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A B S T R A C T

Gomphrena globosa L. is a source of betacyanins, molecules with high colorant power. In order to replace
conventional extraction techniques, microwave (MAE) and ultrasound assisted extraction (UAE) processes were
optimized by the response surface methodology (RSM) to maximize the recovery of betacyanins from G. globosa.
A five-level full factorial design of 24 combinations and 4 replicates was implemented for MAE and UAE. The
optimum processing conditions for MAE (t = 8 min; T= 60 °C; Et= 0%; and S/L = 5 g/L) conducted to an
extraction yield of 39.6 ± 1.8 mg/g dry weight, while for UAE (t= 22 min; P= 500%; Et= 0%; and S/
L = 5 g/L) a value of 46.9 ± 4.8 mg/g was achieved, validating the UAE more suitable to obtain the target
compounds. This technique can provide extracts rich in betacyanins and with high potential to be used as natural
colorants.

1. Introduction

Alkaloids are a group of metabolites that can be found in a wide
variety of natural sources. These compounds are characterized by the
presence of, at least, one nitrogen, commonly in a cyclic structure,
representing the main factor of the displayed pharmacological activity.
Despite of this common element, alkaloids can present a huge range of
different chemical structures, for instance in plants, they can be divided
into more than 25 different subgroups. Within their chemical diversity,
which includes a wide range of structures, several biological and
pharmacological properties can be observed (Klein-júnior et al.,
2016). Betalains, pigments belonging to a class of secondary metabo-
lites synthesized from tyrosine, are a group of chromoalkaloids, which
are divided in betacyanins (red-violet pigments) and betaxanthins
(yellow pigments) (Junqueira-Goncalves et al., 2011). Although struc-
turally related to alkaloids, betacyanins do not present toxic effects.

These pigments have received great attention because of their
proven antiviral and antimicrobial activities, among others (Delgado-
Vargas et al., 2000). Moreover, these compounds, especially regarding
their use as colorants in the food industry, offer the possibility to
replace the chemical synthetic counterparts, such as azo-dyes. Addi-

tionally, these compounds can confer, over the colouring power, also
functional properties (Gengatharan et al., 2015).

Even though betacyanins are associated mostly with Beta vulgaris L.,
several plants such as Hylocereus polyrhizus (Weber) Britton & Rose,
Opuntia ficus-indica [L.] Miller, Opuntia stricta (Haw.) Haw., Rivina
humilis L. and G. globosa, (Martins et al., 2016), present these
compounds in their composition. Despite not being widely studied, G.
globosa is particularly rich in betacyanins, making this plant an
excellent source for obtaining this type of compounds.

For pigment extractions, several techniques can be applied, from
traditional ones such as maceration, a good example since the achieved
extraction yields are very acceptable (Roriz et al., 2017) to more
contemporary approaches. In this context, in the last few years, several
methods have emerged for the extraction of plant bioactive compounds,
such as enzyme assisted extraction, accelerated extraction methods,
microwave assisted extraction (MAE), and ultrasound assisted extrac-
tion (UAE) (Chavan and Singhal, 2013). When compared with tradi-
tional techniques, they feature a variety of advantages, such lower
solvent consumption and increased extraction efficiency (Heleno et al.,
2016). For instance, MAE, a green extraction methodology, is gaining
relevance due to its high extraction efficiency, and achievement of
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products with superior quality at a much lower cost (Pinela et al.,
2016b). Among all the mentioned advantages, UAE offers particular
advantages, such as mechanical effects, which allow a greater solvent
penetration within the matrix, thus increasing the contact area solid/
liquid (Hossain et al., 2014).

Several parameters can be controlled to increase MAE and UAE
extraction efficiency, including several process variables that require
individual consideration, independently of the applied extraction
technic to recover the target compounds from natural matrices.
Therefore, it is essential to identify the main variables prior to the

Fig. 1. Diagram of the different steps carried out for the extraction of betacyanin compounds from G. globosa Independent variables of time (t), temperature (T), ethanol content (Et),
power (P) and solid-liquid ratio (S/L) of the MAE and UAE systems. Response criteria comprise the following: extraction yield of the obtained residue (YYield); individual content of the
betacyanins compounds of gomphrenin II (YP1), gomphrenin III (YP2), isogomphrenin II (YP3) and isogomphrenin III (YP4); total betacyanin content (YTotal); and colour intensity (YColour).
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optimization process, and maximize their responses considering the
minimum time, energy and solvent consumption to design the most
cost-effective and profitable extraction system (Dai and Mumper,
2010). The most frequent form to carry out an optimization is to
measure, independently, the influence of each variable whereas all the
others are fixed. Nevertheless, the application of mathematical models
such as the one of response surface methodology (RSM) is gaining
visibility within the scientific community. The RSM design allows to
optimize, simultaneously, all the variables and to predict the most
efficient conditions. This is achieved by using second order polynomial
models with interactions, which are able to describe and maximize the
selected response criteria, based on the tested experimental range
(Bezerra et al., 2008; Kalil and Maugeri, 2000; Pinela et al., 2016b).

Therefore, the aim of this work was to study the association of MAE
and UAE, and use RSM to obtain and identify the optimal points for the
extraction of betacyanins from G. globosa, a promising source of novel
alternative natural colorant additives for the food industrial sector.

2. Material and methods

2.1. Samples

The plant material, G. globosa, was acquired from a Portuguese
company, Ervital, which is based in Castro Daire, a highland area full of
diversity. This company has its own harvesting based on organic
farming principles. They commercialize several certified plant materials
from great plant diversity. Ana Maria Carvalho, person in charge of the
medicinal plant collection of the Herbarium of the Agriculture School of
the Polytechnic Institute of Bragança (Trás-os-Montes, Portugal), was
the responsible for the botanical identification of the plant material.
The plants were subjected to mechanical separation to isolate the
flowers, bracts and bracteoles, the pigmented parts of the plant, from
the inflorescence, in order to increase the extraction efficiency. The
flowers, bract and bracteoles, separated from the bract-like leaf-pair
and heads, were put into a rotary sieve device to be blended and sieved
(2 μm). The obtained powder (pigmented parts) was further mixed to
guarantee sample homogeneity and stored, protected from light, in a
desiccator at room temperature (average 25 °C), until analysis.

2.2. Standards and reagents

Acetonitrile of HPLC grade and ethanol p.a. were purchase from
Fisher Scientific (Lisbon, Portugal). The standard (betalain) was
acquired from Sigma (St. Louis, MO, USA). Water was treated in a
Milli-Q water purification system (TGI Pure Water Systems, Greenville,
SC, USA). All other chemicals and solvents were of analytical grade and
purchased from common suppliers.

2.3. Betacyanin extraction

2.3.1. Microwave-assisted extraction
The MAE process was performed in a Biotage Initiator Microwave

(Biotage® Initiator+, Uppsala, Sweden) in closed vessels of high-
precision glass. The solvent volume, an ethanol-water mixture, was
fixed at 20 mL. The samples were extracted according to different
conditions regarding time (t), temperature (T), ethanol content (Et) and
solid/liquid ratio (S/L), defined as the independent variables by the
RSM design (supplementary material, Fig. 1 and Table A1). During
processing, samples were stirred at 600 rpm using a magnetic stirring
bar. After applying the established microwave power and time, the
mixture in the extraction vessel was quickly cooled in the processing
chamber.

2.3.2. Ultrasound assisted extraction
The UAE was carried out using an ultrasonic device (QSonica

sonicators, model CL-334, Newtown, CT, USA), equipped with a digital

timer, and working in the range of 100–500 W, at a frequency of
20 kHz. The used solvent volume was settled at 50 mL. The samples
were extracted according to different conditions regarding t, power (P),
Et and S/L, as defined by the RSM design (Fig. 1 and Table A1).

After the microwave and ultrasonic extractions, the mixtures were
centrifuged at 14000 rpm for 10 min. The solid was discarded and the
supernatant divided into two parts. One part was used to quantify the
extraction yield and measure the light intensity using a colorimeter
(Minolta spectrophotometer, Konica Minolta Sensing, Inc., Chroma
Meter CR-400, Japan). The second part was carefully collected into a
glass vial, filtered through 0.2 μm nylon filters (Whatman), and used
directly to quantify the total betacyanin content by HPLC-DAD analysis.

2.3.3. Extraction yield determination
The extraction yield was determined gravimetrically. For that, a

sample (10 mL) of the filtered solution was dried in an oven, firstly at
60 °C to evaporate the ethanol, then at 100 °C to evaporate the residual
water. After complete sample dryness, the achieved solid residue was
removed from the oven and allowed to cool before weighting.
Extraction yield was thereafter expressed as the ratio between the mass
of the achieved residue (determined by difference) and the mass of the
corresponding original plant material.

2.3.4. Colour parameters analysis
A Minolta spectrophotometer (Konica Minolta Sensing, Inc.,

Chroma Meter CR-400, Japan) was used to measure the colour of the
extract powder. Using the illuminaçnt C and a diaphragm aperture of
8 mm, the CIE L* a* b* colour space values were reported through the
computerized system using the colour data software Spectra Magic Nx
(version CM-S100W 2.03.0006, Konica Minolta Company, Japan).
Average values were considered to determine the colour coordinates,
where L* represents lightness, a* represents chromaticity on a green
(−) to red (+) axis, and b* represents chromaticity on a blue (−) to
yellow (+) axis. Since the colour of interest was the red, only
parameter a* measurements were taken into account for further
analysis. The instrument was calibrated with standard white tiles
before analysis (Spectra Magic NX Instruction Manual, Konica
Minolta Sensing, Inc. (ver. 2.0), 2009, Japan).

2.3.5. Betacyanins analysis and quantification
For betacyanin determination HPLC-DAD analyses were performed

with a Dionex Ultimate 3000 UPLC instrument (Thermo Scientific, San
Jose, CA, USA) coupled with a diode-array detector. A quaternary
pump, an autosampler maintained at 5 °C, a degasser a photodiode-
array detector and an automatic thermostatic column compartment
constitute the chromatographic system. The separation was carried out
in a Waters Spherisorb S3 ODS-2 C18, (3 μm, 4.6 mm × 150 mm,
Waters, Milford, MA, USA) column operating at 35 °C. The solvents
used were: (A) 0.1% trifluoracetic acid (TFA) in water and (B)
acetonitrile. The gradient elution programing, performed using a flow
rate of 0.5 mL/min, was as follows: 10% B for 3 min, from 10 to 15% B
for 12 min, 15% B for 5 min, from 15 to 18% B for 5 min, from 18 to
30% B for 20 min, from 30 to 35% B for 5 min, and from 35 to 10% B
for 10 min, resulting in a total run time of 60 min, plus 10 min for
column reconditioning. Betacyanins maximum absorbance is 530 nm,
therefore this was preference wavelength used to recorded all chroma-
tograms.

The identification of these compounds was previously performed by
authors (Roriz et al., 2014) and confirmed in this study. Four
betacyanin compounds were found: gomphrenin II (P1), gomphrenin
III (P2), isogomphrenin II (P3) and isogomphrenin III (P4). For
quantitative analysis, a calibration curve was obtained based on
gomphrenin III, and results were expressed as mg per g of plant dry
weight (dw).
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2.4. Experimental design, model analysis and statistical evaluation

2.4.1. Experimental design
The influence of different independent variables was investigated

using one-factor-at-a-time to select the significant ones and determine
the preliminary range of the processing variables. Based on these
experimental results (data not shown), the selected significant variables
for the RMS design were: X1 (time in min), X2 (temperature in °C or
power in W, if it applies MAE or UAE, respectively), X3 (ethanol content
in%) and X4 (solid/liquid ratio in g/L). Therefore, the combined effect
of these four variables on betacyanins extraction was studied using
circumscribed central composite design (CCCD) as proposed by Box and
Hunter (1957). The responses were solved using 24 independent
combinations and four replicates as the centre of the experimental
design. In this design, the points of experiments are generated on a
sphere around the centre point. The centre point is supposed to be an
optimum position for the response and is repeated to maximize the
prediction (Box et al., 2005). This design also requires five levels for
each factor. Experimental runs were randomized to minimize the effects
of unexpected variability in the observed responses. A detailed descrip-
tion of the mathematical expressions to calculate the design distribution
and to decode and code the tested variable’s ranges is presented in the
supplementary material section (Fig. 1 and Table A1).

2.4.2. Mathematical model
The response surface models were fitted by means of least-squares

calculation using the following second-order polynomial equation:
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where Y is the dependent variable (response variable) to be modelled,
Xi and Xj define the independent variables, b0 is the constant coefficient,
bi is the coefficient of linear effect, bij is the coefficient of interaction
effect, bii the coefficient of quadratic effect and n is the number of
variables. The dependent variable responses, for each extraction
technique (MAE and UAE), were the following: extract yield (YYield),
determined gravimetrically, colour (YColour), determined as the analy-
tical colour parameter a*, total content of betacyanins (YTotal), and
individual content of each betacyanin P1–P4 (YP1–YP4). The two last
responses were evaluated based on the quantification achieved by
HPLC-DAD analysis.

2.4.3. Procedure to optimize the variables to a maximum response
For response optimization, a maximization process was applied

using a simple method tool to solve non-linear problems (Heleno et al.,
2016; Pinela et al., 2016a). Constraints were imposed to the variable
coded values to avoid unnatural conditions (i.e., times lower than 0).

2.5. Fitting procedures and statistical analysis

The fitting procedures applied to the responses were performed on a
Microsoft Excel spreadsheet. Coefficient estimations and statistical
calculations of the proposed experimental equations were carried out
in three phases:

• Coefficients estimation was obtained by minimization the sum of
quadratic differences between the observed and model-predicted
values, using the nonlinear least-squares (quasi-Newton) method
provided by the macro Solver in Microsoft Excel (Kemmer and Keller,
2010).

• The significance of the coefficients of the parametric confidence
intervals was calculated using the ”SolverAid” (Prikler, 2009). The
model was simplified by dropping terms, which were not statisti-
cally significant (p-value > 0.05).

• The uniformity of the model was checked by applying the following
statistical assessment criteria: a) The Fisher F-test (α= 0.05) was
used to determine whether the constructed models were consistent
to describe the observed data; b) The ‘SolverStat’macro was used for
the assessment of the parameter and model prediction uncertainties
(Comuzzi et al., 2003); and c) R2 was interpreted as the proportion
of variability of the dependent variable explained by the model.

3. Results and discussion

3.1. Preliminary analysis to select, previously to the application of RSM
optimization studies, the adequate ranges for the main MAE and UAE
variables

The basic concept of the preliminary experiments, for MAE and UAE
systems, is to assure that the experimental domain of the operating
conditions, for the optimization procedure, will be properly defined to
maximize the responses (Kala et al., 2016; Tiwari, 2015). It is well
known that several variables can affect the extraction of compounds
from natural sources (Bhuyan et al., 2015; Dahmoune et al., 2015;
Routray and Orsat, 2012). However, different authors (Albuquerque
et al., 2016; Heleno et al., 2016; Pinela et al., 2016b) are in agreement
concerning the variables affecting the extraction responses in MAE and
UAE systems, the main being identified as: X1 (t, min), X2 (T, °C or P, W,
respectively for MAE and UAE), X3 (Et, %) and X4 (S/L, g/L). Therefore,
to ensure a proper experimental domain, the relevant variables and
ranges for MAE and UAE systems were selected based on the informa-
tion gathered in the available bibliographical data and obtained by
experimental results in one-variable-at-the-time-format. Results led to
the following conclusions:

• The effect of t plays one of the most important and critical roles. If
samples are exposed at t values lower or higher than the optimum
one, compounds may not be properly extracted or, otherwise,
degraded. In both extractions systems, the effect of t is closely
related to the T (in case of MAE) and P (in case of UAE). Generally,
the effect of T or P interacts with t positively (increasing the
compounds extraction) or negatively (increasing the compounds
degradation), compromising the achieved responses. In MAE the
typical ranges for the t and T vary from small ranges, 0–160 s
(Cardoso-Ugarte et al., 2014); 2–10 min, 25–55 °C
(Thirugnanasambandham and Sivakumar, 2015) and to shorter t
and higher T, 0–20 min, 60–180 °C (Pinela et al., 2016b). For the
UAE, although the typical ranges are lower t but with higher P
(5–15 min, 250–500 W, Heleno et al., 2016), there are cases in
which lower P and longer t are used (15–45 min, 60–120 W, Maran
et al., 2015).

• Regarding the type of solvent, and in the case of mixtures the used
composition, authors also found important effects on the molecules
to be extracted (Arnao et al., 2001; Sultana et al., 2009). Generally,
the solvent extraction ability can be grouped in non-polar, polar
aprotic and polar protic solvents (Huffman et al., 2012; Kislik,
2012). Water mixtures with polar solvents such as methanol,
ethanol, acetone, among others, are the most commonly used in
the extractions of natural compounds from plants (Prieto and
Vázquez, 2014). Aqueous mixtures are preferable due to the range
of the polarity degrees associated with the molecules to be
extracted; it increases the microwave/ultrasound extraction effi-
ciency, also allowing a better heat dissipation (Kala et al., 2016). In
this sense, considering the principles of green chemistry, binary
mixtures ethanol:water were selected as the extraction solvent.
Therefore, the variable studied was the ethanol content in the
ethanol:water mixture, which variation leads to significant differ-
ences (ranges from 0 to 100% were selected).

• Finally, the S/L ratio interacts, at a very low extent, with the other
system variables, but is very important parameter from the indus-
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trial point of view. It is well know that the contact surface of the
sample with the extraction solvent will influences the efficiency of
the extraction process (Kala et al., 2016; Tiwari, 2015). Lower S/L
ratios can facilitate the extraction process, but generates a high
waste of solvent (10–30 g/mL, Maran et al., 2015;
Thirugnanasambandham and Sivakumar, 2015), demanding its
recovery and recycling. At an industrial scale, higher ratios need
to be defined based on a compromise between process efficiency
(more productive process) and minimal solvent consumption (more
sustainable process) (5–45 g/L, Pinela et al., 2016).

Therefore, the final ranges selected for the five level CCCD of the
RSM analysis for the four relevant variables (Fig. 1 and Table A1) were:

• For MAE process: t (0–20 min), T (60–180 °C), Et (0–100%) and S/L
(5–45 g/L);

• For UAE process: t (2–22 min), P (100–500 W), Et (0–100%) and S/L
(5–45 g/L).

The processing conditions were optimized based on several re-
sponses (YYield, YColour, YTotal, YP1, YP2, YP3 and YP4). The proposed RSM
design (Fig. 1 and Table A1) reduces the number of experimental trials,
which otherwise would imply 625 possible combinations (five levels of
four independent variables), to be solved in 24 independent combina-
tions and four replicates at the centre of the experimental design. The
experimental results for the 28 runs are presented in Table 1.

3.2. Optimization of the responses by RSM

3.2.1. Development of theoretical response surface models and statistical
verification

Fitting the models for the selected responses is crucial to elucidate,
how precisely the RSM mathematical model can predict ideal variances.
The models for each response were built by fitting the second-order
polynomial model of Eq. (1) (independent variables in coded values) to
the experimental values (Table 1) through nonlinear least-squares
estimations. The resulting models are presented below.

For MAE:
When the extraction yield response was considered:

Y x x x x x x

x x
x x x x

= 38.97 + 0.64 + 6.25 − 3.94 − 2.24 − 0.91 − 0.66

− 2.80 + 0.77
− 1.69 − 1.22

Yield
MAE

1 2 3 4 1
2

2
2

4
2

3
2

2 3 3 4

(2)

When the betacyanin compounds (P1–4) and the total amount were
considered:

Y x x x x x x x= 1.0 − 0.04 − 0.45 − 0.33 + 0.15 + 0.09 − 0.38P
MAE
1 1 2 3 2

2
3
2

2 3

(3)

Y x x x x x x x= 1.1 − 0.08 − 1.12 − 0.94 + 0.43 + 0.34 + 1.08P
MAE
2 1 2 3 2

2
3
2

2 3

(4)

Y x x x x x x x= 1.1 − 0.08 − 1.12 − 0.94 + 0.43 + 0.34 + 1.08P
MAE
2 1 2 3 2

2
3
2

2 3

(5)

Y x x x x x x x= 1.1 − 0.08 − 1.12 − 0.94 + 0.43 + 0.34 + 1.08P
MAE
2 1 2 3 2

2
3
2

2 3

(6)

Y x x x x x x

x x

= 1.0 − 0.13 − 0.83 − 0.65 + 0.13 + 0.28 + 0.21

+ 0.75
P
MAE
4 1 2 3 1

2
2
2

3
2

2 3 (7)

Y x x x x x x

x x

= 3.12 − 2.84 − 2.15 − 1.95 + 1.11 + 0.75 + 1.28

+ 2.51
TOTAL
MAE

2 3 4 2
2

3
2

4
2

2 3 (8)

When colour determination, based on spectrophotometric quantifi-

cation, was considered:

Y x x x x x x x= 13.91 − 7.30 − 4.09 + 1.75 + 1.74 + 1.18 + 3.35Colour
MAE

2 3 1
2

2
2

3
2

2 3

(8)

For UAE:
When the extraction yield response was considered:

Y x x x x x x

x x

= 36.38 + 5.90 + 3.58 − 7.36 − 3.07 + 0.25 − 0.68

− 1.04 − 1.37
Yield
UAE

1 2 3 4 1
2

2
2

3
2

4
2 (9)

When the betacyanin compounds (P1–4) and the total amount were
considered:

Y x x x x x x= 1.80 + 0.13 + 0.10 − 0.92 − 1.0 + 0.11 + 0.75P
UAE

1 1 2 3 4 3
2

4
2 (10)

Y x x x x x x= 2.40 − 2.68 − 0.80 + 0.40 + 0.37 + 0.93 + 0.70P
UAE

2 3 4 1
2

2
2

3
2

4
2

(11)

Y x x x x= 2.42 + 0.08 − 0.86 − 0.17 − 0.13P
UAE

3 1 3 1
2

2
2 (12)

Y x x x x x x= 2.46 − 1.60 − 0.42 + 0.19 + 0.18 + 0.68 + 0.51P
UAE

4 3 4 1
2

2
2

3
2

4
2

(13)

Y x x x x x x

x

= 8.83 + 0.58 − 6.12 − 2.85 + 0.36 + 0.32 + 1.85

+ 2.19
TOTAL
UAE

1 3 4 1
2

2
2

3
2

4
2 (14)

When the colour determination was considered:

Y x x x x x= 20.83 − 4.00 − 3.93 − 4.61 − 4.41 + 1.28Colour
UAE

1 2 3 4 1
2 (15)

where X1 (t, min), X2 (T, °C or P, W), X3 (Et, %) and X4 (S/L, g/L), Y is
the response, sub-indices indicate the responses used and the super-
indices the technique applied. The mathematical models (Eqs. (2)–(8)
for MAE and Eqs. (9)–(15) for UAE), and the parametric information
present in Table 2, provides a complete summary of the effects caused
by each of the involved variables defined for each extraction technique.
In all cases, for both extraction methods, the linear effect was the most
significant one, followed by the quadratic effect. Only the MAE
procedure showed some interactive effects, consistently, between X2

(T, °C) and X3 (Et, %) variables.
In all cases, the found statistical correlation coefficients (R2), proved

the good agreement between the experimental results and the predicted
patterns, showing values higher than 0.82. For the MAE system, the
lowest value was 0.84 for the YP2 response and the highest one was 0.97
for the YYield response. For the UAE method, the lowest value was 0.82
for the YColour response and the highest one was 0.97 for the YYield

response.

3.2.2. Effects of the extraction variables used to evaluate the response
criteria

The patterns observed for the extractions can be explained by means
of the parametric values of the second-order polynomial models
described in Eqs. (2)–(8) for MAE and Eqs. (9)–(15) for UAE, or can
be illustrated by graphical representations. Figs. 2–4 , Figs. A1 and A2
(Supplementary material) show the graphical results of the studied
responses (YYield, YColour, YTotal, YP1, YP2, YP3 and YP4). For representa-
tion purposes, the variables excluded in each graph were positioned at
the centre of their experimental domain. The obtained parametric
fitting values are presented in Table 2.

Fig. 2 shows the comparative matrix combination for the 3D surface
responses of the YYield response for MAE and UAE processes. In the top
diagonal part, the 3D surface responses of UAE are presented, while in
the bottom diagonal, the ones presented are those derived from the
MAE process. The effects can be summarized as follows:

• For MAE: The compound extraction increases at high T and
intermediate t (180 °C, 11.7 min) showing patterns with linear and
quadratic effects. When Et is higher than 20%, the extraction yield
starts to be compromised, a fact that can be associated with the
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compounds polarity, which show higher affinity for hydrophilic
environments. Regarding the S/L ratio effect, low values favours
optimal extraction yields (5 g/L). The Et and S/L variables showed
complex sceneries with linear, quadratic and interactive effects.

• For UAE: The optimal extraction responses are produced at inter-
mediate t, high P, low Et and low/medium values of S/L (22 min,
500 W, 0%, 13.7 g/L respectively). Only linear and quadratic effects
were found.

Fig. 3 shows the graphical matrix combination of the responses
YTotal and YColour. Each of the contour graphs represents the projection
in XY plane of the theoretical three-dimensional response surface
predicted with the second-order polynomial of Eq. (1). For the YTotal

the response effects can be summarized as follows:

• For MAE: The t variable did not show any relevant effect in the
responses. This is a typical effect when analysing the response of
various compounds due to the dissimilar time response effects of

each one. The optimal extraction responses are produced at high T,
low percentage of Et and low values of S/L (180 °C, 28.2%, 5 g/L,
respectively). Linear and quadratic effects, produced by models,
governed the response. Only the variables T and Et showed
interactive effects.

• UAE: The optimal extraction responses are produced at higher t,
higher P, absence of Et and medium/low values of S/L (22 min,
500 W, 0%, 13.7 g/L, respectively). Only linear and quadratic
effects were found.

For YColour the response effects can be summarized as follows:

• For MAE: Simple response scenarios are found, in which only some
linear and quadratic effects are found. The optimal extraction
responses are produced at medium low t, low T, absence of Et and
low values of S/L (8 min, 60 °C, 0%, 5 g/L, respectively).

• For UAE: The optimal extraction responses are produced at short t,
low P, absence of Et and low values of S/L (2 min, 100 W, 0%, 5 g/L,

Fig. 2. Matrix combination for the surface YYield responses MAE and UAE systems. In the top diagonal part is presented the response surface of UAE and in the bottom diagonal part is
presented the response surface of MAE. For representation purposes, the variables excluded in each 3D graph were positioned at the centre of their experimental domain. The obtained
parametric fitting values are presented in Table 2. Note that the independent variable X2 in the ultrasound extraction is related to the power (W), meanwhile for the maceration and
microwave extraction it is related with the temperature (°C).

C.L. Roriz et al. Industrial Crops & Products 105 (2017) 29–40

35



respectively).

Finally, Figs. A1 and A2 (Supplementary material) show the contour
graphs of the individual betacyanin compounds content (YP1–YP4) for

MAE and UAE systems, respectively. The response effects can be
summarized as follows:

• For MAE: The linear and quadratic effects are once again the

Fig. 3. Matrix combination of the response surfaces of the total betacyanin extraction content (YTotal) and colour intensity from developed equations for the MAE and UAE system
optimizations. For representation purposes, the variables excluded in each 3D graph were positioned at the centre of their experimental domain. The obtained parametric fitting values
are presented in Table 3.
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predominant effect for all compounds content (YP1, to YP4). The
optimal extraction response is the same for all the compounds and
produced at short t, low T, absence of Et and low values of S/L
(8 min, 60 °C, 0%, 5 g/L, respectively).

• For UAE: This methodology showed a simpler response than MAE. It
was noted that the response YP3 showed different optimum values

compared with the other applied response criteria. Therefore, the
optimal extraction response for YP1, YP2 and YP4 are produced at
higher t and T, absence of Et, and low values of S/L (22 min, 500 W,
0%, 5 g/L, respectively), while YP3 produce the optimal extraction
response at medium values of t and T, absence of Et, and low values
of S/L (13 min, 300, 0%, 5 g/L, respectively).

Fig. 4. Individual responses of YYield, YColour and YTotal as a function of all the variables assessed. The variables in each of the 2D graphs were positioned at the optimal values of the others
(Table 3). The obtained parametric fitting values are presented in Table 2. The dots (⊙) presented alongside each line highlight the location of the optimum value. Lines and dots are
generated by the theoretical second order polynomial models of Eqs. (2)–(8) for MAE and Eqs. (9)–(15) for UAE. The results for the responses of the individual values of each betacyanin
compound identified (YP1, YP2, YP3 and YP4) were excluded due to their pattern similarities with the YTotal.
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3.3. Optimal extraction conditions for maximizing the responses criteria

Although the effects described above provided a guiding range of
conditions, where the responses are maximized, optimal values can be
achieved using a simple method tool to solve non-linear problems
(Heleno et al., 2016; Pinela et al., 2016a). The results of the application
of this simple procedure are presented in Table 3, in which the
operating conditions that maximize each of the responses, in individual
and global terms, are presented. Additionally, Fig. 4 summarizes the
information derived from the mathematical equations, presenting the
2D graphs as a function of all the accessed variables. The results for the
responses of the individual values of each identified betacyanin
compound (YP1, YP2, YP3 and YP4) were excluded due to their pattern
similarities with the YTotal. The variables in each of the 2D graphs were
positioned at the optimal values of the others (Table 3). If the optimal
individual conditions achieved are not found in absolute terms and they
are relative optimums when the optimal value may be outside of the
experimental range studied, the conditions that maximize the responses
are marked (*). The information can be summarized as follows (first
part of Table 3):

• The maximum response values and optimal conditions for the MAE
technique were: the YYield with 58.6 ± 1.5% at the optimal condi-
tions of 11.7 min, (*) 180 °C, 28.2% of ethanol and (*) 5 g/L; the
YTotal with 39.6 ± 1.8 mg/g at the optimal conditions of (*) 8 min,
(*) 60 °C, 0% of ethanol and (*) 5 g/L; the YColour with 68.8 ± 2.2
at the optimal conditions of 11.7 min, (*) 60 °C, 0% of ethanol and
(*) 5 g/L.

• The maximum response values and optimal conditions for the UAE
technique were: the YYield with 65.9 ± 4.8% at the optimal condi-
tions of (*) 22.0 min, (*) 500 W, 0% of ethanol and 13.7 g/L; the
YTotal with 46.9 ± 4.8 mg/g at the optimal conditions of (*)
22 min, 300 W, 0% of ethanol and (*) 5 g/L; the YColour with
59.9 ± 1.6 at the optimal conditions of (*) 2 min, 100 W, 0% of
ethanol and (*) 5 g/L.

When combining, the information produced from all response
criteriás (YYield, YColour, YTotal, YP1, YP2, YP3 and YP4), the complete
behaviour of each relevant variable influencing the responses is defined
in global terms. The global optimizing results are presented in the
second part of Table 3 and summarized below:

• For MAE response: the optimal global conditions were at (*) 20 min,
(*) 60 °C, 0% and (*) 5 g/L, producing 8.0 ± 0.6% (YYield),
39.6 ± 2.9 mg/g (YTotal) and 68.7 ± 6.2 (YColour). Regarding the
responses of the compounds P1 to P4 the results in mg/g were
4.9 ± 1.1, 12.4 ± 1.5, 4.2 ± 0.9 and 9.2 ± 1.1, respectively.

• For UAE response: the optimal global conditions were at (*) 22 min,
257.8 W, 0% and (*) 5 g/L, producing 55.2 ± 5.1% (YYield),
45.5 ± 6.2 mg/g (YTotal) and 37.6 ± 2.5 (YColour). Regarding the
responses of the compounds P1 to P4 the results in mg/g were
9.3 ± 1.4, 17.5 ± 1.1, 3.6 ± 0.4 and 12.1 ± 1.2, respectively.

The global optimal conditions found were experimentally tested to
confirm the accuracy of the presented results. Comparing the results of
the extraction efficiencies among the techniques, UAE gave signifi-

Table 2
Estimated coefficient values obtained from the Box polynomial model, parametric intervals and numerical statistical criteria for each parametric response criteria of the extractions
systems tested (MAE and UAE). Response criteria comprise the following: extraction yield of the obtained residue (YYield); individual content of the betacyanins compounds of gomphrenin
II (YP1), gomphrenin III (YP2), isogomphrenin II (YP3) and isogomphrenin III (YP4); total betacyanin content (YTotal); and colour intensity (YColour).

Parameters Residue Betacyanin Content Colour

YYield YP1 YP2 YP3 YP4 YTotal YColour

Microwave Asisted Extraction
Intercept b0 38.97 ± 1.05 0.99 ± 0.35 1.11 ± 0.42 1.01 ± 0.34 1.01 ± 0.46 3.12 ± 0.85 13.91 ± 2.87
Linear effect b1 0.64 ± 0.61 −0.04 ± 0.27 −0.08 ± 0.03 −0.04 ± 0.00 −0.13 ± 0.11 ns ns

b2 6.25 ± 0.61 −0.45 ± 0.27 −1.12 ± 0.32 −0.44 ± 0.26 −0.83 ± 0.31 −2.84 ± 0.56 −7.30 ± 1.89
b3 −3.94 ± 0.61 −0.33 ± 0.27 −0.94 ± 0.32 −0.24 ± 0.06 −0.65 ± 0.31 −2.15 ± 0.56 −4.09 ± 1.89
b4 −2.24 ± 0.61 ns ns ns ns −1.95 ± 0.56 ns

Quadratic effect b11 −0.91 ± 0.55 ns ns 0.02 ± 0.00 0.13 ± 0.11 ns 1.75 ± 1.70
b22 −0.66 ± 0.55 0.15 ± 0.24 0.43 ± 0.29 0.17 ± 0.02 0.28 ± 0.27 1.11 ± 0.50 1.74 ± 1.70
b33 −2.80 ± 0.55 0.09 ± 0.24 0.34 ± 0.29 ns 0.21 ± 0.11 0.75 ± 0.50 1.18 ± 0.79
b44 0.77 ± 0.55 ns ns ns ns 1.28 ± 0.50 ns

Interactive effect b12 ns ns ns ns ns ns ns
b13 ns ns ns ns ns ns ns
b14 ns ns ns ns ns ns ns
b23 −1.69 ± 0.74 0.38 ± 0.33 1.08 ± 0.39 0.30 ± 0.11 0.75 ± 0.37 2.51 ± 0.69 3.35 ± 2.31
b24 ns ns ns ns ns ns ns
b34 −1.22 ± 0.74 ns ns ns ns ns ns

Statistics (R2) 0.9766 0.9116 0.8456 0.8621 0.9588 0.9321 0.8975

Ultrasound Asisted Extraction
Intercept b0 36.38 ± 0.85 1.80 ± 0.25 2.40 ± 0.50 2.42 ± 0.33 2.46 ± 0.50 8.83 ± 1.16 20.83 ± 1.90
Linear effect b1 5.90 ± 0.49 0.13 ± 0.06 ns 0.08 ± 0.03 ns 0.58 ± 0.27 −4.00 ± 1.74

b2 3.58 ± 0.49 0.10 ± 0.06 ns ns ns ns −3.93 ± 1.74
b3 −7.36 ± 0.49 −0.92 ± 0.19 −2.68± 0.29 −0.86 ± 0.37 −1.60 ± 0.29 −6.12 ± 0.67 −4.61 ± 1.74
b4 −3.07 ± 0.49 −1.00 ± 0.19 −0.80 ± 0.29 ns −0.42 ± 0.29 −2.85 ± 0.67 −4.41 ± 1.74

Quadratic effect b11 0.25 ± 0.21 ns 0.40 ± 0.26 −0.17 ± 0.03 0.19 ± 0.11 0.36 ± 0.27 1.28 ± 1.55
b22 −0.68 ± 0.44 ns 0.37 ± 0.26 −0.13 ± 0.03 0.18 ± 0.11 0.32 ± 0.27 ns
b33 −1.04 ± 0.44 0.11 ± 0.03 0.93 ± 0.26 ns 0.68 ± 0.26 1.85 ± 0.60 ns
b44 −1.37 ± 0.44 0.75 ± 0.17 0.70 ± 0.26 ns 0.51 ± 0.26 2.19 ± 0.60 ns

Interactive effect b12 ns ns ns ns ns ns ns
b13 ns ns ns ns ns ns ns
b14 ns ns ns ns ns ns ns
b23 ns ns ns ns ns ns ns
b24 ns ns ns ns ns ns ns
b34 ns ns ns ns ns ns ns

Statistics (R2) 0.9689 0.9206 0.9508 0.8639 0.9224 0.9588 0.8256
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cantly higher values than MAE. Regarding the extraction time, MAE
was a faster extraction method. Although water is a polar solvent with
greater interest in green processes, ethanol has a hydroxyl group and
dissolves many ionic compounds, but also has a non-polar end, which
will contribute to dissolve non-polar substances. However, in the
extraction of betacyanin compounds, in terms of colour intensity
(YColour), or content (YTotal, YP1, YP2, YP3 and YP4), the presence of
ethanol did not improve their final optimal values. The optimal
conditions of the binary interactions of ethanol-water mixture were
found generally preferable in pure water solutions. About the S/L
factor, a broad range was tested, finding that lower values lead to an
enhanced extraction yield, but also contributed to a significant waste of
solvent. A higher S/L will result in lower extraction yields but in a
better rationalization of raw materials consumption.

3.4. Comparing the betacyanin extraction results from G. globosa obtained
by MAE and UAE with results from literature using other plant source
materials

For beta vulgaris, one of the best source of betacyanins, different
authors have shown optimal extraction values using different variable
conditions: 0.26–1.99 mg/g dw (Vulić et al., 2012); 2.81–5.38 mg/g dw
(Stagnari et al., 2014); and 9.6 mg/g dw (Pavlov and Bley, 2006). From

the Amaranthaceae family (Li et al., 2015; Silva et al., 2012), the
Amaranthus hypochondriacus L. showed a maximum value of 16.90 mg/
g dw, meanwhile the Amaranthus caudatus L. showed 20.93 mg/g dw.
Using paper flower (Bougainvillea glabra Choisy) as a material source,
Maran et al., 2015 reported an optimum response of 1.76 mg/g dw.
Even when a optimization procedure is applied using RSM with
beetroot as a source of betacyanin compounds (Cardoso-Ugarte et al.,
2014), the best results found were 1.3 mg/g of freeze-dried beet root.
For dragon fruit (Hylocereus polyrhizus (Weber) Britton & Rose) values of
1.8 mg/g dw were found (Thirugnanasambandham and Sivakumar,
2015). All of them are far beyond those produced by G. globosa in which
it was possible to obtain 39.6 and 46.9 mg/g (expressed as plant dw)
with MAE and UAE, respectively.

In general, UAE or MAE modern techniques, showed better
responses than traditional ones (e.g. dynamic maceration). Although
it was expected to extract higher amounts of betacyanin compounds,
the working variables t and Et showed lower optimal values than usual,
making these techniques an asset for industry.

4. Conclusions

When compared with traditional techniques, MAE and UAE, are
powerful and modern extraction procedures that proved to be efficient
for betacyanins extraction, with the advantage of reducing the extrac-
tion time. The combined effects of the independent variables t, T or P, Et
and S/L on the extraction of couloring compounds from G. globosa were
optimized using a five-level full factorial design of 24 combinations and
four replicates at the centre to maximize the responses. The response
criteriás were the extract yield (YYield), the analytical colour parameter
a* (YColour), the quantification of the total sum of the betacyanin
compounds by HPLC-DAD analysis (YTotal) and the quantification of
the individual betacyanin compounds P1 to P4 (YP1 to YP4). The
experimental domain was successfully implemented for MAE and UAE
optimization using RSM. The MAE and UAE conditions were optimized
for each response, as well as for the combined responses. Under the
global optimum conditions for MAE (t = 8 min, T= 60 °C, Et= 0%,
and S/L = 5 g/L), the optimal response value was 39.6 ± 1.8 mg/g;
for UAE (t= 22 min, P = 500 W, Et= 0%, and S/L = 5 g/L) being in
this case the optimal response value of 46.9 ± 4.8 mg/g, validating
the UAE as an ideal extraction technique for obtaining the compounds
of interest. The high coefficient R2 value for each extraction methodol-
ogy, higher than 0.9 for most of the analysed responses, and the no-
significant difference between predicted and experimental values
demonstrated the validity of the proposed optimization model.

Finally, we can highlight that this study reports the use of G. globosa
as a source of betacyanin compounds in an optimized UAE system that
would assist in the production of extracts with important colourant
properties, thus with high potential to be used as natural colorant
additives.
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Table 3
Operating conditions that maximize the extraction of betacyanin from Gomphrena globosa
and optimal response values for the parametric response criteria. Response criteria
comprise the following: extraction yield of the obtained residue (YYield); individual
content of the betacyanins compounds of gomphrenin II (YP1), gomphrenin III (YP2),
isogomphrenin II (YP3) and isogomphrenin III (YP4); total betacyanin content (YTotal); and
colour intensity (YColour). Note that the independent variable X2 in the ultrasound
extraction is related to the power (W), meanwhile for the maceration and microwave
extraction is related to temperature (°C).

Optimal Extraction Conditions Response Optimum

X1:t (min) X2:T (°C) or
P (W)

X3:Et (%) X4:S/L
(g/L)

Individual Optimal Responses
Microwave Assisted Extraction (MAE)

YYield 11.7 180.0 28.2 5.0 58.6 ± 1.5%
YTotal 8.0 60.0 0.0 5.0 39.6 ± 1.8 mg/g
YColour 8.0 60.0 0.0 5.0 68.8 ± 2.2
YP1 8.0 60.0 0.0 5.0 5.1 ± 0.9 mg/g
YP2 8.0 60.0 0.0 5.0 12.7 ± 1.1 mg/g
YP3 8.0 60.0 0.0 5.0 4.4 ± 0.7 mg/g
YP4 8.0 60.0 0.0 5.0 9.5 ± 0.6 mg/g

Ultrasound Assisted Extraction (UAE)
YYield 22.0 500.0 0.0 13.7 65.9 ± 4.8%
YTotal 22.0 300.0 0.0 5.0 46.9 ± 4.8 mg/g
YColour 2.0 100.0 0.0 5.0 59.9 ± 1.6
YP1 22.0 500.0 0.0 5.0 9.5 ± 1.1 mg/g
YP2 22.0 500.0 0.0 5.0 19.0 ± 3.3 mg/g
YP3 13.2 300.0 0.0 5.0 4.2 ± 0.7 mg/g
YP4 22.0 500.0 0.0 5.0 12.7 ± 2.6 mg/g

Global Optimal Responses
Microwave Assisted Extraction (MAE)

YYield 20.0 60.0 0.0 5.0 8.0 ± 0.6%
YTotal 39.6 ± 2.9 mg/g
YColour 68.7 ± 6.2
YP1 4.9 ± 1.1 mg/g
YP2 12.4 ± 1.5 mg/g
YP3 4.2 ± 0.9 mg/g
YP4 9.2 ± 1.1 mg/g

Ultrasound Assisted Extraction (UAE)
YYield 22.0 257.8 0.0 5.0 55.2 ± 5.1%
YTotal 45.5 ± 6.2 mg/g
YColour 37.6 ± 2.5
YP1 9.3 ± 1.4 mg/g
YP2 17.5 ± 1.1 mg/g
YP3 3.6 ± 0.4 mg/g
YP4 12.1 ± 1.2 mg/g
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.indcrop.2017.05.008.
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