro, 4 – Ebro, 5 – Reno, 6 – Medway, 7 – Rhine.

Table 1. Location of the analysed Anodonta anatina populations and corresponding microsatellite statistics; N= number of samples; NA = number of
observed alleles per population; NPA= number of private alleles per population; HE=mean expected heterozygosity; HO=mean observed
heterozygosity; FIS =mean inbreeding coefficient

Population (basin) Site Latitude Longitude Country N NA NPA HE HO FIS

Guadalquivir River Corbones 37°35’14.51"N 5°38’56.96"W Spain 20 88 23 0.40 0.38 0.07
Guadiana River Oeiras 37°36’43.83"N 7°49’53.76"W Portugal 20 79 10 0.35 0.32 0.12
Douro River Sabor 41°14’22.65"N 6°58’04.59"W Portugal 20 31 1 0.07 0.05 0.38
Ebro River Ebro 41°50’11.79"N 1°14’02.06"W Spain 20 62 10 0.26 0.29 0.04
Reno Lake Castel dell’Alpi 44°11’06.98"N 11°16’34.19"E Italy 20 114 34 0.52 0.43 0.19
Medway River Medway 51°24’48.43"N 0°42’20.16"E United Kingdom 20 114 16 0.52 0.55 �0.03
Rhine Reinhardswinden pond 49°58’31.49"N 10°27’10.54"E Germany 20 123 17 0.58 0.58 0.03
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three multiplex-PCR reactions (eight in MixA,
seven in MixB, and five in MixC; Table 2) and
tested for polymorphism in all the 140 A. anatina
individuals. PCR reactions were performed on a
DNA Engine DyadW Peltier Thermal Cycler
(Bio-Rad Laboratories), consisting of a denaturing
step at 95 °C for 15min followed by 11cycles of
denaturation at 95 °C for 30 s, 90 s annealing at
58 °C where the annealing temperature was
lowered by 0.5 °C with each consecutive cycle, and
30 s elongation at 72 °C; 29cycles of denaturation
at 95 °C for 30 s, annealing at 53 °C for 60 s, and
extension at 72 °C for 30 s; and a final extension at
60 °C for 30min. Labelled PCR amplicons were
resuspended in 10mL Hi-DiTM Formamide and
their sizes determined in an Applied Biosystems
3100 DNA analyser, with LIZ 500 size standard
as an internal size standard.

Microsatellite analyses

In total, 140 individuals were genotyped for all 20 loci.
Allele frequencies, observed (HO) and expected
heterozygosity (HE), were estimated in Genetix
v.4.0.5.2 (Belkhir et al., 2004). Linkage
disequilibrium (LD), inbreeding coefficients (FIS) and
deviations from the Hardy-Weinberg equilibrium
(HWE) were tested in Genepop-on-the-Web (http://
genepop.curtin.edu.au/index.html; Raymond and
Rousset, 1995) using exact tests with significance
estimated by a Markov chain method after 10 000
randomizations. Sequential Bonferroni correction
was employed to account for multiple testing (Holm,
1979). The presence and frequency of null alleles
were tested in each locus using MICROCHECKER
(Van Oosterhout et al., 2004) and FREENA
(Chapuis and Estoup, 2007), respectively. Alleles
were considered as private alleles if they exhibited a
frequency of more than 5% in one population and
did not occur in any other population.

Global, single-locus and pairwise genetic
differentiation among samples and their putative
genetic structuring were assessed with the FST
fixation index (Weir and Cockerham, 1984) in
FSTAT 2.9.3.2 (Goudet, 1995), with significance
being assessed with 1000 permutations. In
addition, Jost’s actual measure of differentiation
Dest (Jost, 2008) was estimated using SMOGD

v.1.2.5 (Crawford, 2010). The impact of null
alleles was assessed by comparing FST estimates
before and after correction for null alleles using
the ENA (Excluding Null Alleles) method
implemented in FREENA. As the null alleles had
minimal or no impact on FST estimates (data not
shown), all subsequent analyses were conducted on
data uncorrected for null alleles.

A neighbour-joining dendrogram (NJ) based on
pairwise Nei’s (DA) genetic distances (Nei et al.,
1983) was constructed with POPULATIONS
v.1.2.32 software (Langella, 1999). Confidence
estimates of tree topology were calculated by 1000
bootstrap replicates of loci. A NJ tree was drawn
and visualized using Seaview v.4.4.3 (Gouy et al.,
2010). Population structure was analysed using the
Bayesian model-based clustering approach
implemented in STRUCTURE v.2.3.4 (Pritchard
et al., 2000). Fifteen independent runs were made
for K=1–8, with each run consisting of a burn-in
of 105 Markov-chain Monte Carlo steps followed
by 5×105 steps. Selection of the most likely
number of genetic clusters (K) was based on the
second-order rate of change in probability between
successive K values as described in Evanno et al.
(2005) and implemented in STRUCTURE
HARVESTER (Earl and von Holdt, 2012). Values
from different run replicates under K=3 and K=6
were combined with CLUMPP v.1.1.2 (Jakobsson
and Rosenberg, 2007) followed by DISTRUCT
v.1.1 (Rosenberg, 2004) to graphically display
each individual’s membership coefficients for each
cluster. Tests for genetic variation within groups
(FST), among populations within groups (FSC) and
among populations (FCT) were conducted with
Analysis of Molecular Variation (AMOVA) with
ARLEQUIN v.3.5.1.3 (Excoffier and Lischer,
2010), where the groups corresponded to the most
likely number of genetic clusters (K=3 and K=6)
identified in STRUCTURE analyses. The
significance of F-statistics of the AMOVA was
tested using 10 000 permutations.

RESULTS

A summary of the microsatellite results is provided
in Table 2. In total, 243 alleles were observed
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across the 20 loci, ranging from two (AA34, AA38)
to 42 (AA20) alleles per locus. Six loci deviated from
Hardy–Weinberg equilibrium, and significant
inbreeding coefficients (FIS) ranged from 0.01 to
0.34. Null alleles were detected in very few loci in
very few populations (Table 3). However, the Reno
population was an exception presenting null alleles
in seven alleles. Curiously, one locus (AA6) failed
to amplify on almost all individuals from the Ebro
and Reno populations, which clustered together in
the NJ tree (Figure 2). Nevertheless, this locus was
not excluded from further analyses, as its removal
affected neither the FST values nor the final
population structure results (data not shown).
Finally, linkage equilibrium was rejected for only
one comparison (Medway; AA7/AA37) after
Bonferroni correction (Holm, 1979), indicating that
all loci could be considered as independent markers.
Population microsatellite statistics are shown in
Table 1; observed heterozygosity frequencies ranged
from 0.05 (Douro) to 0.58 (Rhine), while expected
heterozygosity frequencies ranged from 0.07
(Douro) to 0.58 (Rhine). The significant FIS
inbreeding coefficients varied from �0.03 (Medway)
to 0.38 (Douro). All pairwise Dest-values (Table 4),
and FST -values were significant when corrected for
multiple tests, these values indicating pronounced
differentiation among all populations with the
exception of Medway and Rhine. Four well

supported groups are shown in the NJ tree (Figure 2);
one with the Guadiana Basin, the second with the
remaining Atlantic Iberian Basins (Douro and
Guadalquivir), the third with the Ebro and Reno
Basins and the fourth with Medway and Rhine
Basins (Figure 2). The plots of ΔK (Evanno et al.,
2005) based on the STRUCTURE analysis
indicated that three (K=3) is the most likely
number of clusters present in the full dataset.
Cluster one included the populations from
Guadalquivir, Guadiana, and Douro, cluster two
included the populations from Ebro and Reno and
cluster three integrated the populations from

Table 3. Null allele frequencies for 20 microsatellite loci across all populations of Anodonta anatina. Null allele presences determined with
MICROCHECKER (Van Oosterhout et al., 2004) are indicated in bold

Locus Guadalquivir Guadiana Douro Ebro Reno Medway Rhine

AA2 - - - - 0.11 - 0.27
AA3 - 0.36 - - 0.15 - 0.12
AA6 - - - - - - -
AA7 - - - - - - -
AA13 - - - - - - -
AA16 - - 0.20 - 0.39 0.13 -
AA17 - - - - 0.26 - -
AA20 - - - - 0.11 - -
AA21 - - - - 0.14 - -
AA26 - - - - - - -
AA34 - - - - - - -
AA35 - - 0.15 - - - -
AA36 - - - - 0.19 - -
AA37 - - - - - - -
AA38 - - - - - - -
AA41 - 0.42 - - - - -
AA42 - - - - - - -
AA44 - - - - - - -
AA45 - - - - - - -
AA46 0.17 - - - - - -

Figure 2. Neighbour-joining tree representing the Anodonta anatina
populations analysed (bootstrap values above the branches).
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Medway and Rhine (Figure 3(A)). With the second
most likely number of clusters (K=6), each of the
clusters, one to five, included only one population,
while cluster six included the Medway and Rhine
populations (Figure 3(B)). The results from
AMOVA for K=3 showed that 25% of the genetic
variation was explained by differences among
groups with high and significant FST-values.
Furthermore, the AMOVA results for K=6 still
explain 41% of the variation among groups, also
with high and significant FST-values.

DISCUSSION

The 20 microsatellite markers developed here
resulted in successful amplifications of divergent
populations of A. anatina across a wide
geographical range.

A high level of population structure was found
among all populations, but with considerable

similarity between the populations in Central
Europe (Rhine, Germany) and the British Isles
(Medway, United Kingdom). The levels of
differentiation among populations found in the
present study are also congruent with the
previously published mtDNA lineages (Froufe
et al., 2014). Three distinct ESUs are proposed in
the present study together with three MUs that
should be managed independently.

Population genetics

The significant deviations from HWE detected in
some loci have been commonly reported for
Unionoid mussels (Eackles and King, 2002; Jones
et al., 2006; Zanatta and Murphy, 2006). Possible
explanations include the effect of null alleles,
recent population bottlenecks or significant levels
of close inbreeding, which may arise because of
hermaphroditic reproduction known to occur in
some populations of A. anatina (Hinzmann et al.,

Table 4. Pairwise estimates of FST (above diagonal) and Jost’sDEST (below diagonal) between all populations sampled for Anodonta anatina. All values
are significant after sequential Bonferroni correction (P< 0.003)

Guadalquivir Guadiana Douro Ebro Reno Medway Rhine

Guadalquivir 0.408 0.550 0.551 0.411 0.464 0.399
Guadiana 0.293 0.613 0.611 0.394 0.444 0.357
Douro 0.219 0.264 0.808 0.637 0.661 0.607
Ebro 0.418 0.434 0.597 0.352 0.492 0.448
Reno 0.545 0.480 0.581 0.293 0.350 0.299
Medway 0.714 0.539 0.763 0.551 0.645 0.081
Rhine 0.605 0.410 0.686 0.548 0.597 0.079

Figure 3. Results of the STRUCTURE Bayesian clustering analysis on Anodonta anatina populations: (A) with the most likely number of clusters
(K = 3); (B) with the second most likely number of clusters (K = 6). Each individual is represented by a vertical bar in K coloured segments with
the length of each bar being proportional to the estimated membership coefficient. Black lines separate individuals from different geographic
regions. Numbers over the graphics correspond to the main mtDNA clades proposed by Froufe et al. (2014): 1 – Atlantic Iberian clade, 2 – Ebro

+ Italian clade; and 3 - Central European clade.
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2013). Since the primers were developed using DNA
from animals from the Iberian clade, the number of
null alleles in the Italian lineage (Ebro+Reno)
might be related to the high genetic divergence of
the Italian from the Iberian lineage with probable
changes in the flanking region. The Douro and
Reno populations had high FIS values. In the case
of the Reno population, this can be attributed to
founder effects since it is a very recent (1951) small
lake created by a natural landslide. As for the
Douro population, the high FIS values could be
caused by the declining population resulting from
recent bottlenecks due to human activities such as
dam construction (Sousa et al., 2012).

Relatedness of populations

The most likely number of clusters from the
Bayesian assignment and AMOVA analysis
indicates a strong genetic structure among the
studied A. anatina populations corresponding to
the pattern previously found with mtDNA
markers. One group includes all Atlantic Iberian
basins (Gudalquivir, Guadiana and Douro), a
second includes the Mediterranean Iberian (Ebro)
and Italian (Reno) populations, and a third
integrates the British (Medway) and German
(Rhine) populations. Substructure of the Iberian
populations is also confirmed with the Bayesian,
AMOVA and NJ analysis. The pairwise FST/DEST

comparison generated some of the highest values
of genetic differentiation found so far for
freshwater mussels (Zanatta and Murphy, 2007;
Zanatta and Wilson, 2011). Although populations
of M. margaritifera (family Margaritiferidae) in
Central Europe have comparably high levels of
differentiation, in the family Unionidae this highly
structured pattern is only equivalent to those of
the congeneric species A. californiensis/nuttalliana
in the western US (DEST=0.610 among all
populations; Mock et al., 2010).

Correspondence with mtDNA analysis

In the present study, the high values of genetic
differentiation among the populations belonging to
the previously detected mtDNA lineages (Froufe
et al., 2014) are congruent with an ancient
divergence event. In addition, the results from the

NJ tree, with four supported clades, confirm the
existence of genetic substructure in the Iberian
populations. On the other hand, the mtDNA
analysis has found no evident genetic structure in
northern, central and eastern Europe from the
British Isles through Germany and Poland all the
way to Ukraine, including the Scandinavian
countries. Similarly, a lower genetic differentiation
between Medway (UK) and Rhine (Germany)
populations was detected in this study using the new
microsatellite markers. By contrast, in Germany a
distinct pattern was found for the freshwater mussel
M. margaritifera with highly differentiated
populations among central European drainages
(Geist et al., 2010a). Although the present study
only analysed two A. anatina populations belonging
to the northern European mtDNA clade, a
probable explanation for the divergent pattern
between the two species might be related to the fact
that while Margaritifera spp. have a very narrow
range of habitat preference and host fish for
dispersal, Anodonta spp. may use a wide range of
hosts and are able to occupy habitats subjected to
different abiotic conditions. These features could
significantly increase the dispersal ability and
colonization success of A. anatina (Douda et al.,
2013; Mock et al., 2013).

Conservation implications

Based on the present nuclear data, the previously
identified mtDNA lineages of A. anatina (Froufe
et al., 2014) are proposed here as three distinct
evolutionarily significant units (ESUs) since they
are geographically and historically separated,
being reciprocally monophyletic for mtDNA
haplotypes and showing, at the same time,
significant divergence of allele frequencies at the
nuclear loci (Moritz, 1994; Palsbøll et al., 2007;
Frankham, 2010). Furthermore, all the southern
European populations analysed can be defined as
distinct management units since they present a
high among-population differentiation, mainly at
nuclear loci (Hedrick et al., 2001; Caballero et al.,
2012).

Although more populations are needed to gain a
fully comprehensive picture across the whole range
of A. anatina, the populations from the British

M. LOPES-LIMA ET AL.314

Copyright # 2015 John Wiley & Sons, Ltd. Aquatic Conserv: Mar. Freshw. Ecosyst. 26: 307–318 (2016)



Isles, and central and northern Europe can be
viewed as belonging to the same ESU. This ESU
has a wide range and is therefore considered to
have a more favourable conservation status than
those from Southern Europe, which are more
limited in distribution. Even so, considerable
declines in spatial distribution and density of A.
anatina have been recorded in some central
European countries owing to pollution and habitat
modification (Lopes-Lima, 2014), which means
that this ESU will require monitoring. The ESU
that includes the Italian and Ebro populations is
mainly threatened by habitat degradation, water
abstraction and invasive species and is declining
rapidly (Cianfanelli et al., 2007; Halcon, 2011). As
for the Atlantic Iberian ESUs, the Guadiana and
Guadalquivir MUs on the south of the Peninsula
are affected by historic mining pollution and more
recent human impacts such as dam construction,
urban development and agriculture (Company
et al., 2008). Water shortage in some of the
temporary streams of this ESU is possibly the
most acute threat to this and other aquatic species.
In the Douro MU the A. anatina populations are
affected mainly by dam construction and pollution
(Sousa et al., 2012).

All of the ESUs and MUs identified in this study
deserve independent management attention. The
genetic differentiation and divergence between
ESUs should be considered in any study involving
the physiology and toxicology of these animals.
Distinct physiological traits such as host fish
requirements, temperature resistance and other
local adaptation characteristics should be assessed
individually in each ESU. Furthermore, captive
breeding programmes that aim to release or
reintroduce A. anatina into natural habitats,
should take account of specific genetic stocks with
respect to the original genetic differentiation
among the MUs detected in this study.

Unionoid populations are decreasing at an
alarming pace, having been severely affected by
many human activities that have resulted in
habitat loss and fragmentation, pollution,
overexploitation of resources, climate change and
introduction of invasive species (Strayer et al.,
2004; Lopes-Lima et al., 2014). Informed
conservation strategies require high-resolution

genetic analyses to identify populations with
unique, divergent or low diversity (Geist et al.,
2003). The microsatellites described here are
valuable in fine-scale geographic studies and also
provide a broadly useful set of tools for ecological
and population genetic studies. For example, these
markers may be applied to studies of dispersal
rates (Berg et al., 2007), reproductive patterns such
as identifying gamete dispersal and distance of
reproduction (Ferguson et al., 2013), and the
assessment of multipaternity, hermaphroditism
and self-fertilization ratios (Bai et al., 2012). They
also allow identification of co-evolutionary
patterns, since these mussels have a parasitic larval
phase in which they need a host fish for
metamorphosis and dispersal (Geist and Kuehn,
2008; Zanatta and Wilson, 2011).

Throughout its range, A. anatina is exposed to
increasing human pressure including increasing
demands for water. This is especially pronounced
in the Mediterranean biodiversity hotspot region
(e.g. Portugal, Spain and Greece), which has
severely impaired freshwater ecosystems, with a
widespread decline and loss of endemic freshwater
species (Albrecht et al., 2006; Benejam et al.,
2010). Therefore, it is important to study patterns
of genetic diversity of A. anatina in other
biogeographical areas of southern Europe, such as
the Balkans, Turkey or the Ponto-Caspian region,
to assess whether they support further distinct and
vulnerable ESUs. The microsatellite loci described
in this study offer considerable utility in this respect.
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