

PILARES MISTOS PARCIALMENTE REVESTIDOS: RESISTÊNCIA E RIGIDEZ EM SITUAÇÃO DE INCÊNDIO

Leonardo Jorge Calió

Relatório Final de Projeto Apresentado à Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança

Para a Obtenção do Grau de Mestre em Engenharia da Construção

> Bragança 2017

Esta página foi intencionalmente deixada em branco

PILARES MISTOS PARCIALMENTE REVESTIDOS: RESISTÊNCIA E RIGIDEZ EM SITUAÇÃO DE INCÊNDIO

Leonardo Jorge Calió

Relatório Final de Projeto Apresentado à Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança

Para a Obtenção do Grau de Mestre em Engenharia da Construção

Orientado por: Prof. Dr. Paulo Alexandre Gonçalves Piloto (IPB) Prof. Dr. Ronaldo Rigobello (UTFPR)

> Bragança 2017

Esta página foi intencionalmente deixada em branco

AGRADECIMENTOS

Os meus agradecimentos são especialmente dirigidos a minha mãe Deise e meu pai Wilson, que desde sempre me ensinaram a fazer tudo o melhor possível, e me proporcionaram a oportunidade de um ensino de qualidade, dando todo o apoio e confiança para que pudesse vir a Portugal desenvolver o projeto de dupla diplomação. Agradeço também a minha irmã Flora e toda a minha família por estarem ao meu lado em todos os momentos e sempre torcendo por mim.

Agradeço ao professor orientador Dr. Paulo Piloto do Departamento de Mecânica Aplicada do Instituto Politécnico de Bragança pela oportunidade de trabalharmos juntos e a forma como me orientou para desenvolver este projeto.

Aos meus professores do Brasil em especial ao orientador Dr. Ronaldo Rigobello e da Universidade Tecnológica Federal do Paraná pelo apoio, incentivo e encorajamento prestado para que este intercambio fosse realizado.

Aos meus amigos que conheci em Portugal e tive a oportunidade de conviver este ano, sem vocês não teria sido a mesma coisa, sempre guardarei as melhores histórias, memórias e risadas deste ano incrível que posso afirmar, foi o melhor da minha vida. Em especial aos amigos Gabriel Martins, Ricardo Hoffstaeter e Thadeu Brito que se tornaram minha família em Portugal, e também aos amigos Vinicius Cecílio, Guilherme Simonato, Paula Remor, Gabriella Ornelas, Aline Cavalli, Luis Piardi e Amari Soufyane.

Agradeço também aos meus amigos no Brasil, aos que conheci na faculdade e especialmente aos amigos do G12, aqueles que conheço desde criança e estão ao meu lado em todos os momentos, mantendo uma grande amizade.

Finalmente meu mais sincero agradecimento a todas as pessoas que em algum momento me apoiaram e fizeram parte das etapas decisivas da minha vida.

Obrigado!

Ι

Esta página foi intencionalmente deixada em branco

RESUMO

Os pilares mistos parcialmente revestidos de aço e concreto possuem uma grande resistência quando comparados com os pilares puros de aço. Contudo não é possivel calcular a resistencia de todos os membros de sua composição tendo em consideração somente a temperatura do aço. A resistência destes elementos quando submetidos a situações de incêndio depende da evolução da temperatura durante o período exposto ao fogo.

O anexo G do Eurocódigo EN 1994-1-2 [1], através do método da soma pesada das quatro componentes, permite calcular a carga resistente à encurvadura de pilares mistos parcialmente revestidos em situação de incêndio, para diferentes tempos de resistência quando submetidos ao fogo padrão. Uma nova proposta foi apresentada para melhorar os resultados deste método [2], procurando utilizar novas fórmulas para o cálculo da carga plástica de compressão e rigidez de flexão de cada componente da seção transversal. Este trabalho visa avaliar e investigar as novas fórmulas propostas, e quando necessário propor um aperfeiçoamento das mesmas.

As novas formulações propostas para determinar a carga resistente à encurvadura permitem avaliar de forma mais precisa a temperatura, e consequentemente a resistência das componentes da seção transversal, sendo estes a temperatura média dos banzos e do aço do reforço, a temperatura média e a altura residual da alma baseada na isotérmica de 400°C e a temperatura média e a área residual do concreto baseado na isotérmica de 500°C.

O método de cálculo avançado, será realizado através de um programa de elementos finitos ANSYS ®, tendo seus resultados utilizados para investigar estas novas formulações, com base na análise da seção transversal totalmente envolvida pelo fogo.

O método simplificado de cálculo é baseado no efeito da temperatura nas quatro componentes do perfil (banzos, alma, aço do reforço e concreto) para tempos específicos de resistência ao fogo: R30, R60, R90 e R120 minutos.

Os resultados obtidos pelas simulações numéricas serão utilizados para comparar com as formulações proposta pelo método simplificado de cálculo - nova proposta [2], assim como as formulações dispostas no anexo G do Eurocódigo EN 1994-1-2 [1].

Palavras-chave:

Pilares mistos parcialmente revestidos; Resistência ao fogo; Nova proposta; Resistência à encurvadura; Modelo da soma pesada.

ABSTRACT

Partially encased columns of steel and concrete have a high resistance when compared to steel columns. However it is not possible to measure the resistance of all members of its composition taking into account only the temperature of the steel. The resistance of these elements under fire conditions depends on the temperature evolution during the period exposed to fire.

The annex G of Eurocode EN 1994-1-2 [1], through the balanced summation method allows to calculate the buckling resistance of partially encased columns when submitted to standard fire for different rating time of exposure. A new proposal was presented to be used with this methodology [2]. New formulas were presented to calculate the plastic resistance to axial compression and the flexural stiffness of each component of the cross section. This work aims to evaluate and investigate the new proposal, and when necessary improve it.

The new formulae was developed to determine the buckling resistance load, taking into consideration the average temperature of all components of the cross section, the residual height of the web based on 400°C isothermal and the residual concrete area based on the 500°C isothermal.

The advanced calculation method will be carried out using the finite element program ANSYS ®, being the results used to investigate these new formulations, taking into consideration a cross section totally surrounded by fire.

The simplified method is based on the temperature effect on four components (flanges, web, reinforcement and concrete) for specific fire resistance: R30, R60, R90, R120 minutes.

The results obtained by the numerical simulations will be used to compare with the formulae from new proposal [2] as well as the formulae from EN 1994-1-2 annex G [2].

Keywords:

Partially encased columns; Fire resistance; New proposal; Buckling resistance; Balanced summation model.

ÍNDICE

1. INTRODUÇÃO	1
1.1. Objetivos	2
1.2. Motivação do Estudo	2
1.3. Metodologia	3
1.4. Contextualização dos Aspectos Normativos	
1.4.1. Aspectos Normativos no Brasil	4
1.4.2. Aspectos Normativos na Europa	4
1.5. Organização da Tese	5
1.6. Estado da Arte	6
2. AÇÃO DO FOGO, SEGURANÇA CONTRA INCÊNDIO, SEÇÕES M	ISTAS E
PROPRIEDADE DOS MATERIAIS	13
2.1. Ação Térmica	13
2.1.1. Transferência de Calor	13
2.1.2. Curva de Incêndio Natural	15
2.1.3. Curvas de Incêndio Nominais	16
2.2. Segurança Contra Incêndio em Edifícios	17
2.2.1. Tempo Requerido de Resistência ao Fogo	
2.2.2. Ações de Segurança Contra Incêndio no Brasil	19
2.2.3. Ações de Segurança Contra Incêndio em Portugal	
2.3. SEÇÕES MISTAS E PROPRIEDADES DOS MATERIAIS	23
2.3.1. Seções Mistas de Aço e Concreto	
2.3.2. Pilares Mistos Parcialmente Revestidos	24
2.4. Componentes da Seção Mista	25
2.4.1. Perfil Metálico	25
2.4.2. Aço do Reforço	25
2.4.3. Concreto	
2.5. Propriedades dos Materiais a Temperaturas Elevadas	
2.5.1. Propriedades Térmicas	27

2.	.5.2. Propriedades Mecânicas	33
3. MÉ	ÉTODO SIMPLIFICADO DE CÁLCULO: EUROCÓDIGO EN 4-1-2 ANEXO G	41
3.1.	Seções em Análise	44
3.2.	Temperatura nos Banzos do Perfil Metálico	46
3.3.	Redução da Altura da Alma do Perfil Metálico	48
3.4.	Seção Resistente e Temperatura Média do Concreto	50
3.5.	Redução das Características de Resistência e Rigidez do Aço do Reforço	51
3.6.	Soma Pesada das Componentes	53
4. NC	OVA PROPOSTA	55
4.1.	Temperatura nos Banzos do Perfil Metálico	55
4.2.	Redução da Altura da Alma do Perfil Metálico	56
4.3.	Seção Resistente e Temperatura Média do Concreto	57
4.4.	Redução das Características de Resistência e Rigidez do Aço do Reforço	59
4.5.	Soma Pesada das Componentes	60
5. MÉ	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO	OVA
5. MÉ Prop	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO POSTA	OVA 61
5. MÉ PROP 5.1.	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO POSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta	OVA 61 65
5. MÉ PROP 5.1. 5.	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO POSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta .1.1. Temperatura nos Banzos do Perfil Metálico	DVA 61 65 66
5. MÉ PROP 5.1. 5. 5.	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO OSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta .1.1. Temperatura nos Banzos do Perfil Metálico .1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico	DVA 61 65 66 67
 5. MÉ PROP 5.1. 5. 5. 5. 	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO OSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta .1.1. Temperatura nos Banzos do Perfil Metálico .1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico .1.3. Seção Resistente e Temperatura Média do Concreto	DVA 61 65 66 67 70
5. MÉ PROP 5.1. 5. 5. 5. 5.	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO OSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta .1.1. Temperatura nos Banzos do Perfil Metálico .1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico .1.3. Seção Resistente e Temperatura Média do Concreto .1.4. Redução das Características de Resistência e Rigidez do Aço do Reforço	DVA 61 65 66 67 70 73
5. MÉ PROP 5.1. 5. 5. 5. 5. 5.	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO OSTA	DVA 61 65 66 67 70 73 75
 5. MÉ PROP 5.1. 5. 5. 5. 6. CO 	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO POSTA	DVA 61 65 66 70 73 75 77
 5. MÉ PROP 5.1. 5. 5. 5. 6. CO 6.1. 	ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO OSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta 1.1. Temperatura nos Banzos do Perfil Metálico 1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico 1.3. Seção Resistente e Temperatura Média do Concreto 1.4. Redução das Características de Resistência e Rigidez do Aço do Reforço 1.5. Soma Pesada das Componentes DMPARAÇÃO DOS RESULTADOS Erro Relativo Para Carga Crítica	DVA 61 65 66 70 73 75 77 80
 5. MÉ PROP 5.1. 5. 5. 5. 6. CO 6.1. 6.2. 	 ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO OSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta 1.1. Temperatura nos Banzos do Perfil Metálico 1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico 1.3. Seção Resistente e Temperatura Média do Concreto 1.4. Redução das Características de Resistência e Rigidez do Aço do Reforço 1.5. Soma Pesada das Componentes DMPARAÇÃO DOS RESULTADOS Erro Relativo Para Carga Crítica 	DVA 61 65 66 70 73 75 77 80 83
 5. MÉ PROP 5.1. 5. 5. 5. 6. CO 6.1. 6.2. 6.3. 	 ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NOPOSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta 1.1. Temperatura nos Banzos do Perfil Metálico 1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico 1.3. Seção Resistente e Temperatura Média do Concreto 1.4. Redução das Características de Resistência e Rigidez do Aço do Reforço 1.5. Soma Pesada das Componentes DMPARAÇÃO DOS RESULTADOS Erro Relativo Para Carga Crítica Erro Relativo Para o Fator χ Resistência à Encurvadura 	DVA 61 65 66 67 70 73 75 77 80 83 85
 5. MÉ PROP 5.1. 5. 5. 5. 6. CO 6.1. 6.2. 6.3. 7. CO 	 ÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NO POSTA Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta 1.1. Temperatura nos Banzos do Perfil Metálico 1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico 1.3. Seção Resistente e Temperatura Média do Concreto 1.4. Redução das Características de Resistência e Rigidez do Aço do Reforço 1.5. Soma Pesada das Componentes DMPARAÇÃO DOS RESULTADOS Erro Relativo Para Carga Crítica Erro Relativo Para o Fator χ Resistência à Encurvadura DNCLUSÕES E FUTUROS TRABALHOS 	DVA 61 65 66 67 70 73 75 77 80 83 85 89

ÍNDICE DE TABELAS

Tabela 1 – Utilizações tipo de edifícios e recintos
Tabela 2 – Classificação dos locais de risco
Tabela 3 – Categoria e fatores de risco referente a utilização tipo I
Tabela 4 – Resistencia ao fogo padrão mínima de elementos estruturais de edifícios
Tabela 5 – Características mecânicas do aço estrutural S275
Tabela 6 - Determinação da relação tensão-deformação para o aço S275 em temperaturas
elevadas
Tabela 7 – Fatores de redução para a relação tensão-deformação do aço a elevadas temperaturas.
Tabela 8 – Características mecânicas do aço S500 NR classe B
Tabela 9 - Determinação da relação tensão-deformação para o aço S500 em temperaturas
elevadas
Tabela 10 - Fatores de redução das propriedades mecânicas do aço a elevadas temperaturas.
Tabela 11 – Propriedades mecânicas do concreto C20/25
Tabela 12 – Formulações das relações de tensão-deformação do concreto C20/25 39
Tabela 13 - Fatores de redução das características mecânicas do concreto a elevadas
temperaturas
Tabela 14 – Coeficientes de ponderação para rigidez de flexão
Tabela 15 – Características das seções em estudo
Tabela 16 – Parâmetros para a determinação da temperatura média nos banzos [1]47
Tabela 17 – Parâmetros para a redução da altura da alma [1]48
Tabela 18 – Redução da seção de concreto [1] 50
Tabela 19 – Temperatura média na seção resistente de concreto [1]50
Tabela 20 – Fatores de redução k _{y,t} para a tensão de escoamento do aço do reforço [1] 52
Tabela 21 – Fatores de redução $k_{E,t}$ para o módulo de elasticidade do aço do reforço [1] 52
Tabela 22 – Novos parâmetros para a temperatura média dos banzos [2]55
Tabela 23 – Limites de aplicação da redução da altura da alma [2]56
Tabela 24 – Coeficientes para a redução da espessura de concreto para perfis da série HEB [2].

Tabela 25 - Coeficientes para a redução da espessura de concreto para perfis da série IPE [2].
Tabela 26 - Limites de aplicação para a redução da espessura de concreto e temperatura média
[2]
Tabela 27 – Nº de nós e elementos utilizados nas seções transversais em estudo
Tabela 28 – Temperatura máxima e mínima dos perfis em [°C]65
Tabela 29 – Parâmetros aperfeiçoados para a temperatura média nos banzos
Tabela 30 – Limites aperfeiçoados para a redução da altura e temperatura da alma68
Tabela 31 – Novos parâmetros para a temperatura média da alma
Tabela 32 – Novos limites de aplicação para a temperatura e redução da espessura de concreto.
Tabela 33 - Novos coeficientes para a redução da espessura de concreto nos perfis da série
HEB73
Tabela 34 – Novos coeficientes para a redução da espessura de concreto nos perfis da série IPE.
Tabela 35 – Resistência plástica à compressão axial e rigidez de flexão à temperatura ambiente.

ÍNDICE DE FIGURAS

Figura 1 – Curva de incêndio natural [22]
Figura 2 – Curvas de incêndio nominais16
Figura 3 – Curva de incêndio padrão ISO83417
Figura 4 – TRRF contra incêndio segundo a classificação das edificações brasileiras [28]20
Figura 5 – TRRF de uma coluna mista parcialmente revestida20
Figura 6 – Dimensionamento em situação de incêndio de acordo com os Eurocódigos 23
Figura 7 - Exemplos de seções mistas: (a) e (b) preenchidas; (c) totalmente revestidas; (d)
parcialmente revestidas24
Figura 8 – Calor específico do aço em função da temperatura
Figura 9 – Condutibilidade térmica do aço em função da temperatura
Figura 10 – Massa específica do aço em função da temperatura
Figura 11 – Calor específico do concreto em função da temperatura
Figura 12 – Calor específico do concreto para um teor de umidade $c_{p peak}$, de 3%31
Figura 13 – Massa específica do concreto em função da temperatura
Figura 14 – Condutibilidade térmica do concreto em função da temperatura
Figura 15 – Relação tensão-deformação do aço S275 em elevadas temperaturas
Figura 16 – Relação tensão-deformação do aço S500 em elevadas temperaturas
Figura 17 – Relação tensão-deformação do concreto C20/25 em elevadas temperaturas 39
Figura 18 – a) Pilar misto parcialmente revestido; b) Modelo da soma pesada
Figura 19 – Fluxograma para o cálculo de pilares mistos parcialmente revestidos em situação
de incêndio43
Figura 20 – Comprimentos de encurvadura referentes às condições de vinculação44
Figura 21 – Modos de deformação da coluna em situação de incêndio
Figura 22 – Variação do fator de redução em função da altura da seção reta
Figura 23 – a) Condições limite, b) Elemento finito "PLANE55", c) Malha de elementos finitos
2D (HEB 300)
Figura 24 - Resultados da simulação numérica do perfil HEB 300 para cada classe de
resistência64
Figura 25 – Temperatura média dos banzos para os perfis da série HEB e IPE66
Figura 26 – Redução da altura da alma para os perfis da série HEB e IPE68
Figura 27 – Temperatura média da alma para os perfis da série HEB e IPE69

Figura 28 – Temperatura média no concreto residual para os perfis da série HEB e IPE 71
Figura 29 - Redução horizontal de concreto para os perfis da série HEB e IPE72
Figura 30 – Redução vertical de concreto para os perfis da série HEB e IPE
Figura 31 – Temperatura média do aço do reforço para os perfis da série HEB e IPE
Figura 32 – Comparação dos métodos de solução77
Figura 33 – Comparação dos resultados para a resistência plástica à compressão axial dos perfis
estudados79
Figura 34 - Comparação dos resultados para a rigidez efetiva de flexão dos perfis estudados.
Figura 35 - Comparação dos resultados para a resistência plástica à compressão axial e rigidez
de flexão efetiva obtidos através do aperfeiçoamento da nova proposta e do método avançado
de cálculo
Figura 36 - Comparação dos resultados para a carga crítica dos perfis em estudo (Eurocódigo
- Aperfeiçoamento)
Figura 37 - Comparação dos resultados para a carga crítica dos perfis em estudo (Ansys -
Aperfeiçoamento)
Figura 38 – Comparação dos resultados do fator χ dos perfis em estudo (Eurocódigo –
Aperfeiçoamento)
Figura 39 – Comparação dos resultados do fator χ dos perfis em estudo (Ansys –
Aperfeiçoamento)
Figura 40 - Resistência à encurvadura dos perfis estudados (Eurocódigo - Aperfeiçoamento).
Figura 41 – Resistência à encurvadura dos perfis estudados (Nova Proposta –
Aperfeiçoamento)

ÍNDICE DE ABREVIATURAS

Letras maiúsculas latinas

A_c	Área da seção transversal de concreto à compressão.
A_m/V	Fator de seção.
A_s	Área da seção das armaduras.
$A_{s,\min}$	Área da seção mínima das armaduras.
$A_{s,max}$	Área da seção máxima das armaduras.
Ε	Módulo de elasticidade.
E_a	Módulo de elasticidade do aço estrutural a 20°C.
E_{cm}	Módulo de elasticidade secante do concreto.
$E_{c,\sec\theta}$	Secante do módulo de elasticidade do concreto ao fogo dado por $f_{c,\theta}/\varepsilon_{c,sec,\theta}$.
$(EI)_{fi,eff,z}$	Rigidez à flexão efetiva da seção em torno do eixo z exposta ao fogo.
$(EI)_{fi,c,z}$	Rigidez à flexão da seção de concreto em torno do eixo z exposta ao fogo.
$(EI)_{fi,f,z}$	Rigidez à flexão dos banzos do perfil metálico em torno do eixo z exposto ao fogo.
$(EI)_{fi,w,z}$	Rigidez à flexão da alma do perfil metálico em torno do eixo z exposto ao fogo.
$(EI)_{fi,s,z}$	Rigidez à flexão da seção das armaduras em torno do eixo z exposto ao fogo.
E_s	Módulo de elasticidade da armadura de aço à temperatura ambiente.
$E_{s,\theta}$	Módulo de elasticidade da armadura de aço à temperatura θ_s .
H_t	Coeficiente empírico para redução da altura da alma.
I_z	Momento de inércia relativo ao eixo z-z.
L	Comprimento de referência.
$N_{b,fi,Rd,z}$	Resistência de pilares mistos em situação de incêndio à encurvadura.
$N_{fi,cr,z}$	Carga de encurvadura de Euler.
$N_{fi,pl,Rd}$	Resistência plástica à compressão axial.
$N_{fi,pl,Rd,f}$	Resistência plástica à compressão axial dos banzos.
$N_{fi,pl,Rd,w}$	Resistência plástica à compressão axial da alma.

 $N_{fi,pl,Rd,c}$ Resistência plástica à compressão axial do concreto.

 $N_{fi, pl, Rd, s}$ Resistência plástica à compressão axial do aço do reforço.

Letras minúsculas latinas

b	Largura da seção transversal.
$b_{c,fi}$	Parâmetro de redução da espessura de concreto de seções mistas.
$b_{c,fi,h}$	Distância entre os nós pertencentes à isotérmica de 500°C e o limite lateral do perfil.
$b_{c,fi,v}$	Distância entre os nós pertencentes à isotérmica de 500°C e a extremidade interior dos banzos.
C _a	Calor específico do aço.
c_p	Calor específico do concreto.
f_{cm}	Tensão média do concreto à compressão.
f_{ck}	Tensão do concreto à compressão.
f_{ctm}	Tensão do média concreto à tração.
$f_{c, heta}$	Tensão do concreto à tração à temperatura θ para uma extensão específica.
f_y	Tensão de escoamento do aço dos reforços.
$f_{sy,\theta}$	Tensão de escoamento do aço dos reforços à temperatura θ .
f_u	Tensão última.
h	Altura da seção transversal.
h_i	Altura entre os banzos da seção transversal.
\dot{h}_{net}	Fluxo de calor por unidade de área.
$\dot{h}_{net,c}$	Fluxo de calor por unidade de área por convecção.
$\dot{h}_{net,r}$	Fluxo de calor por unidade de área por radiação.
$h_{w,fi}$	Redução da altura da alma dos perfis metálicos.
k_t	Coeficiente empírico.
$k_{E, heta}$	Fator de redução para o módulo de elasticidade do aço à temperatura θ .
$k_{c,\theta}$	Fator de redução das propriedades mecânicas do concreto à temperatura θ .
$k_{y,\theta}$	Fator de redução para a tensão de escoamento do aço à temperatura θ .

t	Tempo de exposição ao fogo.
t_f	Espessura do banzo.
t _w	Espessura da alma.
и	Média geométrica das distancias $u_1 e u_2$.
u_1	Distância entre o eixo do reforço e a extremidade lateral dos perfis.
<i>u</i> ₂	Distância entre o eixo do reforço e a face interna dos banzos.

Letras minúsculas gregas

α_{c}	Coeficiente de transferência de calor por convecção.
ϕ	Fator de forma.
\mathcal{E}_{y}	Extensão de cedência.
\mathcal{E}_u	Extensão última do concreto à compressão.
\mathcal{E}_{c1}	Extensão do concreto à compressão corresponde à tensão máxima.
$\mathcal{E}_{c1,\theta}$	Deformação correspondente ao valor máximo da resistência à temperatura.
$\mathcal{E}_{cu1,\theta}$	Deformação máxima correspondente à temperatura θ_c .
\mathcal{E}_{f}	Emissividade do fogo.
\mathcal{E}_m	Emissividade da superfície do elemento.
$ heta_{f,t}$	Temperatura média nos banzos.
$\theta_{\scriptscriptstyle w,t}$	Temperatura média na alma.
$\theta_{c,t}$	Temperatura média no concreto.
$\theta_{s,t}$	Temperatura média no aço do reforço.
θ_r	Temperatura de radiação efetiva do ambiente de incêndio.
$\theta_{0,t}$	Temperatura para determinado período de exposição ao fogo.
λ_a	Condutividade térmica do aço.
λ_c	Condutividade térmica do concreto.
$\lambda_{(heta)}$	Condutividade térmica.
$\overline{\lambda}_{ heta}$	Esbeltez adimensional.
$ ho_a$	Massa específica do aço.
$ ho_c$	Massa específica do concreto.

- σ Constante de Stephan-Boltzmann.
- χ Coeficiente de redução da curva c para encurvadura.

1. INTRODUÇÃO

Os pilares mistos parcialmente revestidos são normalmente feitos de perfis de aço laminados a quente reforçados com concreto entre seus banzos, a seção composta é responsável por aumentar a resistência e rigidez de torção e flexão, sem aumentar a dimensão da seção em comparação com a mesma seção de perfil de aço, sendo a porção de concreto muito significativa para aumentar a resistência ao fogo. Como a condutividade térmica do concreto é relativamente pequena, o campo de temperatura na seção transversal é altamente não uniforme. Não há um método simplificado disponível para a análise da transferência de calor, sendo então a simulação numérica necessária para avaliar o efeito do fogo.

Elementos mistos de aço e concreto aliam as vantagens de cada um dos materiais em apenas um elemento. A associação de perfis estruturais de aço e concreto simples ou armado formam uma estrutura composta e solidária, conferindo grande capacidade resistente, podendo o elemento ser pré-fabricado ou moldado in-loco.

Para o dimensionamento de elementos estruturais submetido a compressão axial, objeto de estudo deste trabalho, é essencial que haja uma atenção especial por parte das prescrições normativas, uma vez que a falha de um ou mais pilares pode provocar a falha total da estrutura. As normas nacionais e internacionais apresentam métodos simplificados de cálculo, que nem sempre remetem a projetos seguros ou econômicos, por essa razão, métodos avançados de cálculo permitem uma melhor avaliação do desempenho estrutural, com uma análise mais rigorosa quanto a situação de elevadas temperaturas.

O anexo G do Eurocódigo EN 1994-1-2 [1], por meio do método da soma pesada, permite calcular a carga resistente à encurvadura de pilares mistos parcialmente revestidos em situação de incêndio, para diferentes tempos de resistência, quando submetidos à curva de incêndio padrão ISO834 de 1999 [3], entretanto, para este processo, uma nova proposta para o cálculo da carga resistente à compressão axial e rigidez de flexão de cada componente da seção transversal vem sendo desenvolvida há alguns anos, e recentemente foi publicada por Fellouh et al [2]. Este trabalho, por meio de simulações numéricas, visa avaliar e investigar as novas formulações propostas, e quando necessário apresentar um aperfeiçoamento das mesmas.

Neste estudo foram realizadas 24 simulações numéricas bidimensionais de seções mistas parcialmente revestidas, sendo 14 perfis da série HEB e 10 perfis da série IPE, os dados foram analisados para quatro classes de resistência ao incêndio padrão e comparados com os resultados dos métodos atualmente disponíveis.

1.1. Objetivos

O principal objetivo deste trabalho é a investigação da nova proposta a ser aplicada no anexo G do Eurocódigo EN 1994-1-2, para o cálculo da resistência ao fogo dos pilares mistos de aço e concreto parcialmente revestidos, utilizando o modelo da soma pesada das componentes.

Serão desenvolvidos modelos numéricos bidimensionais, utilizando elementos finitos, considerando a ação térmica, com o propósito de encontrar a temperatura média em todas as componentes da seção transversal submetida a curva padrão de incêndio ISO834, assim como a redução da altura da alma e as camadas de concreto a serem negligenciadas.

Serão estudadas ao todo 24 seções transversais compostas, sendo 14 perfis da série HEB e 10 perfis da série IPE. Os resultados obtidos serão comparados com os resultados obtidos através do método simplificado de cálculo disposto no Eurocódigo EN 1994-1-2 anexo G e com a nova proposta. Se necessário, serão apresentadas novas fórmulas buscando uma melhor eficiência e segurança para os métodos existentes.

1.2. Motivação do Estudo

O comportamento de estruturas mistas, em especial as colunas mistas de aço e concreto, vem constituindo uma importante linha de pesquisa. Ensaios experimentais padronizados de elementos isolados e modelos numéricos tem origem recente, porém com o fato do incêndio ser atualmente de grande interesse nos meios técnicos, é de fundamental importância obter mais e mais pesquisadores envolvidos nessa área.

A importância de estudos direcionados para avaliar o comportamento de colunas mistas em situação de incêndio busca, dentro de um contexto geral, evitar o colapso estrutural da edificação, uma vez que os materiais aço e concreto, quando expostos a altas temperaturas apresentam reduções na resistência e rigidez.

Dessa forma, este trabalho pretende estudar o comportamento de colunas mistas de aço e concreto submetidas a elevadas temperaturas. Por meio de simulação numérica há a possibilidade de avaliar de forma mais detalhada aspectos de interesse, como por exemplo as envoltórias de temperaturas nas quais influenciam diretamente nas tensões e deformações, interferindo na resistência mecânica dos materiais em pontos específicos de uma análise transiente. Espera-se também que o trabalho possa contribuir para o dimensionamento de pilares mistos parcialmente revestidos em situação de incêndio no que se refere às revisões das normas vigentes, tendo em consideração o desenvolvimento científico deste modelo.

1.3. Metodologia

A resistência ao fogo dos pilares mistos parcialmente revestidos de aço e concreto, depende da evolução da temperatura em função do tempo de exposição ao fogo. Para tal situação, será utilizado o método dos elementos finitos por meio de simulações numéricas em função da curva padrão de evolução de temperatura ISO834 [3].

Através dos dados obtidos pelas simulações numéricas, serão avaliados os resultados quanto a temperatura média nos banzos do perfil de aço, a temperatura média e a redução da altura da alma pelo critério da isotérmica de 400 °C, a temperatura média e a redução da área de concreto pelo critério da isotérmica de 500 °C e a temperatura média no aço do reforço. Os resultados terão como parâmetros os tempos de resistência ao fogo R30, R60, R90 e R120, sendo avaliados para 14 perfis da série HEB e 10 perfis da série IPE, totalizando 24 simulações numéricas com 96 resultados finais.

Obtidos os resultados provenientes das simulações numéricas, os mesmos serão comparados com os resultados obtidos através do proposto pelo anexo G do Eurocódigo EN 1994-1-2 [1] e com os resultados provenientes das novas formulações dispostas na nova proposta [2].

Para os resultados finais, será necessário aplicar os resultados nas formulações disponíveis para se encontrar a carga resistente à encurvadura em situação de incêndio. Para investigar o comportamento do modelo foram escolhidos dois comprimentos de coluna, 3m e 5m, com três condições de vinculação para cada, fixo – fixo; engaste – fixo e engaste – engaste.

1.4. Contextualização dos Aspectos Normativos

Internacionalmente a padronização dos testes de resistência ao fogo, em forma de normas e recomendações, foi estabelecida pela ASTM, a "American Society for Testing and Materials" em 1911, sob o título "Standard Tests for Fireproofs Constructions". Entretanto as primeiras exigências de proteção contra incêndio sugiram por volta de 1666, com a ocorrência de um grande incêndio na cidade de Londres, Inglaterra.

Em 1932, a BSI "British Standard Institution", publicou a norma BS 476, intitulada "Fire Tests on Buildings, Materials and Structures", a qual, com as devidas revisões e ampliações ainda é utilizada, e tem por base ensaios de elementos isolados em fornos de resistência.

Na década de 1990 houve uma significativa conjunção de esforços da indústria da construção metálica e do meio científico com o intuito de se obter procedimentos mais racionais e econômicos de dimensionamento de estruturas de aço em situações de incêndio.

1.4.1. Aspectos Normativos no Brasil

Foi a partir da década de 1970 que surgiram a maioria dos regulamentos existentes no Brasil, referente ao desempenho de estruturas em situações de incêndio, onde, basicamente consistem da adaptação da legislação estrangeira realizada por meio do Instituto de Resseguros do Brasil – IRB. As normas de segurança contra incêndio tiveram por finalidade fixar os requisitos mínimos indispensáveis exigidos nas edificações e no exercício das atividades profissionais, estabelecendo especificações para a segurança contra incêndio.

Foi aprovado em 1993 o decreto 38069 no estado de São Paulo, que estabelecia especificações para a proteção contra incêndio. Em 1994, o Corpo de Bombeiros publicou a Instrução Técnica IT-CB-0233/94, que determinava o tempo de resistência ao fogo para vários tipos de estruturas de aço.

A publicação da NBR 15200:2004, "Projeto de Estruturas de Concreto em Situação de Incêndio", é um avanço nacional da área de segurança contra incêndio.

Atualmente, a norma NBR 14323:2013 estabelece os critérios para o projeto de estruturas de aço e concreto em situações de incêndio.

Já a NBR 14432:2001 que trata das exigências de resistência ao fogo de elementos construtivos de edificações se encontra em processo de revisão, com o intuito de atualizar os procedimentos normativos, face aos novos conhecimentos obtidos na área.

1.4.2. Aspectos Normativos na Europa

A década de 1980 marca o lançamento dos primeiros códigos europeus, os Eurocódigos, que em 1989 se tornariam as normas europeias – EN, sob a responsabilidade do Comitê Europeu de Normalização. O conjunto de diretrizes abrange um total de dez normas técnicas, dividas em diversas partes que estabelecem especificações técnicas em três idiomas oficiais, o inglês, francês e alemão, visando unificar os critérios e normativas de cálculo e dimensionamento de estruturas.

Em Portugal a tradução dos Eurocódigos e a elaboração dos anexos nacionais é de responsabilidade do Instituto Português de Qualidade – IPQ, que coordenada pelo Laboratório Nacional de Engenharia Civil – LNEC, constituiu uma Comissão Técnica de normalização, a CT 115, que agrupa dez grupos de trabalho, sendo um por Eurocódigo.

O Eurocódigo EN 1991-1-2, "Actions os Structures Exposed to Fire", trata da ação térmica em estruturas expostas ao fogo. Já o Eurocódigo EN 1994-1-2, "Design of Composite Steel and Concrete Structures", trata em seu texto principal juntamente com seus anexos os conceitos e regras necessárias para o projeto estrutural de incêndio de estruturas compostas de aço e concreto, sendo esse de extrema importância para o escopo do trabalho aqui elaborado.

1.5. Organização da Tese

Esta tese está organizada em oito capítulos, nos próximos parágrafos será apresentada uma breve descrição do conteúdo presente em cada um deles.

O capítulo 1 apresenta uma breve introdução, a proposta do trabalho e uma resumida metodologia, a contextualização dos aspectos normativos tanto brasileiros quanto europeus, o estado da arte, expondo alguns dos principais estudos relacionados com o tema de interesse, bem como a motivação do estudo.

O capítulo 2 apresenta as ações térmicas em estruturas metálicas mistas, os mecanismos de transferência de calor, as curvas nominas de incêndio e os fundamentos da engenharia de segurança contra incêndio em edifícios. Sendo também apresenta as seções mistas de aço e concreto e suas componentes, sendo também apresentadas as propriedades térmicas e mecânica dos materiais utilizados para o estudo.

O capítulo 3 apresenta o método da soma pesada, através das disposições do método simplificado cálculo, definido pelo anexo G do Eurocódigo EN 1994-1-2, sendo ainda apresentados os perfis utilizados para o presente estudo.

O capítulo 4 apresenta as novas formulações definidas pela nova proposta para serem aplicadas no método simplificado de cálculo, em substituição ao exposto pelo Anexo G.

O capítulo 5 apresenta o método avançado de cálculo e as considerações utilizadas para a modelagem numérica do programa ANSYS. São ainda apresentados os resultados das simulações numéricas e a comparação destes com os dois métodos disponíveis, sendo apresentado quando necessário o aperfeiçoamento da nova proposta.

O capítulo 6 apresentará a comparação de resultados por meio de gráficos, evidenciando a discrepância de resultados obtidos pelo Eurocódigo quando comparados pelo método avançado de cálculo. Será ainda apresentada a variação de resultados das simulações numéricas com o aperfeiçoamento da nova proposta.

O capítulo 7 irá conter as principais conclusões obtidas no trabalho, assim como as sugestões para futuros trabalhos.

1.6. Estado da Arte

Em 1954 H. L Malhotra [4] publicou uma pesquisa a respeito dos efeitos das altas temperaturas em colunas de concreto sob compressão. Os testes envolveram diversas amostras de colunas com diferentes relações entre água e cimento, e para diferentes níveis de temperaturas. Seu trabalho foi de grande relevância, pois demonstrou uma significativa perda da capacidade de resistência do concreto em temperaturas acima de 600°C, independente da relação água e cimento. Este trabalho foi percussor de outros testes para que fosse estabelecida a curva de fatores de redução para o concreto submetido a elevadas temperaturas.

Em 1964, Malhotra e Stevens [5] apresentaram os resultados de quatorze testes de resistência ao fogo em pilares de aço totalmente revestidos com alongamento térmico. Os resultados mostram que o revestimento de concreto tem um efeito significativo na resistência ao fogo, e o concreto leve tem maior resistência ao fogo em relação ao concreto normal, o qual sofre mais com o processo de fendilhamento devido ao fato do nível de carregamento ser conhecido por desempenhar um papel muito importante na resistência ao fogo.

Em 1987, J. B. Schleich [6] foi um importante pesquisador de projeto de uma campanha experimental e numérica, desenvolvida para testar e analisar o comportamento de colunas parcialmente revestidas e vigas com e sem ligação a laje. Este projeto demonstrou as possibilidades do programa CEFICOSS (Engenharia de Computação da Resistência ao Fogo para Estruturas Compostas Metálicas), capaz de cobrir a maior parte das aplicações de incêndio estruturais. Este programa deve ser considerado como um código numérico computacional, que permite prever o comportamento em caso de incêndio de partes estruturais, tais como colunas, vigas ou estruturas, a fim de verificar os resultados das simulações dadas pelo CEFICOSS e estimar com maior precisão os parâmetros físicos fundamentais. Os autores concluíram que os

resultados obtidos por meio das simulações numéricas e os testes apresentaram boa concordância e sugeriram que posteriormente fossem utilizadas outras curvas de aquecimento para futuros testes.

Em 1989, K. Kordina [7] apresentou tabelas para serem utilizadas como guias de dimensionamento de pilares mistos submetidos a situações de incêndio, com base em experimentos em escala real. Estes resultados verificados nos pilares parcialmente revestidos e vigas, para certo grau de utilização, condições de apoio e materiais em diferentes tempos de resistência ao incêndio.

Em 1990, Lie e Chabot [8] testaram cinco pilares circulares ocos preenchidos de concreto e propuseram um modelo matemático para prever a distribuição de temperatura dentro da seção transversal e a resposta estrutural ao fogo (deslocamentos e resistência). A análise de transferência de calor é baseada no método das diferenças finitas, utilizando o modelo de separação da seção circular em elementos anelares, enquanto que a temperatura do fogo segue a norma ASTM E119. O modelo matemático foi depois aplicado a pilares mistos de aço e concreto em seção retangular e pilares mistos circulares de concreto reforçado com fibras. Posteriormente, os mesmos autores apresentaram outros estudos sobre o comportamento de pilares circulares e retangulares preenchidos com concreto e reforçados com fibra. Os benefícios deste tipo de concreto sobre a resistência ao fogo dos pilares foram comparados com aqueles de concreto simples e reforçados com vergalhões de aço.

Em 2000, Winter e Lange [9] apresentaram testes em pilares mistos parcialmente revestidos usando aço de alta resistência. Uma ênfase especial foi posta nos testes do aço de alta resistência sob condições de incêndio, visto que o aço dos banzos estaria diretamente exposto a altas temperaturas em caso de incêndio. Com os resultados obtidos, os autores concluíram não ser possível ter certeza da confiabilidade das formulas de cálculo dos códigos alemães para aço de alta resistência em pilares mistos parcialmente revestidos. Além disso, o enfraquecimento extremo da resistência em altas temperaturas reduz drasticamente a eficiência destes pilares.

Na China, em 2002, Han et al. [10] realizaram seis testes de resistência à compressão em pilares retangulares preenchidos de concreto protegidos ou não, após a exposição a curva de incêndio ISO834 de 1999. Os pilares não protegidos foram aquecidos em um forno especialmente revestido durante 90 minutos, enquanto os protegidos foram aquecidos durante 180 minutos. Após retornarem a temperatura ambiente, os pilares foram ensaiados à compressão axial com carga centrada e excêntrica, a fim de determinar a sua força de flambagem residual, os resultados apresentaram razoável precisão entre o método experimental e o modelo matemáticos

Em 2006, Pricket e Driver [11] desenvolveram um projeto de pesquisa para estudar o comportamento de pilares parcialmente revestidos com concreto normal e concreto de alto desempenho a temperatura ambiente submetido à compressão axial concêntrica e excêntrica. Esse estudo foi importante por ter sido realizado em escala real e se utilizarem seções transversais comerciais, além de contribuir para o incremento do conhecimento de efeitos de falha global e localizados em colunas mistas parcialmente revestidas. Os resultados demonstraram que a ruptura dos pilares com concreto de alto desempenho ocorreu de forma abrupta em comparação com os pilares de concreto normal. Os autores também concluíram que a flexão em torno do eixo de menor inércia foi alcançada para as tensões ultimas no aço, mas a flexão em torno do eixo de menor inércia foi atingida nas tensões finais do concreto. Este comportamento é justificado pelo confinamento de concreto, sendo que o perfil apresenta maior capacidade de dissipar a energia das tensões geradas quando submetida a flexão em torno do eixo de

Ainda em 2006, Wang e Tan [12] apresentaram um conceito de dimensionamento pelo método da área residual, no qual se propõem calcular a largura equivalente do concreto em colunas mistas de aço e concreto de seção I em situação de incêndio. O dimensionamento desta largura equivalente é importante para se determinar qual a espessura do recobrimento físico de concreto em um perfil metálico ou o aço do reforço, protegendo esses elementos do efeito do calor. A investigação contou com a simulação numérica utilizando o Método dos Elementos Finitos, com simulações bidimensionais de transferência de calor e com modelos de aproximação baseados no método da capacitância térmica. Os autores procuraram a comparação dos resultados com a norma europeia Eurocódigo EN 1994-1-2 e com resultados experimentais. Os resultados dos autores demonstraram que o método apresentava aproximação satisfatória, sendo capaz de estimar a temperatura do perfil.

Em 2007, Huang el al. [13] apresentaram um estudo experimental do efeito da restrição axial na resistência ao fogo de colunas mistas com perfil I com duas estruturas resfriadas adjacentes para a condição de temperatura de encurvadura do elemento. As colunas de 3,54m foram submetidas a curva ISO834 de aquecimento, e foi aplicada por meio de uma fornalha especialmente preparada para o objetivo do trabalho. Os resultados da distribuição da temperatura e deformações axiais estiveram dentro do esperado de acordo com as prescrições normativas e as simulações numéricas foram comparadas. Foi observado que os efeitos da restrição axial reduzem consideravelmente a resistência ao incêndio da coluna, uma vez que gera forças internas, acelerando o modo de falha. Ademais, a fissuração por compressão do concreto também reduziu significativamente a resistência ao incêndio da coluna.

Em 2010, António Correia e João Paulo Rodrigues [14] apresentaram os resultados de uma série de testes de resistência ao fogo de pilares mistos parcialmente revestidos com alongamento térmico restringido. Um conjunto experimental foi concebido na Universidade de Coimbra, Portugal, de modo para que o sistema de restrição axial e de rotação dos pilares sejam semelhantes às condições em uma construção real. Os parâmetros estudados foram o nível de carregamento, os índices de retenção axiais e de rotação e a esbeltez. A principal conclusão deste trabalho foi que, para baixos níveis de carga a rigidez da estrutura circundante tem uma grande influência sobre o comportamento de colunas sujeitas ao fogo. O aumento da rigidez da estrutura envolvente conduziu a uma redução dos tempos críticos. O tempo crítico foi definido como sendo o instante em que o carregamento axial atinge novamente a carga inicialmente aplicada, o mesmo comportamento não foi observado para os níveis de carga mais elevados.

No mesmo ano, Ellobody e Young [15] apresentaram uma investigação de colunas mistas parcialmente revestidas em elevadas temperaturas. Para determinar o comportamento dos pilares foi utilizado uma modelagem não linear tridimensional de elementos finitos. A modelagem térmica em três dimensões foi realizada utilizando-se o software ABAQUS para simular a estrutura a temperaturas elevadas e realizar as análises terminas e o acoplamento termo estrutural. O estudo apresentou a comparação entre testes experimentais e os resultados obtidos por meio das simulações com elementos finitos, o modelo foi capaz de representar o comportamento esperado das colunas mistas a temperaturas elevadas e mostrou também que o Eurocódigo EN 1994-1-2, geralmente apresenta valores de carga bastante conservativas, exceto para colunas com altas taxas de carregamento.

Ainda em 2010, Korzen et al. [16] publicaram um estudo experimental de colunas mistas parcialmente revestidas em situação de incêndio com diferentes parâmetros, comprimento, esbelteza, dentre outros. A curva de elevação de temperatura seguiu a prescrição da ISO834 de 1999. Os experimentos foram realizados no laboratório de Coimbra, Portugal e em Berlin na Alemanha. Foram comparados os resultados, mostrando que foram bastante similares tanto em termos de evolução de temperatura, como de forças de restrição e deformações dos pilares. A principal conclusão foi que a restrição à dilatação térmica influencia a resistência ao fogo para baixos níveis de carregamentos, e quanto maior a rigidez da estrutura, maiores são as forças axiais geradas durante o incêndio.

Em 2013, Piloto et al. [17] realizaram uma investigação experimental da resistência de vigas de aço parcialmente revestidas em temperatura ambiente e altas temperaturas de acordo

com a curva ISO834. No total foram realizados doze testes experimentais de acordo com a norma europeia EN 1363-1 para diferentes níveis de carregamento. Os resultados revelaram uma dependência da resistência em altas temperaturas com o nível de carregamento, uma vez que um incremento de 37% é responsável por um decréscimo de 28% da resistência ao fogo dos espécimes analisados. Esta investigação foi importante para o presente trabalho, pois há uma importante análise do comportamento termomecânico global do elemento misto de aço e concreto. Mesmo que o comportamento das vigas não seja objetivo de análise neste trabalho, os conceitos envolvidos na análise experimental dos elementos mistos em situação de incêndio são de grande importância.

Em 2014 Arezki e Said [18] propuseram uma avaliação prática e teórica a respeito de pilares mistos parcialmente revestidos em situação de incêndio de acordo com o Eurocódigo EN 1994-1-2 sujeito a carregamento excêntrico. O método prático foi baseado no critério de Campus-Massonet adaptado para o cálculo da resistência à encurvadura com carregamento axial excêntrico combinado com o momento fletor. Os procedimentos foram então codificados no programa e utilizados para investigar os efeitos dos níveis de carregamento, índices de esbeltez e recobrimento do aço do reforço na resistência dos pilares em situação de incêndio. O trabalho apresentou alguns exemplos de aplicação, e os resultados mostraram que o dimensionamento se torna crítico para a resistência acima de 60 minutos de exposição ao fogo.

Em 2015, Piloto et al [19] realizaram um estudo com o objetivo de avaliar os coeficientes empíricos e as expressões definidos no anexo G do Eurocódigo EN 1994-1-2 para a determinação da temperatura dos banzos, redução da altura efetiva da alma, seção residual de concreto e sua temperatura média, redução das características de rigidez e resistência do reforço. Foi utilizado o método avançado de cálculo com elementos finitos, e introduzindo os parâmetros não-lineares das propriedades do material, numa simulação em regime transiente, buscando avaliar o efeito da temperatura em todas essas variáveis e coeficientes empíricos do método. Os resultados apontaram que o método proposto pela norma se encontra inseguro para algumas classes de resistência ao fogo, quando comparados com os resultados numéricos. Foram apresentadas novas formulações, com maior garantia de segurança, assumindo que as novas expressões analíticas eram conservadoras em relação aos resultados da simulação numérica.

Em 2016, Piquer e Hernandez-Figueirido [20] realizaram um estudo de colunas de perfil metálico I, com e sem proteção ao fogo e colunas mistas parcialmente revestidas, com foco na performance e no custo monetário dessas colunas. As considerações a respeito da geometria e os materiais descritos se utilizaram de normas europeias e materiais comerciais. Os resultados obtidos por meio da verificação da resistência e estabilidade de colunas expostas ao fogo demonstraram que os piores desempenhos foram as de aço sem revestimento passivo, já as colunas com revestimento e as colunas parcialmente revestidas apresentaram um bom desempenho a temperaturas elevadas. Os resultados também demonstraram que uma coluna com perfil misto parcialmente revestido apresenta a melhor relação entre custo e benefício, uma vez que economiza cerca de 50% quando comparada aos outros dois tipos quando expostas ao fogo com tempos superiores a 30 minutos para perfis HE e 120 minutos para perfis HP. Esta conclusão deriva do fato dos melhores materiais de proteção serem onerosos ao custo final.

Ainda em 2016, Králik et al [21] publicaram um trabalho de dimensionamento de pilares de aço e misto de aço e concreto em situação de incêndio considerando a não linearidade geométrica do material. O trabalho apresentou uma análise estrutural utilizando o software ANSYS com sabe no método dos elementos finitos, utilizando os elementos "SOLID65", "SHELL181" e "LINK180" foram modelados os pilares segundo a curva ISO834. Como resultado os autores analisaram a resistência ao fogo dos dois tipos de pilares. A resistência ao fogo foi calculada fixando uma carga solicitante e buscando a resistência última da seção, onde ficou evidente que o pilar misto obteve um melhor desempenho ao fogo.

No mesmo ano, A. Fellouh et al. [2] propuseram novas formulações para a revisão e melhoramento do anexo G do Eurocódigo EN 1994-1-2, com a finalidade de calcular a resistência à encurvadura de colunas mistas parcialmente revestidas submetidas a elevadas temperaturas. Todos os parâmetros e coeficientes empíricos foram revistos para a determinação da resistência plástica à compressão axial e para determinação da rigidez de flexão efetiva em torno do eixo mais fraco. A simulação numérica realizada pelo Método dos Elementos Finitos foi utilizada para comparar os resultados da capacidade resistente da coluna mista parcialmente revestida simulando a exposição ao incêndio em 30 e 60 minutos. O trabalho comparou os resultados de ambos os métodos para a validação da modelagem tridimensional e demonstra que uma nova curva de dimensionamento deve ser utilizada para a análise da carga resistente à encurvadura dos pilares mistos parcialmente revestidos.

Esta página foi intencionalmente deixada em branco

2. AÇÃO DO FOGO, SEGURANÇA CONTRA INCÊNDIO, SEÇÕES MISTAS E PROPRIEDADE DOS MATERIAIS

2.1. Ação Térmica

Sendo o objetivo do trabalho estudar e avaliar o desempenho dos pilares mistos de aço e concreto parcialmente revestidos, é essencial que se tenha o conhecimento das variáveis que irão interferir no desempenho destes elementos estruturais, causando reduções de resistência e rigidez em suas componentes, além de esforços adicionais inexistentes em temperatura ambiente, podendo assim, prevenir-se que ocorra colapso estrutural prematuro da edificação.

Para que esta situação seja evitada, deve-se realizar a avaliação da resistência das estruturas em situação de incêndio, seja numérica ou experimentalmente, dependendo sempre da evolução da temperatura nos elementos ao longo do tempo de exposição ao fogo.

Os impactos da elevação da temperatura em um elemento estrutural são muito mais relevantes quando o mesmo está submetido a temperatura ambiente. Nos seguintes tópicos serão apresentadas as variáveis que interferem no dimensionamento de um elemento estrutural em situação de incêndio.

2.1.1. Transferência de Calor

No início do século XIX, Joseph Fourier introduziu a ideia de expandir as funções em séries trigonométricas para resolver as equações de condução de calor, dando origem a "Teoria Analítica do Calor". Posteriormente diversos matemáticos contribuíram com o tema que continuou sendo intitulado como lei de Fourier de transmissão de calor por condução.

Vila Real [22] define o processo de transmissão de calor como sendo a propagação de energia de uma região para outra, de um meio solido, liquido ou gasoso, como resultado da diferença de temperatura entre elas, seja por meio da condução, convecção ou radiação, que diferentemente da condução ou convecção, não necessita de qualquer suporte material, sendo o calor transmitido através da radiação eletromagnética.

As ações térmicas estão dispostas no Eurocódigo EN 1991-1-2 [23], devido a um fluxo de calor que incide na superfície do elemento, sendo a soma das parcelas da convecção e da radiação conforme a expressão a seguir.

$$\dot{h}_{net} = \dot{h}_{net,c} + \dot{h}_{net,r} \left[W/m^2 \right] \tag{1}$$

2.1.1.1. Transferência de Calor por Convecção

A transferência de calor por convecção é a energia transferida entre um sólido e um fluido ou gás em movimento, cada um está a temperaturas diferentes.

A componente do fluxo de calor por convecção é determinada pela seguinte expressão:

$$\dot{h}_{net,c} = \alpha_c (\theta_g - \theta_m) [W/m^2]$$
⁽²⁾

Onde α_c é o coeficiente de transferência de calor por convecção em $[W/m^2K]$, θ_g é a temperatura do gás ao redor do membro exposto em $[{}^{\circ}C]$ e θ_m é a temperatura da superfície do elemento exposto ao fogo em $[{}^{\circ}C]$.

O valor do coeficiente de convecção α_c depende da velocidade do fluido ou do gás, e deve ser considerado igual a 9 $[W/m^2K]$ para superfícies não expostas ao fogo (incluindo o efeito da radiação), 25 $[W/m^2K]$ para superfícies expostas à curva de incêndio ISO834 [3] e 50 $[W/m^2K]$ para superfícies expostas à curva de incêndio dos hidrocarbonetos.

2.1.1.2. Transferência de Calor por Radiação

A transferência de calor por radiação representa a transferência de energia entre dois corpos através de ondas eletromagnéticas, não sendo necessário um meio para que ela ocorra. A quantidade de energia que pode ser irradiada por uma superfície é definida pela lei de Stephan-Boltzmann.

A componente do fluxo de calor por radiação é determinada pela expressão:

$$\dot{h}_{net,r} = \phi \times \varepsilon_f \times \varepsilon_m \times \sigma \left[(\theta_r + 273)^4 - (\theta_m + 273)^4 \right] \left[W/m^2 \right]$$
(3)

Onde ϕ representa o fator de forma; ε_f é a emissividade do fogo; ε_m é a emissividade da superfície do elemento; σ é a constante de Stephan-Boltzmann, cujo valor é de 5,67×10⁻⁸

 $[W/m^2K^4]$; θ_r é a temperatura de radiação efetiva do ambiente de incêndio em $[^{\circ}C]$ e θ_m é a temperatura da superfície do elemento exposto ao fogo em $[^{\circ}C]$.

O valor para a emissividade do aço e do concreto é dado por $\varepsilon_m = 0.7$, para as chamas o valor da emissividade é $\varepsilon_f = 1.0$. O fator de forma ϕ pode ser considerado igual a 1.0 quando não for especificado.

2.1.2. Curva de Incêndio Natural

Conforme observa Rigobello [24], o incêndio natural é o modelo para o qual a temperatura dos gases respeita as curvas de temperatura em função do tempo, construídas a partir de ensaios que simulam uma situação de incêndio real em um compartimento em chamas. Os resultados destes ensaios dependem de parâmetros como a carga de incêndio, o grau de ventilação e as características térmicas do material de vedação. Esta curva é normalmente caracterizada por uma fase de arrefecimento.

Um incêndio depende basicamente de três fatores simultâneos, sendo eles uma fonte de calor, o combustível e o comburente, sendo este último geralmente o oxigênio.

A curva de incêndio natural típica possui quatro fases, sendo elas a ignição, propagação, desenvolvimento pleno e extinção, ver Figura 1 [22].

Figura 1 - Curva de incêndio natural [22].

A fase inicial, ou de ignição, é identificada pelas temperaturas ainda baixas, neste ponto ainda não há interferência no comportamento estrutural devido à elevação da temperatura. A segunda fase, ou de propagação, a temperatura está em ascensão, nela ocorre a inflamação súbita dos gases e a transferência de calor ocorre predominantemente através da radiação e da convecção. Neste momento, as temperaturas ao nível do teto estão entre 450°C e 600°C e a radiação térmica ao nível do solo igual a 20 [KW/m²], sendo neste ponto onde ocorre o fenômeno conhecido como "flashover", ou seja, o incêndio generalizado.

A terceira fase, ou desenvolvimento pleno, é caracterizado pelas altas temperaturas constantes e o material inflamável em combustão absoluta.

A quarta fase, ou extinção, é onde ocorre o resfriamento do material, verificado através da diminuição progressiva das temperaturas, sendo de forma natural por falta de combustível ou comburente ou devido a uma intervenção externa (corpo de bombeiros).

2.1.3. Curvas de Incêndio Nominais

O Eurocódigo EN 1991-1-2 [23] indica três distintas curvas nominais de incêndio, sendo elas a curva de incêndio padrão ISO834, a curva de incêndio de hidrocarbonetos e a curva de incêndio de elementos exteriores. A Figura 2 apresenta de forma sobreposta as três curvas propostas pelo Eurocódigo.

No presente estudo será utilizada a curva de incêndio padrão ISO834 [3], definida no tópico seguinte.
2.1.3.1. Curva de Incêndio Padrão ISO834

O Eurocódigo EN 1991-1-2 [23] em conformidade com a ISO834 [3] fornece a equação que rege a elevação da temperatura em função do tempo, sendo o combustível à base de celulose, como recomendação para determinar a resistência ao fogo de elementos estruturais, quando sujeitos a condições de incêndio padrão.

A curva de incêndio padrão ISO834 [3] é definida pela seguinte expressão:

$$\theta_{o} = 20 + 345 \log_{10}(8t+1) \tag{4}$$

Sendo θ_g a temperatura dos gases no compartimento em chamas em [°*C*] e *t* caracteriza o tempo em minutos.

A curva de incêndio padrão tem sua evolução de temperatura em função do tempo apresentada no gráfico a seguir através da Figura 3.

2.2. Segurança Contra Incêndio em Edifícios

A verificação da segurança estrutural em situações de incêndio é realizada como forma de assegurar-se que a temperatura atingida pelos materiais aço e concreto sejam inferiores às

temperaturas críticas dos materiais, garantindo que por determinado tempo a capacidade resistente seja suficiente para que as medidas de combate ao fogo passam ser tomadas.

De acordo com J. A. Purkiss [25], a engenharia de segurança contra incêndios pode ser definida como sendo a aplicação da ciência e da engenharia para os efeitos do fogo, como forma de proteger a vida, reduzir os danos de propriedade, quantificando os riscos envolvidos de forma a otimizar as soluções aplicáveis com medidas preventivas de possíveis desastres.

Na engenharia civil, a prevenção e segurança contra incêndio é uma área dedicada ao projeto adequado nesses casos, de modo a garantir que os elementos estruturais que fazem parte do compartimento que contém o fogo, possam cumprir sua a função, seja estrutural, isolante ou de contenção.

As exigências legais da segurança contra incêndio em edifícios devem ser observadas rigorosamente, como forma de minimizar os riscos em um eventual incidente, visto que esta possibilidade pode causar um impacto significativo nas vidas das pessoas, na instalação e exploração dos estabelecimentos comerciais ou residenciais.

2.2.1. Tempo Requerido de Resistência ao Fogo

A segurança das estruturas mistas de aço e concreto em situação de incêndio tem como primordial parâmetro a avaliação do tempo requerido de resistência ao fogo (TRRF), o qual é o período de tempo mínimo em que uma estrutura submetida a elevadas temperaturas deverá resistir quando sujeita a curva de incêndio padrão.

Para Vila Real [22], o conceito de resistência ao fogo de elementos estruturais em regulamentos é de forma geral de caráter prescritivo, associado ao tempo que decorre desde o início de um processo térmico normalizado, como a curva de incêndio padrão ISO834 a que o elemento está exposto, até o momento em que ele deixa de satisfazer as funções para que foi projetado.

A determinação do TRRF para diferentes estruturas é influenciada por múltiplos fatores, sendo eles o tipo de ocupação, a altura do edifício e a carga de incêndio presente no mesmo, levando-se ainda em consideração a existência ou não de medidas ativas e passivas de prevenção ao incêndio.

Os regulamentos portugueses [26, 27] estabelecem os requisitos dos elementos de construção em situação de incêndio, e os classificam segundo três qualificações, sendo elas R (capacidade de suporte de carga), E (estanqueidade a chamas e gases quente) e I (isolamento

térmico). A terminologia utilizada segue as recomendações europeias, sendo que as qualificações coincidem com as preconizadas no Eurocódigo.

2.2.2. Ações de Segurança Contra Incêndio no Brasil

O corpo de bombeiros do estado de São Paulo publicou em 1994 a Instrução Técnica IT-CB-0233/94, que determinava o tempo de resistência ao fogo para diversos tipos de estruturas em aço. Em 2004 foi publicada a Instrução Técnica nº08/04 "Segurança Estrutural nas Edificações, Resistencia ao fogo dos Elementos de Construção".

Em 2015 a Instrução Técnica nº08/15 "Resistencia ao fogo dos Elementos de Construção" [28] atualizou e substituiu a versão de 2004, de modo a se adequar as normas técnicas que tratam de estruturas em situação de incêndio, estabelecendo as condições a serem atendidas pelos elementos estruturais e de compartimentação que integram as edificações quanto aos TRRF.

Para edificações de pequeno porte ou fácil desocupação, como uso residencial unifamiliar, a verificação estrutural quanto à situação de incêndio não é obrigatória, exceto quando solicitada pelo proprietário. Entretanto para edificações de difícil desocupação, como edifícios de múltiplos andares, a segurança estrutural quanto a situação de incêndio é obrigatória e deve atender com rigor às exigências para o edifício como um todo.

A regulamentação de segurança contra incêndio classifica em 12 grupos de ocupações principais, subdivididas em categorias de acordo com as características de seu uso. Um exemplo é uma edificação do grupo A, que pode ser classificada como A-1 se for uma habitação unifamiliar, A-2 se for multifamiliar ou A-3 se for coletiva. Há ainda a identificação de 8 classes, P1 à P8, quanto à altura da edificação, e 2 classes de profundidade do subsolo, S1 e S2.

A Figura 4 apresenta o TRRF segundo a Instrução Técnica nº 08/15 [28].

Grupo Ocupação/U	Ocupação/Uso	Divisão	Profundidade	do subsolo (h.)	Altura da Edificação (h)							
200	1.000		Classe S ₂	Classe S1	Classe P1	Classe P2	Classe Pa	Classe P4	Classe Ps	Classe Pe	Classe Py	Classe Pg
			h. > 10 m	h₁≤10m	h≤6m	6m < h≤12m	12m < h ≤ 23m	23m < h < 30m	30m < h < 80m	80m < h ≤ 120m	120m < h < 150m	150m < h < 250m
A	Residencial	A-1 a A-3	90	60	30	30	60	90	120	120	150	180
в	Serviços de hospedagem	B-1 e B-2	90	60	30	60	60	90	120	150	180	180
	Companyial associates	C-1	90	60	60	60	60	90	120	150	150	180
	Comercial varejista	C-2 e C-3	90	60	60	60	60	90	120	150	150	180
D	Serviços profissionais, pessoais e técnicos	D-1 = D-3	90	60	30	60	60	90	120	120	150	180
E	Educacional e cultura física	E-1 a E-6	90	60	30	30	60	90	120	120	150	180
	Locais de reuniao de	F-1, F-2, F-5, F-6, F-8 e F-10	90	60	60	60	60	90	120	150	180	
	público	F-3, F-4 e F-7	90	60	ver it	em A.2.3.3	30	60	60	90	120	
		F-9	90	60	30	60	60	90	120			
G	Serviços automotivos	G-1 e G-2 não abertos lateralmente e G-3 a G-5	90	60	30	60	60	90	120	120	150	180
		G-1 e G-2 abertos lateralmente	90	60	30	30	30	30	60	120	120	150
	Serviços de saúde e	H-leH-4	90	60	30	60	60	90	120	150	190	180
п	institucionais	H-2, H-3 e H-5	90	60	30	60	60	90	120	150	180	180
	and the balance to the second second	11	90	60	30	30	30	60	120			
1	Industrial	1-2	120	90	30	30	60	90	120	2		
		13	120	90	60	60	90	120	120		÷ •	
		J.1	60	30	verit	em A.2.3.4	30	30	60		2 40	
	Desision	J.2	90	60	60	60	60	60	60	130 150 150 130 150 150 120 120 150 120 120 150 120 120 150 120 120 150 120 120 150 120 120 120 120 120 120 120 120 150 120 120 120 120 120 120 120 120 120 120 150 199 130 - - 120 - - 120 - - 120 - - 120 - - 120 - - 120 - - 120 - - 120 - - 120 - - 120 - - 120	2 al:	
	Depositos	13	90	60	60	60	60	120	120			*
		J-4	120	90	60	60	90	120	120		· · · ·	
L	Explositos	L-1, L-2 e L-3	120	120	120							
	Charles and the second s	M-1	150	150	150		(i)		2			
M	Especial	M-5	120	90	60	60	90	120				
	1.50	M-3	120	90	90	90	120	120	120	150		

Figura 4 - TRRF contra incêndio segundo a classificação das edificações brasileiras [28].

No Brasil, o dimensionamento estrutural de pilares mistos de aço e concreto segue as recomendações da ABNT dispostas na norma técnica NBR 14323:2011, na qual estão dispostas as dimensões mínimas, o recobrimento de concreto, entre outros fatores. A norma apresenta quatro categorias de TRRF, sendo elas 30 minutos, 60 minutos, 90 minutos e 120 minutos.

A Figura 5 apresenta o TRRF para uma coluna mista parcialmente revestida.

Figura 5 – TRRF de uma coluna mista parcialmente revestida Fonte: ABNT NBR 14323:2011.

Os procedimentos apresentados na norma permitem uma redução no TRRF, levando em consideração a presença de medidas de segurança contra incêndio, como a presença de sistema

de detecção de fumaça, sprinklers ou brigada de incêndio. Fatores como risco de incêndio e ventilação também podem ser levados em consideração para o cálculo de redução do TRRF.

Estes fatores permitem uma redução dos custos dos elementos estruturais, entretanto, sempre levando em consideração a segurança estrutural e dos ocupantes da edificação

2.2.3. Ações de Segurança Contra Incêndio em Portugal

O artigo 15° do Decreto-Lei nº 220 de novembro de 2008 determinava que por meio de portaria do governo fossem estabelecidas e regulamentadas as disposições técnicas gerais e específicas do regime jurídico de segurança contra incendo em edifícios SCIE, sendo então publicado em dezembro de 2008 a portaria nº 1552 [29]. Este regulamento técnico nacional passou a vigorar no início de 2009.

As exigências referentes as condições de segurança contra incêndio em edifícios e recintos são classificadas em 12 utilizações tipo ou classe de construções, 6 locais de ricos, 4 categorias de risco, 7 classes para reação do fogo e 3 classes de resistência ao fogo.

As disposições técnicas gerais e especificas da SCIE são referentes as condições exteriores comuns, de comportamento ao fogo, de isolamento e proteção, de evacuação, de instalações técnicas, de equipamentos e sistemas de segurança e de autoproteção.

A Tabela 1 apresenta a designação dos edifícios e recintos quanto a utilização tipo.

Classe do Edifício	Uso
Tipo I	Residencial
Tipo II	Estacionamentos
Tipo III	Administrativos
Tipo IV	Escolares
Tipo V	Hospitalares e lares de idosos
Tipo VI	Espetáculos e reuniões públicas
Tipo VII	Hoteleiros e restauração
Tipo VIII	Comerciais e gares de transportes
Tipo IX	Desportivos e de lazer
Tipo X	Museus e galerias de arte
Tipo XI	Bibliotecas e arquivos
Tipo XII	Industrias, oficinas e armazéns

Tabela 1 – Utilizações tipo de edifícios e recintos.

	Tabela 2 – Classificação dos locais de risco.
Riscos	Natureza do risco
А	Local sem risco especial, efetivo menor que 100 pessoas, ()
В	Local com efetivo maior que 100 pessoas, ()
С	Local que apresenta riscos agravados de eclosão e de desenvolvimento de incêndio, ()
D	Local de um estabelecimento com permanência de pessoas acamadas ou destinado a receber crianças com idade não superior a seis anos, ()
Е	Local de um estabelecimento destinado a dormida em que a pessoas não apresentem limitações.
F	Local que possua atividades sociais, normalmente os centros nevrálgicos de comunicação, comando e controle.

Para cada utilização tipo, há uma classificação quanto à categoria de risco ao qual se enquadra, a Tabela 3 apresenta como exemplo as categorias de risco referentes à utilização tipo 1.

Tabela 3 – Categoria e fatores de risco referente a utilização tipo I.				
Categoria	Altura do edifício	Número de pavimentos abaixo do plano de referência		
	h	n°		
1^a	$\leq 9m$	≤ 1		
2 ^a	$\leq 28m$	≤ 3		
3 ^a	$\leq 50m$	\leq 5		
4 ^a	$\leq 50m$	<i>≤</i> 5		

A Tabela 4 apresenta a resistência ao fogo padrão mínima indicado pela portaria nº 1532 de 2008 de elementos estruturais.

Tabela 4 – Resistencia ao fogo	o padrão mínima	de elementos e	struturais de edifícios.
--------------------------------	-----------------	----------------	--------------------------

I Itilização tino		Categoria	Função do elemento		
Utilização tipo	1^a	2ª	3 ^a	4 ^a	estrutural
I, III, IV, V, VI, VII,	R30	R60	R90	R120	Apenas suporte
VIII, IV, e X	REI 30	REI 60	REI 90	REI 120	Suporte e compartimentos
	R60	R90	R120	R180	Apenas suporte
וו, גו כ גוו	REI 60	REI 90	REI 120	REI 180	Suporte e compartimentos

Os engenheiros ou todos os profissionais credenciados e habilitados da área são responsáveis pelos projetos de prevenção contra incêndio e sua execução, assim como pela manutenção das condições de segurança ou de medidas de autoproteção aplicáveis durante todo o ciclo de vida do edifício.

As condições de dimensionamento de elementos estruturais estão definidas conforme a Figura 6 das normas europeias.

Figura 6 - Dimensionamento em situação de incêndio de acordo com os Eurocódigos.

As ações nas estruturas em situações de incêndio são tratadas no Eurocódigo EN 1991-1-2 [23], o qual as classifica como acidentais sendo então obrigatório o cálculo estrutural devido às ações térmicas, visto que isto implica em perda de resistência mecânica.

2.3. SEÇÕES MISTAS E PROPRIEDADES DOS MATERIAIS

2.3.1. Seções Mistas de Aço e Concreto

Segundo Queiroz et al. [30], um sistema misto de aço e concreto é aquele no qual um perfil de aço laminado ou soldado trabalha em conjunto com o concreto, formando um pilar misto, laje mista ou viga mista. Ainda segundo o autor, a interação entre o concreto e o perfil de aço pode se dar por meios mecânicos através de conectores, mossas ou ressaltos, por atrito ou aderência.

De acordo com a disposição do concreto na seção mista, os pilares mistos, segundo o Eurocódigo EN 1994-1-1 [31] e a norma brasileira ABNT NBR 8800:2008 [32], podem ser classificados como preenchidos, revestidos ou parcialmente revestidos, como mostra a figura a seguir.

Figura 7 – Exemplos de seções mistas: (a) e (b) preenchidas; (c) totalmente revestidas; (d) parcialmente revestidas. Fonte: ANBT NBR 8800:2008.

2.3.2. Pilares Mistos Parcialmente Revestidos

Os pilares mistos parcialmente revestidos, objeto de estudo deste trabalho, são compostos de um perfil metálico, geralmente de seções "I" ou "H", onde as faces internas dos banzos e a alma da seção são preenchidas por concreto. A ABNT NBR 8800:2008 [32] indica quanto a obrigatoriedade do uso de armaduras longitudinais e transversais dispostas no concreto, prevenindo este contra fissuras e fendilhamento, além de contribuir para situações de incêndio.

Para M. F. Pereira [33], o uso de elementos mistos é uma importante opção de sistema estrutural e processo construtivo, uma vez que possibilita a redução ou dispensa de formas e escoramento, diminuindo custos proveniente de materiais, além de aumentar a precisão dimensional dos elementos. Pilares mistos são estruturas mais eficientes, desde que respeitem as técnicas construtivas adequadas, sendo uma solução simples e de baixo custo, além de contribuir para a proteção ao fogo e de corrosão nestes elementos.

Materiais abundantes e com alta resistência são essenciais para atender a essa necessidade. O concreto apresenta uma boa resistência à compressão e pequena resistência à tração, além de uma ruptura frágil. Já o aço apresenta ótima resistência à tração e excelente ductilidade.

A união destes materiais é vantajosa quando feita de maneira racional, unindo as melhores propriedades destes dois elementos como componentes de uma única seção transversal para resistir aos esforços solicitantes.

2.4. Componentes da Seção Mista

Para Braga e Ferreira [34], a combinação dos materiais aço e concreto nos pilares mistos contribui para um aumento na rigidez, aumentando a resistência aos carregamentos. O estudo ainda mostra que o concreto exerce um enrijecimento na seção de aço, reduzindo instabilidades locais e globais do elemento estrutural.

Visto que a gama de materiais e métodos construtivos para que os esforços solicitantes nos elementos estruturais sejam resistidos, há uma grande variedade de soluções estruturais para responder a um mesmo problema.

2.4.1. Perfil Metálico

Nas seções mistas de aço e concreto, o aço é utilizado nos perfis metálicos, nas barras de armadura e nos conectores de cisalhamento. As principais características mecânicas relacionadas ao aço são a alta capacidade resistente e a ductilidade, que permitem a deformação plástica antes da ruptura.

Para o perfil metálico, é utilizado aço estrutural, Pfeil e Pfeil [35] menciona que as propriedades requeridas são a ductilidade, homogeneidade e soldabilidade, elevada relação entre a tensão resistente e a tensão de escoamento e quando possível, resistência a corrosão.

O estudo de De Nardin [36], cita que saliências internas no perfil metálico contribuem para uma melhor aderência na interface aço-concreto, além disso, para carregamentos axiais o perfil possui maior capacidade de dissipar energia das tensões geradas, melhorando o comportamento global da estrutura.

2.4.2. Aço do Reforço

Na Europa, para o revestimento parcial do perfil de aço, o Eurocódigo EN 1994-1-1 [31] indica que as seções total ou parcialmente revestidas com concreto devem possuir armaduras longitudinais e transversais, para garantir a integridade e aumentar a resistência do concreto, sendo que o projeto destas armaduras deve atender aos requisitos do Eurocódigo EN 1992-1-1 [37].

No Brasil, a ABNT NBR 8800:2008 [32] recomenda a utilização da armadura longitudinal da coluna com perfil parcialmente revestido, e deve estar de acordo com a ABNT

NBR 6118:2014. Sua função não é limitada apenas para garantir a integridade do concreto, mas também como forma de contribuir para a resistência global da estrutura.

A armadura principal é utilizada para reforçar o concreto, conferindo maior resistência. Os vergalhões de aço devem ser nervurados como forma de aumentar a superfície de contato e tornar a ligação entre o concreto e o elemento de aço mais eficiente.

2.4.3. Concreto

O preenchimento do perfil metálico com concreto teve início para garantir a proteção contra a corrosão e a ação do fogo, entretanto aliado a estas aplicações, a função estrutural do concreto foi levada em consideração nos critérios de dimensionamento.

Conforme De Nardin [36] aponta, devido aos avanços tecnológicos e estudos a respeito do comportamento estrutural com a interação do perfil de aço com o concreto, frente a fenômenos como aderência e confinamento, o concreto passou a ter função estrutural, além de suas funções protetoras.

Para o dimensionamento de pilares mistos parcialmente revestidos, a ABNT NBR 8800:2008 [32] recomenda que o concreto utilizado deva possuir densidade normal. Conforme a ABNT NBR 6118:2014, um concreto de massa específica normal é aquele que depois de seco apresenta uma massa específica ρ_c compreendida entre 2000 kg/m^3 e 2800 kg/m^3 .

Aplica-se a utilização de concreto classe C20 ou superior para elementos que possuam armadura passiva, além de ser devidamente avaliada as condições de exposição da estrutura de acordo com as classes de agressividade ambiental, para que se garanta a durabilidade e desempenho adequados.

Para efeito de cálculo, é essencial que se conheçam algumas propriedades do concreto. Nesse sentido, é usual que a resistência à compressão do concreto seja a propriedade mais valorizada no cálculo estrutural.

2.5. Propriedades dos Materiais a Temperaturas Elevadas

O conceito fundamental dos métodos de dimensionamento que pretendem garantir a estabilidade estrutural em situações de incêndio é que os materiais gradualmente perdem resistência e rigidez devido à exposição a temperaturas elevadas.

A exposição dos materiais a altas temperaturas afeta suas características mecânicas, sendo traduzida pela redução do módulo de elasticidade e redução das tensões de escoamento ou cedência. A dilatação térmica dos materiais provoca um aumento nas tensões internas causadas pelas deformações dos elementos.

As propriedades térmicas também sofrem uma variação significativa com o aumento da temperatura. A condutibilidade térmica dos materiais é afetada pelo aumento da temperatura, assim como o calor específico e a massa específica.

2.5.1. Propriedades Térmicas

As propriedades térmicas influenciam no comportamento do aço quando submetidos a condições de elevadas temperaturas, e são definidas de acordo com o Eurocódigo EN 1993-1-2 [38].

2.5.1.1. Aço

O calor específico é a quantidade de energia necessária para elevar a temperatura em 1°C.

O calor específico do aço c_a deve ser determinado através das seguintes expressões:

$$20 [^{\circ}C] \leq \theta_{a} < 600 [^{\circ}C]:$$

$$c_{a} = 425 + 7,73 \times 10^{-1} \theta_{a} - 1,69 \times 10^{-3} \theta_{a}^{2} + 2,22 \times 10^{-6} \theta_{a}^{3} [J/kgK]$$

$$600 [^{\circ}C] \leq \theta_{a} < 735 [^{\circ}C]$$
(5)

$$c_a = 666 + \left(\frac{13002}{738 - \theta_a}\right) [J/kgK]$$
(6)

 $735[^{\circ}C] \le \theta_a < 900[^{\circ}C]$

$$c_{a} = 545 + \left(\frac{17820}{\theta_{a} - 731}\right) [J/kgK]$$
⁽⁷⁾

 $900 \left[{}^{\mathrm{o}}C \right] \le \theta_a \le 1200 \left[{}^{\mathrm{o}}C \right]$

$$c_a = 650 \left[J/kgK \right] \tag{8}$$

Em que θ_a representa a temperatura do aço em [° C].

A variação do calor específico do aço em função da temperatura pode ser observado através do gráfico representado na Figura 8.

Figura 8 - Calor específico do aço em função da temperatura.

A condutibilidade térmica do aço λ_a deve ser determinada através das seguintes expressões:

$$20 [^{\circ}C] \leq \theta_{a} < 800 [^{\circ}C]$$

$$\lambda_{a} = 54 - 3,33 \times 10^{-2} \theta_{a} [W/mK]$$

$$800 [^{\circ}C] \leq \theta_{a} \leq 1200 [^{\circ}C]$$

$$(9)$$

$$\lambda_a = 27.3 \left[W/mK \right] \tag{10}$$

Em que θ_a representa a temperatura do aço em $[{}^{o}C]$.

A variação da condutibilidade térmica do aço em função da temperatura pode ser observada através do gráfico representado na Figura 9.

Figura 9 - Condutibilidade térmica do aço em função da temperatura.

A massa específica do aço ρ_a não é afetada, e permanece constante mesmo estando submetido a altas temperaturas.

$$20 [^{\circ}C] \le \theta_a \le 1200 [^{\circ}C]$$

$$\rho_a = 7850 [kg/m^3]$$
(11)

A massa específica do aço em função da temperatura pode ser observada através do gráfico representado na Figura 10.

Figura 10 - Massa específica do aço em função da temperatura.

2.5.1.2. Concreto

Segundo o Eurocódigo EN 1992-1-2 [39], o calor específico do concreto c_p para um teor de umidade (u = 0%), utilizando agregado silicioso ou calcário pode ser determinado através das seguintes equações.

 $20 [°C] \le \theta_c \le 100 [°C]$ $c_p = 900 [J/kgK]$ (12)

 $100 [^{\circ}C] < \theta_{c} \le 200 [^{\circ}C]$ $c_{p} = 900 + (\theta_{c} - 100) [J/kgK]$ (13)

 $200 \left[{}^{\mathrm{o}}C \right] < \theta_c \le 400 \left[{}^{\mathrm{o}}C \right]$

$$c_p = 1000 + \left(\frac{\theta_c - 200}{2}\right) [J/kgK]$$
(14)

 $400 \left[{}^{\mathrm{o}}C \right] < \theta_c \le 1200 \left[{}^{\mathrm{o}}C \right]$

$$c_p = 1100 \left[J/kgK \right] \tag{15}$$

Onde θ_c representa a temperatura do concreto em $[{}^{\circ}C]$.

Ainda de acordo com o Eurocódigo EN 1992-1-2 [39], quando o teor de umidade não for considerado explicitamente no método de cálculo, a função dada para o calor específico do concreto utilizando agregado silicioso ou calcário, pode ser modelada por um valor constante $c_{p,peak}$, situado entre 100°C e 115°C, decrescendo linearmente entre 115°C e 200°C.

$$c_{p,peak}(u=0\%) = 900 [J/kgK]$$
 (16)

$$c_{p,peak}(u=1,5\%) = 1470 [J/kgK]$$
 (17)

$$c_{p,peak}(u=3\%) = 2020 [J/kgK]$$
 (18)

Através da Figura 11, pode-se observar graficamente o calor específico do concreto quando o teor de umidade é 0% e quando o teor de umidade for desconhecido, para as três possibilidades apresentadas na norma através do $c_{p,peak}$.

Figura 11 - Calor específico do concreto em função da temperatura.

No presente trabalho, foi considerado um teor de umidade de 3% para o concreto, este modelo permite ter em conta a vaporização das moléculas de água presentes no material como poderá ser observado graficamente através da Figura 12.

Figura 12 - Calor específico do concreto para um teor de umidade c_{p peak}, de 3%.

A massa específica do concreto ρ_c varia em função da elevação da temperatura, sendo influenciada devido à perda de água presente no concreto. Para a temperatura ambiente, o concreto possui uma massa específica igual a 2300 $[kg/m^3]$, o Eurocódigo EN 1992-1-2 [39] define a variação da massa específica através das seguintes equações:

 $20 [°C] \le \theta_c \le 115 [°C]$ $\rho_c = 2300 [kg/m^3]$

 $115 \left[{}^{\mathrm{o}}C \right] < \theta_c \le 200 \left[{}^{\mathrm{o}}C \right]$

$$\rho_c = 2300 \times \left(1 - 0.02 \left(\frac{\theta_c - 115}{85}\right)\right) \left[kg/m^3\right]$$
(20)

 $200 \left[{}^{\mathrm{o}}C \right] < \theta_c \le 400 \left[{}^{\mathrm{o}}C \right]$

$$\rho_c = 2300 \times \left(0,98 - 0,03 \left(\frac{\theta_c - 200}{200}\right)\right) \left[kg/m^3\right]$$
(21)

 $400 \left[{}^{\mathrm{o}}C \right] < \theta_c \le 1200 \left[{}^{\mathrm{o}}C \right]$

1

$$\rho_c = 2300 \times \left(0,95 - 0,07 \left(\frac{\theta_c - 400}{800}\right)\right) \left[kg/m^3\right]$$
(22)

Onde θ_c representa a temperatura do concreto em [°C].

A massa específica do concreto em função da temperatura pode ser observada através do gráfico representado na Figura 13.

Figura 13 - Massa específica do concreto em função da temperatura.

De acordo com o Eurocódigo EN 1992-1-2 [39], a condutibilidade térmica do concreto λ_c deve ser tomada entre os seus limites inferior e superior em função da elevação da temperatura.

O limite inferior é determinado pela seguinte expressão:

(19)

 $20 \left[{}^{\mathrm{o}}C \right] \le \theta_c \le 1200 \left[{}^{\mathrm{o}}C \right]$

$$\lambda_{c} = 1,36 - 0,136 \left(\frac{\theta_{c}}{100}\right) + 0,0057 \left(\frac{\theta_{c}}{100}\right)^{2} \left[W/mK\right]$$
(23)

Já o limite superior é determinado pela seguinte expressão:

$$20 [^{\circ}C] \le \theta_{c} \le 1200 [^{\circ}C]$$
$$\lambda_{c} = 2 - 0.2451 \left(\frac{\theta_{c}}{100}\right) + 0.0107 \left(\frac{\theta_{c}}{100}\right)^{2} [W/mK]$$
(24)

Onde θ_c representa a temperatura do concreto em $[{}^{\circ}C]$.

No presente trabalho, e de acordo com o Eurocódigo EN 1994-1-2 [1], foi utilizado o limite superior para a condutibilidade térmica do concreto como poderá ser observado graficamente através da Figura 14.

Figura 14 - Condutibilidade térmica do concreto em função da temperatura.

2.5.2. Propriedades Mecânicas

As propriedades mecânicas influenciam no comportamento e na resistência do aço e do concreto quando submetidos a condições de elevadas temperaturas. Estas propriedades são definidas de acordo com o Eurocódigo EN 1992-1-1 [37] e Eurocódigo EN 1993-1-1 [40]

quando expostos a temperatura ambiente, e são definidas de acordo com o Eurocódigo EN 1992-1-2 [39] e Eurocódigo 1993-1-2 [38] quando submetidos a elevadas temperaturas.

2.5.2.1. Aço do Perfil Metálico

A resistência característica do aço dos perfis metálicos é apresentada nas normas europeias Eurocódigo EN 1993-1-1 [40], para o material à temperatura ambiente e Eurocódigo EN 1993-1-2 [38], para o material submetido a ação do fogo. Os valores definidos para a tensão de escoamento f_y e tensão última f_u são apresentados neste documento. O aço classe S275 com espessura inferior a 40mm, quando em condições normais, apresenta as seguintes propriedades resistentes nominais $f_y = 275 MPa$ e $f_u = 430 MPa$, sendo ainda o módulo de elasticidade $E_a = 210 GPa$, o módulo de elasticidade transversal $G_a = 81 GPa$ e o coeficiente de Poisson $\nu = 0,3$, apresentados conforme a Tabela 5.

Tabela 5 – C	Característic	as mecânica	s do aço estr	utural S275.
$E_a [MPa]$	$f_{y}[MPa]$	$f_u [MPa]$	$G_a [GPa]$	v
210	275	430	81	0,3

Quando submetido a altas temperaturas, o Eurocódigo EN 1993-1-2 [38], define os valores de tensão-deformação do aço do perfil estrutural. A Tabela 6 apresenta as formulações prescritas na norma.

Deformação	Temeão (0)	Médule de Electicidade			
Deformação	Tensão $\sigma(\theta)$				
$\epsilon \leq \epsilon_{p,\theta}$	$\epsilon E_{a, \theta}$	$\mathrm{E}_{a, \theta}$			
$\varepsilon_{\mathbf{p},\boldsymbol{\theta}} < \varepsilon < \varepsilon_{y,\boldsymbol{\theta}}$	$f_{p,\theta} - c + (b/a) \left[a^2 - (\epsilon_{y,\theta} - \epsilon)^2\right]^{0.5}$	$\frac{b(\epsilon_{y,\theta}-\epsilon)}{a \left[a^2-(\epsilon_{y,\theta}-\epsilon)^2\right]^{0,5}}$			
$\varepsilon_{\mathbf{y},\boldsymbol{\theta}} \leq \varepsilon \leq \varepsilon_{\boldsymbol{t},\boldsymbol{\theta}}$	$\mathbf{f}_{\mathbf{y},\theta}$	0			
$\varepsilon_{\mathbf{t},\boldsymbol{\theta}} < \varepsilon < \varepsilon_{u,\boldsymbol{\theta}}$	$f_{y,\theta} \Big[1 - \big(\epsilon - \epsilon_{t,\theta} \big) \big/ \big(\epsilon_{u,\theta} - \epsilon_{t,\theta} \big) \Big]$	-			
$\varepsilon = \varepsilon_{u, \theta}$	0	-			
Parâmetros	$arepsilon_{\mathrm{p}, heta}=f_{p, heta}ig/E_{a, heta}$ $arepsilon_{\mathrm{y}, heta}=0.02$ $arepsilon$	$\epsilon_{t,\theta} = 0.15 \epsilon_{u,\theta} = 0.20$			
	$a^{2} = (\varepsilon_{y,\theta} - \varepsilon_{p,\theta})(\varepsilon_{y,\theta} - \varepsilon_{p,\theta})$	$\varepsilon_{\mathrm{p},\theta} + \mathrm{c/E}_{\mathrm{a},\theta}$			
Funções	$b^2 = c(\varepsilon_{y,\theta} - \varepsilon_{p,\theta})$	$E_{a,\theta} + c^2$			
T unções	$(\mathbf{f}_{\mathbf{y},\theta} - \mathbf{f}_{\mathbf{p},\theta})^2$				
	$ = (\epsilon_{y,\theta} - \epsilon_{p,\theta}) E_{a,\theta} - E_{b,\theta} $	$2(f_{y,\theta} - f_{p,\theta})$			

Tabela 6 Determinação da relação tenção deformação para o aco \$275 em temperaturas elevadas

O Eurocódigo EN 1993-1-2 [38], define também os fatores de redução para as propriedades mecânicas do aço. Estes fatores de redução são referentes à tensão de escoamento efetiva $k_{v,\theta}$, ao limite de proporcionalidade $k_{p,\theta}$ e à inclinação da reta que representa o domínio elástico $k_{E,\theta}$. Estes fatores são apresentados na Tabela 7.

Temperatura do	Fatores de redução à ter	nperatura θ_a referidos aos va	alores de f_y ou E_a a 20 °C		
aço θ_a [°C]	$k_{y, heta} = f_{y, heta}/f_y$	$k_{p, heta}=f_{p, heta}/f_{\mathcal{Y}}$	$k_{E,\theta} = E_{a,\theta} / E_a$		
20	1,0	1,0	1,0		
100	1,0	1,00	1,0		
200	1,0	0,807	0,9		
300	1,0	0,613	0,8		
400	1,0	0,42	0,7		
500	0,78	0,36	0,6		
600	0,47	0,18	0,31		
700	0,23	0,075	0,13		
800	0,11	0,05	0,09		
900	0,06	0,0375	0,0675		
1000	0,04	0,025	0,045		
1100	0,02	0,0125	0,0225		
1200	0	0	0		
Nota: Para os valores intermediários da temperatura do aço, poderá efetuar-se uma interpolação linear.					

Tabela 7 – Fatores de redução para a relação tensão-deformação do aço a elevadas temperaturas.

A Figura 15 irá apresentar graficamente as curvas de tensão-deformação do aço quando submetido a elevadas temperaturas e os fatores de redução respectivamente.

 Curvas de tensão-deformação do aço S275 sob tração
 Fatores de redução da relação tensão-deformação do aço S275 em elevadas temperaturas.

 Eine 15 De la contração do contração do aço S275 em elevadas temperaturas.
 Series de redução da relação tensão-deformação do aço S275 em elevadas temperaturas.

Figura 15 - Relação tensão-deformação do aço S275 em elevadas temperaturas.

2.5.2.2. Aço do Reforço

As características do aço das armaduras de reforço, quanto submetidas à temperatura ambiente, são definidas no Eurocódigo EN 1992-1-1 [37]. O aço S500 NR classe B tem suas propriedades resistentes descritas na Tabela 8.

Tabela 8 – Características mecânicas do aço S500 NR classe B.						
f_{yk} [MPa] f_{uk} [MPa] E_s [GPa] G [GPa] k v						
500	540	210	81	1,08	0,3	

Quando submetido a altas temperaturas, o Eurocódigo EN 1993-1-2 [38], define os valores de tensão-deformação do aço do reforço. A Tabela 9 apresenta as formulações prescritas na norma.

Deformação	Tensão $\sigma(\theta)$	Módulo de Elasticidade			
$\epsilon \leq \epsilon_{p,\theta}$	$\epsilon E_{a,\theta}$	$E_{a,\theta}$			
$\mathcal{E}_{\mathrm{sp},\theta} < \mathcal{E} < \mathcal{E}_{\mathrm{sy},\theta}$	$f_{sp,\theta} - c + (b/a) \left[a^2 - (\epsilon_{sy,\theta} - \epsilon)^2\right]^{0.5}$	$\frac{b(\!\epsilon_{_{sy,\theta}}-\epsilon)}{a\!\left[\!a^2-\!\left(\!\epsilon_{_{sy,\theta}}-\epsilon\right)^{\!2}\right]^{\!\!\!\!0,5}}$			
$\varepsilon_{\mathrm{sy},\theta} \leq \varepsilon \leq \varepsilon_{\mathrm{st},\theta}$	$\mathbf{f}_{\mathrm{sy}, heta}$	0			
$\mathcal{E}_{\mathrm{st},\theta} \leq \mathcal{E} \leq \mathcal{E}_{\mathrm{su},\theta}$	$f_{sy,\theta} \Big[1 \text{-} \big(\epsilon \text{-} \epsilon_{st,\theta} \big) / \big(\epsilon_{su,\theta} - \epsilon_{st,\theta} \big) \Big]$	-			
$\varepsilon = \varepsilon_{su,\theta}$	0	-			
Parâmetros	$arepsilon_{ ext{sp}, heta}=f_{sp, heta}ig/E_{s, heta}$ $arepsilon_{ ext{sy}, heta}=0,02$ $arepsilon_{ ext{sr}}$	$\epsilon_{t,\theta} = 0,15$ $\epsilon_{su,\theta} = 0,20$			
	$a^2 = (\epsilon_{sy,\theta} - \epsilon_{sp,\theta})(\epsilon_{sy,\theta} - $	$\varepsilon_{\rm sp,\theta} + c/E_{\rm s,\theta}$			
E	$\mathbf{b}^2 = \mathbf{c} \left(\mathbf{\epsilon}_{\mathrm{sy}, \mathbf{ heta}} - \mathbf{\epsilon}_{\mathrm{sp}, \mathbf{ heta}} ight)$	$E_{s,\theta} + c^2$			
runções	$(\mathbf{f}_{\mathrm{sy},\theta} - \mathbf{f}_{\mathrm{sp},\theta})^2$				
	$\mathbf{c} = \overline{\left(\mathbf{\varepsilon}_{\mathrm{sy},\theta} - \mathbf{\varepsilon}_{\mathrm{sp},\theta}\right)} \mathbf{E}_{\mathrm{s},\theta} - 2$	$2(f_{\mathrm{sy}, \theta} - f_{\mathrm{sp}, \theta})$			

Tabela 9 - Determinação da relação tensão-deformação para o aço S500 em temperaturas elevadas.

O Eurocódigo EN 1992-1-2 [39] define também os fatores de redução para as características do aço quando sujeito a elevadas temperaturas. O valor da tensão de escoamento $f_{sy,\theta}$, a tensão limite de proporcionalidade $f_{sp,\theta}$, e o módulo de elasticidade $E_{s,\theta}$ variam de acordo com a temperatura a que estão submetidos, quando comparados com seus valores a temperatura ambiente. Na Tabela 10 estão representados os fatores de redução para a tensão de escoamento efetiva $k_{sy,\theta}$ e para o módulo de elasticidade $k_{Es,\theta}$.

Temperatura do	Fatores de redução à temperatura θs referidos aos valores de f_y e E_s a 20 °C				
aço θ_s [°C]	$k_{sy, heta} = f_{sy, heta} / f_y$	$k_{Es, heta}=E_{s, heta}$ / E_s			
20	1,0	1,0			
100	1,0	1,0			
200	1,0	0,87			
300	1,0	0,72			
400	0,94	0,56			
500	0,67	0,40			
600	0,4	0,24			
700	0,12	0,08			
800	0,11	0,06			
900	0,08	0,05			
1000	0,05	0,03			
1100	0,03	0,02			
1200	0	0			

Tabela 10 – Fatores de redução das propriedades mecânicas do aço a elevadas temperaturas.

A Figura 16 representa graficamente as curvas de tensão deformação do aço quando submetido a temperaturas elevadas e os fatores de redução respectivamente.

Curvas de tensão-deformação do aço S500 sob traçãoFatores de redução da relação tensão-deformação do
aço S500 em elevadas temperaturas.

Figura 16 - Relação tensão-deformação do aço S500 em elevadas temperaturas.

2.5.2.3. Concreto

As características resistentes do concreto quando em condições de temperatura ambiente são apresentadas no Eurocódigo EN 1992-1-1 [37]. As propriedades do concreto C20/25, objeto de estudo deste trabalho estão representadas na Tabela 11.

Tabela 11 – Propriedades mecânicas do concreto C20/25.								
$f_{ck} [MPa]$	fck,cube [MPa]	fcm [MPa]	$f_{ctm} [MPa]$	$E_{cm}[GPa]$	ε_{cl} [‰]	ε_{cul} [‰]		
20	25	28	2,2	30	2,0	3,5		

Quando o concreto submetido a elevadas temperaturas, o Eurocódigo EN 1992-1-2 [39], define os valores de tensão deformação do concreto. A Tabela 12 apresenta as formulações prescritas na norma.

Tabela 12 – Formulações das relações de tensão-deformação do concreto C20/25.					
Deformação	Tensão $\sigma(\theta)$				
$\varepsilon \leq \varepsilon_{c1,\theta}$	$3\varepsilon \mathbf{f}_{c\theta} \bigg/ \varepsilon_{c1,\theta} \bigg[2 + \bigg(\frac{\varepsilon}{\varepsilon_{c1,\theta}} \bigg)^3 \bigg]$				
$\varepsilon_{c1,\theta} < \varepsilon \leq \varepsilon_{cu1,\theta}$	Em modelagens numéricas o ramo descendente deve ser adotado. Modelos lineares e não- lineares são permitidos.				

 $h_{ala} 12$ da -1-1 dafa 1

O Eurocódigo EN 1992-1-2 [39], define também os fatores de redução para suas características mecânicas, como pode ser observado na Tabela 13.

Temperatura do	Agregados siliciosos				
concreto θ_c [°C]	$f_{c, heta}/f_{ck}$	$\mathcal{E}_{cl,\theta}$	$\mathcal{E}_{cul,\theta}$		
20	1,0	0,0025	0,02		
100	1,0	0,004	0,0225		
200	0,95	0,0055	0,025		
300	0,85	0,007	0,0275		
400	0,75	0,01	0,03		
500	0,6	0,015	0,0325		
600	0,45	0,025	0,035		
700	0,3	0,025	0,0375		
800	0,15	0,025	0,04		
900	0,08	0,025	0,0425		
1000	0,04	0,025	0,045		
1100	0,01	0,025	0,0475		
1200	0	-	-		

Tabela 13 - Fatores de redução das características mecânicas do concreto a elevadas temperaturas.

A Figura 17 irá apresentar graficamente as curvas de tensão deformação do concreto quando submetido a elevadas temperaturas e os fatores de redução respectivamente.

Curvas de tensão-deformação do concreto C20/25 sob compressão em elevadas temperaturas.

Figura 17 - Relação tensão-deformação do concreto C20/25 em elevadas temperaturas.

Esta página foi intencionalmente deixada em branco

3. MÉTODO SIMPLIFICADO DE CÁLCULO: EUROCÓDIGO EN 4-1-2 ANEXO G

O Eurocódigo EN 1994-1-2 [1] propõe diferentes métodos para determinar a resistência dos pilares mistos parcialmente revestidos em situação de incêndio padrão ISO834 [3]. O método tabular usa valores definidos para as seções transversais mais comuns com base em experiências e resultados empíricos. Estes resultados são geralmente muito conservativos e podem ser usados para uma fase preliminar de projeto.

Para o cálculo da resistência plástica à compressão axial e para a rigidez de flexão efetiva da seção em torno do eixo mais fraco em situação de incêndio, o Eurocódigo EN 1994-1-2 anexo G [1] propõe o método simplificado de cálculo.

O método simplificado de cálculo foi originalmente desenvolvido por Jungbluth [41] e foi definido para determinar a capacidade resistente dos pilares mistos parcialmente revestidos em situação de incêndio. Neste método, a seção transversal é dividida em quatro componentes, sendo elas, os banzos do perfil metálico, a alma do perfil metálico, o aço do reforço e o concreto contido entre os banzos, ver Figura 18. A atual abordagem deste método é baseada em fórmulas simples e coeficientes empíricos que parecem não serem seguros [1]. Por este fato, novas formulações foram propostas [2], buscando atualizar este método com resultados mais seguros.

Figura 18 – a) Pilar misto parcialmente revestido; b) Modelo da soma pesada.

A estabilidade dos pilares mistos parcialmente revestidos requer preliminarmente o cálculo da rigidez de flexão e o cálculo da resistência plástica à compressão axial de cada componente da seção transversal. A determinação da rigidez de flexão efetiva em torno do eixo de menor inércia e da resistência plástica à compressão axial da seção mista poderão ser determinadas através da soma pesada, ver equações 25 e 26. As parcelas referentes a cada componente deverão ser avaliadas com base na evolução de temperatura e do efeito que esta produz na redução de suas características resistentes, na redução do módulo de elasticidade e na seção efetiva.

$$(EI)_{fi,eff,z} = \varphi_{f,\theta}(EI)_{fi,f,z} + \varphi_{w,\theta}(EI)_{fi,w,z} + \varphi_{c,\theta}(EI)_{fi,c,z} + \varphi_{s,\theta}(EI)_{fi,s,z}$$
(25)

$$N_{fi,pl,Rd} = N_{fi,pl,Rd,f} + N_{fi,pl,Rd,w} + N_{fi,pl,Rd,c} + N_{fi,pl,Rd,s}$$
(26)

Na equação 25, $(EI)_{fi,eff,z}$ representa a rigidez de flexão efetiva da seção mista exposta ao fogo, $(EI)_{fi,f,z}$ representa a rigidez de flexão dos banzos, $(EI)_{fi,w,z}$ representa a rigidez de flexão da alma, $(EI)_{fi,c,z}$ representa a rigidez de flexão do concreto e $(EI)_{fi,s,z}$ representa a rigidez de flexão dos reforços. A contribuição de cada parcela será ponderada de acordo com os fatores φ , o módulo de elasticidade reduzido e uma seção transversal reduzida. Os fatores de ponderação dependem da classificação de resistência ao fogo e são apresentados na Tabela 14.

Resistência ao Fogo Padrão	$\phi_{f,\theta}$	$\phi_{w,\theta}$	$\phi_{c,\theta}$	$\phi_{s,\theta}$
R30	1	1	0,8	1
R60	0,9	1	0,8	0,9
R90	0,8	1	0,8	0,8
R120	1	1	0,8	1

Tabela 14 - Coeficientes de ponderação para rigidez de flexão.

Na equação 26, $N_{fi,pl,Rd}$ representa a resistência plástica à compressão axial da seção mista exposta ao fogo, $N_{fi,pl,Rd,f}$ representa a resistência plástica à compressão axial dos banzos, $N_{fi,pl,Rd,w}$ representa a resistência plástica à compressão axial da alma, $N_{fi,pl,Rd,c}$ representa a resistência plástica à compressão axial do concreto e $N_{fi,pl,Rd,s}$ representa a resistência plástica à compressão axial dos reforços. A contribuição de cada parcela será somada com coeficientes de ponderação unitários, entretanto afetadas devido a redução das características resistentes dos materiais e também pela redução da seção transversal. O dimensionamento para a carga axial de flambagem dos pilares mistos parcialmente revestidos sob condições de incêndio depende do cálculo da carga crítica $N_{fi,cr,z}$ em torno do eixo de menor inércia, da esbeltez adimensional $\overline{\lambda}_{\theta}$ usando a curva "c" do Eurocódigo EN 1993-1-1 [40], cujo valor do fator de imperfeição a considerar é, 0,49 e do coeficiente de redução χ_z . As equações referentes a estes procedimentos serão apresentadas abaixo, e dependem das equações 25 e 26 previamente apresentadas.

$$N_{fi,cr,z} = \frac{\pi^2 (EI)_{fi,eff,z}}{L_{\theta}^2}$$
(27)

$$\overline{\lambda}_{\theta} = \sqrt{\frac{N_{fi,pl,Rd}}{N_{fi,cr,z}}}$$
(28)

$$\phi = 0.5 \times \left(1 + \left(0.49 \times \left(\lambda_{\theta} - 0.2\right)\right) + \lambda_{\theta}^{2}\right)$$
(29)

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_{\theta}^2}}$$
(30)

$$N_{b,fi,Rd,z} = \chi_z N_{fi,pl,Rd} \tag{31}$$

Onde L_{θ} é o comprimento de encurvadura do pilar, sendo este dependente de suas condições de vinculação.

Para os tópicos seguintes, os coeficientes de segurança parciais dos materiais $\gamma_{M,fi,a}$, $\gamma_{M,fi,s}$ e $\gamma_{M,fi,c}$, serão todos utilizados com valor igual a 1,0.

Figura 19 - Fluxograma para o cálculo de pilares mistos parcialmente revestidos em situação de incêndio.

A Figura 19 apresenta um fluxograma dos passos realizados para encontrar a resistência à encurvadura de pilares mistos parcialmente revestidos em situação de incêndio, utilizando a curva "c" do Eurocódigo EN 1993-1-1 [40], sendo os passos referentes as equações 25 à 31.

3.1. Seções em Análise

Para estudar o efeito da ação do fogo nos pilares mistos de aço e concreto parcialmente revestidos foram analisados dois tipos de seção reta, sendo elas da série HEB e IPE, com diferentes fatores de seção A_m/V , sendo o fator de seção o perímetro da seção transversal composta racionado pela área da seção transversal composta, correspondentes à gama de perfis HEB 160 até HEB 500 e IPE 200 até IPE 500, totalizando 24 perfis em análise. Os perfis foram testados sob influência da curva padrão de incêndio ISO834 [3] para quatro diferentes classes de resistência ao fogo (R30, R60, R90 e R120). Para se determinar a carga axial de flambagem foram utilizados dois comprimentos de coluna (3m e 5m), com três possíveis condições de vinculação, (fixo – fixo, engaste – fixo e engaste – engaste), sendo o comprimento de encurvadura referente as condições de vinculação mostrados através da Figura 20. Para os materiais da seção composta foi utilizado o aço S275 para os perfis metálicos, o aço S500 NR classe B para as barras de reforço e o concreto classe C20/25 para o preenchimento dos perfis, as propriedades térmicas e mecânicas dos materiais em situação de elevadas temperaturas foram descritas no capítulo anterior.

Figura 20 - Comprimentos de encurvadura referentes às condições de vinculação.

O comprimento efetivo de encurvadura da coluna L_{θ} , para o estado limite último, pode ser diferente do considerado à temperatura ambiente. O Eurocódigo leva em consideração o fato de que à temperatura ambiente, a rigidez de rotação da estrutura não se altera, levando a comprimentos efetivos de encurvadura de 0,5L para a vinculação (engaste – engaste) e 0,7L para a vinculação (engaste – fixo). No entanto, foi decido avaliar o comprimento efetivo de encurvadura de 1,0L para a vinculação (fixo – fixo).

As seções analisadas foram definidas de acordo com o método tabular de projeto de pilares mistos parcialmente revestidos em situação de incêndio [1], isso nos leva a dimensões mínimas da seção reta ($b \in h$), distância mínima de cobrimento do reforço (u) e percentagem mínima de reforço ($A_s/(A_s + A_c)$). O dimensionamento destes perfis depende da carga aplicada e da relação entre a espessura da alma t_w e a espessura do banzo t_f . Este método tabular aplicase às classes de aço estrutural S235, S275 e S355, para um mínimo percentual de reforço entre 1% e 6%. Na Tabela 15 são apresentadas as principais dimensões das seções transversais, bem como o número de barras de reforço utilizadas e seus respectivos diâmetros e ainda as dimensões de cobrimento de concreto nas duas direções principais da seção transversal (u_1) segundo z e (u_2) segundo y.

Figura 21 - Modos de deformação da coluna em situação de incêndio.

A Figura 21, apresenta os três comprimentos de encurvadura em situação de incêndio, para diferentes pavimentos do edifício.

Perfil	Barras (n)	\mathbf{h}_{i}	Φ (mm)	$\frac{A_s}{(mm^2)}$	$\frac{A_{c}}{(mm^{2})}$	u ₁ (mm)	u ₂ (mm)	u (mm)	$A_s / A_s + A_c$	$t_{\rm w}/t_{\rm f}$	Am/V (m ⁻¹)
HEB160	4	134,0	12	452	19916	40	40	40	2,22	0,62	25,00
HEB180	4	152,0	12	452	25616	40	40	40	1,74	0,61	22,22
HEB200	4	170,0	20	1257	31213	50	50	50	3,87	0,60	20,00
HEB220	4	188,0	25	1963	37611	50	50	50	4,96	0,59	18,18
HEB240	4	206,0	25	1963	45417	50	50	50	4,14	0,59	16,67
HEB260	4	225,0	32	3217	53033	50	50	50	5,72	0,57	15,38
HEB280	4	244,0	32	3217	62541	50	50	50	4,89	0,58	14,29
HEB300	4	262,0	32	3217	72501	50	50	50	4,25	0,58	13,33
HEB320	4	279,0	32	3217	77275	50	50	50	4,00	0,56	12,92
HEB340	4	297,0	40	5027	80509	50	50	50	5,88	0,56	12,55
HEB360	4	315,0	40	5027	85536	50	50	50	5,55	0,56	12,22
HEB400	4	352,0	40	5027	95821	70	50	55	4,98	0,56	11,67
HEB450	4	398,0	40	5027	108801	70	50	55	4,42	0,54	11,11
HEB500	4	444,0	40	5027	121735	70	50	55	3,97	0,52	10,67
IPE200	4	183,0	12	452	16823	50	40	45	2,62	0,66	30,00
IPE220	4	201,6	20	1257	19730	50	40	45	5,99	0,64	27,27
IPE240	4	220,4	20	1257	23825	50	40	45	5,01	0,63	25,00
IPE270	4	249,6	25	1963	30085	50	40	45	6,13	0,65	22,22
IPE300	4	278,6	25	1963	37848	50	40	45	4,93	0,66	20,00
IPE330	4	307,0	25	1963	44854	50	40	45	4,19	0,65	18,56
IPE360	4	334,6	32	3217	50988	50	40	45	5,93	0,63	17,32
IPE400	4	373,0	32	3217	60715	70	40	45	5,03	0,64	16,11
IPE450	4	420,8	32	3217	72779	70	40	45	4,23	0,64	14,97
IPE500	4	468,0	40	5027	83800	70	50	55	5,66	0,64	14,00

Tabela 15 – Características das seções em estudo.

Tendo em consideração o modelo numérico previsto para a simulação do comportamento da seção reta, a área referente às barras de reforço foram consideradas quadradas, sendo as dimensões de seus lados referentes à área de sua seção circular original.

As seções transversais em estudo representadas através da Tabela 15, assim como todas as suas características físicas e as classes de resistência dos materiais foram também utilizadas para o cálculo do método apresentado na nova proposta, bem como no método avançado de cálculo, sendo estes dois métodos apresentados nos capítulos seguintes.

3.2. Temperatura nos Banzos do Perfil Metálico

Devido ao evento do incêndio padrão, e tendo em consideração que a coluna se encontra envolta pelo fogo nos quatro lados, ambos os banzos apresentarão o mesmo comportamento. A temperatura média dos banzos para um determinado período de exposição ao fogo poderá ser calculada pela equação 32. Através da temperatura média, será possível calcular os coeficientes

de redução para as propriedades do material aço, afetando a rigidez efetiva da seção e a resistência plástica à compressão axial. Os principais parâmetros e coeficientes são definidos pela Tabela 16.

$$\theta_{f,t} = \theta_{0,t} + k_t \left(A_m / V \right) \tag{32}$$

Onde $\theta_{f,t}$ representa a temperatura média no banzo; $\theta_{0,t}$ é o valor de referência; k_t representa o coeficiente empírico, e (A_m/V) é o fator de seção em $[m^{-1}]$.

10	1 urunne	alos pula a determ	mação da tem	peruturu m	
		Resistência ao	$\theta_{0,t}$	kt	
		Fogo Padrão	[°C]	[mºC]	
	-	R30	550	9,65	-
		R60	680	9,55	
		R90	805	6,15	
		R120	900	4,65	

Tabela 16 - Parâmetros para a determinação da temperatura média nos banzos [1].

A temperatura média nos banzos foi determinada para as seções em estudo, resultando a tabela AI 1 do Anexo I. Através da temperatura média obtida, pode-se construir a tabela AI 2 do Anexo I, referente aos coeficientes analíticos $k_{y,\theta}$ e $k_{E,\theta}$.

Sendo conhecidos os coeficientes analíticos $k_{y,\theta}$ e $k_{E,\theta}$ é possível encontrar a tensão de escoamento e o módulo de elasticidade efetivos devido as altas temperaturas nos banzos da seção transversal através das equações 33 e 34.

$$f_{ay,f,t} = f_{ay,f} \times k_{y,\theta} \tag{33}$$

$$E_{a,f,t} = E_{a,f} \times k_{E,\theta} \tag{34}$$

Por fim, a resistência plástica à compressão axial e a rigidez de flexão dos banzos da seção transversal podem ser determinados através das equações 35 e 36. Os resultados destas duas expressões, para os perfis em estudo, podem ser verificados nas tabelas AI 3 e AI 4 do Anexo I respectivamente.

$$N_{fi,pl,Rd,f} = \frac{2(b \times e_f \times f_{ay,f,t})}{\gamma_{M,fi,a}}$$
(35)

$$(EI)_{fi,f,z} = E_{a,f,t} \left(\frac{e_f \times b^3}{6} \right)$$
(36)

3.3. Redução da Altura da Alma do Perfil Metálico

A altura efetiva da alma da seção é afetada pelo fogo devido à condução do fluxo de calor através de ambos os materiais (aço e concreto). O método simplificado de cálculo permite que parte desta componente possa ser negligenciada para o cálculo da rigidez e da capacidade resistente. Portanto, a redução da altura da alma $h_{w,fi}$, quando medida a partir do lado interno do banzo pode ser calculada pela equação 37, tendo em consideração o valor empírico H_t apresentado na Tabela 17 e a altura total da alma do perfil *h*. t_f representa a espessura do banzo.

$$h_{w,fi} = 0.5(h - 2t_f) \left(1 - \sqrt{1 - 0.16(H_t/h)} \right)$$
(37)

Resistência ao	H_t
Fogo Padrão	[mm]
R30	350
R60	770
R90	1100
R120	1250

Tabela 17 – Parâmetros para a redução da altura da alma [1].

A área residual da alma afetará o cálculo da rigidez efetiva, entretanto o módulo de elasticidade deve ser considerado à temperatura ambiente. A resistência plástica à compressão axial é afetada devido a redução da geometria e também devido ao coeficiente de redução para a tensão de escoamento.

Na tabela AI 5 do Anexo I são apresentados os resultados da redução da altura da alma $h_{w,fi}$.para as seções estudadas. Os coeficientes de redução para a tensão de escoamento são apresentados na tabela AI 6 do Anexo I.

A tensão de escoamento para a alma da seção transversal deve ser calculada através da equação 38.

$$f_{ay,w,t} = f_{ay,w} \sqrt{1 - \left(\frac{0.16H_t}{h}\right)}$$
(38)

O fator de redução da tensão de escoamento pode ser representado pelo fator β em função da característica da seção reta "h" e do valor da classificação da resistência ao fogo R, ver Figura 22.

Figura 22 - Variação do fator de redução em função da altura da seção reta.

A resistência plástica à compressão axial e a rigidez de flexão da alma da seção transversal poderão ser determinadas pelas equações 39 e 40. Os resultados destas duas expressões, para os perfis em estudo, podem ser verificados nas tabelas AI 7 e AI 8 do Anexo I respectivamente.

$$N_{fi,pl,Rd,w} = f_{ay,w,t} \left(\frac{e_w \times \left(h - 2e_f - 2h_{w,fi} \right)}{\gamma_{M,fi,a}} \right)$$
(39)

$$(EI)_{f_{i,w,z}} = E_{a,w} \left(\frac{\left(h - 2e_f - 2h_{w,f_i} \right) \times e_w^3}{12} \right)$$
(40)

3.4. Seção Resistente e Temperatura Média do Concreto

O efeito direto e indireto do fogo na porção de concreto permite definir a área residual capaz de suportar as forças de compressão. A camada de concreto a ser desprezada, definida através do parâmetro $b_{c,fi}$, deve ser calcula ignorando o comportamento distinto nas duas direções principais. O valor ou expressão para esta camada externa de concreto está definido na Tabela 18. A camada externa depende do fator de seção para o caso de maiores classificações de resistência ao fogo.

Tabela 18 - Redução da seção de concreto [1].						
Resistência ao	b _{c,fi}					
Fogo Padrão	[mm]					
R30	4					
R60	15					
R90	$0,5*(A_m/V) + 22,5$					
R120	$2,0*(A_m/V) + 24,0$					

A temperatura média no concreto $\theta_{c,t}$ também pode ser calculada, dependendo do fator de seção e levando em consideração a classe de resistência ao fogo, ver Tabela 19. A interpolação linear pode ser utilizada para encontrar soluções quando o fator de seção for intermediário aos definidos.

R30		Re	R60		R90		R120	
A _m /V	$\theta_{c,t}$							
$[m^{-1}]$	[°C]	$[m^{-1}]$	[°C]	$[m^{-1}]$	[°C]	$[m^{-1}]$	[°C]	
4	136	4	214	4	256	4	265	
23	300	9	300	6	300	5	300	
46	400	21	400	13	400	9	400	
-	-	50	600	33	600	23	600	
-	-	-	-	54	800	38	800	
-	-	-	-	-	-	41	900	
-	-	-	-	-	-	43	1000	

Tabela 19 – Temperatura média na seção resistente de concreto [1].

O cálculo da temperatura média do concreto permite o cálculo do fator de redução para a resistência à compressão do concreto $k_{c,\theta}$ e do módulo de elasticidade secante $E_{c,sec,\theta}$, ambos afetando a rigidez efetiva e a resistência plástica à compressão axial.

O módulo de elasticidade secante do concreto a elevadas temperaturas é obtido através da equação 41.

$$E_{c,\text{sec},\theta} = f_{c,\theta} / \varepsilon_{cu,\theta} = f_c k_{c,\theta} / \varepsilon_{cu,\theta}$$
(41)

O parâmetro de espessura $b_{c,fi}$ foi determinado para o cálculo da resistência das seções em estudo, assim como a temperatura média do concreto residual. Estes resultados estão representados na tabela AI 9 do Anexo I. Foi ainda possível determinar a resistência do concreto em elevadas temperaturas $f_{c,\theta}$ e o módulo de elasticidade secante do concreto residual $E_{c,sec,\theta}$, representados na tabela AI 10 do Anexo I.

De posse dos resultados $f_{c,\theta}$ e $E_{c,sec,\theta}$ é possível encontrar a resistência plástica à compressão axial e rigidez de flexão da seção transversal residual de concreto através das equações 42 e 43. Os resultados destas duas expressões, para os perfís em estudo, estão apresentados nas tabelas AI 11 e AI 12 do Anexo I, respectivamente.

$$N_{fi,pl,Rd,c} = \frac{0.86(((h-2e_f-2b_{c,fi})\times(b-e_w-2b_{c,fi}))-A_s)\times f_{c,\theta}}{\gamma_{M,fi,c}}$$
(42)

Onde A_s é a área da seção transversal do aço do reforço e 0,86 o coeficiente de calibração.

$$(EI)_{fi,c,z} = E_{c,sec,\theta} \left(\left(\frac{(h - 2e_f - 2b_{c,fi})(b - 2b_{c,fi})^3 - e_w^3}{12} \right) - I_{s,z} \right)$$
(43)

Sendo $I_{s,z}$ o momento de segunda ordem da seção, segundo o eixo mais fraco relativo aos varões de aço do reforço.

3.5. Redução das Características de Resistência e Rigidez do Aço do Reforço

O fator de redução $k_{y,\theta}$ para a tensão de escoamento e o fator de redução para o módulo de elasticidade $k_{E,\theta}$ para as barras de aço do reforço são determinados em função da classe de resistência ao fogo e a média geométrica das distâncias axiais u em relação as distâncias de recobrimento do reforço de aço. O valor médio da geometria u é obtido pelas distâncias de recobrimento u_1 e u_2 através da equação 44 em [mm], definidos a partir da distância entre o eixo do reforço e a superfície interna do banzo e também a superfície externa de concreto, estabelecida respectivamente nas direções z e y da seção transversal. A interpolação linear pode ser feita para encontrar os fatores apropriados quando não apresentados diretamente na Tabela 20 e na Tabela 21.

$$u = \sqrt{u_1 \times u_2} \tag{44}$$

Onde u depende das distâncias axiais, podendo em determinadas condições, ser calculado de acordo com a equação 45 ou com a equação 46.

$$u = \sqrt{u_2(u_2 + 10)}, \ (u_1 - u_2) > 10 \ [mm]$$
(45)

$$u = \sqrt{u_1(u_1 + 10)}, \ (u_2 - u_1) > 10 \ [mm]$$
(46)

Tabela 20 – Fatores de redução $k_{y,t}$ para a tensão de escoamento do aço do reforço [1].							
Resistência ao	u [mm]	40	45	50	55	60	
Fogo Padrão		40	ч.)	50		00	
R30		1	1	1	1	1	
R60	1.	0,789	0,883	0,976	1	1	
R90	K _{y,t}	0,314	0,434	0,572	0,696	0,822	
R120		0,170	0,223	0,288	0,367	0,436	

Tabela 21 – Fatores de redução k_{E,t} para o módulo de elasticidade do aço do reforço [1].

Resistência ao Fogo Padrão	u [mm]	40	45	50	55	60
R30	k _{E,t}	0,830	0,865	0,888	0,914	0,935
R60		0,604	0,647	0,689	0,729	0,763
R90		0,193	0,283	0,406	0,522	0,619
R120		0,110	0,128	0,173	0,233	0,285

Levando em consideração o cálculo de u e os coeficientes da Tabela 20 e da Tabela 21, foram definidos os coeficientes para $k_{y,t}$ e $k_{E,t}$ para as seções em estudo através de interpolação linear, e estão representados na tabela AI 13 do Anexo I. Através do cálculo anterior foram comparados os resultados de ambos os coeficientes para o cálculo da temperatura média no
reforço. Dos valores obtidos pelas duas tabelas, foi escolhido o mais seguro, permitindo determinar a tabela AI 14 do Anexo I.

Após o cálculo dos coeficientes $k_{y,t}$ e $k_{E,t}$ será possível calcular a resistência plástica à compressão axial e a rigidez efetiva dos varões de reforço da seção transversal através das equações 47 e 48. Os resultados destas duas expressões, para os perfis em estudo, podem ser verificados nas tabelas AI 15 e AI 16 do Anexo I, respectivamente.

$$N_{fi,pl,Rd,s} = \frac{A_s \times k_{y,t} \times f_{sy}}{\gamma_{M,fi,s}}$$
(47)

$$(EI)_{fi,s,z} = k_{E,t} \times E_s \times I_{s,z} \tag{48}$$

3.6. Soma Pesada das Componentes

Através da equação 26, foi realizada a soma pesada das parcelas de cada componente da seção transversal para a resistência plástica à compressão axial. O resultado total dos perfis em estudo está disponível na tabela AI 17 do Anexo I.

Por meio da equação 25, e considerando os fatores de ponderação da Tabela 14, obtevese a tabela AI 18 do Anexo I, onde estão presentes os resultados para a rigidez de flexão efetiva em torno do eixo de menor inércia dos perfis em estudo. Esta página foi intencionalmente deixada em branco

4. NOVA PROPOSTA

Após um estudo numérico anterior [19], o método simplificado de cálculo apresentado pelo Eurocódigo EN 1994-1-2 anexo G [1], usado para o projeto de pilares mistos parcialmente revestido sob situação de incêndio, mostrou-se por vezes inseguro ou antieconômico. Buscando melhorar o método simplificado de cálculo foi apresentada uma nova proposta [2], fornecendo novas formulas, coeficientes, tabelas e limites de aplicação, para que o processo de cálculo destes elementos seja o mais próximo possível de seu comportamento real. O método da nova proposta será apresentado neste capítulo e deverá ser aplicado ao modelo da soma pesada das componentes. Os cálculos intermediários serão apresentados em anexo.

4.1. Temperatura nos Banzos do Perfil Metálico

A nova proposta [2] para o cálculo da temperatura média dos banzos $\theta_{f,t}$ baseia-se numa aproximação bilinear, ver equação 49. Além da fórmula apresentada, foram determinados novos coeficientes empíricos k_t e novos valores de referência $\theta_{0,t}$ conforme apresentado na Tabela 22. Esta nova proposta também faz uma distinção quanto ao tipo de perfil, sendo eles da série HEB ou da série IPE.

$$\theta_{f,t} = \theta_{0,t} + k_t \left(A_m / V \right) \tag{49}$$

Tabela 22 – Novos parâmetros para a temperatura média dos banzos [2].									
Desistância e o		HE	EB			IPE			
Resistencia ao	$10 < A_m/V < 14$		$14 \le A_m/V \le 25$		$10 < A_m/V < 19$		$19 \le A_m/V \le 30$		
Fogo Padrao	$\theta_{0,t}[^oC]$	$k_t[m^{o}C]$	$\theta_{0,t}[^oC]$	$k_t[m^{o}C]$	$\theta_{0,t}[^oC]$	$k_t[m^{o}C]$	$\theta_{0,t}[^oC]$	$k_t[m^{\circ}C]$	
R30	387	19,55	588	4,69	582	6,45	656	2,45	
R60	665	14,93	819	3,54	824	3,75	862	1,72	
R90	887	5,67	936	2,04	935	2,2	956	1,09	
R120	961	4,29	998	1,62	997	1,68	1010	0,96	

A temperatura média nos banzos da seção, obtidos através da nova formulação, permite o uso do mesmo procedimento determinado pelo anexo G do Eurocódigo EN 1994-1-2 [1] para o cálculo da rigidez de flexão da seção e da resistência plástica à compressão axial, ver equações 35 e 36.

Os resultados da temperatura média dos banzos das seções em estudo, estão disponíveis na tabela AI 19 do Anexo I. Através destes resultados é possível a determinação da tabela AI 20 do Anexo I, onde são apresentados os resultados referentes aos coeficientes de redução da resistência $k_{y,\theta}$ e a redução do módulo de elasticidade $k_{E,\theta}$.

Os resultados da resistência plástica à compressão axial e rigidez de flexão dos banzos estão disponíveis nas tabelas AI 21 e AI 22 do Anexo I respectivamente.

4.2. Redução da Altura da Alma do Perfil Metálico

O efeito do fogo na alma do perfil é definido pelo critério da isotérmica de 400°C [42]. Este critério define a parte da alma que poderá ser negligenciada, $h_{w,fi}$, em relação ao cálculo da resistência e rigidez deste elemento. As novas fórmulas apresentam uma grande dependência do fator de seção quando submetidas ao fogo padrão, ao contrário da versão do Eurocódigo EN 1994-1-2 [1]. Como alternativa a versão atual, a nova proposta [2] apresenta uma expressão paramétrica que depende do fator de seção e da classe de resistência ao fogo, de acordo com as equações 50 e 51. Os limites de aplicação dessas equações são definidos na Tabela 23 e diferenciados para os perfis da série HEB e da série IPE.

$$2h_{w,fi}/h_i \times 100 = 0.0035t^2(A_m/V) - 0.03t^{2.02} + (A_m/V)/2 \to (HEB)$$
(50)

$$2h_{w,fi}/h_i \times 100 = 0.002t^2(A_m/V) - 0.03t^{1.933} + (A_m/V) \to (IPE)$$
(51)

Onde h_i é a distância entre as faces interiores dos banzos em [mm] e t representa o tempo de exposição ao fogo em valores de classe de resistência 30, 60, 90 e 120 [min].

Tabela 23 – Limites de aplicação da redução da altura da alma [2].						
Resistência ao	Fator de Seção (HEB)	Fator de Seção (IPE)				
Fogo Padrão	$A_m/V <$	$A_m/V <$				
R30	22,22	30				
R60	15,38	18,56				
R90	12,22	14,97				
R120	11,11	-				

A área residual da alma dos perfis afetará o cálculo da rigidez da seção à flexão e da resistência plástica à compressão axial, entretanto o módulo de elasticidade e a tensão de escoamento do aço não serão afetadas devido à falta de uma formulação para calcular a

temperatura média da área residual da alma, sendo então, considerado os seus valores para a temperatura ambiente.

Com base nas novas formulações propostas e aplicando nos perfis selecionados para o estudo, foi possível determinar a tabela AI 23 do Anexo I, onde estão representados os valores referentes à redução da altura da alma $h_{w,fi}$. Para os casos onde não se apresenta um valor específico, significa que toda a alma do perfil deve ser desprezada, ou seja, toda a alma possui temperatura acima dos 400 °C.

Os resultados para a resistência plástica à compressão axial e rigidez de flexão da alma dos perfis em estudo, são apresentados nas tabelas AI 24 e AI 25 do Anexo I, e levam em consideração apenas a área efetiva desta componente da seção mista.

4.3. Seção Resistente e Temperatura Média do Concreto

O efeito do fogo no concreto é determinado pelo critério da isotérmica de 500°C [1]. Na nova proposta [2], a camada de concreto externa a ser negligenciada é diferenciada em ambas as direções principais, $b_{c,fi,\nu}$ e $b_{c,fi,h}$, sendo elas calculadas através da equação 52 e dependentes do fator de seção. Os coeficientes presentes na equação são determinados pela Tabela 24 para perfis da série HEB e pela Tabela 25 para perfis da série IPE, sendo seus limites de aplicação apresentados na Tabela 26.

$$b_{c,fi} = a(A_m/V)^2 + b(A_m/V) + c$$
(52)

	entes pura a	redução da es	pessuia de	concreto pui	a perns da se	1101120[2]		
Desistôneia eo		$b_{c,fi,h}$ [mm]			$b_{c,fi,v}$ [mm]			
Eogo Padrão	а	b	с	а	b	с		
rogo radiao	$[m^2.mm]$	[m.mm]	[mm]	$[m^2.mm]$	[m.mm]	[mm]		
R30	0	0,0809	13,5	0	0,372	3,5		
R60	0,1825	-4,2903	50	0,1624	-3,2923	41		
R90	1,0052	-22,575	163,5	1,8649	-43,287	298		
R120	0	7,5529	-35,5	0	6,0049	9		

Tabela 24 - Coeficientes para a redução da espessura de concreto para perfis da série HEB [2].

Resistência ao	$b_{c,fi,h}[mm]$			$b_{c,fi,v}$ [mm]			
Eago Dadrão	а	b	с	а	b	с	
rogo Padrao	$[m^2.mm]$	[m.mm]	[mm]	$[m^2.mm]$	[m.mm]	[mm]	
R30	0	0,2206	10,5	0	0,9383	-3	
R60	0,2984	-8,8924	93	0,5888	-15,116	135	
R90	1,3897	-38,972	313	2,0403	-50,693	393	
R120	0	18,283	-199	0	48,59	-537	

Tabela 25 - Coeficientes para a redução da espessura de concreto para perfis da série IPE [2].

Tabela 26 - Limites de aplicação para a redução da espessura de concreto e temperatura média [2].

Resistência ao	Fator d	e Seção
Fogo Padrão	HEB	IPE
R30	$A_m/V < 25$	$A_m/V < 30$
R60	$A_m/V < 20$	$A_m / V < 23$
R90	$A_m/V < 17$	$A_m\!/V < \!18$
R120	$A_m/V < 14$	$A_m\!/V < 15$

Onde a, b e c são coeficientes empíricos.

A nova proposta [2] também permite o cálculo da temperatura média na área residual de concreto $\theta_{c,t}$ através da equação 53 para perfis da série HEB e da equação 54 para perfis da série IPE. Este procedimento é baseado no fator de seção assim como no tempo de exposição ao fogo em valores de resistência 30, 60, 90 e 120 [min], e seus limites se aplicação são os mesmo definidos na Tabela 26.

$$\theta_{c,t} = 3.1t^{0.5} (A_m/V) + 0.003t^{1.95} \to (HEB)$$
(53)

$$\theta_{c,t} = 2,67t^{0,5} (A_m/V) + 3,4t^{0,61} \to (IPE)$$
(54)

Este método permite, através do cálculo da temperatura média na área residual de concreto, o cálculo do fator de redução para a resistência à compressão do concreto $k_{c,\theta}$, e o módulo de elasticidade secante $E_{c,sec,\theta}$, ambos afetando a rigidez dos perfis e a resistência plástica à compressão axial.

Por meio das formulações apresentadas, com aplicação direta nas seções em estudo, foi possível elaborar a tabela AI 26 do Anexo I relativa ao cálculo da espessura de concreto a ser negligenciada $b_{c,fi,h}$ e $b_{c,fi,v}$, assim como a tabela AI 27 do Anexo I referente à temperatura média na seção residual de concreto. Para os casos onde não se apresenta um valor específico,

significa que todo o concreto deve ser desprezado, ou seja, todo o concreto possui temperatura superior a 500 °C.

Mediante os resultados das equações 53 e 54, para os perfis em estudo, foi obtida a resistência do concreto para elevadas temperaturas $f_{c,\theta}$, bem como o módulo de elasticidade para elevadas temperaturas $E_{c,sec,\theta}$, apresentados na tabela AI 28 do Anexo I.

De posse dos resultados para a resistência e rigidez a elevadas temperaturas é possível determinar a resistência plástica à compressão axial e a rigidez de flexão do concreto através das equações 42 e 43. Os resultados são apresentados nas tabelas AI 29 e AI 30 do Anexo I, respectivamente. Nota-se que para este ponto deve ser tida uma maior atenção, visto que para o método da nova proposta, há uma diferenciação para as camadas de concreto a serem negligenciadas.

4.4. Redução das Características de Resistência e Rigidez do Aço do Reforço

O efeito do fogo nas barras de aço do reforço depende do cálculo de sua temperatura média. A nova proposta [2] apresentou duas novas fórmulas paramétricas para determinar este efeito, definidas nas equações 55 e 56 para perfis da série HEB e IPE, respectivamente. Esta nova fórmula considera o tempo de exposição ao fogo t em valores de resistência ao fogo 30, 60, 90 e 120 minutos, considera ainda o fator de seção assim como a média geométrica das distâncias axiais u, sendo o parâmetro u determinado de acordo com o Eurocódigo EN 1994-1-2 [1] e previamente no subtítulo 4.4.

$$\theta_{s,t} = 0.1t^{1,1} (A_m/V) + 7.5t - 0.1t^{1.756} - 8u + 390 \to (HEB)$$
(55)

$$\theta_{s,t} = 14(A_m/V) + 11t - 0.1t^{1.795} - 8u + 115 \to (IPE)$$
(56)

As temperaturas elevadas afetam as propriedades mecânicas do material, permitindo o cálculo dos fatores de redução tanto para a rigidez da seção $k_{E,\theta}$, quanto para a resistência à compressão axial $k_{v,\theta}$.

Aplicando as equações 55 e 56 para as seções em estudo, foi obtida a tabela AI 31 do Anexo I referente à temperatura média no aço de reforço das seções. Por meio destes resultados é possível a determinação da tabela AI 32 do Anexo I, onde são apresentados os resultados referentes aos coeficientes de redução da resistência $k_{y,\theta}$ e a redução do módulo de elasticidade $k_{E,\theta}$. Os resultados para a resistência plástica à compressão axial e rigidez de flexão dos reforços estão disponíveis nas tabelas AI 33 e AI 34 do Anexo I, respectivamente.

4.5. Soma Pesada das Componentes

A soma pesada das parcelas de cada componente da seção transversal foi realizada por meio da equação 26 para o cálculo da resistência plástica à compressão axial. Os resultados para os perfis estudados podem ser consultados na tabela AI 35 do Anexo I.

Considerando os fatores de ponderação da Tabela 14 e a equação 25, é possível construir a Tabela AI 36 do Anexo I, onde estão disponíveis os resultados encontrados para a rigidez de flexão efetiva em torno do eixo de menor inércia dos perfis em estudo.

5. MÉTODO AVANÇADO DE CÁLCULO E APERFEIÇOAMENTO DA NOVA PROPOSTA

O cálculo dos campos de temperatura nas seções transversais dos pilares mistos parcialmente revestidos foi realizado através do método dos elementos finitos, com o auxílio do software ANSYS [43]. O método dos elementos finitos requer a solução da equação 57 no domínio da seção transversal (Ω), e da equação 58 na fronteira ($\partial \Omega$), quando expostas ao fogo.

$$\nabla(\lambda_{(T)} \cdot \nabla T) = \rho_{(T)} \cdot C_{p(T)} \cdot \partial T / \partial t \to (\Omega)$$
(57)

$$\lambda_{(T)} \cdot \nabla T \cdot \vec{n} = \alpha_c (T_g - T) + \phi \cdot \varepsilon_m \cdot \varepsilon_f \cdot \sigma \cdot (T_g^4 - T^4) \to (\partial \Omega)$$
(58)

Nessas equações: *T* representa a temperatura de cada material; $\rho_{(T)}$ define a massa específica; $C_{p(T)}$ define o calor específico; $\lambda_{(T)}$ define a condutividade térmica; α_c especifica o coeficiente de convecção; T_g representa a temperatura do gás do compartimento em chamas, usando a curva de incêndio padrão ISO834 [3] em torno da seção transversal com os 4 lados expostos; ϕ especifica o fator de forma; ε_m representa a emissividade de cada material; ε_f especifica a emissividade do fogo e σ representa a constante de Stephan-Boltzmann.

O modelo bidimensional utiliza o elemento PLANE55, com quatro nós e um grau de liberdade por nó, permitindo realizar uma análise térmica transiente não linear. A análise foi definida com um incremento de tempo de integração de 60s, podendo ser diminuído para 1s, entretanto o máximo incremento de tempo não pode ultrapassar os 60s.

O critério de convergência utiliza um valor para o fluxo de calor menor que 0,1%, com um valor de referência mínimo de $1x10^{-6}$. O elemento selecionado utiliza funções de interpolação linear para determinar a matriz de condutividade e 4 pontos de integração (2x2), ver Figura 23.

A malha de elementos finitos foi realizada de forma retangular, tendo os elementos finitos de todas as seções transversais em estudo aproximadamente 1,30mm em cada uma de suas dimensões. O grande número de elementos justifica-se pela necessidade de medir a área residual das componentes alma do perfil e concreto. As barras de aço do reforço foram assumidas com uma geometria quadrada, sendo seus lados relacionados a área circular original. Este modelo considera o contato perfeito entre as quatro componentes.

Figura 23 – a) Condições limite, b) Elemento finito "PLANE55", c) Malha de elementos finitos 2D (HEB 300).

As condições de contorno foram impostas de acordo com o Eurocódigo EN 1991-1-2 [39] na superfície externa da seção transversal, sendo elas as condições de radiação $\varepsilon_f = 1,0$ e $T_g = ISO834$ e as condições de convecção $\alpha = 25 \left[Wm^{-2}K^{-1} \right]$ e $T_g = ISO834$. A condição inicial de 20 [°C] foi definida para todos os nós da malha de elementos finitos. As propriedades dos materiais foram definidas em concordância com os Eurocódigos de cada material, previamente definidas nos capítulos anteriores deste trabalho.

A Tabela 27 apresenta as informações sobre o modelo de elementos finitos utilizado na modelagem das seções transversais.

Doufil	A _m /V	As	Nº do Náo	,	Nº de El	ementos	
Perm	(m ⁻¹)	(mm x mm)	in de mos -	Total	t_{f}	\mathbf{t}_{w}	As
HEB160	25,00	10,7 x 10,7	14399	14160	10	6	8 x 8
HEB180	22,22	10,7 x 10,7	18225	17956	10	6	8 x 8
HEB200	20,00	17,8 x 17,8	24963	24648	12	6	14 x 14
HEB220	18,18	22,2 x 22,2	32399	32040	12	8	16 x 16
HEB240	16,67	22,2 x 22,2	29929	29584	12	8	16 x 16
HEB260	15,38	28,4 x 28,4	41615	41208	14	8	22 x 22
HEB280	14,29	28,4 x 28,4	47523	47088	14	8	22 x 22
HEB300	13,33	28,4 x 28,4	54289	53824	14	8	22 x 22
HEB320	12,92	28,4 x 28,4	58017	57536	16	8	22 x 22
HEB340	12,55	35,5 x 35,5	54471	55000	16	8	26 x 26
HEB360	12,22	35,5 x 35,5	59095	58608	16	10	26 x 26
HEB400	11,67	35,5 x 35,5	65785	65268	18	10	26 x 26
HEB450	11,11	35,5 x 35,5	73813	73260	20	10	26 x 26
HEB500	10,67	35,5 x 35,5	80665	88080	20	10	26 x 26
IPE200	30,00	10,7 x 10,7	11627	11400	6	4	8 x 8
IPE220	27,27	17,8 x 17,8	13041	12800	6	4	14 x 14
IPE240	25,00	17,8 x 17,8	17577	17296	8	4	14 x 14
IPE270	22,22	22,2 x 22,2	19109	18816	8	4	16 x 16
IPE300	20,00	22,2 x 22,2	23219	22896	8	6	16 x 16
IPE330	18,56	22,2 x 22,2	26529	26180	8	6	16 x 16
IPE360	17,32	28,4 x 28,4	36811	36400	8	6	22 x 22
IPE400	16,11	28,4 x 28,4	43229	42780	10	6	22 x 22
IPE450	14,97	28,4 x 28,4	52597	52096	10	8	22 x 22
IPE500	14,00	35,5 x 35,5	54683	54168	12	8	26 x 26

Tabela 27 – Nº de nós e elementos utilizados nas seções transversais em estudo.

Todas as simulações realizadas foram determinadas para um tempo total de exposição de 2 horas à curva de incêndio padrão ISO834 [3], sendo possível coletar as informações para 1800s, 3600s, 5400s e 7200s, referentes ao tempo das classes de resistência ao fogo (R30, R60, R90 e R120). Esta denominação por siglas apesentada será utilizada buscando facilitar a compreensão das informações.

A Figura 24 irá representar os campos de temperatura correspondentes às classes de resistência ao fogo para o caso do perfil HEB 300 analisado. No Anexo I estão representados os campos de temperatura de todos os perfis em estudo para as classes de resistência ao fogo R30, R60, R90 e R120 através das tabelas AI 75 à AI 86. Nas tabelas AI 87 à AI 98 estarão representadas as isotérmicas de 500°C para ter uma percepção geométrica visual da diminuição da seção resistente de concreto em ambas as direções. Serão ainda apresentadas pelas tabelas AI 99 à AI 110 as isotérmicas de 400°C referentes à redução da altura da alma dos perfis.

Figura 24 - Resultados da simulação numérica do perfil HEB 300 para cada classe de resistência.

A Tabela 28 apresenta os valores máximos e mínimos de temperatura dos perfis para cada classe de resistência ao fogo. Pode-se notar que a temperatura mínima decresce significantemente com a diminuição do fator de seção, isso se dá pelo fato do índice de massividade ser inversamente proporcional ao tamanho do perfil, podendo ainda ser traduzido por uma maior área de concreto protegendo as partes mais internas dos perfis, onde são encontradas as menores temperaturas.

Perfil	A _m /V	R30	R60	R90	R120
HEB160	25,00	$291\sim805$	593 ~ 937	$765 \sim 1002$	890 ~ 1047
HEB180	22,22	$216 \sim 804$	515 ~ 936	698 ~ 1002	$827 \sim 1046$
HEB200	20,00	$154\sim803$	$442 \sim 936$	$624 \sim 1001$	$746 \sim 1046$
HEB220	18,18	$120\sim802$	$381 \sim 935$	$561 \sim 1001$	$689 \sim 1045$
HEB240	16,67	$103\sim801$	$320 \sim 934$	$497 \sim 1001$	$630\sim 1045$
HEB260	15,38	$93 \sim 800$	$266 \sim 934$	$438 \sim 1000$	$570 \sim 1045$
HEB280	14,29	$78 \sim 800$	$211 \sim 934$	$381 \sim 1000$	$510\sim 1045$
HEB300	13,33	$65 \sim 799$	$159\sim933$	$329 \sim 1000$	$455\sim 1045$
HEB320	12,92	$61 \sim 797$	$145 \sim 933$	$309 \sim 1000$	$433 \sim 1045$
HEB340	12,55	$58 \sim 795$	$137 \sim 931$	$294\sim999$	$417 \sim 1044$
HEB360	12,22	$55 \sim 794$	$130 \sim 931$	$277\sim999$	$398\sim 1044$
HEB400	11,67	$50 \sim 794$	$120 \sim 931$	$250\sim999$	$367 \sim 1044$
HEB450	11,11	$44\sim793$	$110\sim931$	$213\sim999$	$328 \sim 1044$
HEB500	10,67	$40\sim791$	$104 \sim 930$	$181 \sim 999$	$295\sim 1044$
IPE200	30,00	$372 \sim 811$	$664 \sim 938$	814 ~ 1003	933 ~ 1047
IPE220	27,27	$316\sim809$	$604 \sim 938$	$741 \sim 1002$	$874 \sim 1046$
IPE240	25,00	$267 \sim 808$	$554 \sim 937$	$717 \sim 1002$	$830 \sim 1046$
IPE270	22,22	$199\sim807$	$477 \sim 937$	$652 \sim 1002$	$752\sim 1046$
IPE300	20,00	$144 \sim 806$	$407 \sim 936$	$583 \sim 1001$	$703 \sim 1046$
IPE330	18,56	$120\sim805$	$355 \sim 936$	$528 \sim 1001$	$655 \sim 1045$
IPE360	17,32	$108\sim803$	$312 \sim 935$	$481 \sim 1001$	$608\sim 1045$
IPE400	16,11	$98\sim803$	$266 \sim 935$	$429 \sim 1001$	$554 \sim 1045$
IPE450	14,97	$84\sim803$	$217 \sim 935$	$375\sim 1001$	$497 \sim 1045$
IPE500	14,00	$70 \sim 801$	$174 \sim 934$	328 ~ 1000	$446 \sim 1045$

Tabela 28 – Temperatura máxima e mínima dos perfis em [°C].

5.1. Resultados do Método Avançado de Cálculo e Aperfeiçoamento da Nova Proposta

Nos seguintes tópicos serão apresentados os resultados obtidos através das simulações computacionais provenientes do método avançado de cálculo usando a ferramenta computacional ANSYS. Os resultados obtidos serão comparados com os resultados do anexo G do Eurocódigo EN 1994-1-2 [1] e da nova proposta [2], sendo os resultados graficamente relacionados a cada componente da seção transversal, quanto à temperatura média das componentes, bem como as reduções das dimensões da alma e do concreto, em função das elevadas temperaturas.

5.1.1. Temperatura nos Banzos do Perfil Metálico

A temperatura média dos banzos $\theta_{f,t}$ dos perfis em análise foi obtida através da média aritmética da temperatura de cada nó correspondente a esta componente, e está representada na tabela AI 37 do Anexo I. Após o cálculo da temperatura média $\theta_{f,t}$, é possível encontrar os coeficientes de redução $k_{y,\theta}$ e $k_{E,\theta}$ apresentados nas tabelas AI 39 e AI 40 do Anexo I, sendo então calculadas a resistência plástica à compressão axial $N_{fi,pl,Rd,f}$ e a rigidez de flexão em torno do eixo de menor inércia $(EI)_{fi,f,z}$, ambos apresentados nas tabelas AI 41 e AI 43 do Anexo I, respectivamente.

Na Figura 25 são apresentados os valores da temperatura média dos banzos dos perfis em estudo. Os gráficos apresentam os resultados do método simplificado de cálculo obtidos através do Eurocódigo EN 1994-1-2 [1] e da nova proposta [2]. São ainda apresentados os resultados do método avançado de cálculo e o aperfeiçoamento da nova proposta.

Figura 25 - Temperatura média dos banzos para os perfis da série HEB e IPE.

Conforme salientado na nova proposta [2], o Eurocódigo EN 1994-1-2 [1] é por vezes conservador ou inseguro. Analisando os resultados, é possível notar que os resultados obtidos através da nova proposta se assemelham muito aos resultados obtidos através do método avançado de cálculo, tornando relevante os valores para as temperaturas de referência e os coeficientes empíricos apresentados pela mesma. Entretanto, alguns ajustes podem ser feitos buscando refinar ainda mais a nova proposta, sendo assim, será apresentada a Tabela 29, referente ao aperfeiçoamento dos parâmetros apresentados pela nova proposta.

Nota-se, que os dados definidos pela Tabela 29, deverão ser aplicados na equação 49 para o cálculo da temperatura média $\theta_{f,t}$ nos banzos dos perfis.

10	rabela 29 – rataliettos apericiçõados para a temperatura media nos banzos.							
Desistênsis		HI	EB		IPE			
Esta Da da	$10 < A_r$	$_{\rm m}/{ m V} < 14$	$14 \le A_r$	"/V <= 25	$14 < A_{I}$	_m /V < 19	$19 \le A_{I}$	$_{\rm m}/{\rm V} <= 30$
Fogo Padrao	$\theta_{0,t}[^oC]$	$k_t[m^{o}C]$	$\theta_{0,t}[^oC]$	$k_t[m^{o}C]$	$\theta_{0,t}[^oC]$	$k_t[m^{o}C]$	$\theta_{0,t}[^oC]$	$k_t[m^{\circ}C]$
R30	389	19,55	588	4,70	581	6,60	656	2,50
R60	668	14,95	821	3,50	824	3,95	863	1,75
R90	889	5,65	937	2,05	937	2,20	957	1,10
R120	963	4,30	999	1,60	998	1,70	1010	1,00

Tabela 29 – Parâmetros aperfeiçoados para a temperatura média nos banzos.

A temperatura média no banzo $\theta_{f,t}$ pode ser determinada a partir dos novos parâmetros para os perfis em estudo, sendo os resultados do aperfeiçoamento apresentados na tabela AI 38 do Anexo I. Dados os resultados, é possível encontrar os coeficientes de redução $k_{y,\theta}$ e $k_{E,\theta}$ apresentados nas tabelas AI 39 e AI 40 do Anexo I, sendo então calculadas a resistência plástica à compressão axial $N_{fi,pl,Rd,f}$ e a rigidez de flexão dos banzos em torno do eixo de menor inércia $(EI)_{fi,f,z}$, ambos apresentados nas tabelas AI 42 e AI 44 respectivamente.

5.1.2. Temperatura e Redução da Altura da Alma do Perfil Metálico

A redução da altura da alma $h_{w,fi}$ foi realizada levando em consideração o critério da isotérmica de 400 °C [42]. A temperatura média da área residual da alma $\theta_{w,t}$ foi obtida através da média aritmética da temperatura de cada nó correspondente ao critério anterior. Os resultados do método avançado de cálculo para a temperatura média da alma estão disponíveis na tabela AI 45 do Anexo I, e a redução da altura da alma pode ser observada na tabela AI 47 do Anexo I.

De posse dos dados referentes da temperatura média $\theta_{w,t}$, é possível encontrar o coeficiente de redução $k_{E,\theta}$ apresentado na tabela AI 48 do Anexo I, sendo então calculadas a resistência plástica à compressão axial $N_{fi,pl,Rd,w}$ e a rigidez de flexão $(EI)_{fi,w,z}$, ambos apresentados nas tabelas AI 49 e AI 51 do Anexo I, respectivamente. A resistência do aço da alma não é afetada, visto que para temperaturas inferiores ao critério utilizado, o aço não possui redução desta característica mecânica. A isotérmica de 400 °C para os perfis em estudo pode ser observada nas tabelas AI 99 à AI 110 do Anexo I. Esta característica difere significativamente da anterior nova proposta, porque considera a redução do módulo de elasticidade em função da temperatura média residual.

Na Figura 26 são apresentados os valores para a redução da altura da alma dos perfis em estudo. Os gráficos apresentam os resultados do método simplificado de cálculo obtidos através do Eurocódigo EN 1994-1-2 [1] e da nova proposta [2], são ainda apresentados os resultados do método avançado de cálculo.

Figura 26 - Redução da altura da alma para os perfis da série HEB e IPE.

Segundo a nova proposta [2], e conforme se poderá observar através dos gráficos apresentados, o Eurocódigo EN 1994-1-2 [1] apresenta-se inseguro para todas as classes de resistência ao fogo padrão para a redução da altura da alma.

Através da comparação dos resultados entre a nova proposta e o método avançado de cálculo é possível notar que alguns ajustes nas curvas podem ser feitos, entretanto os mesmos não foram realizados devido à dificuldade de se ajustar a formulação utilizada pela nova proposta, requerendo uma análise matemática mais aprofundada.

No entanto, as equações disponíveis na nova proposta para o cálculo da redução da altura da alma serão simplificadas, resultando nas equações 59 e 60. Os limites de aplicação referentes as equações serão aperfeiçoados, e estarão disponíveis na Tabela 30.

$$h_{w,fi} = (0,00175 \times t^2 (A_m/V) - 0,015 \times t^{2,02} + (A_m/V)/4) \times h_i \to (HEB)$$
(59)

$$h_{w,fi} = (0,001 \times t^2 (A_m/V) - 0,015 \times t^{1,933} + (A_m/V)/2) \times h_i \to (IPE)$$
(60)

Tabela 30 – Limites aperfeiçoados para a redução da altura e temperatura da alma.

Resistência ao	Fator de Seção HEB	Fator de Seção IPE
Fogo Padrão	$A_m/V \ll$	$A_m/V \ll$
R30	22,22	30
R60	15,38	18,56
R90	12,22	14,97
R120	11,11	-

Após os resultados das simulações numéricas, será possível determinar uma nova equação para o cálculo da temperatura média na área residual da alma, isto tornará possível a obtenção de um coeficiente de redução para o módulo de elasticidade, afetando a rigidez de flexão desta componente da seção transversal. A nova fórmula está determinada através da equação 61, sendo de grande dependência de seu fator de seção. A Tabela 31 apresenta a temperatura de referência e os coeficientes empíricos a serem utilizados na equação. Os limites de aplicação seguem os mesmos determinados pela Tabela 30.

$$\theta_{w,t} = -\theta_{0,t} + k_t \left(A_m / V \right) \tag{61}$$

Tabela 31 – Novos parâmetros para a temperatura média da alma.							
Desistêncie ee		H	EB		II	PE	
Fogo Dodrão	$10 < A_{n}$	$_{\rm n}/{ m V} < 14$	$14 \le A_m/V$	V < Table 15	$14 < A_m/V$	< Table 15	
rogo raurao	$\theta_{0,t}$ [°C]	kt [m°C]	$\theta_{0,t}$ [°C]	kt[m°C]	$\theta_{0,t}$ [°C]	k _t [m°C]	
R30	155	28,0	14	17,0	57	15,0	
R60	284	47,0	48	29,0	153	29,0	
R90	426	67,0	-	-	107	33,0	
R120	471	78,0	-	-	-	-	

Nos gráficos da Figura 27 estão apresentados os resultados do método avançado de cálculo, bem como os resultados provenientes da nova formulação.

Figura 27 - Temperatura média da alma para os perfis da série HEB e IPE.

A temperatura média na alma $\theta_{w,t}$ e a redução da altura da alma $h_{w,fi}$, a partir dos novos parâmetros, para os perfis em estudo, podem ser verificados nas tabelas AI 46 e AI 47 do Anexo I respectivamente. Dados os resultados, é possível encontrar o coeficiente de redução $k_{E,\theta}$ apresentado na tabela AI 48 do Anexo I, sendo então calculadas a resistência plástica à compressão axial $N_{fi,pl,Rd,w}$ e a rigidez de flexão $(EI)_{fi,w,z}$, ambos apresentados nas tabelas AI 50 e AI 52 do Anexo I respectivamente.

5.1.3. Seção Resistente e Temperatura Média do Concreto

O critério da isotérmica de 500 °C [1] estabeleceu a área de concreto a ser considerada para esta parcela da seção transversal, assumindo que toda a porção de concreto acima deste critério não possua capacidade resistente. Para as seções em estudo, foram determinadas as posições dos nós que se encontravam neste valor limite, as isotérmicas podem ser observadas nas tabelas AI 87 à AI 98 do Anexo I. Foram então medidas as distâncias entre os nós da condição limite e a extremidade lateral dos perfis, $b_{c,fi,h}$, e a superfície interna do banzo dos perfis, $b_{c,fi,v}$, sendo os resultados apresentados nas tabelas AI 54 e AI 56 do Anexo I.

Para o cálculo da temperatura média $\theta_{c,t}$, referente a área residual de concreto, foi realizada a média aritmética da temperatura de todos os nós com temperatura inferior ao critério limite, sendo os resultados apresentados na tabela AI 53 do Anexo I.

Após o cálculo da temperatura média $\theta_{c,t}$ para os perfis em estudo, é possível determinar a resistência do concreto a temperaturas elevadas $f_{c,\theta}$, bem como o módulo de elasticidade a elevadas temperaturas $E_{c,sec,\theta}$, apresentados respectivamente nas tabelas AI 58 e AI 59 do Anexo I. Após a determinação das propriedades, e sendo conhecido o valor da camada de concreto a ser desprezada, é possível determinar a resistência plástica à compressão axial $N_{fi,pl,Rd,c}$ e a rigidez de flexão em torno do eixo de menor inércia $(EI)_{fi,c,z}$, ambas as quantidades sendo apresentadas nas tabelas AI 60 e AI 62 do Anexo I.

Na Figura 28 são apresentados os valores da temperatura média $\theta_{c,t}$ na área residual de concreto dos perfis em estudo. Os gráficos dispõem dos resultados do método simplificado de cálculo obtidos através do Eurocódigo EN 1994-1-2 [1] e da nova proposta [2], assim como os resultados encontrados pelo método avançado de cálculo.

Figura 28 – Temperatura média no concreto residual para os perfis da série HEB e IPE.

Através dos gráficos comparativos é possível notar que a atual versão do Eurocódigo EN 1994-1-2 [1] é insegura para alguns perfis e classes de resistência ao fogo, e antieconômica para outras. A nova proposta [2] apresentada está de acordo com os resultados obtidos através das simulações numéricas. Apesar das diferenças encontradas nas classes de resistência R30, as formulações apresentadas não serão alteradas, entretanto, os limites de aplicação foram aperfeiçoados, devendo seguir os valores apresentados na Tabela 32.

32 - 100005 II	innics de apricação	, para a temperatur	a c redução da espes	sura
_	Resistência ao	Fator de	e Seção	
	Fogo Padrão	HEB	IPE	
-	R30	$A_{m}/V \le 25$	$A_{\rm m}/V <= 30$	
	R60	$A_m / V <= 20$	$A_{m}/V \le 23$	
	R90	$A_{m}/V \le 17$	$A_{m}/V \le 18$	
	R120	$A_m / V <= 14$	$A_m/V <= 15$	

Tabela 32 - Novos limites de aplicação para a temperatura e redução da espessura de concreto.

Na Figura 29 estão apresentados os valores da redução horizontal de concreto $b_{c,fi,h}$, e na Figura 30 estão apresentados os valores da redução vertical de concreto $b_{c,fi,v}$, para todos os perfis em estudo, sendo separados em gráficos relativos aos perfis da série HEB e IPE. Os gráficos contêm os resultados provenientes do método simplificado de cálculo, obtidos através do Eurocódigo EN 1994-1-2 [1] e da nova proposta [2]. São ainda apresentados os resultados do método avançado de cálculo e do aperfeiçoamento da nova proposta.

Figura 29 - Redução horizontal de concreto para os perfis da série HEB e IPE.

Figura 30 - Redução vertical de concreto para os perfis da série HEB e IPE.

De acordo com o Eurocódigo EN 1994-1-2 [1], a redução da espessura de concreto não é diferenciada entre horizontal e vertical, sendo ainda possível notar que para as classes de resistência R30 e R60 elas não variam de acordo com o fator de seção e são inseguras quando comparadas aos resultados obtidos pelas formulações da nova proposta [2] e pelo método avançado de cálculo. Para as classes R90 e R120 o fator de seção passa a ter influência nas formulações definidas no Eurocódigo EN 1994-1-2 [1], entretanto é nitidamente notável a falta de segurança tanto para os perfis da série HEB e IPE.

Comparando os resultados do método avançado de cálculo com os obtidos através da nova proposta [2], é evidenciado que os mesmos possuem grande semelhança, principalmente para os perfis da série IPE, tornando relevante a fórmula apresentada e os coeficientes apresentados pela mesma. Entretanto, alguns ajustes poderão ser feitos para aperfeiçoar a nova proposta [2]. Sendo assim será apresentada a Tabela 33 referente aos novos coeficientes para a redução da espessura de concreto em perfis da série HEB e a Tabela 34 referente aos novos coeficientes para a redução da espessura de concreto em perfis da série IPE. Os limites de aplicação seguem os mesmos valores definidos na Tabela 32.

Pasistância no		b _{c,fi,h} [mm]			b _{c,fi,v} [mm]	
Eogo Dodrão	а	b	с	а	b	с
rogo radiao	$[m^2.mm]$	[m.mm]	[mm]	$[m^2.mm]$	[m.mm]	[mm]
R30	0	0,202	8.3	0	0.65	-4,07
R60	0,18	-4,14	47	0,162	-3,3	38,5
R90	1,04	-22,9	159,6	1,865	-43,29	295,5
R120	0	7,93	-42,7	0	5,93	6

Tabela 33 - Novos coeficientes para a redução da espessura de concreto nos perfis da série HEB.

Tabela 34 - Novos coeficientes para a redução da espessura de concreto nos perfis da série IPE.

Resistência ao	$b_{c,fi,h}$ [mm]			$b_{c,fi,v}$ [mm]		
Eago Dadrão	а	b	с	а	b	с
rogo raurao	$[m^2.mm]$	[m.mm]	[mm]	$[m^2.mm]$	[m.mm]	[mm]
R30	0	0,39	4,33	0	1,13	-8,92
R60	0,24	-6,24	62	0,5	-11,5	97
R90	1,4	-38,5	301,5	2,03	-51	399,2
R120	0	18,61	-205	0	51,51	-580

A temperatura média no concreto $\theta_{c,t}$, a partir dos novos limites de aplicação podem ser consultados na tabela AI 53 do Anexo I. Conhecido o valor da temperatura média é possível determinar a resistência do concreto a temperaturas elevadas $f_{c,\theta}$, bem como o módulo de elasticidade a temperaturas elevadas $E_{c,sec,\theta}$, apresentados respectivamente nas tabelas AI 58 e AI 59 do Anexo I. As espessuras de concreto $b_{c,fi,h}$ e $b_{c,fi,v}$ a serem negligenciadas, a partir dos resultados obtidos pelos novos coeficientes e limites de aplicação estão disponíveis nas tabelas AI 55 e AI 57 do Anexo I respectivamente.

Sendo conhecido o valor da resistência e da rigidez do concreto, e tendo em consideração a camada de concreto a ser desprezada, é possível determinar a resistência plástica à compressão axial $N_{fi,pl,Rd,c}$ e a rigidez de flexão em torno do eixo de menor inércia $(EI)_{fi,c,z}$, disponíveis nas tabelas AI 61 e AI 63 do Anexo I.

5.1.4. Redução das Características de Resistência e Rigidez do Aço do Reforço

Tendo em conta as características dos dois tipos de perfis em estudo, foram determinadas as distâncias u_1 , u_2 e consequentemente a distância u, referente ao posicionamentos das barras de reforço na seção transversal de acordo com o Eurocódigo EN 1994-1-2 [1], ver Tabela 15. Após a simulação numérica, foi determinada a temperatura média

do aço do reforço $\theta_{s,t}$, proveniente da média aritmética da temperatura nodal de todos os nós pertencentes a esta componente, estes resultados estão dispostos na tabela AI 64 do Anexo I.

Com os valores obtidos para a temperatura média $\theta_{s,t}$, foi possível encontrar os coeficientes de redução $k_{y,\theta}$ e $k_{E,\theta}$, apresentados nas tabelas AI 65 e AI 66 do Anexo I, sendo então calculadas as componentes da resistência plástica à compressão axial $N_{fi,pl,Rd,s}$ e a rigidez de flexão em torno do eixo de menor inércia $(EI)_{fi,s,z}$, ambos apresentados nas tabelas AI 67 e AI 69 do Anexo I respectivamente.

Na Figura 31 são apresentados os valores da temperatura média $\theta_{s,t}$ das barras do reforço dos perfis em estudo. Os gráficos dispõem dos resultados do método simplificado de cálculo obtidos através do Eurocódigo EN 1994-1-2 [1] e da nova proposta [2], assim como os resultados encontrados através do método avançado de cálculo.

Figura 31 - Temperatura média do aço do reforço para os perfis da série HEB e IPE.

Através dos gráficos apresentados, é possível notar que para os perfis da série HEB o Eurocódigo EN 1994-1-2 [1] é inseguro para as classes de resistência ao fogo R90 e R120, salvo as exceções para os perfis com menor fator de seção, onde os resultados são próximos. Para a classe R60 é totalmente inseguro, já para a classe R30 a norma se apresenta segura, porém antieconômica.

Para os perfis da série IPE, o Eurocódigo EN 1994-1-2 [1] apresenta-se inseguro para as classes de resistência ao fogo R60, R90 e R120. Para a classe de resistência R30 a norma é parcialmente segura para quatro perfis, porém, insegura e antieconômica para três perfis.

Quando comparados os resultados do método avançado de cálculo, com os resultados obtidos através da nova proposta [2], é possível notar que as curvas e suas características são bastante semelhantes. É importante salientar neste ponto, que algumas alterações podem ser

realizadas nas equações 55 e 56, definidas pela nova proposta [2], contudo, esta alteração não será realizada neste trabalho, visto que a equação proposta depende de diversos fatores e uma análise matemática mais aprofundada para que se mantenha a mesma característica. Entretanto, enfatiza-se neste ponto que os resultados da nova proposta [2] são seguros quando comparados ao método avançado de cálculo, podendo assim aceitar a formulação disposta sem qualquer aperfeiçoamento.

Com os dados referentes ao cálculo da temperatura média do aço do reforço $\theta_{s,t}$ para os perfis em estudo, determinados na tabela AI 64 do Anexo I, é possível determinar os coeficientes de redução $k_{y,\theta}$ e $k_{E,\theta}$, disponíveis nas tabelas AI 65 e AI 66 do Anexo I respectivamente, sendo então calculadas a resistência plástica à compressão axial $N_{fl,pl,Rd,s}$ e a rigidez de flexão $(EI)_{fl,s,z}$, ambos apresentados nas tabelas AI 68 e AI 70 do Anexo I.

5.1.5. Soma Pesada das Componentes

A partir dos resultados para a resistência plástica à compressão axial e para a rigidez de flexão das componenetes dos perfis em estudo, apresentados nas quatro seções anteriores, é possível realizar a soma pesada das componentes, sendo a parcela da rigidez afetada pelos coeficientes de ponderação dispostos na Tabela 14. O resultado para a resistência plástica à compressão axial $N_{fi,pl,Rd}$ pode ser observado na tabela AI 72 do Anexo I, a rigidez de flexão efetiva da seção transversal $(EI)_{fi,eff,z}$ está disponível na tabela AI 74 do Anexo I. Os resultados são referentes ao aperfeiçoamento da nova proposta para todas as seções em estudo.

Os resultados para a resistência plástica à compressão axial $N_{fi,pl,Rd}$ e para a rigidez de flexão efetiva $(EI)_{fi,eff,z}$, provenientes dos resultados obtidos através do método avançado de cálculo estão dispostos nas tabelas AI 71 e AI 73 do anexo I respectivamente.

Esta página foi intencionalmente deixada em branco

6. COMPARAÇÃO DOS RESULTADOS

A Figura 32 representa a comparação dos métodos de solução, sendo evidenciado em cor vermelha as alterações realizadas entre cada um destes métodos, estando disponíveis o método de solução definido pelo anexo G do Eurocódigo EN 1994-1-2 [1], a nova proposta [2], bem como o aperfeiçoamento da nova proposta.

COMPONENTE	EN1994-1-2	NOVA PROPOSTA	APERFEIÇOAMENTO DA NOVA PROPOSTA
BANZOS	 Área não reduzida. Temperatura linear. Propriedade E (elevada). Propriedade fy (elevada). 	 Área não reduzida. Temperatura bilinear (novos parâmetros). Propriedade E (elevada). Propriedade fy (elevada). 	 Área não reduzida. Temperatura bilinear (novos parâmetros). Propriedade E (elevada). Propriedade fy (elevada).
ALMA	 Área reduzida. Redução da alma; formula empirica (classe de resistência, geometria). Temperatura não calculada. Propriedade E (temperatura ambiente). Propriedade fy (clevada). 	 Área reduzida. Redução da alma: formula paramétrica (fator de seção, classe de resistência), baseado no critério da isotérmica de 400 °C. Temperatura não calculada. Propriedade E (temperatura ambiente). Propriedade fy (temperatura ambiente). 	 Área reduzida. Redução da alma: formula paramétrica (fator de seção, classe de resistência) baseado no critério da isotérmica de 400 °C. Temperatura: Nova aproximação bilinear. Propriedade E (elevada). Propriedade fy (temperatura ambiente).
CONCRETO	 Área reduzida da mesma maneira em ambos os sentidos (depende do fator de seção para maiores classificações de resistência ao fogo). Temperatura não uniforme. Esce (temperatura clevada). fe (temperatura clevada). 	 Área reduzida de maneira diferente em ambos os sentidos, baseado no critério da isotérmica de 500°C (dependente do fator de seção). Nova formulação: parâmetros e limites. Temperatura não uniforme inferior a 500°C. Esec (temperatura elevada). fe (temperatura elevada). 	 Área reduzida de maneira diferente em ambos os sentidos, bascado no critério da isotérmica de 500 °C (dependente do fator de seção). Nova formulação: Novos parâmetros e limites. Temperatura não uniforme inferior a 500°C. Esec (temperatura elevada). fe (temperatura elevada).
REFORÇO	 Área não reduzida. Temperatura inferida. Propriedade E (elevada). Propriedade fy (elevada). 	 Área não reduzida. Temperatura: nova formula paramétrica (dependente do fator de seção). Propriedade E (elevada). Propriedade fy (elevada). 	 Àrea não reduzida. Temperatura: nova formula paramétrica (dependente do fator de seção). Propriedade E (elevada). Propriedade fy (elevada).

Figura 32 - Comparação dos métodos de solução.

A Tabela 35, apresenta os resultados da resistência plástica à compressão axial e a rigidez de flexão efetiva a temperatura ambiente dos perfis em estudo. Estes valores serão importantes para serem utilizados como critério de avaliação dos erros relativos dos resultados obtidos através do Eurocódigo EN 1994-1-2 [1], do método avançado de cálculo e do aperfeiçoamento da nova proposta.

Perfil	A_m/V	$N_{pl,Rd} \left[N \right] \left(20^{\circ} C \right)$	$\left(EI\right)_{eff,z}\left(20^{\mathrm{o}}C\right)$
HEB160	25.00	2142651	3.563E+12
HEB180	22.22	2566276	5.591E+12
HEB200	20.00	3439352	9.431E+12
HEB220	18.18	4283471	1.545E+13
HEB240	16.67	4861848	2.144E+13
HEB260	15.38	5991447	3.442E+13
HEB280	14.29	6550992	4.457E+13
HEB300	13.33	7249392	5.679E+13
HEB320	12.92	7686329	5.933E+13
HEB340	12.55	8923850	7.434E+13
HEB360	12.22	9297413	7.627E+13
HEB400	11.67	9988980	7.967E+13
HEB450	11.11	10820305	8.415E+13
HEB500	10.67	11661652	8.860E+13
IPE200	30.00	1367429	7.162E+11
IPE220	27.27	1966079	1.207E+12
IPE240	25.00	2209847	1.177E+12
IPE270	22.22	2883307	3.283E+12
IPE300	20.00	3265527	5.044E+12
IPE330	18.56	3656395	6.649E+12
IPE360	17.32	4691245	1.047E+13
IPE400	16.11	5222444	1.328E+13
IPE450	14.97	5872060	1.675E+13
IPE500	14.00	7484021	2.163E+13

Tabela 35 – Resistência plástica à compressão axial e rigidez de flexão à temperatura ambiente.

Como pode ser observado no gráfico a) da Figura 33, os resultados do método simplificado de cálculo obtidos através do anexo G do Eurocódigo EN 1994-1-2 [1] demonstram ser conservadores para os perfis da série HEB da classe de resistência R30 e inseguros para as demais classes de resistência, quando comparados com os resultados obtidos através do método avançado de cálculo. Os resultados do gráfico b) da Figura 33 são semelhantes, uma vez que o aperfeiçoamento da nova proposta apresenta valores próximos aos obtidos pelos resultados numéricos.

Figura 33 - Comparação dos resultados para a resistência plástica à compressão axial dos perfis estudados.

Os resultados apresentados no gráfico a) da Figura 34 demonstram que a rigidez de flexão efetiva dos perfis em estudo, obtidos através do anexo G do Eurocódigo EN 1994-1-2 [1] demonstram-se conservadores para os perfis da série HEB da classe de resistência ao incêndio R30, quando comparados com os resultados obtidos através do método avançado de cálculo. Os resultados apresentados no gráfico b) da Figura 34 são semelhantes, visto que o aperfeiçoamento da nova proposta apresenta valores próximos aos obtidos pelos resultados numéricos.

Figura 34 - Comparação dos resultados para a rigidez efetiva de flexão dos perfis estudados.

Como esperado, os resultados obtidos através do aperfeiçoamento da nova proposta encontram-se ligeiramente mais seguros quando comparados com os resultados obtidos através do método avançado de cálculo, visto que as formulações do aperfeiçoamento da nova proposta baseiam-se nos resultados numéricos. A resistência plástica à compressão axial está disposta no gráfico a) da Figura 35 e a rigidez efetiva de flexão está disposta no gráfico b) da Figura 35.

Figura 35 – Comparação dos resultados para a resistência plástica à compressão axial e rigidez de flexão efetiva obtidos através do aperfeiçoamento da nova proposta e do método avançado de cálculo.

Apesar de os pontos dos gráficos encontrarem-se para o lado "inseguro", isto é uma falsa insegurança, visto que esta disposição gráfica significa que a resistência plástica à compressão axial e a rigidez de flexão efetiva obtidas através dos resultados numéricos são ligeiramente superiores aos mesmos resultados obtidos pelo aperfeiçoamento da nova proposta, ou seja, se considerado que o método avançado de cálculo é o resultado real, ou valores obtidos pelos novas formulações propostas são inferiores a ele, considerando-se assim seguros.

6.1. Erro Relativo Para Carga Crítica

A carga crítica dos pilares mistos parcialmente revestidos sob situação de incêndio foi calculada para todos os perfis em estudo, levando em consideração dois comprimentos de coluna, sendo estes de 3m e 5m, três comprimentos de encurvadura referentes ao tipo de vinculação, sendo eles 1,0L, 0,7L e 0,5L. Os resultados apresentados por gráficos de erro relativo levam em consideração as quatro classes de resistência ao incêndio padrão, R30, R60, R90 e R120.

Buscando uma comparação mais eficaz, os resultados presentes nos gráficos a seguir tiveram como base a resistência plástica à compressão axial, apresentados na Tabela 35, para ambos os eixos. Deste modo ficará mais evidente a comparação quanto a carga crítica, mostrando a real diferença obtida entres os diferentes métodos estudados.

A Figura 36, apresenta a comparação de resultados obtidos através das formulações definidas pelo anexo G do Eurocódigo EN 1994-1-2 [1] e do aperfeiçoamento da nova proposta. É possível notar que para a grande maioria dos perfis em estudo, com suas particularidades quanto ao comprimento de coluna e condições de vinculação, a carga crítica segundo o cálculo

do Eurocódigo é maior em comparação com as formulações disponíveis no aperfeiçoamento da nova proposta. Este aperfeiçoamento utilizou como referência os resultados obtidos através do método avançado de cálculo, sendo assim, muito próximos de suas capacidades resistentes reais. Devido a isto, é possível afirmar que os resultados obtidos através da norma se encontram inseguros, uma vez que eles apresentam uma capacidade resistente maior do que os resultados do aperfeiçoamento da nova proposta.

Figura 36 – Comparação dos resultados para a carga crítica dos perfis em estudo (Eurocódigo – Aperfeiçoamento).

A Figura 37, compara os resultados obtidos pelo método avançado de cálculo e pelo aperfeiçoamento da nova proposta. É possível notar que a grande maioria dos pontos se encontram dentro de um limite de erro de 10%, desta maneira é possível afirmar que as formulações criadas e aperfeiçoadas estão condizentes com os resultados obtidos através das simulações numéricas. Os pontos se encontram no lado "inseguro" do gráfico, isto se deve ao fato do aperfeiçoamento da nova proposta ser realizado sempre buscando valores inferiores de resistência quando comparados com os resultados numéricos, garantindo desta forma a segurança do aperfeiçoamento da nova proposta.

Figura 37 - Comparação dos resultados para a carga crítica dos perfis em estudo (Ansys - Aperfeiçoamento).

6.2. Erro Relativo Para o Fator x

Para os gráficos de erro relativo do fator χ , foi calculada a resistência à encurvadura dos pilares mistos parcialmente revestidos sob situação de incêndio, entretanto como no tópico anterior, buscando uma melhor base de comparação de resultados, os valores encontrados para a resistência à encurvadura foram racionados pelo valor da resistência plástica à compressão axial a temperatura ambiente, dispostos na Tabela 35. Para estes resultados também foram utilizados dois comprimentos de coluna, sendo estes de 3m e 5m, três comprimentos de encurvadura referentes ao tipo de vinculação, sendo eles de 1,0L, 0,7L e 0,5L, e quatro classes de resistência ao incêndio padrão, R30, R60, R90 e R120.

A Figura 38, apresenta os resultados obtidos através das formulações definidas pelo anexo G do Eurocódigo EN 1994-1-2 [1] e pelo aperfeiçoamento da nova proposta, é possível observar que o fator χ é maior para os resultados obtidos através da norma, e sabendo que a resistência plástica à compressão axial é a mesma utilizada em ambos os eixos, pode-se dizer que a norma se encontra insegura para quase todos os perfis em estudo.

A Figura 39, compara os resultados obtidos pelo método avançado de cálculo e pelo aperfeiçoamento da nova proposta. É possível notar que a grande maioria dos pontos se encontram dentro de um limite de 10% de erro, sendo assim, possível afirmar que o aperfeiçoamento da nova proposta está condizente com os resultados obtidos pelas simulações numéricas. Os resultados que se encontram no lado "inseguro" significam que os resultados numéricos são maiores que os resultados provenientes do aperfeiçoamento da nova proposta, desta forma, o aperfeiçoamento possui resultados de resistência inferiores, garantindo segurança ao método utilizado.

Figura 39 - Comparação dos resultados do fator χ dos perfis em estudo (Ansys - Aperfeiçoamento).

6.3. Resistência à Encurvadura

A resistência à encurvadura dos pilares mistos parcialmente revestido sob situação de incêndio foi calculada levando em consideração dois comprimentos de colunas, sendo elas de 3m e 5m, e três comprimentos de encurvadura devido ao tipo de vinculação em seus apoios, sendo estes 1,0L. 0,7L e 0,5L. Os resultados são apresentados graficamente para cada classe de resistência ao incêndio, R30, R60, R90 e R120.

Na Figura 40 está exposta a comparação dos resultados obtidos através das formulações definidas pelo anexo G do Eurocódigo EN 1994-1-2 [1] e do aperfeiçoamento da nova proposta. É possível notar uma grande dispersão de pontos ao longo da curva "c", isto acontece pelo motivo da grande diferença de valores encontrados para a resistência plástica à compressão axial e a rigidez de flexão efetiva, que são diretamente relacionadas com o cálculo da esbeltez adimensional $\overline{\lambda}_{\theta}$ e do fator χ .

A Figura 41, compara os resultados obtidos pelas novas formulações dispostas na nova proposta [2] e o aperfeiçoamento da nova proposta. Neste caso é possível notar que os pontos ao longo da curva "c" estão muito mais próximos, para este caso os resultados provenientes da resistência plástica à compressão axial e a rigidez de flexão efetiva são muito próximos, sendo assim, os resultados das mesmas também, validando a nova proposta com algumas melhorias.

É possível notar graficamente que a resistência à encurvadura aumenta quando acontece a diminuição do comprimento efetivo de encurvadura e a esbeltez adimensional, sendo ainda possível perceber que os resultados do aperfeiçoamento da nova proposta são menores que os obtidos através da nova proposta [2], sendo então o aperfeiçoamento da nova proposta seguro.

Figura 41 - Resistência à encurvadura dos perfis estudados (Nova Proposta - Aperfeiçoamento).

Esta página foi intencionalmente deixada em branco

7. CONCLUSÕES E FUTUROS TRABALHOS

No presente estudo abordou-se o comportamento das seções mistas de aço e concreto parcialmente revestidas. Foram apresentados os resultados das quatro componentes da seção (temperatura média nos banzos, temperatura média e redução da altura da alma, temperatura média e redução das dimensões de concreto e temperatura média das barras de aço do reforço).

Conforme exposto na nova proposta [2], o método simplificado de cálculo definido pelo anexo G do Eurocódigo EN 1994-1-2 [1] apresenta-se antieconômico para a classe de resistência ao incêndio R30 e inseguro para as demais classes de resistência ao incêndio, em comparação com os novos resultados numéricos obtidos.

A nova proposta [2] para o cálculo da resistência ao incêndio destes elementos, encontra-se muito próxima e a favor da segurança quando comparada com os novos resultados numéricos. Entretanto, buscando um aperfeiçoamento das novas equações disponíveis, algumas alterações foram realizadas, como novos coeficientes empíricos, novos valores de referência e novos limites de aplicação.

Foi definida uma nova fórmula para o cálculo da temperatura média da alma do perfil, para que seja possível calcular a redução do módulo de elasticidade desta componente, afetando o cálculo da rigidez de flexão.

Para futuros trabalhos, sugere-se que seja calculada a temperatura média da alma do perfil metálico sem levar em consideração o critério da isotérmica de 400 °C, sendo então considerada toda a área desta componente para o cálculo da resistência plástica à compressão axial e rigidez de flexão, no entanto, sendo afetada a resistência devido as altas temperaturas.

Propõe-se ainda que as formulações disponíveis para o cálculo da temperatura média do aço do reforço sejam melhor adequadas aos resultados numéricos obtidos, embora a nova proposta seja a favor da segurança, esta adequação resultaria numa formulação mais próximo dos resultados, proporcionando uma economia quanto ao emprego de materiais. Neste mesmo sentido, as formulações disponíveis para o cálculo da temperatura média na área residual de concreto, principalmente para a resistência ao incêndio R30 podem ser aprimoradas, assim como a redução da altura da alma do perfil metálico.

Propõe-se a realização de mais simulações com outros tipos de seções.

Propõe-se ainda a realização de ensaios experimentais com diferentes tipos de seções retas.

Propõe-se também realizar estudos submetendo o pilar a 2 e 3 lados de exposição ao incêndio padrão.

Esta página foi intencionalmente deixada em branco

REFERÊNCIAS

[1] CEN – EN 1994-1-2, "Eurococe 4: Design of composite steel and concrete structures – Part
1-2: General rules – Structural fire desing". European Standards, Brussels, 2005.

[2] A. Fellouh, N. Benlakehal, P. Piloto, A. Ramos e L. M. Mesquita, "Load carring capacity of partially encased columns for differente fire ratings", Fire Research 2016, vol. 1:23, pp 13-19, 2016.

[3] ISO 834-1, "Fire resistence tests – Elements of building construction – Part 1: General requeriments", Geneva, 1999.

[4] H. L. Malhotra, "Effect of Temperature on the Crushing Strenght of Concrete", Fire Research Station, Boreham Wood. England. vol 130, 1954, p. 28.

[5] H. L Malhotra e R. F. Stevens, "Fire resistance of encased steel stanchions", Proceedings of the Institutions of Civil Engineers – ICE, vol. 29, 1964, pp. 77-98.

[6] J. B. Schleich, J. C. Dotreppe e J. M. Franssen, "Computer assisted snalysis of the fire resistance of steel and composite concrete-steel structures", Brussels: C.C.E, 1986, p, 108.

[7] K. Kodina, "Behavior of Composite Columns and Girders in Fire", Braunschweig: Fire Safety Science 2, 1989, pp. 681-695.

[8] T. T. Lie e M. Chabot, "A method to predict the fire resistance of circular steel columns filled hollow steel columns", Journal of Fire Protection Engineering. 4 ed. vol.2, 1990, pp. 111-116.

[9] S. Winter e J. Lange, "Behaviour of partially encased composite columns using highstrenght steel – ultimate load and fire condition", Composite Construction in Steel and Concrete IV Conference. Alberta: ASCE, 2000, pp. 539-550.

[10] L. H. Han, Y. F. Yang, H. Yang e J. S. Huo, "Residual Strenght of Concrete-filled RHS Columns After Esposure to the ISO-834 Standard Fire", Thin-Walled Structures. 12 ed. vol. 40, Elsevier, 2002, pp. 991-1012.

[11] B. S. Prickett e R. G. Driver, "Behaviour of partially encased composite columns made with high performance concrete", Dept. of Civil and Environmental Engineering. nº 262 ed. University of Alberta: Edmorton, 2006, p. 221.

[12] Z. H. Wang e K. H. Tan, "Residual area method for heat transfer analysis of concreteencased I-sections in fire", Engineering Structures. vol. 28, Elsevier, 2006, pp. 411-422.

[13] Z. F. Huang, K. H. Tan e G. H. Phng, "Axial restraint effects of the fire resistance of composite columns encasing I-section steel", Journal of Constructional Steel Research vol. 63, Elsevier, 2007, pp. 437-447.

[14] A. J. M. C. Correia e J. P. C. Rodrigues, "Fire resistance of partially encased steel columns with retrained thermal elongation", Journal of Constructional Steel Research. vol. 67, Elsevier, 2010, pp. 593-601.

[15] E. Ellobody e B. Young, "Investigation of concrete encased steel composite columns at elevated temperatures", Thin-Walled Structures. 8 ed. vol. 48, Elsevier, 2010, pp. 597-608.

[16] M. Korzen, J. P. C. Rodrigues e A. J. P. M. Correia, "Composite Columns Made of Partially Encased Steel Sections Subjected to Fire", Structures in Fire – Proceedings of the 6th Internation Conference, DEStech Publications, Inc, 2010, pp. 341-348.

[17] P. A. G. Piloto, A. B. R. Gavilán, M. Zipponi, A. Marini, L. M. R. Mesquita e G. Plizzari, "Experimental Insvestigation of the Fire Resistance of Partially Encased Beams", Journal of Constructional Steel Research. vol. 80, Elsevier, 2013, pp.121-137.

[18] S. Arezki e I. Said, "Pratical fire design of partially encased composite steel-concrete columns according to Eurocode 4", MATEC Web of Conferences. vol. 11, EDP Sciences, 2014, p. 8.

[19] P. A. G. Piloto, D. Almeida, L. M. R. Mesquita e A. B. Ramos-Gavilán, "Partially encased section: Strenght and Stiffness under fire conditions", Book of Abstracts of IFireSS. Coimbra, 2015, pp 29-38.

[20] A. M. Piquer e D. Hernández-Figueirido, "Protected steel columns vs partially encased columns: Fire resistance and economic considerations", Journal of Constructional Steel Research. vol. 124, Elsevier, 2016, pp. 47-56.

[21] J. Králik, M. Klabník e A. Grmanová, "Nonlinear analysis of steel concrete columns fire resistance", 22^a International Conference of Engineering Mechanics. 2016, pp. 343-346.

[22] P. Vila Real, "Incêndio em estruturas metálicas – Cálculo estrutural", 1ª ed. Edições Oriom, 2003, p. 356.

[23] CEN – EN 1991-1-2, "Eurocode 1: Actions on structures – Part 1-2: General anctions – Actions on structures exposed to fire". European Standards, Brussels, 2002.

[24] R. Rigobello, "Desenvolvimento e aplicação de código computacional para análise de estruturas de aço aporticadas em situação de incêndio", Doutorado em Engenharia de Estruturas. Universidade de São Paulo. São Carlos, 2011.

[25] J. A. Purkiss, "Fire Safety Engineering Design of Structures", 2^a ed. Elsevier Ltda, 2007, p. 389.

[26] DL 224/2015, "Regime jurídico da segurança contra incêndio em edificios (Alteração ao Decreto – Lei nº 220/2008)", Diário da República, 1ª série – Nº 198 – 9 de Outubro de 2015, Portugal.

[27] Portaria nº 1532/2008, "Regulamento Técnico de Segurança Contra Incêndio em Edifícios (RT-SCIE)", Diário da República, 1ª série – Nº250 – 29 de Dezembro de 2008, Portugal.

[28] Instrução Técnica Nº 08/2015, "Resistencia ao fogo dos elementos de construção". São Paulo, 2015.

[29] Portaria nº 1532/2008, "Regulamento Técnico de Segurança Contra Incêndio em Edificios". 2008.

[30] G. Queiroz, R. J. Pimenta, e A. G. Martins, "Estruturas Mistas", 2^a ed. vol. 1, Rio de Janeiro: Instituto Aço Brasil / CBCA, 2012, p. 68.

[31] CEN – EN 1994-1-1, "Eurocode 4: Design of composite steel and concrete structures Part1-1: General rules and rules for buildings". European Standards, Brussels, 2004.

[32] ABNT NRB 8800, "Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios". Rio de Janeiro, 2008.

[33] M. F. Pereira, "Análise experimental e numérica de pilares mistos parcialmente revestidos", Mestrado em Engenharia de Estruturas. Universidade de São Paulo. São Carlos, 2014.

[34] A. C. G. Braga e W. G. Ferreira, "Pilares mistos aço-concreto e comparativo de custo com pilares de aço e pilares de concreto armado", REM: Revista Escola de Minas, vol. 64, nº 4, pp. 407 – 414, Dezembro, 2011.

[35] W. Pfeil e M. Pfeil, "Estruturas de aço: dimensionamento prático", 8ª ed. Rio de Janeiro: LTC, 2009.

[36] S. de Nardin, "Estudo teórico-experimental de pilares mistos compostos por tubos de aço preenchidos com concreto de alta resistência", Doutorado em Engenharia de Estruturas. Universidade de São Paulo. São Carlos, 1999.

[37] CEN – EN 1992-1-1, "Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings". European Standards, Brussels, 2004.

[38] CEN – EN 1993-1-2, "Eurocode 3: Design of steel structures – Part 1-2: General rules – Structural fire design". European Standards, Brussels, 2005.

[39] CEN – EN 1992-1-2, "Eurocode 2: Design of concrete structures – Part 1-2: General rules
 – Structural fire design". European Standards, Brussels, 2004.

[40] CEN – EN 1993-1-1, "Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings". European Standards, Brussels, 2005.

[41] O. Jungbluth, "Optimierte Verbundbauteile", Köeln: Stahlbau Verlags GmbH, 1982.

[42] C. Louis-Guy, G. Louis, D. Rik, F. Jean-Marc, "Simplified design method for slim floor beams exposed to fire", Proceedings of the Nordic Steel Construction Conference, Oslo, Norway, 5-7 September, 2012.

[43] ANSYS® Academic Research, Release 17.0, Help System, ANSYS, Inc.

ANEXO I

SEÇÃO TRANSVERSAL AO FOGO

Esta página foi intencionalmente deixada em branco

1. MÉTODO SIMPLIFICADO DE CÁLCULO: EUROCÓDIGO 1994-1-2 ANEXO G

1.1. Banzos do Perfil Metálico

Efetuando os cálculos apresentados na equação 32, e levando em conta os parâmetros apresentados na tabela 17, obtém-se as temperaturas médias nos banzos dos perfis em estudo, dando origem aos valores apresentados na tabela AI 1.

Dorfil	Δ /	-	$\theta_{f,t}$	$[^{\circ}C]$	
I CI III	Λm/ v	R30	R60	R90	R120
HEB160	25,00	791,25	918,75	958,75	1016,25
HEB180	22,22	764,44	892,22	941,67	1003,33
HEB200	20,00	743,00	871,00	928,00	993,00
HEB220	18,18	725,45	853,64	916,82	984,55
HEB260	16,67	710,83	839,17	907,50	977,50
HEB240	15,38	698,46	826,92	899,62	971,54
HEB280	14,29	687,86	816,43	892,86	966,43
HEB300	13,33	678,67	807,33	887,00	962,00
HEB320	12,92	674,65	803,35	884,44	960,06
HEB340	12,55	671,10	799,84	882,18	958,35
HEB360	12,22	667,94	796,72	880,17	956,83
HEB400	11,67	662,58	791,42	876,75	954,25
HEB450	11,11	657,22	786,11	873,33	951,67
HEB500	10,67	652,93	781,87	870,60	949,60
IPE200	30,00	839,50	966,50	989,50	1039,50
IPE220	27,27	813,18	940,45	972,73	1026,82
IPE240	25,00	791,25	918,75	958,75	1016,25
IPE270	22,22	764,44	892,22	941,67	1003,33
IPE300	20,00	743,00	871,00	928,00	993,00
IPE330	18,56	729,11	857,25	919,15	986,31
IPE360	17,32	717,14	845,41	911,52	980,54
IPE400	16,11	705,47	833,86	904,08	974,92
IPE450	14,97	694,47	822,97	897,07	969,61
IPE500	14,00	685,10	813,70	891,10	965,10

Tabela AI 1 – Temperatura média nos banzos.

Obtidas as temperaturas médias, é possível encontrar o coeficiente de redução da resistência do aço e o coeficiente de redução do módulo de elasticidade, sendo ambos apresentados na tabela AI 2.

Perfil A /V	$k_{y, heta}$					Perfil	Δ/V	$k_{E, heta}$				
I CIIII	Λ _m / v	R30	R60	R90	R120		1 cm	Λm/ v	R30	R60	R90	R120
HEB160	25,00	0,121	0,056	0,048	0,037	•	HEB160	25,00	0,094	0,063	0,054	0,041
HEB180	22,22	0,153	0,064	0,052	0,039		HEB180	22,22	0,104	0,069	0,058	0,044
HEB200	20,00	0,178	0,075	0,054	0,041		HEB200	20,00	0,113	0,074	0,061	0,047
HEB220	18,18	0,199	0,083	0,057	0,043		HEB220	18,18	0,120	0,078	0,064	0,048
HEB240	16,67	0,217	0,090	0,059	0,045		HEB240	16,67	0,126	0,081	0,066	0,050
HEB260	15,38	0,234	0,097	0,060	0,046		HEB260	15,38	0,133	0,084	0,068	0,051
HEB280	14,29	0,259	0,102	0,064	0,047		HEB280	14,29	0,152	0,086	0,069	0,053
HEB300	13,33	0,281	0,106	0,067	0,048		HEB300	13,33	0,168	0,088	0,070	0,054
HEB320	12,92	0,291	0,108	0,068	0,048		HEB320	12,92	0,176	0,089	0,071	0,054
HEB340	12,55	0,299	0,110	0,069	0,048		HEB340	12,55	0,182	0,090	0,072	0,054
HEB360	12,22	0,307	0,114	0,070	0,049		HEB360	12,22	0,188	0,091	0,072	0,055
HEB400	11,67	0,320	0,120	0,072	0,049		HEB400	11,67	0,197	0,093	0,073	0,055
HEB450	11,11	0,333	0,127	0,073	0,050		HEB450	11,11	0,207	0,096	0,074	0,056
HEB500	10,67	0,343	0,132	0,075	0,050		HEB500	10,67	0,215	0,097	0,074	0,056
IPE200	30,00	0,090	0,047	0,042	0,032		IPE200	30,00	0,081	0,053	0,047	0,036
IPE220	27,27	0,103	0,052	0,045	0,035		IPE220	27,27	0,087	0,058	0,051	0,039
IPE240	25,00	0,121	0,056	0,048	0,037		IPE240	25,00	0,094	0,063	0,054	0,041
IPE270	22,22	0,153	0,064	0,052	0,039		IPE270	22,22	0,104	0,069	0,058	0,044
IPE300	20,00	0,178	0,075	0,054	0,041		IPE300	20,00	0,113	0,074	0,061	0,047
IPE330	18,56	0,195	0,081	0,056	0,043		IPE330	18,56	0,118	0,077	0,063	0,048
IPE360	17,32	0,209	0,087	0,058	0,044		IPE360	17,32	0,123	0,080	0,065	0,049
IPE400	16,11	0,223	0,093	0,059	0,045		IPE400	16,11	0,128	0,082	0,067	0,051
IPE450	14,97	0,243	0,099	0,061	0,046		IPE450	14,97	0,140	0,085	0,068	0,052
IPE500	14,00	0,266	0,103	0,064	0,047		IPE500	14,00	0,157	0,087	0,070	0,053

Tabela AI 2 – Coeficientes de redução para tensão de escoamento e módulo de elasticidade.

Através das equações 35 e 36, originam-se as tabelas AI 3 e AI 4 referentes à resistência plástica à compressão axial e à rigidez de flexão dos banzos dos perfis devido às altas temperaturas.

Dorfil	Λ /Μ		$N_{fi,pl,R}$	$d_{d,f}[N]$	
I CI III	$\Lambda_{\rm m}$	R30	R60	R90	R120
HEB160	25,00	137852	64350	55198	42042
HEB180	22,22	211596	88550	71610	54516
HEB200	20,00	294360	122925	89760	68310
HEB220	18,18	386144	161040	109648	83424
HEB240	16,67	486948	202895	131274	99858
HEB260	15,38	584815	241588	150631	114345
HEB280	14,29	718344	282150	176220	129492
HEB300	13,33	881562	333355	208478	149226
HEB320	12,92	983800	366402	229270	162318
HEB340	12,55	1061996	390893	244464	171449
HEB360	12,22	1139490	422978	259566	180551
HEB400	11,67	1266408	476388	283635	194634
HEB450	11,11	1427140	543400	314600	213070
HEB500	10,67	1584475	608731	345114	231370
IPE200	30,00	42192	21832	19682	15007
IPE220	27,27	57558	28893	25300	19279
IPE240	25,00	77939	36383	31208	23770
IPE270	22,22	115622	48386	39130	29789
IPE300	20,00	157483	65765	48022	36546
IPE330	18,56	197409	82350	56845	43252
IPE360	17,32	248689	103659	68511	52120
IPE400	16,11	298619	124387	79099	60165
IPE450	14,97	371168	150304	93777	70300
IPE500	14,00	467738	181544	113432	82685

Tabela AI 3 – Resistência plástica à compressão axial dos banzos.

	Tabela A	AI 4 – R1g1d	ez de flexao	dos banzos.					
Perfil	Δ/V	$(EI)_{fi,f,z} \left[N \times mm^2 \right]$							
reim	Σ ι m/ ν	R30	R60	R90	R120				
HEB160	25,00	1,7E+11	1,2E+11	1,0E+11	7,7E+10				
HEB180	22,22	3,0E+11	2,0E+11	1,7E+11	1,3E+11				
HEB200	20,00	4,7E+11	3,1E+11	2,6E+11	2,0E+11				
HEB220	18,18	7,1E+11	4,6E+11	3,8E+11	2,9E+11				
HEB240	16,67	1,0E+12	6,7E+11	5,4E+11	4,1E+11				
HEB260	15,38	1,4E+12	9,0E+11	7,3E+11	5,5E+11				
HEB280	14,29	2,1E+12	1,2E+12	9,6E+11	7,3E+11				
HEB300	13,33	3,0E+12	1,6E+12	1,3E+12	9,6E+11				
HEB320	12,92	3,4E+12	1,7E+12	1,4E+12	1,0E+12				
HEB340	12,55	3,7E+12	1,8E+12	1,5E+12	1,1E+12				
HEB360	12,22	4,0E+12	1,9E+12	1,5E+12	1,2E+12				
HEB400	11,67	4,5E+12	2,1E+12	1,6E+12	1,3E+12				
HEB450	11,11	5,1E+12	2,3E+12	1,8E+12	1,4E+12				
HEB500	10,67	5,7E+12	2,6E+12	2,0E+12	1,5E+12				
IPE200	30,00	2,4E+10	1,6E+10	1,4E+10	1,1E+10				
IPE220	27,27	3,7E+10	2,5E+10	2,2E+10	1,7E+10				
IPE240	25,00	5,5E+10	3,8E+10	3,2E+10	2,5E+10				
IPE270	22,22	9,2E+10	6,1E+10	5,1E+10	3,9E+10				
IPE300	20,00	1,4E+11	9,4E+10	7,7E+10	5,9E+10				
IPE330	18,56	2,0E+11	1,3E+11	1,0E+11	7,9E+10				
IPE360	17,32	2,7E+11	1,7E+11	1,4E+11	1,1E+11				
IPE400	16,11	3,5E+11	2,3E+11	1,8E+11	1,4E+11				
IPE450	14,97	4,9E+11	3,0E+11	2,4E+11	1,8E+11				
IPE500	14,00	7,0E+11	3,9E+11	3,1E+11	2,4E+11				

Tabela AI 4 Rigidaz de flevão dos b

1.2. Alma do Perfil Metálico

Efetuando os cálculos da equação 37 e levando em conta os parâmetros da tabela 18, encontra-se a altura da alma que deverá ser desprezada para a resistência desta componente, sendo este resultado apresentado na tabela AI 5.

			3					
Dorfil	Λ/Μ	$h_{w,fi} \left[mm \right]$						
Perm	A_{m}/v	R30	R60	R90	R120			
HEB160	25,00	12,98	34,87	-	-			
HEB180	22,22	12,92	33,31	64,67	-			
HEB200	20,00	12,88	32,33	55,56	85,00			
HEB220	18,18	12,84	31,65	51,96	65,66			
HEB240	16,67	12,81	31,15	49,81	60,95			
HEB260	15,38	12,85	30,90	48,56	58,46			
HEB280	14,29	12,88	30,70	47,65	56,79			
HEB300	13,33	12,86	30,43	46,78	55,37			
HEB320	12,92	12,79	30,10	45,92	54,07			
HEB340	12,55	12,78	29,92	45,36	53,21			
HEB360	12,22	12,77	29,76	44,90	52,50			
HEB400	11,67	12,78	29,59	44,29	51,55			
HEB450	11,11	12,79	29,41	43,72	50,67			
HEB500	10,67	12,80	29,28	43,29	50,04			
IPE200	30,00	13,86	34,80	59,80	91,50			
IPE220	27,27	13,77	33,94	55,72	70,41			
IPE240	25,00	13,71	33,32	53,29	65,21			
IPE270	22,22	13,69	32,78	51,16	61,25			
IPE300	20,00	13,67	32,36	49,74	58,88			
IPE330	18,56	13,63	31,99	48,64	57,16			
IPE360	17,32	13,56	31,61	47,69	55,77			
IPE400	16,11	13,55	31,36	46,94	54,62			
IPE450	14,97	13,53	31,10	46,22	53,58			
IPE500	14,00	13,49	30,86	45,63	52,74			

Tabela AI 5 – Redução da altura da alma.

Dada a análise da equação 37, nota-se que a fração $\sqrt{1-0.16(H_t/h)}$ é um fator de redução para a capacidade resistente da alma $k_{y,\theta}$, sendo a constante H_t disposta na tabela 18. Sendo assim, o fator de redução relatado pode ser observado através da tabela AI 6 para os perfis em estudo.

Perfil	A/V	$\kappa_{y,\theta}$						
1 01111		R30	R60	R90	R120			
HEB160	25,00	0,806	0,480	-	-			
HEB180	22,22	0,830	0,562	0,149	-			
HEB200	20,00	0,849	0,620	0,346	0,000			
HEB220	18,18	0,863	0,663	0,447	0,302			
HEB240	16,67	0,876	0,698	0,516	0,408			
HEB260	15,38	0,886	0,725	0,568	0,480			
HEB280	14,29	0,894	0,748	0,609	0,535			
HEB300	13,33	0,902	0,768	0,643	0,577			
HEB320	12,92	0,908	0,784	0,671	0,612			
HEB340	12,55	0,914	0,799	0,695	0,642			
HEB360	12,22	0,919	0,811	0,715	0,667			
HEB400	11,67	0,927	0,832	0,748	0,707			
HEB450	11,11	0,936	0,852	0,780	0,745			
HEB500	10,67	0,942	0,868	0,805	0,775			
IPE200	30,00	0,849	0,620	0,346	0,000			
IPE220	27,27	0,863	0,663	0,447	0,302			
IPE240	25,00	0,876	0,698	0,516	0,408			
IPE270	22,22	0,890	0,737	0,590	0,509			
IPE300	20,00	0,902	0,768	0,643	0,577			
IPE330	18,56	0,911	0,792	0,683	0,628			
IPE360	17,32	0,919	0,811	0,715	0,667			
IPE400	16,11	0,927	0,832	0,748	0,707			
IPE450	14,97	0,936	0,852	0,780	0,745			
IPE500	14,00	0,942	0,868	0,805	0,775			

Tabela AI 6 - Coeficiente de redução para tensão de escoamento.

Os resultados para a resistência plástica à compressão axial e rigidez de flexão da alma dos perfis em estudo, tendo em conta as equações 39 e 40 podem ser observados através das tabelas AI 7 e AI 8.

Porfil	Λ/Μ	$N_{fi,pl,Rd,w}\left[N ight]$						
Term	Λ _m / v	R30	R60	R90	R120			
HEB160	25,00	191620	67804	0	0			
HEB180	22,22	244762	112117	7896	0			
HEB200	20,00	302940	161568	50490	0			
HEB220	18,18	366130	216106	98230	44650			
HEB240	16,67	434317	275697	151067	94417			
HEB260	15,38	485481	325558	199904	142788			
HEB280	14,29	563640	394548	261690	201300			
HEB300	13,33	644607	467076	327587	264183			
HEB320	12,92	727928	542638	397052	330877			
HEB340	12,55	818672	624958	472754	403571			
HEB360	12,22	914375	712250	553438	481250			
HEB400	11,67	1123848	904306	731808	653400			
HEB450	11,11	1341614	1112790	933000	851278			
HEB500	10,67	1572160	1334211	1147252	1062270			
IPE200	30,00	202910	108219	33818	0			
IPE220	27,27	243835	143922	65419	29736			
IPE240	25,00	288100	182881	100209	62630			
IPE270	22,22	359063	246311	157719	117451			
IPE300	20,00	442426	320578	224839	181322			
IPE330	18,56	525738	396798	295488	249438			
IPE360	17,32	621612	484203	376239	327164			
IPE400	16,11	758645	610444	494001	441073			
IPE450	14,97	952401	789961	662330	604316			
IPE500	14,00	1165713	989281	850656	787644			

Tabela AI 7 – Resistência plástica à compressão axial da alma.

	Tabela	a AI 8 – Rigi	idez de flexã	io da alma.	
Perfil	A /\]		$(EI)_{fi,w,z}$	$\left[N \times mm^2\right]$	
Term	2 x m/ v	R30	R60	R90	R120
HEB160	25,00	9,7E+08	5,8E+08	0,0E+00	0,0E+00
HEB180	22,22	1,4E+09	9,2E+08	2,4E+08	0,0E+00
HEB200	20,00	1,8E+09	1,3E+09	7,5E+08	0,0E+00
HEB220	18,18	2,4E+09	1,9E+09	1,3E+09	8,5E+08
HEB240	16,67	3,2E+09	2,5E+09	1,9E+09	1,5E+09
HEB260	15,38	3,5E+09	2,9E+09	2,2E+09	1,9E+09
HEB280	14,29	4,4E+09	3,7E+09	3,0E+09	2,6E+09
HEB300	13,33	5,5E+09	4,7E+09	3,9E+09	3,5E+09
HEB320	12,92	6,7E+09	5,8E+09	5,0E+09	4,5E+09
HEB340	12,55	8,2E+09	7,2E+09	6,2E+09	5,8E+09
HEB360	12,22	9,9E+09	8,7E+09	7,7E+09	7,2E+09
HEB400	11,67	1,4E+10	1,3E+10	1,1E+10	1,1E+10
HEB450	11,11	1,8E+10	1,6E+10	1,5E+10	1,4E+10
HEB500	10,67	2,2E+10	2,1E+10	1,9E+10	1,8E+10
IPE200	30,00	4,8E+08	3,5E+08	1,9E+08	0,0E+00
IPE220	27,27	6,3E+08	4,8E+08	3,2E+08	2,2E+08
IPE240	25,00	8,0E+08	6,4E+08	4,7E+08	3,8E+08
IPE270	22,22	1,1E+09	9,3E+08	7,4E+08	6,4E+08
IPE300	20,00	1,6E+09	1,3E+09	1,1E+09	1,0E+09
IPE330	18,56	2,1E+09	1,8E+09	1,5E+09	1,4E+09
IPE360	17,32	2,8E+09	2,4E+09	2,1E+09	2,0E+09
IPE400	16,11	3,9E+09	3,5E+09	3,1E+09	2,9E+09
IPE450	14,97	5,7E+09	5,2E+09	4,8E+09	4,6E+09
IPE500	14,00	8,2E+09	7,5E+09	7,0E+09	6,7E+09

Tabala ALS Digida r do fl 1 1

1.3. Concreto de Preenchimento

Dos dados das tabelas 19 e 20, constrói-se a tabela AI 9 referente a redução da espessura de concreto e a temperatura média em sua área residual, através de interpolação linear se necessário.

Porfil A /V		$b_{c,fi}$ [mm]			Derfil	Λ /V	$\theta_{c,t}[^{\circ}C]$				
I CI III	Λm/ v	R30	R60	R90	R120	1 cm	Λm/ V	R30	R60	R90	R120
HEB160	25,00	4	15	35,00	74,00	HEB160	25,00	308,70	427,59	520,00	626,67
HEB180	22,22	4	15	33,61	68,44	HEB180	22,22	293,29	408,43	492,22	588,89
HEB200	20,00	4	15	32,50	64,00	HEB200	20,00	274,11	391,67	470,00	557,14
HEB220	18,18	4	15	31,59	60,36	HEB220	18,18	258,41	376,52	451,82	531,17
HEB240	16,67	4	15	30,83	57,33	HEB240	16,67	245,33	363,89	436,67	509,52
HEB260	15,38	4	15	30,19	54,77	HEB260	15,38	234,27	353,21	423,85	491,21
HEB280	14,29	4	15	29,64	52,57	HEB280	14,29	224,78	344,05	412,86	475,51
HEB300	13,33	4	15	29,17	50,67	HEB300	13,33	216,56	336,11	403,33	461,90
HEB320	12,92	4	15	28,96	49,83	HEB320	12,92	212,96	332,64	398,81	455,95
HEB340	12,55	4	15	28,77	49,10	HEB340	12,55	209,79	329,58	393,56	450,70
HEB360	12,22	4	15	28,61	48,44	HEB360	12,22	206,97	326,85	388,89	446,03
HEB400	11,67	4	15	28,33	47,33	HEB400	11,67	202,18	322,22	380,95	438,10
HEB450	11,11	4	15	28,06	46,22	HEB450	11,11	197,38	317,59	373,02	430,16
HEB500	10,67	4	15	27,83	45,33	HEB500	10,67	193,54	313,89	366,67	423,81
IPE200	30,00	4	15	37,50	84,00	IPE200	30,00	330,43	462,07	570,00	693,33
IPE220	27,27	4	15	36,14	78,55	IPE220	27,27	318,58	443,26	542,73	656,97
IPE240	25,00	4	15	35,00	74,00	IPE240	25,00	308,70	427,59	520,00	626,67
IPE270	22,22	4	15	33,61	68,44	IPE270	22,22	293,29	408,43	492,22	588,89
IPE300	20,00	4	15	32,50	64,00	IPE300	20,00	274,11	391,67	470,00	557,14
IPE330	18,56	4	15	31,78	61,12	IPE330	18,56	261,68	379,67	455,61	536,58
IPE360	17,32	4	15	31,16	58,64	IPE360	17,32	250,97	369,34	443,20	518,86
IPE400	16,11	4	15	30,56	56,22	IPE400	16,11	240,54	359,26	431,11	501,59
IPE450	14,97	4	15	29,99	53,94	IPE450	14,97	230,69	349,76	419,71	485,30
IPE500	14,00	4	15	29,50	52,00	IPE500	14,00	222,32	341,67	410,00	471,43

Tabela AI 9 – Redução da espessura de concreto e temperatura média na área de concreto residual.

Os valores referentes da resistência à compressão do concreto e o módulo de elasticidade devido as altas temperaturas podem ser observados na tabela AI 10.

Dorfil	Λ /\/		f_{a}	<i>ε</i> ,θ		Dorfil	Λ /\/		$E_{c,s}$	sec, θ	
I CIIII	Λ _m / v	R30	R60	R90	R120	1 cm	Λm/ v	R30	R60	R90	R120
HEB160	25,00	16,83	14,17	11,40	8,20	HEB160	25,00	2317	1245	671	328
HEB180	22,22	17,13	14,75	12,23	9,33	HEB180	22,22	2483	1415	837	391
HEB200	20,00	17,52	15,17	12,90	10,29	HEB200	20,00	2650	1556	956	497
HEB220	18,18	17,83	15,47	13,45	11,06	HEB220	18,18	2797	1664	1068	611
HEB240	16,67	18,09	15,72	13,90	11,71	HEB240	16,67	2928	1763	1175	734
HEB260	15,38	18,31	15,94	14,28	12,26	HEB260	15,38	3045	1854	1276	842
HEB280	14,29	18,50	16,12	14,61	12,73	HEB280	14,29	3151	1937	1373	924
HEB300	13,33	18,67	16,28	14,90	13,14	HEB300	13,33	3248	2014	1466	1004
HEB320	12,92	18,74	16,35	15,02	13,32	HEB320	12,92	3291	2049	1508	1041
HEB340	12,55	18,80	16,41	15,13	13,48	HEB340	12,55	3330	2080	1543	1075
HEB360	12,22	18,86	16,46	15,22	13,62	HEB360	12,22	3365	2109	1575	1107
HEB400	11,67	18,96	16,56	15,38	13,86	HEB400	11,67	3426	2159	1631	1164
HEB450	11,11	19,03	16,65	15,54	14,10	HEB450	11,11	3484	2212	1691	1225
HEB500	10,67	19,06	16,72	15,67	14,29	HEB500	10,67	3528	2255	1741	1277
IPE200	30,00	16,39	13,14	9,90	6,20	IPE200	30,00	2071	1003	450	248
IPE220	27,27	16,63	13,70	10,72	7,29	IPE220	27,27	2200	1127	556	292
IPE240	25,00	16,83	14,17	11,40	8,20	IPE240	25,00	2317	1245	671	328
IPE270	22,22	17,13	14,75	12,23	9,33	IPE270	22,22	2483	1415	837	391
IPE300	20,00	17,52	15,17	12,90	10,29	IPE300	20,00	2650	1556	956	497
IPE330	18,56	17,77	15,41	13,33	10,90	IPE330	18,56	2765	1641	1043	584
IPE360	17,32	17,98	15,61	13,70	11,43	IPE360	17,32	2870	1720	1127	677
IPE400	16,11	18,19	15,81	14,07	11,95	IPE400	16,11	2978	1802	1217	788
IPE450	14,97	18,39	16,00	14,41	12,44	IPE450	14,97	3085	1885	1312	872
IPE500	14,00	18,55	16,17	14,70	12,86	IPE500	14,00	3180	1960	1400	947

Tabela AI 10 – Resistência a compressão e módulo de elasticidade do concreto em função da temperatura.

Os resultados para a resistência plástica à compressão axial e rigidez de flexão da área de concreto residual dos perfis, tendo em conta as equações 42 e 43 podem ser observados através das tabelas AI 11 e AI 12.

Dorfil	$\Delta m/M$		$N_{fi, pl, K}$	$_{Rd,c}[N]$	
renni	AIII/ V	R30	R60	R90	R120
HEB160	25,00	255925	151525	47250	0
HEB180	22,22	340184	215273	84759	4198
HEB200	20,00	427535	289771	136789	23406
HEB220	18,18	528741	374612	200781	57448
HEB240	16,67	653292	470535	276617	105549
HEB260	15,38	776312	582457	368403	167295
HEB280	14,29	930760	704375	471733	244021
HEB300	13,33	1094122	834390	583487	332521
HEB320	12,92	1173145	897467	636942	378503
HEB340	12,55	1227084	963943	693902	421276
HEB360	12,22	1310025	1030182	750585	469474
HEB400	11,67	1479671	1165561	867381	548956
HEB450	11,11	1691542	1337589	1014236	673565
HEB500	10,67	1901044	1509096	1160269	799035
IPE200	30,00	206684	109910	13067	0
IPE220	27,27	247936	148198	27228	0
IPE240	25,00	306839	192596	51556	0
IPE270	22,22	399586	271842	97153	0
IPE300	20,00	520247	363456	160992	19849
IPE330	18,56	630020	446612	222263	52416
IPE360	17,32	727857	536442	283978	95564
IPE400	16,11	882482	655615	354746	157898
IPE450	14,97	1075583	805219	474291	243122
IPE500	14,00	1253947	967342	663366	320424

Tabela AI 11 – Resistência plástica à compressão axial do concreto.

	Tabela A	112 - Kigic	lez de nexac	ao concreto).				
Dorfil	Λ /\/	$(EI)_{fi,c,z} \left[N \times mm^2 \right]$							
Term	μ _m / γ	R30	R60	R90	R120				
HEB160	25,00	8,4E+10	2,3E+10	2,1E+09	0,0E+00				
HEB180	22,22	1,5E+11	4,7E+10	7,5E+09	3,9E+07				
HEB200	20,00	2,4E+11	8,4E+10	1,8E+10	6,5E+08				
HEB220	18,18	3,8E+11	1,4E+11	3,5E+10	3,3E+09				
HEB240	16,67	5,7E+11	2,2E+11	6,9E+10	1,1E+10				
HEB260	15,38	8,2E+11	3,3E+11	1,1E+11	2,6E+10				
HEB280	14,29	1,2E+12	4,9E+11	1,9E+11	5,4E+10				
HEB300	13,33	1,6E+12	7,0E+11	3,0E+11	9,9E+10				
HEB320	12,92	1,7E+12	7,7E+11	3,5E+11	1,2E+11				
HEB340	12,55	1,8E+12	8,1E+11	3,6E+11	1,3E+11				
HEB360	12,22	2,0E+12	8,8E+11	4,0E+11	1,5E+11				
HEB400	11,67	2,3E+12	1,0E+12	5,0E+11	1,8E+11				
HEB450	11,11	2,6E+12	1,2E+12	6,1E+11	2,4E+11				
HEB500	10,67	3,0E+12	1,4E+12	7,3E+11	3,0E+11				
IPE200	30,00	2,3E+10	4,3E+09	4,3E+07	0,0E+00				
IPE220	27,27	3,7E+10	7,9E+09	2,1E+08	0,0E+00				
IPE240	25,00	5,6E+10	1,4E+10	7,4E+08	0,0E+00				
IPE270	22,22	9,9E+10	2,8E+10	2,9E+09	0,0E+00				
IPE300	20,00	1,6E+11	5,2E+10	8,1E+09	6,4E+07				
IPE330	18,56	2,3E+11	7,8E+10	1,5E+10	4,8E+08				
IPE360	17,32	3,1E+11	1,1E+11	2,6E+10	1,8E+09				
IPE400	16,11	4,4E+11	1,6E+11	3,9E+10	5,3E+09				
IPE450	14,97	6,1E+11	2,3E+11	6,7E+10	1,3E+10				
IPE500	14,00	8,2E+11	3,3E+11	1,2E+11	2,2E+10				

Tabela AI 12 - Rigidez de flexão do concreto.

1.4. Reforços de Aço

Das tabelas 21 e 22, e valendo-se quando necessário de uma interpolação linear, foi construída a tabela AI 13, referente aos coeficientes de redução para a tensão de escoamento e módulo de elasticidade do aço dos reforços.

Perfil A/\		k _{y,θ}			Dorfil	$k_{E, heta}$					
I CIIII	Λm/ v	R30	R60	R90	R120	I CI III	Λm/ V	R30	R60	R90	R120
HEB160	25,00	1,000	0,789	0,314	0,170	HEB160	25,00	0,830	0,604	0,193	0,110
HEB180	22,22	1,000	0,789	0,314	0,170	HEB180	22,22	0,830	0,604	0,193	0,110
HEB200	20,00	1,000	0,976	0,572	0,288	HEB200	20,00	0,888	0,689	0,406	0,173
HEB220	18,18	1,000	0,976	0,572	0,288	HEB220	18,18	0,888	0,689	0,406	0,173
HEB240	16,67	1,000	0,976	0,572	0,288	HEB240	16,67	0,888	0,689	0,406	0,173
HEB260	15,38	1,000	0,976	0,572	0,288	HEB260	15,38	0,888	0,689	0,406	0,173
HEB280	14,29	1,000	0,976	0,572	0,288	HEB280	14,29	0,888	0,689	0,406	0,173
HEB300	13,33	1,000	0,976	0,572	0,288	HEB300	13,33	0,888	0,689	0,406	0,173
HEB320	12,92	1,000	0,976	0,572	0,288	HEB320	12,92	0,888	0,689	0,406	0,173
HEB340	12,55	1,000	0,976	0,572	0,288	HEB340	12,55	0,888	0,689	0,406	0,173
HEB360	12,22	1,000	0,976	0,572	0,288	HEB360	12,22	0,888	0,689	0,406	0,173
HEB400	11,67	1,000	0,999	0,690	0,363	HEB400	11,67	0,913	0,727	0,517	0,230
HEB450	11,11	1,000	0,999	0,690	0,363	HEB450	11,11	0,913	0,727	0,517	0,230
HEB500	10,67	1,000	0,999	0,690	0,363	HEB500	10,67	0,913	0,727	0,517	0,230
IPE200	30,00	1,000	0,878	0,427	0,220	IPE200	30,00	0,863	0,645	0,278	0,127
IPE220	27,27	1,000	0,878	0,427	0,220	IPE220	27,27	0,863	0,645	0,278	0,127
IPE240	25,00	1,000	0,878	0,427	0,220	IPE240	25,00	0,863	0,645	0,278	0,127
IPE270	22,22	1,000	0,878	0,427	0,220	IPE270	22,22	0,863	0,645	0,278	0,127
IPE300	20,00	1,000	0,878	0,427	0,220	IPE300	20,00	0,863	0,645	0,278	0,127
IPE330	18,56	1,000	0,878	0,427	0,220	IPE330	18,56	0,863	0,645	0,278	0,127
IPE360	17,32	1,000	0,878	0,427	0,220	IPE360	17,32	0,863	0,645	0,278	0,127
IPE400	16,11	1,000	0,878	0,427	0,220	IPE400	16,11	0,863	0,645	0,278	0,127
IPE450	14,97	1,000	0,878	0,427	0,220	IPE450	14,97	0,863	0,645	0,278	0,127
IPE500	14,00	1,000	0,999	0,690	0,363	IPE500	14,00	0,913	0,727	0,517	0,230

Tabela AI 13 - Coeficientes de redução para tensão de escoamento e módulo de elasticidade.

Das tabelas anteriores, foi encontrada a temperatura referente aos coeficientes de redução. A tabela 14 apresenta a temperatura média dos reforços tento em conta o resultado a favor da segurança para este parâmetro.

Dorfil	A /\\/	$\theta_{s,t} \left[{}^{\circ}C \right]$						
Perm	A_{m}/v	R30	R60	R90	R120			
HEB160	25,00	300,00	455,93	630,71	682,14			
HEB180	22,22	300,00	455,93	630,71	682,14			
HEB200	20,00	300,00	340,00	536,30	641,88			
HEB220	18,18	300,00	340,00	536,30	641,88			
HEB240	16,67	300,00	340,00	536,30	641,88			
HEB260	15,38	300,00	340,00	536,30	641,88			
HEB280	14,29	300,00	340,00	536,30	641,88			
HEB300	13,33	300,00	340,00	536,30	641,88			
HEB320	12,92	300,00	340,00	536,30	641,88			
HEB340	12,55	300,00	340,00	536,30	641,88			
HEB360	12,22	300,00	340,00	536,30	641,88			
HEB400	11,67	300,00	301,82	492,46	613,07			
HEB450	11,11	300,00	301,82	492,46	613,07			
HEB500	10,67	300,00	301,82	492,46	613,07			
IPE200	30,00	300,00	423,05	589,88	670,63			
IPE220	27,27	300,00	423,05	589,88	670,63			
IPE240	25,00	300,00	423,05	589,88	670,63			
IPE270	22,22	300,00	423,05	589,88	670,63			
IPE300	20,00	300,00	423,05	589,88	670,63			
IPE330	18,56	300,00	423,05	589,88	670,63			
IPE360	17,32	300,00	423,05	589,88	670,63			
IPE400	16,11	300,00	423,05	589,88	670,63			
IPE450	14,97	300,00	423,05	589,88	670,63			
IPE500	14,00	300,00	301,82	492,46	613,07			

Tabela AI 14 – Temperatura média nos reforços.

Através das equações 47 e 48 foram determinadas as tabelas AI 15 e AI 16 referentes a resistência plásticas à compressão axial e rigidez de flexão dos reforços devido as altas temperaturas.

Perfil	Δ/Μ	$N_{fi, pl, Rd, s} [N]$						
Term	μ, γ	R30	R60	R90	R120			
HEB160	25,00	228980	180665	71900	38927			
HEB180	22,22	228980	180665	71900	38927			
HEB200	20,00	633680	618472	362465	182500			
HEB220	18,18	985680	962024	563809	283876			
HEB240	16,67	985680	962024	563809	283876			
HEB260	15,38	1613120	1574405	922705	464579			
HEB280	14,29	1613120	1574405	922705	464579			
HEB300	13,33	1613120	1574405	922705	464579			
HEB320	12,92	1613120	1574405	922705	464579			
HEB340	12,55	2520500	2460008	1441726	725904			
HEB360	12,22	2520500	2460008	1441726	725904			
HEB400	11,67	2520500	2517745	1740032	915954			
HEB450	11,11	2520500	2517745	1740032	915954			
HEB500	10,67	2520500	2517745	1740032	915954			
IPE200	30,00	228980	200990	97846	50386			
IPE220	27,27	633680	556220	270779	139439			
IPE240	25,00	633680	556220	270779	139439			
IPE270	22,22	985680	865192	421194	216895			
IPE300	20,00	985680	865192	421194	216895			
IPE330	18,56	985680	865192	421194	216895			
IPE360	17,32	1613120	1415935	689307	354961			
IPE400	16,11	1613120	1415935	689307	354961			
IPE450	14,97	1613120	1415935	689307	354961			
IPE500	14,00	2520500	2517745	1740032	915954			

Tabela AI 15 – Resistência plástica à compressão axial dos reforços.

Tabela Al 10 – Rigidez de fiexao dos felorços.									
Derfil	A _m /V -		(EI)fi, s, z	$\left[N \times mm^2\right]$					
renn	$A_{\rm m}$	R30	R60	R90	R120				
HEB160	25,00	1,3E+11	9,3E+10	3,0E+10	1,7E+10				
HEB180	22,22	2,0E+11	1,5E+11	4,7E+10	2,7E+10				
HEB200	20,00	6,0E+11	4,6E+11	2,7E+11	1,2E+11				
HEB220	18,18	1,3E+12	1,0E+12	6,1E+11	2,6E+11				
HEB240	16,67	1,8E+12	1,4E+12	8,3E+11	3,5E+11				
HEB260	15,38	3,9E+12	3,0E+12	1,8E+12	7,6E+11				
HEB280	14,29	4,9E+12	3,8E+12	2,2E+12	9,6E+11				
HEB300	13,33	6,1E+12	4,7E+12	2,8E+12	1,2E+12				
HEB320	12,92	6,1E+12	4,7E+12	2,8E+12	1,2E+12				
HEB340	12,55	9,5E+12	7,4E+12	4,3E+12	1,9E+12				
HEB360	12,22	9,5E+12	7,4E+12	4,3E+12	1,9E+12				
HEB400	11,67	9,8E+12	7,8E+12	5,5E+12	2,5E+12				
HEB450	11,11	9,8E+12	7,8E+12	5,5E+12	2,5E+12				
HEB500	10,67	9,8E+12	7,8E+12	5,5E+12	2,5E+12				
IPE200	30,00	9,1E+09	6,8E+09	2,9E+09	1,3E+09				
IPE220	27,27	5,8E+10	4,3E+10	1,9E+10	8,5E+09				
IPE240	25,00	9,8E+10	7,3E+10	3,2E+10	1,4E+10				
IPE270	22,22	2,8E+11	2,1E+11	9,2E+10	4,2E+10				
IPE300	20,00	4,5E+11	3,4E+11	1,5E+11	6,7E+10				
IPE330	18,56	5,9E+11	4,4E+11	1,9E+11	8,6E+10				
IPE360	17,32	1,2E+12	9,1E+11	3,9E+11	1,8E+11				
IPE400	16,11	1,5E+12	1,1E+12	4,8E+11	2,2E+11				
IPE450	14,97	1,8E+12	1,4E+12	5,8E+11	2,7E+11				
IPE500	14,00	2,5E+12	2,0E+12	1,4E+12	6,4E+11				

Tabela AI 16 - Rigidez de flexão dos reforços.

1.5. Soma Pesada das Componentes

Através do exposto pela equação 26, fez-se a soma pesada das parcelas de cada componente da seção transversal para a resistência plástica à compressão axial. O resultado total dos perfis em estudo pode ser observado na tabela AI 17.

Dorfil	A /\\7	$N_{fi, pl, Rd} \left[N \right]$						
reilli	A _m / v	R30	R60	R90	R120			
HEB160	25,00	814377	464344	174348	80969			
HEB180	22,22	1025522	596605	236164	97641			
HEB200	20,00	1658515	1192735	639504	274216			
HEB220	18,18	2266695	1713782	972468	469398			
HEB240	16,67	2560237	1911150	1122767	583699			
HEB260	15,38	3459728	2724007	1641643	889007			
HEB280	14,29	3825864	2955478	1832347	1039391			
HEB300	13,33	4233411	3209226	2042256	1210509			
HEB320	12,92	4497993	3380912	2185969	1336276			
HEB340	12,55	5628252	4439802	2852847	1722199			
HEB360	12,22	5884390	4625418	3005314	1857179			
HEB400	11,67	6390427	5064000	3622856	2312944			
HEB450	11,11	6980796	5511524	4001869	2653867			
HEB500	10,67	7578179	5969783	4392666	3008629			
IPE200	30,00	680766	440951	164413	65393			
IPE220	27,27	1183009	877233	388727	188454			
IPE240	25,00	1306558	968079	453752	225839			
IPE270	22,22	1859951	1431731	715195	364135			
IPE300	20,00	2105835	1614991	855046	454613			
IPE330	18,56	2338846	1790952	995788	562000			
IPE360	17,32	3211279	2540239	1418035	829809			
IPE400	16,11	3552865	2806381	1617152	1014097			
IPE450	14,97	4012273	3161419	1919705	1272699			
IPE500	14,00	5407898	4655911	3367486	2106707			

Tabela AI 17 – Resistência plástica à compressão axial dos perfis.

Por meio da equação 25, e visto os coeficientes de ponderação apresentados pela tabela 15, obteve-se a tabela AI 18, onde estão presentes os resultados para a rigidez de flexão efetiva dos perfis em estudo.

1a	Tabela Al 18 – Rigidez de fiexao efetiva dos perfis.									
Perfil	A _m /V -		$(EI)_{fi,eff,z}$	$\left[N \times mm^2\right]$						
1 crim	I KIIV V	R30	R60	R90	R120					
HEB160	25,00	3,7E+11	2,1E+11	1,1E+11	9,4E+10					
HEB180	22,22	6,2E+11	3,5E+11	1,8E+11	1,5E+11					
HEB200	20,00	1,3E+12	7,7E+11	4,4E+11	3,1E+11					
HEB220	18,18	2,4E+12	1,5E+12	8,2E+11	5,5E+11					
HEB240	16,67	3,3E+12	2,0E+12	1,2E+12	7,8E+11					
HEB260	15,38	6,0E+12	3,8E+12	2,1E+12	1,3E+12					
HEB280	14,29	7,9E+12	4,9E+12	2,7E+12	1,7E+12					
HEB300	13,33	1,0E+13	6,2E+12	3,5E+12	2,2E+12					
HEB320	12,92	1,1E+13	6,4E+12	3,6E+12	2,3E+12					
HEB340	12,55	1,5E+13	8,9E+12	4,9E+12	3,1E+12					
HEB360	12,22	1,5E+13	9,1E+12	5,0E+12	3,1E+12					
HEB400	11,67	1,6E+13	9,7E+12	6,1E+12	3,9E+12					
HEB450	11,11	1,7E+13	1,0E+13	6,4E+12	4,0E+12					
HEB500	10,67	1,8E+13	1,0E+13	6,6E+12	4,2E+12					
IPE200	30,00	5,2E+10	2,4E+10	1,4E+10	1,2E+10					
IPE220	27,27	1,3E+11	6,8E+10	3,3E+10	2,5E+10					
IPE240	25,00	2,0E+11	1,1E+11	5,2E+10	3,9E+10					
IPE270	22,22	4,6E+11	2,7E+11	1,2E+11	8,1E+10					
IPE300	20,00	7,3E+11	4,3E+11	1,9E+11	1,3E+11					
IPE330	18,56	9,7E+11	5,7E+11	2,5E+11	1,7E+11					
IPE360	17,32	1,7E+12	1,1E+12	4,5E+11	2,9E+11					
IPE400	16,11	2,2E+12	1,3E+12	5,7E+11	3,7E+11					
IPE450	14,97	2,8E+12	1,7E+12	7,2E+11	4,6E+11					
IPE500	14,00	3,9E+12	2,4E+12	1,5E+12	9,0E+11					

Tabela AI 18 – Rigidez de flexão efetiva dos perfis.

2. MÉTODO SIMPLIFICADO DE CÁLCULO: NOVA PROPOSTA

2.1. Banzos do Perfil Metálico

Efetuando os cálculos apresentados na equação 49, e levando em conta os parâmetros apresentados na tabela 23, obtém-se as temperaturas médias nos banzos dos perfis em estudo, dando origem aos valores apresentados na tabela AI 19.

Dorfil	Δ /\/	1	$ heta_{f,t}\left[{}^{\mathbf{o}}C ight]$						
Feim	A _m / v	R30	R60	R90	R120				
HEB160	25,00	705,25	907,50	987,00	1038,50				
HEB180	22,22	692,22	897,67	981,33	1034,00				
HEB200	20,00	681,80	889,80	976,80	1030,40				
HEB220	18,18	673,27	883,36	973,09	1027,45				
HEB260	16,67	666,17	878,00	970,00	1025,00				
HEB240	15,38	660,15	873,46	967,38	1022,92				
HEB280	14,29	655,00	869,57	965,14	1021,14				
HEB300	13,33	647,67	864,07	962,60	1018,20				
HEB320	12,92	639,52	857,85	960,24	1016,41				
HEB340	12,55	632,33	852,36	958,15	1014,84				
HEB360	12,22	625,94	847,48	956,30	1013,43				
HEB400	11,67	615,08	839,18	953,15	1011,05				
HEB450	11,11	604,22	830,89	950,00	1008,67				
HEB500	10,67	595,53	824,25	947,48	1006,76				
IPE200	30,00	729,50	913,60	988,70	1038,80				
IPE220	27,27	722,82	908,91	985,73	1036,18				
IPE240	25,00	717,25	905,00	983,25	1034,00				
IPE270	22,22	710,44	900,22	980,22	1031,33				
IPE300	20,00	705,00	896,40	977,80	1029,20				
IPE330	18,56	701,72	893,60	975,83	1028,18				
IPE360	17,32	693,72	888,95	973,10	1026,10				
IPE400	16,11	685,92	884,42	970,44	1024,07				
IPE450	14,97	678,56	880,14	967,94	1022,15				
IPE500	14,00	672,30	876,50	965,80	1020,52				

Tabela AI 19 – Temperatura média dos banzos.

Obtidas as temperaturas médias, é possível encontrar o coeficiente de redução da resistência do aço e o coeficiente de redução do módulo de elasticidade, sendo ambos apresentados na tabela AI 20.

Perfil	A _m /V		k_{y}	θ, θ			Perfil	Δ/V		k_{μ}	Ε,θ	
I enni	Σ ι _m γ ν	R30	R60	R90	R120	-	I ci ili	1 x m/ v	R30	R60	R90	R120
HEB160	25,00	0,224	0,059	0,043	0,032	•	HEB160	25,00	0,128	0,066	0,048	0,036
HEB180	22,22	0,249	0,061	0,044	0,033		HEB180	22,22	0,144	0,068	0,049	0,037
HEB200	20,00	0,274	0,065	0,045	0,034		HEB200	20,00	0,163	0,070	0,050	0,038
HEB220	18,18	0,294	0,068	0,045	0,035		HEB220	18,18	0,178	0,071	0,051	0,039
HEB260	16,67	0,311	0,071	0,046	0,035		HEB260	16,67	0,191	0,072	0,052	0,039
HEB240	15,38	0,326	0,073	0,047	0,035		HEB240	15,38	0,202	0,073	0,052	0,040
HEB280	14,29	0,338	0,075	0,047	0,036		HEB280	14,29	0,211	0,074	0,053	0,040
HEB300	13,33	0,356	0,078	0,047	0,036		HEB300	13,33	0,224	0,076	0,053	0,041
HEB320	12,92	0,375	0,081	0,048	0,037		HEB320	12,92	0,239	0,077	0,054	0,041
HEB340	12,55	0,392	0,084	0,048	0,037		HEB340	12,55	0,252	0,078	0,054	0,042
HEB360	12,22	0,408	0,086	0,049	0,037		HEB360	12,22	0,263	0,079	0,055	0,042
HEB400	11,67	0,434	0,090	0,049	0,038		HEB400	11,67	0,283	0,081	0,056	0,043
HEB450	11,11	0,460	0,095	0,050	0,038		HEB450	11,11	0,302	0,083	0,056	0,043
HEB500	10,67	0,484	0,098	0,051	0,039		HEB500	10,67	0,323	0,085	0,057	0,043
IPE200	30,00	0,195	0,057	0,042	0,032		IPE200	30,00	0,118	0,064	0,048	0,036
IPE220	27,27	0,203	0,058	0,043	0,033		IPE220	27,27	0,121	0,065	0,048	0,037
IPE240	25,00	0,209	0,059	0,043	0,033		IPE240	25,00	0,123	0,066	0,049	0,037
IPE270	22,22	0,217	0,060	0,044	0,034		IPE270	22,22	0,126	0,067	0,049	0,038
IPE300	20,00	0,224	0,062	0,044	0,034		IPE300	20,00	0,128	0,068	0,050	0,038
IPE330	18,56	0,228	0,063	0,045	0,034		IPE330	18,56	0,129	0,069	0,050	0,039
IPE360	17,32	0,245	0,066	0,045	0,035		IPE360	17,32	0,141	0,070	0,051	0,039
IPE400	16,11	0,264	0,068	0,046	0,035		IPE400	16,11	0,155	0,071	0,052	0,040
IPE450	14,97	0,281	0,070	0,046	0,036		IPE450	14,97	0,169	0,072	0,052	0,040
IPE500	14,00	0,296	0,072	0,047	0,036		IPE500	14,00	0,180	0,073	0,053	0,040

Tabela AI 20 – Coeficientes de redução para tensão de escoamento e módulo de elasticidade.

Através das equações 35 e 36, originam-se as tabelas AI 21 e AI 22 referentes a resistência plástica à compressão axial e a rigidez de flexão dos banzos dos perfis devido as altas temperaturas.

Dorfil	Λ /Μ	$N_{fi,pl,Rd,f} \left[N \right]$						
1 cm	Λ _m / v	R30	R60	R90	R120			
HEB160	25,00	255913	66924	48734	36951			
HEB180	22,22	344652	84777	60614	46015			
HEB200	20,00	451572	107415	73656	55968			
HEB220	18,18	569466	132264	87859	66810			
HEB260	16,67	698333	159324	103224	78540			
HEB240	15,38	814891	183356	116424	88627			
HEB280	14,29	936936	208494	130205	99158			
HEB300	13,33	1114806	244426	148850	113989			
HEB320	12,92	1268945	274243	162199	124197			
HEB340	12,55	1392039	297357	171590	131374			
HEB360	12,22	1513710	320244	180947	138526			
HEB400	11,67	1717848	358017	195505	149648			
HEB450	11,11	1972828	405643	214500	164164			
HEB500	10,67	2235372	452175	233328	178554			
IPE200	30,00	90976	26778	19757	15072			
IPE220	27,27	112777	32404	23853	18236			
IPE240	25,00	135375	38161	28039	21474			
IPE270	22,22	164698	45407	33290	25548			
IPE300	20,00	197736	54554	39229	30155			
IPE330	18,56	230676	63957	45371	34776			
IPE360	17,32	291023	77807	53885	41300			
IPE400	16,11	352569	90604	61360	47027			
IPE450	14,97	429412	106692	70812	54269			
IPE500	14,00	521805	126280	82438	63177			

Tabela AI 21 – Resistência plástica à compressão axial dos banzos.

	Tabela A	AI 22 – Rigio	iez de fiexad	o dos banzos	.
Porfil	A _m /V -		$(EI)_{fi,f,z}$	$\left[N \times mm^2\right]$	
Term	μ _m / v	R30	R60	R90	R120
HEB160	25,00	2,4E+11	1,2E+11	8,9E+10	6,8E+10
HEB180	22,22	4,1E+11	1,9E+11	1,4E+11	1,1E+11
HEB200	20,00	6,8E+11	2,9E+11	2,1E+11	1,6E+11
HEB220	18,18	1,1E+12	4,2E+11	3,0E+11	2,3E+11
HEB260	16,67	1,6E+12	6,0E+11	4,3E+11	3,2E+11
HEB240	15,38	2,2E+12	7,9E+11	5,6E+11	4,3E+11
HEB280	14,29	2,9E+12	1,0E+12	7,3E+11	5,6E+11
HEB300	13,33	4,0E+12	1,4E+12	9,6E+11	7,3E+11
HEB320	12,92	4,6E+12	1,5E+12	1,0E+12	8,0E+11
HEB340	12,55	5,1E+12	1,6E+12	1,1E+12	8,5E+11
HEB360	12,22	5,6E+12	1,7E+12	1,2E+12	8,9E+11
HEB400	11,67	6,4E+12	1,8E+12	1,3E+12	9,6E+11
HEB450	11,11	7,4E+12	2,0E+12	1,4E+12	1,1E+12
HEB500	10,67	8,5E+12	2,2E+12	1,5E+12	1,2E+12
IPE200	30,00	3,5E+10	1,9E+10	1,4E+10	1,1E+10
IPE220	27,27	5,2E+10	2,8E+10	2,1E+10	1,6E+10
IPE240	25,00	7,3E+10	3,9E+10	2,9E+10	2,2E+10
IPE270	22,22	1,1E+11	5,9E+10	4,3E+10	3,3E+10
IPE300	20,00	1,6E+11	8,6E+10	6,3E+10	4,9E+10
IPE330	18,56	2,1E+11	1,1E+11	8,3E+10	6,4E+10
IPE360	17,32	3,1E+11	1,5E+11	1,1E+11	8,5E+10
IPE400	16,11	4,3E+11	2,0E+11	1,4E+11	1,1E+11
IPE450	14,97	5,9E+11	2,5E+11	1,8E+11	1,4E+11
IPE500	14,00	8,1E+11	3,3E+11	2,4E+11	1,8E+11

Tabela AI 22 – Rigidez de flexão dos banzos

2.2. Alma do Perfil Metálico

Efetuando os cálculos das equações 50 e 51, e levando em conta os parâmetros da tabela 24, encontra-se a altura da alma que deverá ser desprezada para a resistência desta componente, sendo este resultado apresentado na tabela AI 23.

Derfil	A /\/	$h_{w,fi}[mm]$						
Perm	A _m / v	R30	R60	R90	R120			
HEB160	25,00	-	-	-	-			
HEB180	22,22	39,68	-	-	-			
HEB200	20,00	37,48	-	-	-			
HEB220	18,18	35,22	-	-	-			
HEB240	16,67	32,89	-	-	-			
HEB260	15,38	30,66	94,86	-	-			
HEB280	14,29	28,36	85,31	-	-			
HEB300	13,33	25,89	75,26	-	-			
HEB320	12,92	25,45	72,53	-	-			
HEB340	12,55	25,10	70,06	-	-			
HEB360	12,22	24,74	67,56	136,60	-			
HEB400	11,67	24,08	62,69	124,43	-			
HEB450	11,11	23,19	56,40	108,80	179,39			
HEB500	10,67	22,27	49,99	92,91	149,90			
IPE200	30,00	57,19	-	-	-			
IPE220	27,27	55,30	-	-	-			
IPE240	25,00	53,45	-	-	-			
IPE270	22,22	50,82	-	-	-			
IPE300	20,00	48,06	-	-	-			
IPE330	18,56	46,77	107,61	-	-			
IPE360	17,32	45,17	100,27	-	-			
IPE400	16,11	44,04	93,29	-	-			
IPE450	14,97	42,96	85,57	163,58	-			
IPE500	14,00	41,42	76,54	142,85	-			

Tabela AI 23 – Redução da altura da alma.

Devido à falta de uma formulação para a temperatura média da alma, as suas características resistentes são consideradas a temperatura ambiente, sendo a resistência desta componente afetada apenas pela redução de sua área.

Os resultados para a resistência plástica à compressão axial e rigidez de flexão da alma dos perfis em estudo, podem ser observados através das tabelas AI 24 e AI 25.

Porfil	Λ /Μ	$N_{fi,pl,Rd,w} [N]$							
1 cm	Λ _m / v	R30	R60	R90	R120				
HEB160	25,00	0	0	0	0				
HEB180	22,22	169796	0	0	0				
HEB200	20,00	235202	0	0	0				
HEB220	18,18	307150	0	0	0				
HEB240	16,67	385601	0	0	0				
HEB260	15,38	450120	97005	0	0				
HEB280	14,29	540796	211880	0	0				
HEB300	13,33	635894	337224	0	0				
HEB320	12,92	721353	423589	0	0				
HEB340	12,55	814430	517726	0	0				
HEB360	12,22	912697	618339	143713	0				
HEB400	11,67	1127993	841352	382892	0				
HEB450	11,11	1353710	1098053	694558	150984				
HEB500	10,67	1592825	1371791	1029517	574965				
IPE200	30,00	105677	0	0	0				
IPE220	27,27	147632	0	0	0				
IPE240	25,00	193520	0	0	0				
IPE270	22,22	268533	0	0	0				
IPE300	20,00	356287	0	0	0				
IPE330	18,56	440244	189276	0	0				
IPE360	17,32	537376	294914	0	0				
IPE400	16,11	673843	440882	0	0				
IPE450	14,97	865644	645365	242074	0				
IPE500	14,00	1080358	883336	511329	0				

Tabela AI 24 – Resistência plástica à compressão axial da alma.

Tabela AI 25 – Rigidez de flexão da alma.									
Perfil	Δ/V	$(EI)_{fi,w,z} \left[N \times mm^2 \right]$							
1 cm	r _m / v	R30	R60	R90	R120				
HEB160	25,00	0,0E+00	0,0E+00	0,0E+00	0,0E+00				
HEB180	22,22	7,8E+08	0,0E+00	0,0E+00	0,0E+00				
HEB200	20,00	1,2E+09	0,0E+00	0,0E+00	0,0E+00				
HEB220	18,18	1,8E+09	0,0E+00	0,0E+00	0,0E+00				
HEB240	16,67	2,5E+09	0,0E+00	0,0E+00	0,0E+00				
HEB260	15,38	2,9E+09	6,2E+08	0,0E+00	0,0E+00				
HEB280	14,29	3,8E+09	1,5E+09	0,0E+00	0,0E+00				
HEB300	13,33	4,9E+09	2,6E+09	0,0E+00	0,0E+00				
HEB320	12,92	6,1E+09	3,6E+09	0,0E+00	0,0E+00				
HEB340	12,55	7,5E+09	4,7E+09	0,0E+00	0,0E+00				
HEB360	12,22	9,1E+09	6,1E+09	1,4E+09	0,0E+00				
HEB400	11,67	1,3E+10	9,8E+09	4,4E+09	0,0E+00				
HEB450	11,11	1,7E+10	1,4E+10	8,7E+09	1,9E+09				
HEB500	10,67	2,1E+10	1,8E+10	1,4E+10	7,7E+09				
IPE200	30,00	2,1E+08	0,0E+00	0,0E+00	0,0E+00				
IPE220	27,27	3,3E+08	0,0E+00	0,0E+00	0,0E+00				
IPE240	25,00	4,7E+08	0,0E+00	0,0E+00	0,0E+00				
IPE270	22,22	7,4E+08	0,0E+00	0,0E+00	0,0E+00				
IPE300	20,00	1,1E+09	0,0E+00	0,0E+00	0,0E+00				
IPE330	18,56	1,6E+09	6,8E+08	0,0E+00	0,0E+00				
IPE360	17,32	2,2E+09	1,2E+09	0,0E+00	0,0E+00				
IPE400	16,11	3,2E+09	2,1E+09	0,0E+00	0,0E+00				
IPE450	14,97	4,9E+09	3,6E+09	1,4E+09	0,0E+00				
IPE500	14,00	7,2E+09	5,8E+09	3,4E+09	0,0E+00				

2.3. Concreto de Preenchimento

Efetuando os cálculos da equação 52 por meio dos coeficientes apresentados nas tabelas 25 e 26, e tendo em conta os limites de aplicação da tabela 27, encontra-se a espessura de concreto a ser negligenciada em ambas as direções principais, sendo este resultado apresentado na tabela AI 26.

Tabela AI 26 – Redução da espessura de concreto norizontal e vertical.											
Perfil A	A /\\/	$b_{c,fi,h}$ [mm]			Dorfil	A /\\/	$b_{c,fi,v}$ [mm]				
	Λm/ V	R30	R60	R90	R120	I CI III	μ. v	R30	R60	R90	R120
HEB160	25,00	15,52	-	-	-	HEB160	25,00	12,80	-	-	-
HEB180	22,22	15,30	-	-	-	HEB180	22,22	11,77	-	-	-
HEB200	20,00	15,12	37,19	-	-	HEB200	20,00	10,94	40,11	-	-
HEB220	18,18	14,97	32,33	-	-	HEB220	18,18	10,26	34,83	-	-
HEB240	16,67	14,85	29,19	66,47	-	HEB240	16,67	9,70	31,24	94,58	-
HEB260	15,38	14,74	27,19	54,11	-	HEB260	15,38	9,22	28,79	73,44	-
HEB280	14,29	14,66	25,95	46,14	-	HEB280	14,29	8,81	27,11	60,21	-
HEB300	13,33	14,58	25,24	41,20	65,21	HEB300	13,33	8,46	25,97	52,38	89,07
HEB320	12,92	14,54	25,03	39,61	62,06	HEB320	12,92	8,31	25,57	50,02	86,56
HEB340	12,55	14,52	24,90	38,50	59,28	HEB340	12,55	8,17	25,26	48,47	84,36
HEB360	12,22	14,49	24,83	37,74	56,81	HEB360	12,22	8,05	25,02	47,52	82,39
HEB400	11,67	14,44	24,79	36,94	52,62	HEB400	11,67	7,84	24,69	46,82	79,06
HEB450	11,11	14,40	24,86	36,77	48,42	HEB450	11,11	7,63	24,47	47,27	75,72
HEB500	10,67	14,36	25,00	37,07	45,06	HEB500	10,67	7,47	24,36	48,46	73,05
IPE200	30,00	17,12	-	-	-	IPE200	30,00	25,15	-	-	-
IPE220	27,27	16,52	-	-	-	IPE220	27,27	22,59	-	-	-
IPE240	25,00	16,02	-	-	-	IPE240	25,00	20,46	-	-	-
IPE270	22,22	15,40		-	-	IPE270	22,22	17,85	-	-	-
IPE300	20,00	14,91	34,51	-	-	IPE300	20,00	15,77	68,20	-	-
IPE330	18,56	14,59	30,75	-	-	IPE330	18,56	14,42	57,28	-	-
IPE360	17,32	14,32	28,50	-	-	IPE360	17,32	13,25	49,82	-	-
IPE400	16,11	14,05	27,19	45,84	-	IPE400	16,11	12,12	44,30	105,88	-
IPE450	14,97	13,80	26,75	41,02	74,71	IPE450	14,97	11,05	40,67	91,37	190,43
IPE500	14,00	13,59	26,99	39,77	56,96	IPE500	14,00	10,14	38,78	83,20	143,26

Tabela AI 26 – Redução da espessura de concreto horizontal e vertical.

Através das equações 53 e 54, e considerando os limites de aplicação da tabela 27, é obtida a tabela AI 27 referente a temperatura média na área residual de concreto das seções em estudo.

Dorfil	A /\\/	$- \theta_{c,t} \left[{}^{\circ}C \right]$						
reim	$A_{m} v$	R30	R60	R90	R120			
HEB160	25,00	426,76	-	-	-			
HEB180	22,22	379,60	-	-	-			
HEB200	20,00	341,87	489,05	-	-			
HEB220	18,18	310,99	445,39	-	-			
HEB240	16,67	285,27	409,01	509,56	-			
HEB260	15,38	263,50	378,22	471,85	-			
HEB280	14,29	244,84	351,84	439,54	-			
HEB300	13,33	228,67	328,97	411,53	486,79			
HEB320	12,92	221,59	318,96	399,27	472,64			
HEB340	12,55	215,35	310,13	388,46	460,15			
HEB360	12,22	209,80	302,29	378,85	449,06			
HEB400	11,67	200,37	288,95	362,51	430,19			
HEB450	11,11	190,94	275,61	346,17	411,32			
HEB500	10,67	183,39	264,93	333,10	396,23			
IPE200	30,00	465,80	-	-	-			
IPE220	27,27	425,91	-	-	-			
IPE240	25,00	392,68	-	-	-			
IPE270	22,22	352,05	500,91	-	-			
IPE300	20,00	319,56	454,95	-	-			
IPE330	18,56	298,51	425,18	-	-			
IPE360	17,32	280,37	399,53	491,63	-			
IPE400	16,11	262,68	374,52	461,01	-			
IPE450	14,97	246,01	350,94	432,12	500,93			
IPE500	14,00	231,81	330,86	407,53	472,54			

Tabela AI 27 – Temperatura média na área de concreto residual.

Os valores referentes da resistência à compressão do concreto e o módulo de elasticidade devido as altas temperaturas podem ser observados na tabela AI 28.

Perfil A ₁	Λ /Μ	$f_{c,\theta}$			Porfil	Δ/V	$E_{c, \sec, \theta}$				
	Λ _m / v	R30	R60	R90	R120	1 cm	$\Lambda_{\rm m'}$ v	R30	R60	R90	R120
HEB160	25,00	14,20	-	-	-	HEB160	25,00	1252	-	-	-
HEB180	22,22	15,41	-	-	-	HEB180	22,22	1641	-	-	-
HEB200	20,00	16,16	12,33	-	-	HEB200	20,00	1958	853	-	-
HEB220	18,18	16,78	13,64	-	-	HEB220	18,18	2289	1112	-	-
HEB240	16,67	17,29	14,73	11,71	-	HEB240	16,67	2551	1409	734	-
HEB260	15,38	17,73	15,44	12,84	-	HEB260	15,38	2748	1651	945	-
HEB280	14,29	18,10	15,96	13,81	-	HEB280	14,29	2933	1866	1153	-
HEB300	13,33	18,43	16,42	14,65	12,40	HEB300	13,33	3107	2087	1386	864
HEB320	12,92	18,57	16,62	15,01	12,82	HEB320	12,92	3188	2196	1505	941
HEB340	12,55	18,69	16,80	15,23	13,20	HEB340	12,55	3262	2300	1578	1014
HEB360	12,22	18,80	16,95	15,42	13,53	HEB360	12,22	3330	2399	1647	1086
HEB400	11,67	18,99	17,22	15,75	14,09	HEB400	11,67	3450	2520	1775	1225
HEB450	11,11	19,09	17,49	16,08	14,66	HEB450	11,11	3559	2636	1917	1387
HEB500	10,67	19,17	17,70	16,34	15,08	HEB500	10,67	3650	2734	2044	1525
IPE200	30,00	13,03	-	-	-	IPE200	30,00	980	-	-	-
IPE220	27,27	14,22	-	-	-	IPE220	27,27	1259	-	-	-
IPE240	25,00	15,15	-	-	-	IPE240	25,00	1549	-	-	-
IPE270	22,22	15,96	11,97	-	-	IPE270	22,22	1864	793	-	-
IPE300	20,00	16,61	13,35	-	-	IPE300	20,00	2189	1047	-	-
IPE330	18,56	17,03	14,24	-	-	IPE330	18,56	2441	1265	-	-
IPE360	17,32	17,39	15,01	12,25	-	IPE360	17,32	2594	1503	840	-
IPE400	16,11	17,75	15,51	13,17	-	IPE400	16,11	2756	1679	1009	-
IPE450	14,97	18,08	15,98	14,04	11,97	IPE450	14,97	2921	1874	1209	793
IPE500	14,00	18,36	16,38	14,77	12,82	IPE500	14,00	3072	2067	1424	941

Tabela AI 28 – Resistencia à compressão e módulo de elasticidade do concreto em função da temperatura.

Os resultados para a resistência plástica à compressão axial e rigidez de flexão da área de concreto residual dos perfis, tendo em conta as equações 42 e 43, entretanto com a diferenciação para espessuras horizontais e verticais, podem ser observados através das tabelas AI 29 e AI 30.
Perfil	Δ/Μ	$N_{fi, pl, Rd, c} \lfloor N \rfloor$								
renn	2 x m/ v	R30	R60	R90	R120					
HEB160	25,00	154494	0	0	0					
HEB180	22,22	233793	0	0	0					
HEB200	20,00	313374	107557	0	0					
HEB220	18,18	407921	198219	0	0					
HEB240	16,67	526596	306951	16469	0					
HEB260	15,38	645304	429453	122339	0					
HEB280	14,29	796272	560851	256763	0					
HEB300	13,33	958039	700687	395703	141798					
HEB320	12,92	1035408	769029	465597	191894					
HEB340	12,55	1087413	839809	523359	246671					
HEB360	12,22	1168108	909765	586343	303868					
HEB400	11,67	1332810	1051040	675714	419616					
HEB450	11,11	1533417	1228614	822077	576283					
HEB500	10,67	1732866	1404283	963012	737265					
IPE200	30,00	84309	0	0	0					
IPE220	27,27	120467	0	0	0					
IPE240	25,00	174667	0	0	0					
IPE270	22,22	259453	0	0	0					
IPE300	20,00	370890	120622	0	0					
IPE330	18,56	473495	210724	0	0					
IPE360	17,32	566313	299374	0	0					
IPE400	16,11	713476	386414	145596	0					
IPE450	14,97	898305	527283	283215	12822					
IPE500	14,00	1070280	741244	416031	151861					

Tabela AI 29 – Resistência plástica à compressão axial do concreto.

	Tabela AI 50 – Rigidez de fiexão do concreto.										
Porfil	Λ /\/	$(EI)_{fi,c,z} \left[N \times mm^2 \right]$									
I CI III	ια _m / v	R30	R60	R90	R120						
HEB160	25,00	2,3E+10	0,0E+00	0,0E+00	0,0E+00						
HEB180	22,22	5,7E+10	0,0E+00	0,0E+00	0,0E+00						
HEB200	20,00	1,1E+11	9,9E+09	0,0E+00	0,0E+00						
HEB220	18,18	2,0E+11	3,3E+10	0,0E+00	0,0E+00						
HEB240	16,67	3,4E+11	8,7E+10	1,3E+09	0,0E+00						
HEB260	15,38	5,2E+11	1,7E+11	2,2E+10	0,0E+00						
HEB280	14,29	7,9E+11	3,0E+11	7,6E+10	0,0E+00						
HEB300	13,33	1,2E+12	5,0E+11	1,7E+11	2,9E+10						
HEB320	12,92	1,3E+12	5,8E+11	2,2E+11	4,5E+10						
HEB340	12,55	1,4E+12	6,2E+11	2,6E+11	6,5E+10						
HEB360	12,22	1,5E+12	7,1E+11	3,0E+11	8,8E+10						
HEB400	11,67	1,8E+12	8,7E+11	3,6E+11	1,4E+11						
HEB450	11,11	2,1E+12	1,1E+12	4,7E+11	2,3E+11						
HEB500	10,67	2,4E+12	1,3E+12	5,9E+11	3,3E+11						
IPE200	30,00	3,0E+09	0,0E+00	0,0E+00	0,0E+00						
IPE220	27,27	7,1E+09	0,0E+00	0,0E+00	0,0E+00						
IPE240	25,00	1,5E+10	0,0E+00	0,0E+00	0,0E+00						
IPE270	22,22	3,5E+10	0,0E+00	0,0E+00	0,0E+00						
IPE300	20,00	7,3E+10	6,6E+09	0,0E+00	0,0E+00						
IPE330	18,56	1,2E+11	1,9E+10	0,0E+00	0,0E+00						
IPE360	17,32	1,7E+11	3,8E+10	0,0E+00	0,0E+00						
IPE400	16,11	2,6E+11	6,1E+10	9,3E+09	0,0E+00						
IPE450	14,97	3,9E+11	1,1E+11	3,0E+10	1,7E+08						
IPE500	14,00	5,5E+11	1,8E+11	6,1E+10	9,1E+09						

Tabela AI 30 - Rigidez de flexão do concreto.

2.4. Reforços de Aço

Através das equações 55 e 56, e considerando o parâmetro u determinado na tabela 16, é obtida a tabela AI 31, referente a temperatura média nos reforços de aço das seções em estudo.

Doufi1	A /\\7	$\theta_{s,t} \left[{}^{\mathbf{o}}C \right]$								
reilli	$A_{m} v$	R30	R60	R90	R120					
HEB160	25,00	359,92	608,35	816,52	986,75					
HEB180	22,22	348,21	583,25	777,31	932,94					
HEB200	20,00	258,84	483,17	665,95	809,90					
HEB220	18,18	251,17	466,74	640,28	774,69					
HEB240	16,67	244,79	453,05	618,90	745,34					
HEB260	15,38	239,38	441,47	600,80	720,51					
HEB280	14,29	234,75	431,54	585,29	699,22					
HEB300	13,33	230,74	422,93	571,85	680,78					
HEB320	12,92	228,98	419,17	565,97	672,71					
HEB340	12,55	227,43	415,85	560,78	665,59					
HEB360	12,22	226,05	412,89	556,17	659,26					
HEB400	11,67	185,53	369,70	510,15	610,32					
HEB450	11,11	183,19	364,68	502,31	599,56					
HEB500	10,67	181,32	360,66	496,03	590,95					
IPE200	30,00	462,41	681,71	845,22	957,56					
IPE220	27,27	424,23	643,53	807,04	919,37					
IPE240	25,00	392,41	611,71	775,22	887,56					
IPE270	22,22	353,52	572,82	736,33	848,67					
IPE300	20,00	322,41	541,71	705,22	817,56					
IPE330	18,56	302,26	521,56	685,07	797,41					
IPE360	17,32	284,90	504,19	667,71	780,04					
IPE400	16,11	267,97	487,27	650,78	763,11					
IPE450	14,97	252,00	471,30	634,81	747,15					
IPE500	14,00	158,01	377,30	540,81	653,15					

Tabela AI 31 – Temperatura média nos reforços.

Obtidas as temperaturas médias, é possível encontrar o coeficiente de redução da resistência do aço e o coeficiente de redução do módulo de elasticidade, sendo ambos apresentados na tabela AI 32.

Perfil	Δ/V	$k_{y, heta}$					Perfil	A _m /V	$k_{E, heta}$			
I CI III	r _m / v	R30	R60	R90	R120		1 cm	r t m/ v	R30	R60	R90	R120
HEB160	25,00	0,964	0,377	0,105	0,054	•	HEB160	25,00	0,624	0,227	0,058	0,033
HEB180	22,22	0,971	0,445	0,112	0,070		HEB180	22,22	0,643	0,267	0,065	0,043
HEB200	20,00	1,000	0,715	0,215	0,107		HEB200	20,00	0,782	0,427	0,134	0,059
HEB220	18,18	1,000	0,760	0,287	0,113		HEB220	18,18	0,793	0,453	0,176	0,065
HEB240	16,67	1,000	0,797	0,347	0,115		HEB240	16,67	0,803	0,475	0,210	0,071
HEB260	15,38	1,000	0,828	0,398	0,118		HEB260	15,38	0,811	0,494	0,239	0,076
HEB280	14,29	1,000	0,855	0,440	0,122		HEB280	14,29	0,818	0,510	0,264	0,081
HEB300	13,33	1,000	0,878	0,476	0,174		HEB300	13,33	0,824	0,523	0,285	0,111
HEB320	12,92	1,000	0,888	0,492	0,196		HEB320	12,92	0,827	0,529	0,294	0,124
HEB340	12,55	1,000	0,897	0,506	0,216		HEB340	12,55	0,829	0,535	0,303	0,135
HEB360	12,22	1,000	0,905	0,518	0,234		HEB360	12,22	0,831	0,539	0,310	0,145
HEB400	11,67	1,000	0,958	0,643	0,371		HEB400	11,67	0,889	0,608	0,384	0,223
HEB450	11,11	1,000	0,961	0,664	0,401		HEB450	11,11	0,892	0,617	0,396	0,241
HEB500	10,67	1,000	0,964	0,681	0,424		HEB500	10,67	0,894	0,623	0,406	0,254
IPE200	30,00	0,771	0,171	0,096	0,063		IPE200	30,00	0,460	0,109	0,055	0,038
IPE220	27,27	0,875	0,278	0,108	0,074		IPE220	27,27	0,521	0,170	0,059	0,046
IPE240	25,00	0,945	0,367	0,112	0,084		IPE240	25,00	0,572	0,221	0,065	0,051
IPE270	22,22	0,968	0,473	0,116	0,095		IPE270	22,22	0,634	0,283	0,073	0,055
IPE300	20,00	0,987	0,557	0,119	0,105		IPE300	20,00	0,684	0,333	0,079	0,058
IPE330	18,56	0,999	0,612	0,162	0,110		IPE330	18,56	0,716	0,366	0,104	0,061
IPE360	17,32	1,000	0,659	0,210	0,112		IPE360	17,32	0,743	0,393	0,132	0,064
IPE400	16,11	1,000	0,704	0,258	0,114		IPE400	16,11	0,768	0,420	0,159	0,067
IPE450	14,97	1,000	0,747	0,303	0,115		IPE450	14,97	0,792	0,446	0,184	0,071
IPE500	14,00	1,000	0,954	0,560	0,251	. .	IPE500	14,00	0,925	0,596	0,335	0,155

Tabela AI 32 - Coeficientes de redução para tensão de escoamento e módulo de elasticidade.

Através das equações 47 e 48, originam-se as tabelas AI 33 e AI 34, referentes a resistência plástica à compressão axial e a rigidez de flexão dos reforços dos perfis em estudo devido as altas temperaturas.

Perfil	Δ/V		$N_{\it fi, \it pl, \it K}$	$R_{d,s}[N]$	
1 cm	r t m/ v	R30	R60	R90	R120
HEB160	25,00	220748	86237	24053	12360
HEB180	22,22	222357	101946	25707	16055
HEB200	20,00	633680	453355	136463	67822
HEB220	18,18	985680	748909	283093	110920
HEB240	16,67	985680	785344	342115	113813
HEB260	15,38	1613120	1335715	641623	190266
HEB280	14,29	1613120	1378962	709307	197080
HEB300	13,33	1613120	1416442	767855	280398
HEB320	12,92	1613120	1432840	793469	316849
HEB340	12,55	2520500	2261420	1275110	545331
HEB360	12,22	2520500	2281515	1306500	590002
HEB400	11,67	2520500	2415097	1619679	935380
HEB450	11,11	2520500	2422689	1673042	1011208
HEB500	10,67	2520500	2428762	1715733	1069791
IPE200	30,00	176655	39204	22081	14365
IPE220	27,27	554201	176238	68366	47011
IPE240	25,00	598544	232693	71275	53060
IPE270	22,22	954025	466602	114700	94034
IPE300	20,00	972425	549399	117767	103233
IPE330	18,56	984342	603029	159485	108681
IPE360	17,32	1613120	1062522	339439	180663
IPE400	16,11	1613120	1136251	415899	183394
IPE450	14,97	1613120	1205785	488008	185969
IPE500	14,00	2520500	2403594	1410975	633103

Tabela AI 33 – Resistência plástica à compressão axial dos reforços.

	Tabela Al 54 – Rigidez de fiexão dos reforços.										
Porfil	Λ /\/	$(EI)_{fi,s,z} \left[N \times mm^2 \right]$									
1 cm	μ _m / v	R30	R60	R90	R120						
HEB160	25,00	9,7E+10	3,5E+10	9,0E+09	5,1E+09						
HEB180	22,22	1,6E+11	6,4E+10	1,6E+10	1,0E+10						
HEB200	20,00	5,3E+11	2,9E+11	9,0E+10	4,0E+10						
HEB220	18,18	1,2E+12	6,8E+11	2,6E+11	9,8E+10						
HEB240	16,67	1,6E+12	9,7E+11	4,3E+11	1,5E+11						
HEB260	15,38	3,6E+12	2,2E+12	1,0E+12	3,3E+11						
HEB280	14,29	4,5E+12	2,8E+12	1,5E+12	4,5E+11						
HEB300	13,33	5,6E+12	3,6E+12	1,9E+12	7,6E+11						
HEB320	12,92	5,6E+12	3,6E+12	2,0E+12	8,4E+11						
HEB340	12,55	8,9E+12	5,7E+12	3,2E+12	1,4E+12						
HEB360	12,22	8,9E+12	5,8E+12	3,3E+12	1,6E+12						
HEB400	11,67	9,5E+12	6,5E+12	4,1E+12	2,4E+12						
HEB450	11,11	9,5E+12	6,6E+12	4,2E+12	2,6E+12						
HEB500	10,67	9,6E+12	6,7E+12	4,3E+12	2,7E+12						
IPE200	30,00	4,8E+09	1,2E+09	5,8E+08	4,1E+08						
IPE220	27,27	3,5E+10	1,1E+10	4,0E+09	3,1E+09						
IPE240	25,00	6,5E+10	2,5E+10	7,4E+09	5,8E+09						
IPE270	22,22	2,1E+11	9,4E+10	2,4E+10	1,8E+10						
IPE300	20,00	3,6E+11	1,7E+11	4,1E+10	3,1E+10						
IPE330	18,56	4,9E+11	2,5E+11	7,1E+10	4,1E+10						
IPE360	17,32	1,1E+12	5,6E+11	1,9E+11	9,1E+10						
IPE400	16,11	1,3E+12	7,3E+11	2,8E+11	1,2E+11						
IPE450	14,97	1,7E+12	9,3E+11	3,9E+11	1,5E+11						
IPE500	14,00	2,5E+12	1,6E+12	9,2E+11	4,3E+11						

Tabela AI 34 – Rigidez de flexão dos reforcos

2.5. Soma Pesada das Componentes

Através do exposto pela equação 26, fez-se a soma pesada das parcelas de cada componente da seção transversal para a resistência plástica a compressão axial. O resultado total dos perfis em estudo pode ser observado na tabela AI 35.

Porfil	A /\\7	$N_{fi,pl,Rd} \lfloor N \rfloor$								
reim	A _m / v	R30	R60	R90	R120					
HEB160	25,00	631155	153161	72787	49311					
HEB180	22,22	970598	186723	86322	62071					
HEB200	20,00	1633827	668327	210119	123790					
HEB220	18,18	2270217	1079392	370952	177730					
HEB240	16,67	2596210	1251620	461808	192353					
HEB260	15,38	3523436	2045529	880386	278893					
HEB280	14,29	3887125	2360186	1096275	296239					
HEB300	13,33	4321859	2698779	1312407	536184					
HEB320	12,92	4638825	2899701	1421266	632939					
HEB340	12,55	5814383	3916312	1970059	923376					
HEB360	12,22	6115015	4129863	2217504	1032396					
HEB400	11,67	6699152	4665506	2873791	1504644					
HEB450	11,11	7380455	5154999	3404177	1902640					
HEB500	10,67	8081562	5657011	3941590	2560575					
IPE200	30,00	457615	65982	41838	29437					
IPE220	27,27	935078	208643	92219	65247					
IPE240	25,00	1102106	270855	99314	74534					
IPE270	22,22	1646710	512009	147990	119582					
IPE300	20,00	1897338	724575	156996	133388					
IPE330	18,56	2128758	1066986	204857	143457					
IPE360	17,32	3007833	1734617	393324	221963					
IPE400	16,11	3353007	2054150	622855	230421					
IPE450	14,97	3806481	2485124	1084109	253060					
IPE500	14,00	5192943	4154454	2420773	848142					

Tabela AI 35 – Resistência plástica à compressão axial dos perfis.

Por meio da equação 25, e visto os coeficientes de ponderação apresentados pela tabela 15, obteve-se a tabela AI 36, onde estão presentes os resultados para a rigidez de flexão efetiva dos perfis em estudo.

1a	Tabela Al 50 – Rigidez de fiexao eletiva dos perils.										
Perfil	Δ/V	$(EI)_{fi,eff,z} \left[N \times mm^2 \right]$									
1 crim	2 x m/ v	R30	R60	R90	R120						
HEB160	25,00	3,5E+11	1,4E+11	7,9E+10	7,3E+10						
HEB180	22,22	6,1E+11	2,3E+11	1,2E+11	1,2E+11						
HEB200	20,00	1,3E+12	5,3E+11	2,4E+11	2,0E+11						
HEB220	18,18	2,4E+12	1,0E+12	4,6E+11	3,3E+11						
HEB240	16,67	3,5E+12	1,5E+12	6,8E+11	4,7E+11						
HEB260	15,38	6,1E+12	2,8E+12	1,3E+12	7,6E+11						
HEB280	14,29	8,1E+12	3,7E+12	1,8E+12	1,0E+12						
HEB300	13,33	1,1E+13	4,8E+12	2,5E+12	1,5E+12						
HEB320	12,92	1,1E+13	5,1E+12	2,6E+12	1,7E+12						
HEB340	12,55	1,5E+13	7,1E+12	3,7E+12	2,3E+12						
HEB360	12,22	1,6E+13	7,3E+12	3,8E+12	2,5E+12						
HEB400	11,67	1,7E+13	8,2E+12	4,6E+12	3,5E+12						
HEB450	11,11	1,9E+13	8,6E+12	4,9E+12	3,8E+12						
HEB500	10,67	2,0E+13	9,0E+12	5,2E+12	4,1E+12						
IPE200	30,00	4,3E+10	1,8E+10	1,2E+10	1,1E+10						
IPE220	27,27	9,3E+10	3,6E+10	2,0E+10	1,9E+10						
IPE240	25,00	1,5E+11	5,8E+10	2,9E+10	2,8E+10						
IPE270	22,22	3,5E+11	1,4E+11	5,4E+10	5,2E+10						
IPE300	20,00	5,8E+11	2,4E+11	8,4E+10	7,9E+10						
IPE330	18,56	8,0E+11	3,4E+11	1,2E+11	1,0E+11						
IPE360	17,32	1,5E+12	6,7E+11	2,4E+11	1,8E+11						
IPE400	16,11	2,0E+12	8,8E+11	3,4E+11	2,3E+11						
IPE450	14,97	2,6E+12	1,2E+12	4,8E+11	2,9E+11						
IPE500	14,00	3,8E+12	1,9E+12	9,8E+11	6,2E+11						

Tabela AI 36 – Rigidez de flexão efetiva dos perfis.

3. MÉTODO AVANÇADO DE CÁLCULO

3.1. Banzos do Perfil Metálico

Através do método avançado de cálculo, e realizando a média aritmética da temperatura dos nós correspondentes aos banzos dos perfis em estudo, é possível determinar a tabela AI 37.

Та	Tabela AI 37 – Temperatura média nos banzos.											
Dorfil	A /\\/	$\theta_{f,t} [\circ C](ANSYS)$										
renni	$A_{m} v$	R30	R60	R90	R120							
HEB160	25,00	702,47	905,15	986,34	1037,56							
HEB180	22,22	691,50	898,30	981,92	1034,45							
HEB200	20,00	681,31	890,91	977,52	1030,87							
HEB220	18,18	672,57	884,41	973,88	1027,49							
HEB240	16,67	664,09	878,25	970,61	1025,17							
HEB260	15,38	659,04	873,58	967,66	1022,70							
HEB280	14,29	654,52	869,88	965,48	1021,17							
HEB300	13,33	647,05	864,81	963,06	1019,04							
HEB320	12,92	638,36	858,71	960,82	1017,41							
HEB340	12,55	631,39	852,93	958,26	1015,43							
HEB360	12,22	624,83	847,52	955,99	1013,85							
HEB400	11,67	616,96	842,36	954,42	1012,57							
HEB450	11,11	606,27	833,96	951,37	1010,17							
HEB500	10,67	596,11	825,69	948,35	1007,99							
IPE200	30,00	731,10	914,54	989,71	1039,58							
IPE220	27,27	722,71	909,15	985,40	1036,22							
IPE240	25,00	717,73	906,34	984,36	1034,61							
IPE270	22,22	710,34	900,70	980,81	1031,23							
IPE300	20,00	704,17	896,39	978,02	1029,45							
IPE330	18,56	699,71	893,62	976,22	1028,29							
IPE360	17,32	691,87	888,48	972,89	1025,64							
IPE400	16,11	687,30	887,10	972,25	1025,42							
IPE450	14,97	678,57	881,71	969,06	1022,97							
IPE500	14,00	669,93	875,80	965,52	1020,15							

Através dos novos parâmetros apresentados na tabela 30, e os aplicando na equação 49, é possível obter os valores referentes a temperatura média nos banzos dos perfis em estudo, sendo determinados na tabela AI 38.

1	abela AI :	$\frac{68 - 1 \text{ empe}}{\theta}$	C[(APFRF]	ia nos banz	$\frac{OS}{VNTO}$
Perfil	A _m /V	$v_{f,t}$ L		LiçonmL	<i>a</i> (10)
		R30	R60	R90	R120
HEB160	25,00	705,50	908,50	988,25	1039,00
HEB180	22,22	692,44	898,78	982,56	1034,56
HEB200	20,00	682,00	891,00	978,00	1031,00
HEB220	18,18	673,45	884,64	974,27	1028,09
HEB240	16,67	666,33	879,33	971,17	1025,67
HEB260	15,38	660,31	874,85	968,54	1023,62
HEB280	14,29	655,14	871,00	966,29	1021,86
HEB300	13,33	649,67	867,33	964,33	1020,33
HEB320	12,92	641,52	861,10	961,98	1018,54
HEB340	12,55	634,33	855,61	959,90	1016,96
HEB360	12,22	627,94	850,72	958,06	1015,56
HEB400	11,67	617,08	842,42	954,92	1013,17
HEB450	11,11	606,22	834,11	951,78	1010,78
HEB500	10,67	597,53	827,47	949,27	1008,87
IPE200	30,00	731,00	915,50	990,00	1040,00
IPE220	27,27	724,18	910,73	987,00	1037,27
IPE240	25,00	718,50	906,75	984,50	1035,00
IPE270	22,22	711,56	901,89	981,44	1032,22
IPE300	20,00	706,00	898,00	979,00	1030,00
IPE330	18,56	703,50	897,31	977,83	1029,55
IPE360	17,32	695,31	892,42	975,10	1027,44
IPE400	16,11	687,33	887,64	972,44	1025,39
IPE450	14,97	679,81	883,13	969,94	1023,45
IPE500	14,00	673,40	879,30	967,80	1021,80

Tobolo AI 29 T ádia h

Obtidas as temperaturas médias, é possível encontrar o coeficiente de redução da resistência do aço e o coeficiente de redução do módulo de elasticidade, sendo ambos apresentados nas tabelas AI 39 e AI 40 respectivamente.

Perfil A _m /V		$k_{y,\theta}$ (ANSYS)					Dorfil	A _m /V	$k_{y,\theta} \left(APERFEIÇOA MENTO \right)$			
I CI III	Λ _m / v	R30	R60	R90	R120		I CIIII	Λ _m / v	R30	R60	R90	R120
HEB160	25,00	0,227	0,059	0,043	0,032		HEB160	25,00	0,223	0,058	0,042	0,032
HEB180	22,22	0,250	0,061	0,044	0,033		HEB180	22,22	0,248	0,061	0,043	0,033
HEB200	20,00	0,275	0,065	0,044	0,034		HEB200	20,00	0,273	0,065	0,044	0,034
HEB220	18,18	0,296	0,068	0,045	0,035		HEB220	18,18	0,294	0,068	0,045	0,034
HEB240	16,67	0,316	0,071	0,046	0,035		HEB240	16,67	0,311	0,070	0,046	0,035
HEB260	15,38	0,328	0,073	0,046	0,035		HEB260	15,38	0,325	0,073	0,046	0,035
HEB280	14,29	0,339	0,075	0,047	0,036		HEB280	14,29	0,338	0,075	0,047	0,036
HEB300	13,33	0,357	0,078	0,047	0,036		HEB300	13,33	0,351	0,076	0,047	0,036
HEB320	12,92	0,378	0,081	0,048	0,037		HEB320	12,92	0,370	0,079	0,048	0,036
HEB340	12,55	0,395	0,084	0,048	0,037		HEB340	12,55	0,388	0,082	0,048	0,037
HEB360	12,22	0,410	0,086	0,049	0,037		HEB360	12,22	0,403	0,085	0,048	0,037
HEB400	11,67	0,429	0,089	0,049	0,037		HEB400	11,67	0,429	0,089	0,049	0,037
HEB450	11,11	0,455	0,093	0,050	0,038		HEB450	11,11	0,455	0,093	0,050	0,038
HEB500	10,67	0,482	0,097	0,050	0,038		HEB500	10,67	0,478	0,096	0,050	0,038
IPE200	30,00	0,193	0,057	0,042	0,032		IPE200	30,00	0,193	0,057	0,042	0,032
IPE220	27,27	0,203	0,058	0,043	0,033		IPE220	27,27	0,201	0,058	0,043	0,033
IPE240	25,00	0,209	0,059	0,043	0,033		IPE240	25,00	0,208	0,059	0,043	0,033
IPE270	22,22	0,218	0,060	0,044	0,034		IPE270	22,22	0,216	0,060	0,044	0,034
IPE300	20,00	0,225	0,062	0,044	0,034		IPE300	20,00	0,223	0,061	0,044	0,034
IPE330	18,56	0,231	0,063	0,045	0,034		IPE330	18,56	0,226	0,061	0,044	0,034
IPE360	17,32	0,250	0,066	0,045	0,035		IPE360	17,32	0,241	0,064	0,045	0,035
IPE400	16,11	0,260	0,066	0,046	0,035		IPE400	16,11	0,260	0,066	0,046	0,035
IPE450	14,97	0,281	0,069	0,046	0,035		IPE450	14,97	0,278	0,068	0,046	0,035
IPE500	14,00	0,302	0,072	0,047	0,036		IPE500	14,00	0,294	0,070	0,046	0,036

Tabela AI 39 – Coeficientes de redução para a tensão de escoamento.

Perfil A /V		$k_{E, heta}\left(ANSYS ight)$					Dorfil	Λ/Μ	$k_{E,\theta} \left(APERFEIÇOA MENTO \right)$			
Feim	$A_{m} v$	R30	R60	R90	R120		reim	$A_{m} v$	R30	R60	R90	R120
HEB160	25,00	0,129	0,066	0,048	0,037		HEB160	25,00	0,128	0,066	0,048	0,036
HEB180	22,22	0,145	0,068	0,049	0,037		HEB180	22,22	0,144	0,068	0,049	0,037
HEB200	20,00	0,164	0,070	0,050	0,038		HEB200	20,00	0,162	0,070	0,050	0,038
HEB220	18,18	0,179	0,071	0,051	0,039		HEB220	18,18	0,178	0,071	0,051	0,039
HEB240	16,67	0,195	0,072	0,052	0,039		HEB240	16,67	0,191	0,072	0,051	0,039
HEB260	15,38	0,204	0,073	0,052	0,040		HEB260	15,38	0,201	0,073	0,052	0,040
HEB280	14,29	0,212	0,074	0,053	0,040		HEB280	14,29	0,211	0,074	0,053	0,040
HEB300	13,33	0,225	0,075	0,053	0,041		HEB300	13,33	0,221	0,075	0,053	0,040
HEB320	12,92	0,241	0,077	0,054	0,041		HEB320	12,92	0,235	0,076	0,054	0,041
HEB340	12,55	0,253	0,078	0,054	0,042		HEB340	12,55	0,248	0,077	0,054	0,041
HEB360	12,22	0,265	0,079	0,055	0,042		HEB360	12,22	0,260	0,079	0,054	0,042
HEB400	11,67	0,279	0,080	0,055	0,042		HEB400	11,67	0,279	0,080	0,055	0,042
HEB450	11,11	0,299	0,082	0,056	0,043		HEB450	11,11	0,299	0,082	0,056	0,043
HEB500	10,67	0,321	0,084	0,057	0,043		HEB500	10,67	0,317	0,084	0,056	0,043
IPE200	30,00	0,118	0,064	0,047	0,036		IPE200	30,00	0,118	0,064	0,047	0,036
IPE220	27,27	0,121	0,065	0,048	0,037		IPE220	27,27	0,120	0,065	0,048	0,037
IPE240	25,00	0,123	0,066	0,049	0,037		IPE240	25,00	0,123	0,066	0,048	0,037
IPE270	22,22	0,126	0,067	0,049	0,038		IPE270	22,22	0,125	0,067	0,049	0,038
IPE300	20,00	0,128	0,068	0,050	0,038		IPE300	20,00	0,128	0,068	0,050	0,038
IPE330	18,56	0,131	0,069	0,050	0,039		IPE330	18,56	0,129	0,068	0,050	0,038
IPE360	17,32	0,145	0,070	0,051	0,039		IPE360	17,32	0,138	0,069	0,051	0,039
IPE400	16,11	0,153	0,070	0,051	0,039		IPE400	16,11	0,153	0,070	0,051	0,039
IPE450	14,97	0,169	0,072	0,052	0,040		IPE450	14,97	0,166	0,071	0,052	0,040
IPE500	14,00	0,184	0,073	0,053	0,040		IPE500	14,00	0,178	0,072	0,052	0,040

Tabela AI 40 - Coeficiente de redução para o módulo de elasticidade.

Através das equações 35 e 36, originam-se as tabelas AI 40 e AI 41 referentes a resistência plástica à compressão axial, e as tabelas AI 42 e AI 43 para a rigidez de flexão dos banzos dos perfis devido as altas temperaturas.

Dorfil	Λ /Μ	$N_{fi,pl,Rd,f} [N](ANSYS)$						
1 CI III	Λ _m / v	R30	R60	R90	R120			
HEB160	25,00	259729	67462	48885	37166			
HEB180	22,22	347054	84338	60452	45890			
HEB200	20,00	453512	106499	73418	55813			
HEB220	18,18	572731	131251	87554	66796			
HEB240	16,67	709517	159044	102950	78464			
HEB260	15,38	821581	183208	116286	88739			
HEB280	14,29	940129	208066	130018	99143			
HEB300	13,33	1119446	243260	148561	113462			
HEB320	12,92	1278369	272782	161805	123522			
HEB340	12,55	1400071	296340	171515	130952			
HEB360	12,22	1523640	320166	181177	138216			
HEB400	11,67	1700012	351727	194499	148445			
HEB450	11,11	1951744	399056	213325	162874			
HEB500	10,67	2227113	448856	232525	177417			
IPE200	30,00	90078	26691	19662	14999			
IPE220	27,27	112850	32377	23889	18232			
IPE240	25,00	135003	37988	27895	21395			
IPE270	22,22	164793	45335	33201	25564			
IPE300	20,00	198615	54558	39191	30111			
IPE330	18,56	233464	63948	45293	34754			
IPE360	17,32	296283	78087	53936	41409			
IPE400	16,11	348132	88810	60878	46665			
IPE450	14,97	429381	105495	70469	54019			
IPE500	14,00	531816	126896	82537	63307			

Tabela AI 41 – Resistência plástica à compressão axial dos banzos.

Perfil	Δ/V	$iv_{fi,pl,Rd,f}$ $[IV](AFEKFEIÇOAMENIO)$						
renn	μ, γ	R30	R60	R90	R120			
HEB160	25,00	255570	66695	48448	36837			
HEB180	22,22	343913	84007	60276	45861			
HEB200	20,00	450780	106425	73260	55770			
HEB220	18,18	568621	131032	87402	66563			
HEB260	16,67	697435	157828	102700	78241			
HEB240	15,38	813967	181624	115847	88281			
HEB280	14,29	935986	206514	129571	98762			
HEB300	13,33	1099758	239305	147763	112651			
HEB320	12,92	1252709	268733	161021	122757			
HEB340	12,55	1375011	291591	170350	129866			
HEB360	12,22	1495890	314222	179644	136950			
HEB400	11,67	1698840	351615	194106	147972			
HEB450	11,11	1952236	398732	212975	162353			
HEB500	10,67	2206728	444752	231678	176607			
IPE200	30,00	90134	26601	19635	14960			
IPE220	27,27	111866	32202	23711	18115			
IPE240	25,00	134405	37935	27877	21344			
IPE270	22,22	163689	45155	33105	25413			
IPE300	20,00	196677	53848	39018	30014			
IPE330	18,56	228510	62079	44967	34498			
IPE360	17,32	286469	75750	53410	40980			
IPE400	16,11	348025	88450	60826	46674			
IPE450	14,97	424851	104408	70202	53872			
IPE500	14,00	517158	123816	81734	62726			

Tabela AI 42 – Resistência plástica à compressão axial dos banzos. N_{C} – $P_{L} \in [N](APERFEICOA MENTO)$

	Tabela AI 43 – Rigidez de flexão dos banzos.								
Porfil	A /\[]	$(EI)_{fi,f,z} [N \times mm^2](ANSYS)$							
I CI III	$A_{\rm m}/v$	R30	R60	R90	R120				
HEB160	25,00	2,4E+11	1,2E+11	9,0E+10	6,8E+10				
HEB180	22,22	4,2E+11	1,9E+11	1,4E+11	1,1E+11				
HEB200	20,00	6,9E+11	2,9E+11	2,1E+11	1,6E+11				
HEB220	18,18	1,1E+12	4,2E+11	3,0E+11	2,3E+11				
HEB240	16,67	1,6E+12	6,0E+11	4,2E+11	3,2E+11				
HEB260	15,38	2,2E+12	7,9E+11	5,6E+11	4,3E+11				
HEB280	14,29	2,9E+12	1,0E+12	7,3E+11	5,6E+11				
HEB300	13,33	4,0E+12	1,4E+12	9,6E+11	7,3E+11				
HEB320	12,92	4,7E+12	1,5E+12	1,0E+12	8,0E+11				
HEB340	12,55	5,2E+12	1,6E+12	1,1E+12	8,4E+11				
HEB360	12,22	5,6E+12	1,7E+12	1,2E+12	8,9E+11				
HEB400	11,67	6,3E+12	1,8E+12	1,3E+12	9,6E+11				
HEB450	11,11	7,3E+12	2,0E+12	1,4E+12	1,0E+12				
HEB500	10,67	8,5E+12	2,2E+12	1,5E+12	1,1E+12				
IPE200	30,00	3,5E+10	1,9E+10	1,4E+10	1,1E+10				
IPE220	27,27	5,2E+10	2,8E+10	2,1E+10	1,6E+10				
IPE240	25,00	7,3E+10	3,9E+10	2,9E+10	2,2E+10				
IPE270	22,22	1,1E+11	5,9E+10	4,3E+10	3,3E+10				
IPE300	20,00	1,6E+11	8,6E+10	6,3E+10	4,9E+10				
IPE330	18,56	2,2E+11	1,1E+11	8,3E+10	6,4E+10				
IPE360	17,32	3,2E+11	1,5E+11	1,1E+11	8,6E+10				
IPE400	16,11	4,2E+11	1,9E+11	1,4E+11	1,1E+11				
IPE450	14,97	5,9E+11	2,5E+11	1,8E+11	1,4E+11				
IPE500	14,00	8,2E+11	3,3E+11	2,4E+11	1,8E+11				

I abela AI 44 - Rigidez de fiexão dos banzos.								
Perfil	Δ/V	$(EI)_{fi,f,z} [N \times mm^2] (APERFEIÇOA MENTO)$						
I enn	1 1 m/ v	R30	R60	R90	R120			
HEB160	25,00	2,4E+11	1,2E+11	8,9E+10	6,8E+10			
HEB180	22,22	4,1E+11	1,9E+11	1,4E+11	1,1E+11			
HEB200	20,00	6,8E+11	2,9E+11	2,1E+11	1,6E+11			
HEB220	18,18	1,1E+12	4,2E+11	3,0E+11	2,3E+11			
HEB260	16,67	1,6E+12	5,9E+11	4,2E+11	3,2E+11			
HEB240	15,38	2,2E+12	7,9E+11	5,6E+11	4,3E+11			
HEB280	14,29	2,9E+12	1,0E+12	7,3E+11	5,5E+11			
HEB300	13,33	4,0E+12	1,3E+12	9,5E+11	7,3E+11			
HEB320	12,92	4,6E+12	1,5E+12	1,0E+12	7,9E+11			
HEB340	12,55	5,0E+12	1,6E+12	1,1E+12	8,4E+11			
HEB360	12,22	5,5E+12	1,7E+12	1,2E+12	8,8E+11			
HEB400	11,67	6,3E+12	1,8E+12	1,3E+12	9,5E+11			
HEB450	11,11	7,3E+12	2,0E+12	1,4E+12	1,0E+12			
HEB500	10,67	8,4E+12	2,2E+12	1,5E+12	1,1E+12			
IPE200	30,00	3,5E+10	1,9E+10	1,4E+10	1,1E+10			
IPE220	27,27	5,2E+10	2,8E+10	2,1E+10	1,6E+10			
IPE240	25,00	7,3E+10	3,9E+10	2,9E+10	2,2E+10			
IPE270	22,22	1,1E+11	5,9E+10	4,3E+10	3,3E+10			
IPE300	20,00	1,6E+11	8,6E+10	6,3E+10	4,8E+10			
IPE330	18,56	2,1E+11	1,1E+11	8,2E+10	6,3E+10			
IPE360	17,32	3,0E+11	1,5E+11	1,1E+11	8,5E+10			
IPE400	16,11	4,2E+11	1,9E+11	1,4E+11	1,1E+11			
IPE450	14,97	5,8E+11	2,5E+11	1,8E+11	1,4E+11			
IPE500	14,00	8,0E+11	3,2E+11	2,3E+11	1,8E+11			

Tabela AI 44 – Rigidez de flexão dos banzos.

3.2. Alma do Perfil Metálico

Através do método avançado de cálculo, e realizando a média aritmética da temperatura dos nós correspondentes ao critério da isotérmica de 400 °C da alma dos perfis em estudo, é possível determinar a tabela AI 45.

D	A /5.7	$\theta_{w,t} [^{\circ}C](ANSYS)$						
Perfil	A _m / V	R30	R60	R90	R120			
HEB160	25,00	-	-	-	-			
HEB180	22,22	358,30	-	-	-			
HEB200	20,00	322,52	-	-	-			
HEB220	18,18	293,42	-	-	-			
HEB240	16,67	268,64	-	-	-			
HEB260	15,38	245,75	397,03	-	-			
HEB280	14,29	227,95	365,11	-	-			
HEB300	13,33	213,72	339,22	-	-			
HEB320	12,92	203,68	320,30	-	-			
HEB340	12,55	195,68	305,34	-	-			
HEB360	12,22	185,63	289,64	387,85	-			
HEB400	11,67	169,82	263,76	355,86	-			
HEB450	11,11	154,39	235,68	316,25	394,04			
HEB500	10,67	141,42	216,23	284,27	359,53			
IPE200	30,00	387,82	-	-	-			
IPE220	27,27	350,42	-	-	-			
IPE240	25,00	317,70	-	-	-			
IPE270	22,22	270,83	-	-	-			
IPE300	20,00	233,50	-	-	-			
IPE330	18,56	209,26	376,93	-	-			
IPE360	17,32	193,49	346,81	-	-			
IPE400	16,11	179,34	313,56	-	-			
IPE450	14,97	161,79	277,61	386,34	-			
IPE500	14,00	148,46	247,12	353,80	-			

Tabela AI 45 – Temperatura média na alma.

Por meio da nova equação determinada, e aplicando os novos parâmetros dispostos na tabela 32, e respeitando os limites de aplicação da tabela 31, é possível determinar a tabela AI 46, referente a temperatura média na área residual da alma dos perfis em estudo.

Tabela AI 46 – Temperatura média na alma.								
Dorfil	A_m / V	$\theta_{w,t} [^{\circ}C](APERFEIÇOA MENTO)$						
reim		R30	R60	R90	R120			
HEB160	25,00	-	-	-	-			
HEB180	22,22	363,78	-	-	-			
HEB200	20,00	326,00	-	-	-			
HEB220	18,18	295,09	-	-	-			
HEB240	16,67	269,33	-	-	-			
HEB260	15,38	247,54	398,15	-	-			
HEB280	14,29	228,86	366,29	-	-			
HEB300	13,33	218,33	342,67	-	-			
HEB320	12,92	206,67	323,08	-	-			
HEB340	12,55	196,37	305,80	-	-			
HEB360	12,22	187,22	290,44	392,89	-			
HEB400	11,67	171,67	264,33	355,67	-			
HEB450	11,11	156,11	238,22	318,44	395,67			
HEB500	10,67	143,67	217,33	288,67	361,00			
IPE200	30,00	393,00	-	-	-			
IPE220	27,27	352,09	-	-	-			
IPE240	25,00	318,00	-	-	-			
IPE270	22,22	276,33	-	-	-			
IPE300	20,00	243,00	-	-	-			
IPE330	18,56	221,41	385,26	-	-			
IPE360	17,32	202,80	349,29	-	-			
IPE400	16,11	184,67	314,22	-	-			
IPE450	14,97	167,56	281,15	387,04	-			
IPE500	14,00	153,00	253,00	355,00	-			

Os valores referentes a redução da altura da alma, presentes na tabela AI 37, foram obtidos através da dimensão relativa a borda interna dos banzos e a isotérmica de 400 °C, gerando as equações 59 e 60, que deverão ser aplicadas respeitando os limites dispostos na tabela 31.

Anexo	I

Tabela AI 47 – Redução da altura da alma.											
Perfil	A _m /V	h	_{w, fi} [mm]](ANSYS	5)	Perfil	A _m /V	$h_{w,fi}[mr$	um](APERFEIÇOA MENTO)		
	R30	R60	R90	R120			R30	R60	R90	R120	
HEB160	25,00	-	-	-	-	HEB160	25,00	-	-	-	-
HEB180	22,22	38,66	-	-	-	HEB180	22,22	39,68	-	-	-
HEB200	20,00	30,83	-	-	-	HEB200	20,00	37,48	-	-	-
HEB220	18,18	26,74	-	-	-	HEB220	18,18	35,22	-	-	-
HEB240	16,67	23,62	-	-	-	HEB240	16,67	32,89	-	-	-
HEB260	15,38	21,74	99,45	-	-	HEB260	15,38	30,66	94,86	-	-
HEB280	14,29	20,46	75,76	-	-	HEB280	14,29	28,36	85,31	-	-
HEB300	13,33	19,12	66,77	-	-	HEB300	13,33	25,89	75,26	-	-
HEB320	12,92	17,90	64,20	-	-	HEB320	12,92	25,45	72,53	-	-
HEB340	12,55	16,08	60,90	-	-	HEB340	12,55	25,10	70,06	-	-
HEB360	12,22	16,13	59,56	123,50	-	HEB360	12,22	24,74	67,56	136,60	-
HEB400	11,67	15,13	57,71	106,76	-	HEB400	11,67	24,08	62,69	124,43	-
HEB450	11,11	12,38	54,98	95,99	170,16	HEB450	11,11	23,19	56,40	108,80	179,39
HEB500	10,67	11,00	53,62	90,53	140,58	HEB500	10,67	22,27	49,99	92,91	149,90
IPE200	30,00	64,72	-	-	-	IPE200	30,00	57,19	-	-	-
IPE220	27,27	46,19	-	-	-	IPE220	27,27	55,30	-	-	-
IPE240	25,00	39,82	-	-	-	IPE240	25,00	53,45	-	-	-
IPE270	22,22	34,73	-	-	-	IPE270	22,22	50,82	-	-	-
IPE300	20,00	30,56	-	-	-	IPE300	20,00	48,06	-	-	-
IPE330	18,56	29,18	105,23	-	-	IPE330	18,56	46,77	107,61	-	-
IPE360	17,32	28,13	91,26	-	-	IPE360	17,32	45,17	100,27	-	-
IPE400	16,11	26,63	82,91	-	-	IPE400	16,11	44,04	93,29	-	-
IPE450	14,97	25,36	76,45	161,47	-	IPE450	14,97	42,96	85,57	163,58	-
IPE500	14,00	23,40	71,39	135,59	-	IPE500	14,00	41,42	76,54	142,85	-

Obtidas as temperaturas médias, é possível encontrar o coeficiente de redução do módulo de elasticidade, apresentados na tabela AI 48.

Dorfil A /V		$k_{E, heta}\left(ANSYS ight)$,	Doufil	A /\\/	$k_{E,\theta} \left(A PERFEIÇOA MENTO \right)$				
Perm	A _m / V	R30	R60	R90	R120		Perm	A _m / V	R30	R60	R90	R120
HEB160	25,00	-	-	-	-		HEB160	25,00	-	-	-	-
HEB180	22,22	0,742	-	-	-		HEB180	22,22	0,736	-	-	-
HEB200	20,00	0,777	-	-	-		HEB200	20,00	0,774	-	-	-
HEB220	18,18	0,807	-	-	-		HEB220	18,18	0,805	-	-	-
HEB240	16,67	0,831	-	-	-		HEB240	16,67	0,831	-	-	-
HEB260	15,38	0,854	0,703	-	-		HEB260	15,38	0,852	0,702	-	-
HEB280	14,29	0,872	0,735	-	-		HEB280	14,29	0,871	0,734	-	-
HEB300	13,33	0,886	0,761	-	-		HEB300	13,33	0,882	0,757	-	-
HEB320	12,92	0,896	0,780	-	-		HEB320	12,92	0,893	0,777	-	-
HEB340	12,55	0,904	0,795	-	-		HEB340	12,55	0,904	0,794	-	-
HEB360	12,22	0,914	0,810	0,712	-		HEB360	12,22	0,913	0,810	0,707	-
HEB400	11,67	0,930	0,836	0,744	-		HEB400	11,67	0,928	0,836	0,744	-
HEB450	11,11	0,946	0,864	0,784	0,706		HEB450	11,11	0,944	0,862	0,782	0,704
HEB500	10,67	0,959	0,884	0,816	0,740		HEB500	10,67	0,956	0,883	0,811	0,739
IPE200	30,00	0,712	-	-	-		IPE200	30,00	0,707	-	-	-
IPE220	27,27	0,750	-	-	-		IPE220	27,27	0,748	-	-	-
IPE240	25,00	0,782	-	-	-		IPE240	25,00	0,782	-	-	-
IPE270	22,22	0,829	-	-	-		IPE270	22,22	0,824	-	-	-
IPE300	20,00	0,867	-	-	-		IPE300	20,00	0,857	-	-	-
IPE330	18,56	0,891	0,723	-	-		IPE330	18,56	0,879	0,715	-	-
IPE360	17,32	0,907	0,753	-	-		IPE360	17,32	0,897	0,751	-	-
IPE400	16,11	0,921	0,786	-	-		IPE400	16,11	0,915	0,786	-	-
IPE450	14,97	0,938	0,822	0,714	-		IPE450	14,97	0,932	0,819	0,713	-
IPE500	14,00	0,952	0,853	0,746	-		IPE500	14,00	0,947	0,847	0,745	-

Tabela AI 48 - Coeficientes de redução para o módulo de elasticidade.

Através das equações 39 e 40, originam-se as tabelas AI 49 e AI 50 referentes a resistência plástica à compressão axial, e as tabelas AI 51 e AI 52 para a rigidez de flexão da alma dos perfis devido as altas temperaturas.

Dorfil	A /\J	$N_{fi, pl, Rd, w} [N](ANSYS)$						
1 cm	Λ _m / v	R30	R60	R90	R120			
HEB160	25,00	0	0	0	0			
HEB180	22,22	174565	0	0	0			
HEB200	20,00	268142	0	0	0			
HEB220	18,18	351434	0	0	0			
HEB240	16,67	436590	0	0	0			
HEB260	15,38	499180	71775	0	0			
HEB280	14,29	586394	267036	0	0			
HEB300	13,33	676874	388592	0	0			
HEB320	12,92	769120	476273	0	0			
HEB340	12,55	873972	578160	0	0			
HEB360	12,22	971919	673338	233750	0			
HEB400	11,67	1194460	878303	514107	0			
HEB450	11,11	1436974	1108954	793177	222068			
HEB500	10,67	1682725	1342831	1048473	649325			
IPE200	30,00	82482	0	0	0			
IPE220	27,27	177209	0	0	0			
IPE240	25,00	239996	0	0	0			
IPE270	22,22	326954	0	0	0			
IPE300	20,00	424630	0	0	0			
IPE330	18,56	512820	199114	0	0			
IPE360	17,32	612348	334576	0	0			
IPE400	16,11	756185	489981	0	0			
IPE450	14,97	956657	692522	252968	0			
IPE500	14,00	1181466	912242	552080	0			

Tabela AI 49 – Resistência plástica à compressão axial da alma.

Dorfil	Λ /Μ	$i_{fi,pl,Rd,w}$ $[N] (AFEKFEIÇOA MENIO)$						
Term	Λ _m / v	R30	R60	R90	R120			
HEB160	25,00	0	0	0	0			
HEB180	22,22	169796	0	0	0			
HEB200	20,00	235202	0	0	0			
HEB220	18,18	307150	0	0	0			
HEB240	16,67	385601	0	0	0			
HEB260	15,38	450120	97005	0	0			
HEB280	14,29	540796	211880	0	0			
HEB300	13,33	635894	337224	0	0			
HEB320	12,92	721353	423589	0	0			
HEB340	12,55	814430	517726	0	0			
HEB360	12,22	912697	618339	143713	0			
HEB400	11,67	1127993	841352	382892	0			
HEB450	11,11	1353710	1098053	694558	150984			
HEB500	10,67	1592825	1371791	1029517	574965			
IPE200	30,00	105677	0	0	0			
IPE220	27,27	147632	0	0	0			
IPE240	25,00	193520	0	0	0			
IPE270	22,22	268533	0	0	0			
IPE300	20,00	356287	0	0	0			
IPE330	18,56	440244	189276	0	0			
IPE360	17,32	537376	294914	0	0			
IPE400	16,11	673843	440882	0	0			
IPE450	14,97	865644	645365	242074	0			
IPE500	14,00	1080358	883336	511329	0			

Tabela AI 50 – Resistência plástica à compressão axial da alma. $N_{C} + p_{L} = [N] (APERFEICOA MENTO)$

Tabela AI 51 – Rigidez de flexao da alma.								
Perfil	Δ/Μ	$(EI)_{fi,w,z} \left[N \times mm^2 \right] (ANSYS)$						
T erin	I LIIV V	R30	R60	R90	R120			
HEB160	25,00	0,0E+00	0,0E+00	0,0E+00	0,0E+00			
HEB180	22,22	6,0E+08	0,0E+00	0,0E+00	0,0E+00			
HEB200	20,00	1,1E+09	0,0E+00	0,0E+00	0,0E+00			
HEB220	18,18	1,6E+09	0,0E+00	0,0E+00	0,0E+00			
HEB240	16,67	2,3E+09	0,0E+00	0,0E+00	0,0E+00			
HEB260	15,38	2,7E+09	3,2E+08	0,0E+00	0,0E+00			
HEB280	14,29	3,6E+09	1,4E+09	0,0E+00	0,0E+00			
HEB300	13,33	4,6E+09	2,3E+09	0,0E+00	0,0E+00			
HEB320	12,92	5,8E+09	3,1E+09	0,0E+00	0,0E+00			
HEB340	12,55	7,2E+09	4,2E+09	0,0E+00	0,0E+00			
HEB360	12,22	8,8E+09	5,4E+09	1,7E+09	0,0E+00			
HEB400	11,67	1,3E+10	8,5E+09	4,4E+09	0,0E+00			
HEB450	11,11	1,7E+10	1,2E+10	7,8E+09	2,0E+09			
HEB500	10,67	2,2E+10	1,6E+10	1,1E+10	6,4E+09			
IPE200	30,00	1,2E+08	0,0E+00	0,0E+00	0,0E+00			
IPE220	27,27	2,9E+08	0,0E+00	0,0E+00	0,0E+00			
IPE240	25,00	4,6E+08	0,0E+00	0,0E+00	0,0E+00			
IPE270	22,22	7,5E+08	0,0E+00	0,0E+00	0,0E+00			
IPE300	20,00	1,2E+09	0,0E+00	0,0E+00	0,0E+00			
IPE330	18,56	1,6E+09	5,2E+08	0,0E+00	0,0E+00			
IPE360	17,32	2,3E+09	1,0E+09	0,0E+00	0,0E+00			
IPE400	16,11	3,3E+09	1,8E+09	0,0E+00	0,0E+00			
IPE450	14,97	5,0E+09	3,2E+09	1,0E+09	0,0E+00			
IPE500	14,00	7,4E+09	5,2E+09	2,7E+09	0,0E+00			

Tabala AI 51 Digidaz da flavão da al

	1 40014	11102 112	are are men	us au anna	
Perfil	Δ/V	$(EI)_{fi,w,z}$	$V \times mm^2](A$	PERFEIÇOA	A MENTO)
I CI III	Λ _m / v	R30	R60	R90	R120
HEB160	25,00	0,0E+00	0,0E+00	0,0E+00	0,0E+00
HEB180	22,22	5,7E+08	0,0E+00	0,0E+00	0,0E+00
HEB200	20,00	9,4E+08	0,0E+00	0,0E+00	0,0E+00
HEB220	18,18	1,4E+09	0,0E+00	0,0E+00	0,0E+00
HEB240	16,67	2,0E+09	0,0E+00	0,0E+00	0,0E+00
HEB260	15,38	2,4E+09	4,3E+08	0,0E+00	0,0E+00
HEB280	14,29	3,3E+09	1,1E+09	0,0E+00	0,0E+00
HEB300	13,33	4,3E+09	2,0E+09	0,0E+00	0,0E+00
HEB320	12,92	5,4E+09	2,8E+09	0,0E+00	0,0E+00
HEB340	12,55	6,7E+09	3,8E+09	0,0E+00	0,0E+00
HEB360	12,22	8,3E+09	5,0E+09	1,0E+09	0,0E+00
HEB400	11,67	1,2E+10	8,2E+09	3,3E+09	0,0E+00
HEB450	11,11	1,6E+10	1,2E+10	6,8E+09	1,3E+09
HEB500	10,67	2,0E+10	1,6E+10	1,1E+10	5,7E+09
IPE200	30,00	1,5E+08	0,0E+00	0,0E+00	0,0E+00
IPE220	27,27	2,4E+08	0,0E+00	0,0E+00	0,0E+00
IPE240	25,00	3,7E+08	0,0E+00	0,0E+00	0,0E+00
IPE270	22,22	6,1E+08	0,0E+00	0,0E+00	0,0E+00
IPE300	20,00	9,8E+08	0,0E+00	0,0E+00	0,0E+00
IPE330	18,56	1,4E+09	4,8E+08	0,0E+00	0,0E+00
IPE360	17,32	2,0E+09	9,0E+08	0,0E+00	0,0E+00
IPE400	16,11	2,9E+09	1,6E+09	0,0E+00	0,0E+00
IPE450	14,97	4,5E+09	3,0E+09	9,7E+08	0,0E+00
IPE500	14,00	6,8E+09	5,0E+09	2,5E+09	0,0E+00

Tabela AI 52 - Rigidez de flexão da alma.

3.3. Concreto de Preenchimento

Através do método avançado de cálculo, e realizando a média aritmética da temperatura dos nós correspondentes ao critério da isotérmica de 500 °C do concreto dos perfis em estudo, é possível determinar a tabela AI 53. Sendo ainda apresentado na mesma tabela os resultados provenientes das equações 53 e 54, com os novos limites de aplicação dispostos na tabela 33.

		Tab	ela Al 55	– Temp	eratura m	eula na alea	de conci	eto residi	iai.		
Doufil	A /\\7		$ \theta_{c,t}[^{\circ}C]($	ANSYS)	Doufil	A /\[]	$\theta_{c,t} \left[{}^{\circ}C \right]$](APERF	EIÇOA M	IENTO)
Perm	A _m / v	R30	R60	R90	R120	Perm	A _m / v	R30	R60	R90	R120
HEB160	25,00	383,37	-	-	-	HEB160	25,00	426,76	-	-	-
HEB180	22,22	340,22	-	-	-	HEB180	22,22	379,60	-	-	-
HEB200	20,00	303,60	471,90	-	-	HEB200	20,00	341,87	489,05	-	-
HEB220	18,18	276,20	439,74	-	-	HEB220	18,18	310,99	445,39	-	-
HEB240	16,67	252,97	405,83	498,55	-	HEB240	16,67	285,27	409,01	509,56	-
HEB260	15,38	234,43	374,49	468,81	-	HEB260	15,38	263,50	378,22	471,85	-
HEB280	14,29	218,10	342,72	439,21	-	HEB280	14,29	244,84	351,84	439,54	-
HEB300	13,33	204,25	315,11	410,69	477,23	HEB300	13,33	228,67	328,97	411,53	486,79
HEB320	12,92	199,56	304,73	397,98	465,96	HEB320	12,92	221,59	318,96	399,27	472,64
HEB340	12,55	194,50	298,30	388,75	457,65	HEB340	12,55	215,35	310,13	388,46	460,15
HEB360	12,22	189,75	289,30	377,52	447,71	HEB360	12,22	209,80	302,29	378,85	449,06
HEB400	11,67	182,66	275,08	363,11	429,28	HEB400	11,67	200,37	288,95	362,51	430,19
HEB450	11,11	174,27	261,30	340,61	404,42	HEB450	11,11	190,94	275,61	346,17	411,32
HEB500	10,67	169,12	252,40	323,93	384,49	HEB500	10,67	183,39	264,93	333,10	396,23
IPE200	30,00	429,11	-	-	-	IPE200	30,00	465,80	-	-	-
IPE220	27,27	395,15	-	-	-	IPE220	27,27	425,91	-	-	-
IPE240	25,00	367,07	-	-	-	IPE240	25,00	392,68	-	-	-
IPE270	22,22	327,37	488,01	-	-	IPE270	22,22	352,05	500,91	-	-
IPE300	20,00	294,86	448,48	-	-	IPE300	20,00	319,56	454,95	-	-
IPE330	18,56	275,53	421,12	-	-	IPE330	18,56	298,51	425,18	-	-
IPE360	17,32	260,12	396,72	490,08	-	IPE360	17,32	280,37	399,53	491,63	-
IPE400	16,11	247,32	374,59	461,02	-	IPE400	16,11	262,68	374,52	461,01	-
IPE450	14,97	231,41	347,96	431,45	498,66	IPE450	14,97	246,01	350,94	432,12	500,93
IPE500	14,00	217,25	322,78	405,58	470,82	IPE500	14,00	231,81	330,86	407,53	472,54

Tabela AI 53 – Temperatura média na área de concreto residual.

Pelo método avançado de cálculo, e tendo em consideração o critério da isotérmica de 500 °C, foi possível determinar a camada horizontal de concreto a ser negligenciada, sendo seus resultados dispostos na tabela AI 54.

Dorfil	A /\/	$b_{c,fi,h} [mm](ANSYS)$								
reim	$A_{\rm m}/v$	R30	R60	R90	R120					
HEB160	25,00	13,33	-	-	-					
HEB180	22,22	11,99	-	-	-					
HEB200	20,00	11,56	35,96	-	-					
HEB220	18,18	10,94	30,39	-	-					
HEB240	16,67	11,11	27,79	66,77	-					
HEB260	15,38	10,23	25,57	48,71	-					
HEB280	14,29	10,23	24,29	42,26	-					
HEB300	13,33	10,23	23,01	38,38	62,91					
HEB320	12,92	10,23	23,01	37,09	57,75					
HEB340	12,55	9,48	23,02	35,19	55,38					
HEB360	12,22	10,75	22,84	34,98	51,37					
HEB400	11,67	9,41	18,81	29,56	48,63					
HEB450	11,11	9,41	18,81	29,56	44,54					
HEB500	10,67	9,41	18,81	29,56	41,81					
IPE200	30,00	15,99	-	-	-					
IPE220	27,27	14,14	-	-	-					
IPE240	25,00	12,96	-	-	-					
IPE270	22,22	11,56	40,00	-	-					
IPE300	20,00	11,56	31,68	-	-					
IPE330	18,56	11,56	27,46	-	-					
IPE360	17,32	10,32	25,80	54,20	-					
IPE400	16,11	9,03	21,93	43,87	-					
IPE450	14,97	9,03	20,64	38,71	73,54					
IPE500	14,00	9,41	21,50	36,35	55,46					

Tabela AI 54 - Redução da espessura de concreto horizontal.

Os resultados disponíveis na tabela AI 55, são referentes a camada horizontal de concreto a ser negligenciada através da equação 52, tendo seus novos coeficientes empíricos definidos pelas tabelas 34 e 35, com seus limites de aplicação dispostos na tabela 33.

Doufil	Λ /\/	$b_{c,fi,h}$	$b_{c,fi,h} [mm] (APERFEIÇOA MENTO)$							
Perm	A_{m}/v	R30	R60	R90	R120					
HEB160	25,00	13,35	-	-	-					
HEB180	22,22	12,79	-	-	-					
HEB200	20,00	12,34	36,20	-	-					
HEB220	18,18	11,97	31,23	-	-					
HEB240	16,67	11,67	28,00	66,82	-					
HEB260	15,38	11,41	25,91	53,45	-					
HEB280	14,29	11,19	24,59	44,70	-					
HEB300	13,33	10,99	23,80	39,16	63,03					
HEB320	12,92	10,91	23,56	37,32	59,73					
HEB340	12,55	10,83	23,39	36,00	56,81					
HEB360	12,22	10,77	23,29	35,07	54,22					
HEB400	11,67	10,66	23,20	33,99	49,82					
HEB450	11,11	10,54	23,22	33,55	45,41					
HEB500	10,67	10,45	23,32	33,66	41,89					
IPE200	30,00	16,03	-	-	-					
IPE220	27,27	14,97	-	-	-					
IPE240	25,00	14,08	-	-	-					
IPE270	22,22	13,00	41,85	-	-					
IPE300	20,00	12,13	33,20	-	-					
IPE330	18,56	11,57	28,86	-	-					
IPE360	17,32	11,08	25,92	54,66	-					
IPE400	16,11	10,61	23,76	44,62	-					
IPE450	14,97	10,17	22,37	38,90	73,61					
IPE500	14,00	9,79	21,68	36,90	55,54					

Tabela AI 55 – Redução da espessura de concreto horizontal.

Pelo método avançado de cálculo, e tendo em consideração o critério da isotérmica de 500 °C, foi possível determinar a camada vertical de concreto a ser negligenciada, sendo seus resultados dispostos na tabela AI 56.

Dorfil A /V		iteauşuo a	$b_{c,fi,v}$ [mm](ANSYS)								
Perfil	A_m / V	R30	R60	R90	R120						
HEB160	25,00	11,99	-	-	-						
HEB180	22,22	9,33	-	-	-						
HEB200	20,00	7,71	37,25	-	-						
HEB220	18,18	7,29	31,61	-	-						
HEB240	16,67	5,56	27,79	91,87	-						
HEB260	15,38	5,11	25,57	65,51	-						
HEB280	14,29	5,11	24,29	52,58	-						
HEB300	13,33	3,84	23,01	46,13	84,75						
HEB320	12,92	2,56	21,74	44,84	79,78						
HEB340	12,55	1,34	21,50	45,90	80,07						
HEB360	12,22	1,34	21,50	44,54	77,27						
HEB400	11,67	0,00	20,63	42,63	74,10						
HEB450	11,11	0,00	20,63	42,63	71,37						
HEB500	10,67	0,00	20,63	41,25	69,21						
IPE200	30,00	24,95	-	-	-						
IPE220	27,27	17,81	-	-	-						
IPE240	25,00	15,41	-	-	-						
IPE270	22,22	12,50	87,41	-	-						
IPE300	20,00	11,11	63,89	-	-						
IPE330	18,56	9,73	54,16	-	-						
IPE360	17,32	9,46	47,24	124,77	-						
IPE400	16,11	8,88	40,58	102,33	-						
IPE450	14,97	7,61	36,78	89,35	191,08						
IPE500	14,00	6,88	31,63	82,29	141,06						

Tabela AI 56 – Redução da espessura de concreto vertical.

Os resultados disponíveis na tabela AI 57, são referentes a camada vertical de concreto a ser negligenciada através da equação 52, tendo seus novos coeficientes empíricos definidos pelas tabelas 34 e 35, com seus limites de aplicação dispostos na tabela 33.

Tabela	Tabela AI 5 / – Redução da espessura de concreto vertical.									
Dorfil	A /\\/	$b_{c,fi,v}$ [nm](APER	FEIÇOA MI	ENTO)					
renni	$A_{\rm m}$	R30	R60	R90	R120					
HEB160	25,00	12,18	-	-	-					
HEB180	22,22	10,37	-	-	-					
HEB200	20,00	8,93	37,30	-	-					
HEB220	18,18	7,75	32,05	-	-					
HEB240	16,67	6,76	28,50	92,06	-					
HEB260	15,38	5,93	26,07	70,92	-					
HEB280	14,29	5,22	24,42	57,68	-					
HEB300	13,33	4,60	23,30	49,86	85,07					
HEB320	12,92	4,33	22,90	47,49	82,60					
HEB340	12,55	4,09	22,60	45,95	80,42					
HEB360	12,22	3,87	22,37	45,00	78,48					
HEB400	11,67	3,51	22,05	44,30	75,18					
HEB450	11,11	3,15	21,83	44,75	71,89					
HEB500	10,67	2,86	21,73	45,94	69,25					
IPE200	30,00	24,98	-	-	-					
IPE220	27,27	21,90	-	-	-					
IPE240	25,00	19,33	-	-	-					
IPE270	22,22	16,19	88,36	-	-					
IPE300	20,00	13,68	67,00	-	-					
IPE330	18,56	12,05	55,80	-	-					
IPE360	17,32	10,65	47,81	124,85	-					
IPE400	16,11	9,29	41,51	104,46	-					
IPE450	14,97	8,00	36,90	90,66	191,14					
IPE500	14,00	6,90	34,00	83,08	141,14					

tionl Tabala AI 57 Daduaã o de d

Sendo conhecidos os valores referentes da temperatura média na área residual de concreto, foi possível determinar a tabela AI 58, referente a resistência à compressão do concreto submetido a elevadas temperaturas.

Dorfil	A /\/		$f_{c,\theta}\left(A\right)$	NSYS)	•	Dorfil		$f_{c,\theta}(A)$	PERFEI	ÇOA ME	ENTO)
Feim	A _m / v	R30	R60	R90	R120	reilli	A _m / v	R30	R60	R90	R120
HEB160	25,00	15,33	-	-	-	HEB160	25,00	14,20	-	-	-
HEB180	22,22	16,20	-	-	-	HEB180	22,22	15,41	-	-	-
HEB200	20,00	16,93	12,84	-	-	HEB200	20,00	16,16	12,33	-	-
HEB220	18,18	17,48	13,81	-	-	HEB220	18,18	16,78	13,64	-	-
HEB240	16,67	17,94	14,83	12,04	-	HEB240	16,67	17,29	14,73	11,71	-
HEB260	15,38	18,31	15,51	12,94	-	HEB260	15,38	17,73	15,44	12,84	-
HEB280	14,29	18,64	16,15	13,82	-	HEB280	14,29	18,10	15,96	13,81	-
HEB300	13,33	18,92	16,70	14,68	12,68	HEB300	13,33	18,43	16,42	14,65	12,40
HEB320	12,92	19,00	16,91	15,04	13,02	HEB320	12,92	18,57	16,62	15,01	12,82
HEB340	12,55	19,06	17,03	15,23	13,27	HEB340	12,55	18,69	16,80	15,23	13,20
HEB360	12,22	19,10	17,21	15,45	13,57	HEB360	12,22	18,80	16,95	15,42	13,53
HEB400	11,67	19,17	17,50	15,74	14,12	HEB400	11,67	18,99	17,22	15,75	14,09
HEB450	11,11	19,26	17,77	16,19	14,87	HEB450	11,11	19,09	17,49	16,08	14,66
HEB500	10,67	19,31	17,95	16,52	15,31	HEB500	10,67	19,17	17,70	16,34	15,08
IPE200	30,00	14,13	-	-	-	IPE200	30,00	13,03	-	-	-
IPE220	27,27	15,10	-	-	-	IPE220	27,27	14,22	-	-	-
IPE240	25,00	15,66	-	-	-	IPE240	25,00	15,15	-	-	-
IPE270	22,22	16,45	12,36	-	-	IPE270	22,22	15,96	11,97	-	-
IPE300	20,00	17,10	13,55	-	-	IPE300	20,00	16,61	13,35	-	-
IPE330	18,56	17,49	14,37	-	-	IPE330	18,56	17,03	14,24	-	-
IPE360	17,32	17,80	15,07	12,30	-	IPE360	17,32	17,39	15,01	12,25	-
IPE400	16,11	18,05	15,51	13,17	-	IPE400	16,11	17,75	15,51	13,17	-
IPE450	14,97	18,37	16,04	14,06	12,04	IPE450	14,97	18,08	15,98	14,04	11,97
IPE500	14,00	18,66	16,54	14,83	12,88	IPE500	14,00	18,36	16,38	14,77	12,82

Tabela AI 58 – Resistência à compressão do concreto em função da temperatura.

Sendo conhecidos os valores referentes da temperatura média na área residual de concreto, foi possível determinar a tabela AI 59, referente ao módulo de elasticidade do concreto submetido a elevadas temperaturas.

Doufil	A /\\7		$E_{c, \sec, \theta}$ (ANSYS)	•	Doufil	A /\\7	$E_{c, \mathrm{sec}, \theta}$	(APERFI	EIÇOA M	(ENTO)
Perm	A _m / v	R30	R60	R90	R120	•	Perm	A _m / v	R30	R60	R90	R120
HEB160	25,00	1614	-	-	-	-	HEB160	25,00	1252	-	-	-
HEB180	22,22	1973	-	-	-		HEB180	22,22	1641	-	-	-
HEB200	20,00	2382	945	-	-		HEB200	20,00	1958	853	-	-
HEB220	18,18	2631	1152	-	-		HEB220	18,18	2289	1112	-	-
HEB240	16,67	2850	1441	807	-		HEB240	16,67	2551	1409	734	-
HEB260	15,38	3044	1680	962	-		HEB260	15,38	2748	1651	945	-
HEB280	14,29	3229	1950	1156	-		HEB280	14,29	2933	1866	1153	-
HEB300	13,33	3400	2240	1393	915		HEB300	13,33	3107	2087	1386	864
HEB320	12,92	3459	2367	1513	979		HEB320	12,92	3188	2196	1505	941
HEB340	12,55	3517	2442	1576	1030		HEB340	12,55	3262	2300	1578	1014
HEB360	12,22	3573	2517	1657	1096		HEB360	12,22	3330	2399	1647	1086
HEB400	11,67	3659	2641	1770	1232		HEB400	11,67	3450	2520	1775	1225
HEB450	11,11	3766	2769	1970	1455		HEB450	11,11	3559	2636	1917	1387
HEB500	10,67	3834	2856	2141	1606		HEB500	10,67	3650	2734	2044	1525
IPE200	30,00	1233	-	-	-	•	IPE200	30,00	980	-	-	-
IPE220	27,27	1532	-	-	-		IPE220	27,27	1259	-	-	-
IPE240	25,00	1738	-	-	-		IPE240	25,00	1549	-	-	-
IPE270	22,22	2104	858	-	-		IPE270	22,22	1864	793	-	-
IPE300	20,00	2470	1090	-	-		IPE300	20,00	2189	1047	-	-
IPE330	18,56	2637	1299	-	-		IPE330	18,56	2441	1265	-	-
IPE360	17,32	2780	1522	848	-		IPE360	17,32	2594	1503	840	-
IPE400	16,11	2907	1679	1009	-		IPE400	16,11	2756	1679	1009	-
IPE450	14,97	3077	1901	1215	806		IPE450	14,97	2921	1874	1209	793
IPE500	14,00	3239	2153	1443	951		IPE500	14,00	3072	2067	1424	941

Tabela AI 59 - Módulo de elasticidade do concreto em função da temperatura.

Através das equações 42 e 43, originam-se as tabelas AI 60 e AI 61 referentes a resistência plástica à compressão axial, e as tabelas AI 62 e AI 63 para a rigidez de flexão da área residual de concreto dos perfis devido as altas temperaturas.

Perfil	Δ/V	$IV_{fi,pl,Rd,c} [IV] (AIVSIS)$					
1 cm	I LIIV V	R30	R60	R90	R120		
HEB160	25,00	175796	0	0	0		
HEB180	22,22	267594	0	0	0		
HEB200	20,00	359345	122026	0	0		
HEB220	18,18	461989	217557	0	0		
HEB240	16,67	594334	329402	22239	0		
HEB260	15,38	725570	455837	159522	0		
HEB280	14,29	881487	593332	293201	0		
HEB300	13,33	1058469	746651	431234	164639		
HEB320	12,92	1147081	822595	497673	231390		
HEB340	12,55	1215001	891873	547438	276837		
HEB360	12,22	1281989	964484	612572	345948		
HEB400	11,67	1470539	1152845	789703	455703		
HEB450	11,11	1677602	1342432	950149	623253		
HEB500	10,67	1882489	1528282	1118207	786936		
IPE200	30,00	95371	0	0	0		
IPE220	27,27	146937	0	0	0		
IPE240	25,00	207287	0	0	0		
IPE270	22,22	306678	38471	0	0		
IPE300	20,00	422688	139747	0	0		
IPE330	18,56	529899	231423	0	0		
IPE360	17,32	633639	318502	48218	0		
IPE400	16,11	795654	492476	159503	0		
IPE450	14,97	990593	662496	301972	13411		
IPE500	14,00	1165144	839458	444480	162352		

Tabela AI 60 – Resistência plástica à compressão axial do concreto. $N_{a} \rightarrow p = [N](ANSYS)$

Dorfil	A /\\/	$N_{fi, pl, Rd}$	$_{l,c} [N] (APE)$	RFEIÇOA M	IENTO)
Feim	A_{m}/v	R30	R60	R90	R120
HEB160	25,00	162142	0	0	0
HEB180	22,22	247719	0	0	0
HEB200	20,00	334106	116526	0	0
HEB220	18,18	435957	210882	0	0
HEB240	16,67	562310	323352	21246	0
HEB260	15,38	689138	449415	131459	0
HEB280	14,29	848422	584235	269177	0
HEB300	13,33	1018582	727462	412805	159574
HEB320	12,92	1099766	797040	484938	212121
HEB340	12,55	1155573	869079	544003	269449
HEB360	12,22	1239959	940282	609243	329238
HEB400	11,67	1411900	1084068	700157	445779
HEB450	11,11	1620836	1264806	852347	607714
HEB500	10,67	1828310	1443626	999345	774164
IPE200	30,00	87779	0	0	0
IPE220	27,27	127653	0	0	0
IPE240	25,00	186230	0	0	0
IPE270	22,22	278243	33542	0	0
IPE300	20,00	397596	127015	0	0
IPE330	18,56	507099	221093	0	0
IPE360	17,32	607013	315885	47126	0
IPE400	16,11	763084	475187	152702	0
IPE450	14,97	958562	643060	297179	13239
IPE500	14,00	1141396	819423	437548	161234

Tabela AI 61 – Resistência plástica à compressão axial do concreto.

	Tabela A	1 62 – Rigid	lez de flexao	do concreto).
Perfil	A/V	(E	$I\Big)_{fi,c,z}\Big[N\times I$	nm^2](ANSY	(S)
Term	1 LIIV V	R30	R60	R90	R120
HEB160	25,00	3,4E+10	0,0E+00	0,0E+00	0,0E+00
HEB180	22,22	8,1E+10	0,0E+00	0,0E+00	0,0E+00
HEB200	20,00	1,6E+11	1,3E+10	0,0E+00	0,0E+00
HEB220	18,18	2,8E+11	4,0E+10	0,0E+00	0,0E+00
HEB240	16,67	4,5E+11	9,9E+10	1,8E+09	0,0E+00
HEB260	15,38	6,9E+11	1,9E+11	3,2E+10	0,0E+00
HEB280	14,29	1,0E+12	3,4E+11	9,1E+10	0,0E+00
HEB300	13,33	1,5E+12	5,9E+11	1,9E+11	3,7E+10
HEB320	12,92	1,6E+12	6,8E+11	2,4E+11	6,1E+10
HEB340	12,55	1,7E+12	7,2E+11	2,8E+11	8,0E+10
HEB360	12,22	1,8E+12	8,1E+11	3,3E+11	1,1E+11
HEB400	11,67	2,2E+12	1,1E+12	4,6E+11	1,6E+11
HEB450	11,11	2,6E+12	1,3E+12	6,2E+11	2,7E+11
HEB500	10,67	3,0E+12	1,6E+12	7,9E+11	3,9E+11
IPE200	30,00	4,2E+09	0,0E+00	0,0E+00	0,0E+00
IPE220	27,27	1,1E+10	0,0E+00	0,0E+00	0,0E+00
IPE240	25,00	2,2E+10	0,0E+00	0,0E+00	0,0E+00
IPE270	22,22	5,2E+10	8,9E+08	0,0E+00	0,0E+00
IPE300	20,00	1,0E+11	8,9E+09	0,0E+00	0,0E+00
IPE330	18,56	1,5E+11	2,3E+10	0,0E+00	0,0E+00
IPE360	17,32	2,2E+11	4,4E+10	1,4E+09	0,0E+00
IPE400	16,11	3,4E+11	8,9E+10	1,1E+10	0,0E+00
IPE450	14,97	5,0E+11	1,6E+11	3,5E+10	2,0E+08
IPE500	14,00	6,9E+11	2,5E+11	7,3E+10	1,0E+10

Tabala AL62 Digidaz da flavão de

D	$(EI)_{fi,c,z} [N \times mm^2] (APERFEIÇOA MENTO)$							
Perm	A _m / V	R30	R60	R90	R120			
HEB160	25,00	2,6E+10	0,0E+00	0,0E+00	0,0E+00			
HEB180	22,22	6,4E+10	0,0E+00	0,0E+00	0,0E+00			
HEB200	20,00	1,3E+11	1,1E+10	0,0E+00	0,0E+00			
HEB220	18,18	2,3E+11	3,7E+10	0,0E+00	0,0E+00			
HEB240	16,67	3,9E+11	9,5E+10	1,6E+09	0,0E+00			
HEB260	15,38	5,9E+11	1,8E+11	2,3E+10	0,0E+00			
HEB280	14,29	9,0E+11	3,2E+11	8,1E+10	0,0E+00			
HEB300	13,33	1,3E+12	5,3E+11	1,8E+11	3,5E+10			
HEB320	12,92	1,4E+12	6,2E+11	2,4E+11	5,2E+10			
HEB340	12,55	1,5E+12	6,7E+11	2,8E+11	7,4E+10			
HEB360	12,22	1,7E+12	7,6E+11	3,3E+11	1,0E+11			
HEB400	11,67	2,0E+12	9,3E+11	3,8E+11	1,6E+11			
HEB450	11,11	2,3E+12	1,1E+12	5,1E+11	2,5E+11			
HEB500	10,67	2,7E+12	1,3E+12	6,4E+11	3,7E+11			
IPE200	30,00	3,4E+09	0,0E+00	0,0E+00	0,0E+00			
IPE220	27,27	8,1E+09	0,0E+00	0,0E+00	0,0E+00			
IPE240	25,00	1,7E+10	0,0E+00	0,0E+00	0,0E+00			
IPE270	22,22	4,1E+10	6,5E+08	0,0E+00	0,0E+00			
IPE300	20,00	8,6E+10	7,4E+09	0,0E+00	0,0E+00			
IPE330	18,56	1,4E+11	2,1E+10	0,0E+00	0,0E+00			
IPE360	17,32	2,0E+11	4,4E+10	1,3E+09	0,0E+00			
IPE400	16,11	3,0E+11	8,0E+10	1,0E+10	0,0E+00			
IPE450	14,97	4,5E+11	1,5E+11	3,4E+10	2,0E+08			
IPE500	14,00	6,4E+11	2,4E+11	7,0E+10	1,0E+10			

Tabela AI 63 – Rigidez de flexão do concreto.

3.4. Reforços de Aço

Os valores referentes a temperatura média nas barras de aço do reforço foram realizadas através da média aritmética da temperatura correspondente a cada nó desta componente, sendo ainda apresentado os valores referentes as equações 55 e 56.

Perfil	A _m /V	$\theta_{s,t} [^{\circ}C](ANSYS)$				Derfil	A /\\7	$\theta_{s,t} [^{\circ}C] (APERFEIÇOA MENTO)$			
		R30	R60	R90	R120	Perm	A _m / v	R30	R60	R90	R120
HEB160	25,00	333,80	625,61	779,36	907,30	HEB160	25,00	359,92	608,35	816,52	986,75
HEB180	22,22	303,00	583,80	736,96	868,07	HEB180	22,22	348,21	583,25	777,31	932,94
HEB200	20,00	218,48	484,74	657,48	752,50	HEB200	20,00	258,84	483,17	665,95	809,90
HEB220	18,18	205,77	451,95	619,44	727,65	HEB220	18,18	251,17	466,74	640,28	774,69
HEB240	16,67	197,50	429,61	592,96	707,83	HEB240	16,67	244,79	453,05	618,90	745,34
HEB260	15,38	197,73	414,89	570,20	682,81	HEB260	15,38	239,38	441,47	600,80	720,51
HEB280	14,29	195,22	405,37	555,80	666,90	HEB280	14,29	234,75	431,54	585,29	699,22
HEB300	13,33	193,26	398,78	545,03	654,16	HEB300	13,33	230,74	422,93	571,85	680,78
HEB320	12,92	191,80	396,66	542,18	650,67	HEB320	12,92	228,98	419,17	565,97	672,71
HEB340	12,55	196,88	398,64	541,74	647,83	HEB340	12,55	227,43	415,85	560,78	665,59
HEB360	12,22	196,08	397,41	540,11	645,69	HEB360	12,22	226,05	412,89	556,17	659,26
HEB400	11,67	160,19	337,83	474,35	580,18	HEB400	11,67	185,53	369,70	510,15	610,32
HEB450	11,11	159,27	336,14	471,81	576,55	HEB450	11,11	183,19	364,68	502,31	599,56
HEB500	10,67	159,36	336,96	472,78	577,23	HEB500	10,67	181,32	360,66	496,03	590,95
IPE200	30,00	417,40	693,03	841,05	950,82	IPE200	30,00	462,41	681,71	845,22	957,56
IPE220	27,27	372,83	644,79	771,87	902,23	IPE220	27,27	424,23	643,53	807,04	919,37
IPE240	25,00	341,21	610,81	740,53	869,17	IPE240	25,00	392,41	611,71	775,22	887,56
IPE270	22,22	310,65	567,87	717,01	812,31	IPE270	22,22	353,52	572,82	736,33	848,67
IPE300	20,00	289,87	538,99	692,26	776,20	IPE300	20,00	322,41	541,71	705,22	817,56
IPE330	18,56	278,86	523,02	676,16	757,15	IPE330	18,56	302,26	521,56	685,07	797,41
IPE360	17,32	275,54	511,56	660,78	738,33	IPE360	17,32	284,90	504,19	667,71	780,04
IPE400	16,11	229,03	451,11	600,56	705,59	IPE400	16,11	267,97	487,27	650,78	763,11
IPE450	14,97	223,83	442,14	589,27	694,47	IPE450	14,97	252,00	471,30	634,81	747,15
IPE500	14,00	181,05	388,77	533,80	640,83	IPE500	14,00	158,01	377,30	540,81	653,15

Tabela AI 64 – Temperatura média nos reforços.

Obtidas as temperaturas médias, é possível encontrar o coeficiente de redução da resistência do aço e o coeficiente de redução do módulo de elasticidade, sendo ambos apresentados nas tabelas AI 65 e AI 66 respectivamente.
Perfil A.,/V		$k_{y,\theta}\left(ANSYS\right)$			3	 Perfil	A /V	$k_{y,\theta} \left(APERFEIÇOA MENTO \right)$				
	Σ ι _m γ ν	R30	R60	R90	R120		Σιμγ ν	R30	R60	R90	R120	
HEB160	25,00	0,980	0,328	0,112	0,078		HEB160	25,00	0,964	0,377	0,105	0,054
HEB180	22,22	0,998	0,444	0,116	0,090		HEB180	22,22	0,971	0,445	0,112	0,070
HEB200	20,00	1,000	0,711	0,239	0,115		HEB200	20,00	1,000	0,715	0,215	0,107
HEB220	18,18	1,000	0,800	0,346	0,117		HEB220	18,18	1,000	0,760	0,287	0,113
HEB240	16,67	1,000	0,860	0,419	0,119		HEB240	16,67	1,000	0,797	0,347	0,115
HEB260	15,38	1,000	0,900	0,480	0,168		HEB260	15,38	1,000	0,828	0,398	0,118
HEB280	14,29	1,000	0,926	0,519	0,213		HEB280	14,29	1,000	0,855	0,440	0,122
HEB300	13,33	1,000	0,941	0,548	0,248		HEB300	13,33	1,000	0,878	0,476	0,174
HEB320	12,92	1,000	0,942	0,556	0,258		HEB320	12,92	1,000	0,888	0,492	0,196
HEB340	12,55	1,000	0,941	0,557	0,266		HEB340	12,55	1,000	0,897	0,506	0,216
HEB360	12,22	1,000	0,942	0,562	0,272		HEB360	12,22	1,000	0,905	0,518	0,234
HEB400	11,67	1,000	0,977	0,739	0,454		HEB400	11,67	1,000	0,958	0,643	0,371
HEB450	11,11	1,000	0,978	0,746	0,463		HEB450	11,11	1,000	0,961	0,664	0,401
HEB500	10,67	1,000	0,978	0,743	0,461		HEB500	10,67	1,000	0,964	0,681	0,424
IPE200	30,00	0,893	0,140	0,098	0,065		IPE200	30,00	0,771	0,171	0,096	0,063
IPE220	27,27	0,956	0,275	0,113	0,079		IPE220	27,27	0,875	0,278	0,108	0,074
IPE240	25,00	0,975	0,370	0,116	0,089		IPE240	25,00	0,945	0,367	0,112	0,084
IPE270	22,22	0,994	0,487	0,118	0,106		IPE270	22,22	0,968	0,473	0,116	0,095
IPE300	20,00	1,000	0,565	0,142	0,112		IPE300	20,00	0,987	0,557	0,119	0,105
IPE330	18,56	1,000	0,608	0,187	0,114		IPE330	18,56	0,999	0,612	0,162	0,110
IPE360	17,32	1,000	0,639	0,230	0,116		IPE360	17,32	1,000	0,659	0,210	0,112
IPE400	16,11	1,000	0,802	0,398	0,119		IPE400	16,11	1,000	0,704	0,258	0,114
IPE450	14,97	1,000	0,826	0,429	0,135		IPE450	14,97	1,000	0,747	0,303	0,115
IPE500	14,00	1,000	0,947	0,579	0,286		IPE500	14,00	1,000	0,954	0,560	0,251

Tabela AI 65 - Coeficientes de redução para a tensão de escoamento.

Derfil A /V		$k_{E, heta}\left(ANSYS ight)$			 Perfil A/V		$k_{E,\theta} \left(A PERFEIÇOA MENTO \right)$				
Feim	A _m / v	R30	R60	R90	R120	reim	$A_{m} v$	R30	R60	R90	R120
HEB160	25,00	0,666	0,199	0,064	0,049	HEB160	25,00	0,624	0,227	0,058	0,033
HEB180	22,22	0,715	0,266	0,073	0,053	HEB180	22,22	0,643	0,267	0,065	0,043
HEB200	20,00	0,842	0,424	0,148	0,070	HEB200	20,00	0,782	0,427	0,134	0,059
HEB220	18,18	0,861	0,477	0,209	0,074	HEB220	18,18	0,793	0,453	0,176	0,065
HEB240	16,67	0,873	0,513	0,251	0,078	HEB240	16,67	0,803	0,475	0,210	0,071
HEB260	15,38	0,873	0,536	0,288	0,108	HEB260	15,38	0,811	0,494	0,239	0,076
HEB280	14,29	0,876	0,551	0,311	0,133	HEB280	14,29	0,818	0,510	0,264	0,081
HEB300	13,33	0,879	0,562	0,328	0,153	HEB300	13,33	0,824	0,523	0,285	0,111
HEB320	12,92	0,881	0,565	0,333	0,159	HEB320	12,92	0,827	0,529	0,294	0,124
HEB340	12,55	0,874	0,562	0,333	0,163	HEB340	12,55	0,829	0,535	0,303	0,135
HEB360	12,22	0,875	0,564	0,336	0,167	HEB360	12,22	0,831	0,539	0,310	0,145
HEB400	11,67	0,922	0,659	0,441	0,272	HEB400	11,67	0,889	0,608	0,384	0,223
HEB450	11,11	0,923	0,662	0,445	0,278	HEB450	11,11	0,892	0,617	0,396	0,241
HEB500	10,67	0,923	0,661	0,444	0,276	HEB500	10,67	0,894	0,623	0,406	0,254
IPE200	30,00	0,532	0,091	0,056	0,040	IPE200	30,00	0,460	0,109	0,055	0,038
IPE220	27,27	0,603	0,168	0,066	0,050	IPE220	27,27	0,521	0,170	0,059	0,046
IPE240	25,00	0,654	0,223	0,072	0,053	IPE240	25,00	0,572	0,221	0,065	0,051
IPE270	22,22	0,703	0,291	0,077	0,059	IPE270	22,22	0,634	0,283	0,073	0,055
IPE300	20,00	0,735	0,338	0,092	0,065	IPE300	20,00	0,684	0,333	0,079	0,058
IPE330	18,56	0,752	0,363	0,118	0,069	IPE330	18,56	0,716	0,366	0,104	0,061
IPE360	17,32	0,757	0,382	0,143	0,072	IPE360	17,32	0,743	0,393	0,132	0,064
IPE400	16,11	0,826	0,478	0,239	0,079	IPE400	16,11	0,768	0,420	0,159	0,067
IPE450	14,97	0,834	0,493	0,257	0,089	IPE450	14,97	0,792	0,446	0,184	0,071
IPE500	14,00	0,895	0,578	0,346	0,175	IPE500	14,00	0,925	0,596	0,335	0,155

Tabela AI 66 – Coeficientes de redução para o módulo de elasticidade.

Através das equações 47 e 48, originam-se as tabelas AI 67 e AI 68 referentes a resistência plástica à compressão axial, e as tabelas AI 69 e AI 70 para a rigidez de flexão do aço dos reforços dos perfis devido as altas temperaturas.

Perfil	Δ/V	$N_{fi, pl, Rd, c} [N] (ANSYS)$						
I CI III	Λ _m / v	R30	R60	R90	R120			
HEB160	25,00	224336	75172	25660	17817			
HEB180	22,22	228568	101608	26631	20512			
HEB200	20,00	633680	450674	151485	72715			
HEB220	18,18	985680	788283	340619	115556			
HEB240	16,67	985680	847737	413008	117510			
HEB260	15,38	1613120	1451481	775040	271217			
HEB280	14,29	1613120	1492944	837758	343078			
HEB300	13,33	1613120	1517514	884666	400622			
HEB320	12,92	1613120	1519565	897079	416385			
HEB340	12,55	2520500	2371327	1404680	670645			
HEB360	12,22	2520500	2373187	1415772	685747			
HEB400	11,67	2520500	2463290	1863292	1143082			
HEB450	11,11	2520500	2465845	1880578	1167785			
HEB500	10,67	2520500	2464605	1873977	1163158			
IPE200	30,00	204484	31946	22368	14827			
IPE220	27,27	605989	174001	71487	50270			
IPE240	25,00	618012	234292	73473	56555			
IPE270	22,22	979382	479781	116605	104785			
IPE300	20,00	985680	556640	139643	110771			
IPE330	18,56	985680	599142	184078	112648			
IPE360	17,32	1613120	1030442	370721	187391			
IPE400	16,11	1613120	1293727	642719	192673			
IPE450	14,97	1613120	1332795	691982	218552			
IPE500	14,00	2520500	2386253	1458714	720046			

Tabela AI 67 – Resistência plástica à compressão axial dos reforços.

Dorfil	A /\J	fi, pl, Rd, c [1] (II EIG EIÇOIIMENIO)							
renni	$A_{m} v$	R30	R60	R90	R120				
HEB160	25,00	220748	86237	24053	12360				
HEB180	22,22	222357	101946	25707	16055				
HEB200	20,00	633680	453355	136463	67822				
HEB220	18,18	985680	748909	283093	110920				
HEB240	16,67	985680	785344	342115	113813				
HEB260	15,38	1613120	1335715	641623	190266				
HEB280	14,29	1613120	1378962	709307	197080				
HEB300	13,33	1613120	1416442	767855	280398				
HEB320	12,92	1613120	1432840	793469	316849				
HEB340	12,55	2520500	2261420	1275110	545331				
HEB360	12,22	2520500	2281515	1306500	590002				
HEB400	11,67	2520500	2415097	1619679	935380				
HEB450	11,11	2520500	2422689	1673042	1011208				
HEB500	10,67	2520500	2428762	1715733	1069791				
IPE200	30,00	176655	39204	22081	14365				
IPE220	27,27	554201	176238	68366	47011				
IPE240	25,00	598544	232693	71275	53060				
IPE270	22,22	954025	466602	114700	94034				
IPE300	20,00	972425	549399	117767	103233				
IPE330	18,56	984342	603029	159485	108681				
IPE360	17,32	1613120	1062522	339439	180663				
IPE400	16,11	1613120	1136251	415899	183394				
IPE450	14,97	1613120	1205785	488008	185969				
IPE500	14,00	2520500	2403594	1410975	633103				

 $\frac{\text{Tabela AI 68} - \text{Resistência plástica à compressão axial dos reforços.}}{N_{fi \ RI \ Rd} \left[N \right] (APERFEICOA MENTO)}$

	Tabela AI 69 – Rigidez de flexão dos reforços.								
Perfil	Δ/Μ	(E	$(I)_{fi,s,z} \left[N \times I \right]$	mm ²](ANSY	(S)				
Term	Γ ι m/ ν	R30	R60	R90	R120				
HEB160	25,00	1,0E+11	3,1E+10	9,9E+09	7,5E+09				
HEB180	22,22	1,7E+11	6,4E+10	1,8E+10	1,3E+10				
HEB200	20,00	5,7E+11	2,9E+11	1,0E+11	4,7E+10				
HEB220	18,18	1,3E+12	7,2E+11	3,1E+11	1,1E+11				
HEB240	16,67	1,8E+12	1,0E+12	5,1E+11	1,6E+11				
HEB260	15,38	3,8E+12	2,3E+12	1,3E+12	4,7E+11				
HEB280	14,29	4,8E+12	3,1E+12	1,7E+12	7,4E+11				
HEB300	13,33	6,0E+12	3,8E+12	2,2E+12	1,0E+12				
HEB320	12,92	6,0E+12	3,9E+12	2,3E+12	1,1E+12				
HEB340	12,55	9,4E+12	6,0E+12	3,6E+12	1,7E+12				
HEB360	12,22	9,4E+12	6,0E+12	3,6E+12	1,8E+12				
HEB400	11,67	9,9E+12	7,1E+12	4,7E+12	2,9E+12				
HEB450	11,11	9,9E+12	7,1E+12	4,8E+12	3,0E+12				
HEB500	10,67	9,9E+12	7,1E+12	4,7E+12	3,0E+12				
IPE200	30,00	5,6E+09	9,6E+08	5,9E+08	4,2E+08				
IPE220	27,27	4,0E+10	1,1E+10	4,4E+09	3,3E+09				
IPE240	25,00	7,4E+10	2,5E+10	8,2E+09	6,0E+09				
IPE270	22,22	2,3E+11	9,6E+10	2,5E+10	1,9E+10				
IPE300	20,00	3,9E+11	1,8E+11	4,8E+10	3,4E+10				
IPE330	18,56	5,1E+11	2,5E+11	8,0E+10	4,7E+10				
IPE360	17,32	1,1E+12	5,4E+11	2,0E+11	1,0E+11				
IPE400	16,11	1,4E+12	8,3E+11	4,2E+11	1,4E+11				
IPE450	14,97	1,7E+12	1,0E+12	5,4E+11	1,9E+11				
IPE500	14,00	2,5E+12	1,6E+12	9,5E+11	4,8E+11				

Tabala ALGO Digida do fl 1 ~

Tabela Al 70 – Rigidez de fiexão dos felorços.								
Perfil	A/V	$(EI)_{fi,s,z}$	$V \times mm^2](A$	APERFEIÇOA MENTO)				
Term	I LIIV V	R30	R60	R90	R120			
HEB160	25,00	9,7E+10	3,5E+10	9,0E+09	5,1E+09			
HEB180	22,22	1,6E+11	6,4E+10	1,6E+10	1,0E+10			
HEB200	20,00	5,3E+11	2,9E+11	9,0E+10	4,0E+10			
HEB220	18,18	1,2E+12	6,8E+11	2,6E+11	9,8E+10			
HEB240	16,67	1,6E+12	9,7E+11	4,3E+11	1,5E+11			
HEB260	15,38	3,6E+12	2,2E+12	1,0E+12	3,3E+11			
HEB280	14,29	4,5E+12	2,8E+12	1,5E+12	4,5E+11			
HEB300	13,33	5,6E+12	3,6E+12	1,9E+12	7,6E+11			
HEB320	12,92	5,6E+12	3,6E+12	2,0E+12	8,4E+11			
HEB340	12,55	8,9E+12	5,7E+12	3,2E+12	1,4E+12			
HEB360	12,22	8,9E+12	5,8E+12	3,3E+12	1,6E+12			
HEB400	11,67	9,5E+12	6,5E+12	4,1E+12	2,4E+12			
HEB450	11,11	9,5E+12	6,6E+12	4,2E+12	2,6E+12			
HEB500	10,67	9,6E+12	6,7E+12	4,3E+12	2,7E+12			
IPE200	30,00	4,8E+09	1,2E+09	5,8E+08	4,1E+08			
IPE220	27,27	3,5E+10	1,1E+10	4,0E+09	3,1E+09			
IPE240	25,00	6,5E+10	2,5E+10	7,4E+09	5,8E+09			
IPE270	22,22	2,1E+11	9,4E+10	2,4E+10	1,8E+10			
IPE300	20,00	3,6E+11	1,7E+11	4,1E+10	3,1E+10			
IPE330	18,56	4,9E+11	2,5E+11	7,1E+10	4,1E+10			
IPE360	17,32	1,1E+12	5,6E+11	1,9E+11	9,1E+10			
IPE400	16,11	1,3E+12	7,3E+11	2,8E+11	1,2E+11			
IPE450	14,97	1,7E+12	9,3E+11	3,9E+11	1,5E+11			
IPE500	14,00	2,5E+12	1,6E+12	9,2E+11	4,3E+11			

Tabela AI 70 – Rigidez de flexão dos reforcos.

3.5. Soma Pesada das Componentes

Através do exposto pela equação 26, fez-se a soma pesada das parcelas de cada componente da seção transversal para a resistência plástica à compressão axial. O resultado total dos perfis em estudo pode ser observado nas tabelas AI 71 e AI 72.

Dorfil	A /\\7	$N_{fi,pl,Rd} [N] (ANSYS)$							
reim	Λm/ V	R30	R60	R90	R120				
HEB160	25,00	659861	142634	74546	54983				
HEB180	22,22	1017781	185946	87083	66402				
HEB200	20,00	1714679	679200	224903	128528				
HEB220	18,18	2371834	1137091	428173	182352				
HEB240	16,67	2726121	1336182	538197	195974				
HEB260	15,38	3659451	2162300	1050848	359956				
HEB280	14,29	4021129	2561378	1260977	442222				
HEB300	13,33	4467908	2896017	1464461	678722				
HEB320	12,92	4807690	3091215	1556557	771298				
HEB340	12,55	6009544	4137700	2123632	1078434				
HEB360	12,22	6298048	4331174	2443271	1169912				
HEB400	11,67	6885511	4846165	3361601	1747229				
HEB450	11,11	7586820	5316287	3837229	2175980				
HEB500	10,67	8312826	5784574	4273181	2776835				
IPE200	30,00	472415	58637	42030	29827				
IPE220	27,27	1042985	206378	95377	68502				
IPE240	25,00	1200297	272280	101368	77950				
IPE270	22,22	1777807	563587	149806	130348				
IPE300	20,00	2031613	750945	178834	140881				
IPE330	18,56	2261863	1093626	229371	147403				
IPE360	17,32	3155391	1761607	472875	228800				
IPE400	16,11	3513091	2364995	863099	239338				
IPE450	14,97	3989750	2793307	1317390	285982				
IPE500	14,00	5398926	4264849	2537812	945706				

Tabela AI 71 – Resistencia plástica à compressão axial dos perfis.

Perfil	Δ/Μ	fi, pl, Rd [14] (AI EIGER EIGOA MENTO)						
1 cm	Σ ι m/ ν	R30	R60	R90	R120			
HEB160	25,00	638460	152932	72501	49196			
HEB180	22,22	983785	185953	85983	61917			
HEB200	20,00	1653768	676306	209723	123592			
HEB220	18,18	2297408	1090823	370494	177483			
HEB240	16,67	2631026	1266525	466061	192053			
HEB260	15,38	3566346	2063758	888928	278547			
HEB280	14,29	3938324	2381591	1108055	295843			
HEB300	13,33	4367354	2720434	1328422	552622			
HEB320	12,92	4686948	2922202	1439429	651726			
HEB340	12,55	5865514	3939816	1989463	944646			
HEB360	12,22	6169046	4154357	2239100	1056190			
HEB400	11,67	6759234	4692133	2896834	1529131			
HEB450	11,11	7447283	5184279	3432922	1932259			
HEB500	10,67	8148362	5688931	3976272	2595527			
IPE200	30,00	460245	65804	41716	29325			
IPE220	27,27	941353	208440	92078	65126			
IPE240	25,00	1112699	270628	99152	74404			
IPE270	22,22	1664490	545299	147805	119447			
IPE300	20,00	1922984	730262	156784	133247			
IPE330	18,56	2160195	1075477	204452	143179			
IPE360	17,32	3043979	1749071	439976	221643			
IPE400	16,11	3398072	2140770	629426	230067			
IPE450	14,97	3862177	2598617	1097463	253080			
IPE500	14,00	5259412	4230169	2441586	857064			

Tabela AI 72 – Resistência plástica à compressão axial dos perfis. $N = \begin{bmatrix} N \end{bmatrix} (APEREFICOA MENTO)$

Por meio da equação 25, e visto os coeficientes de ponderação apresentados pela tabela 15, obteve-se as tabelas AI 73 e AI 74, onde estão presentes os resultados para a rigidez de flexão efetiva dos perfis em estudo.

1a	Tabela AT 75 – Rigidez de flexão eletiva dos periis.								
Perfil	A _m /V	(El	$\left(f\right)_{fi,eff,z} \left[N \times \right]$	mm^2 (ANS)	YS)				
1 cm	2 x m/ v	R30	R60	R90	R120				
HEB160	25,00	3,7E+11	1,4E+11	8,0E+10	7,6E+10				
HEB180	22,22	6,5E+11	2,3E+11	1,3E+11	1,2E+11				
HEB200	20,00	1,4E+12	5,3E+11	2,5E+11	2,1E+11				
HEB220	18,18	2,6E+12	1,1E+12	4,9E+11	3,4E+11				
HEB240	16,67	3,7E+12	1,6E+12	7,5E+11	4,8E+11				
HEB260	15,38	6,6E+12	3,0E+12	1,5E+12	9,0E+11				
HEB280	14,29	8,6E+12	3,9E+12	2,0E+12	1,3E+12				
HEB300	13,33	1,1E+13	5,1E+12	2,7E+12	1,8E+12				
HEB320	12,92	1,2E+13	5,4E+12	2,8E+12	1,9E+12				
HEB340	12,55	1,6E+13	7,4E+12	4,0E+12	2,7E+12				
HEB360	12,22	1,6E+13	7,6E+12	4,1E+12	2,8E+12				
HEB400	11,67	1,8E+13	8,9E+12	5,1E+12	4,0E+12				
HEB450	11,11	1,9E+13	9,3E+12	5,4E+12	4,2E+12				
HEB500	10,67	2,1E+13	9,7E+12	5,6E+12	4,4E+12				
IPE200	30,00	4,4E+10	1,8E+10	1,2E+10	1,1E+10				
IPE220	27,27	1,0E+11	3,5E+10	2,0E+10	1,9E+10				
IPE240	25,00	1,7E+11	5,8E+10	3,0E+10	2,8E+10				
IPE270	22,22	3,8E+11	1,4E+11	5,5E+10	5,3E+10				
IPE300	20,00	6,3E+11	2,4E+11	8,9E+10	8,2E+10				
IPE330	18,56	8,5E+11	3,4E+11	1,3E+11	1,1E+11				
IPE360	17,32	1,6E+12	6,6E+11	2,5E+11	1,9E+11				
IPE400	16,11	2,1E+12	1,0E+12	4,5E+11	2,5E+11				
IPE450	14,97	2,7E+12	1,3E+12	6,1E+11	3,3E+11				
IPE500	14,00	3,8E+12	1,9E+12	1,0E+12	6,7E+11				

Tabela AI 73 – Rigidez de flexão efetiva dos perfis.

Tabela Al 74 – Rigidez de fiexao eletiva dos perils.								
Perfil	A /V	$(EI)_{fi,eff,z}$	$\left[N \times mm^2\right]$	APERFEIÇO.	A MENTO)			
Term	1 1 _m / v	R30	R60	R90	R120			
HEB160	25,00	3,6E+11	1,4E+11	7,8E+10	7,3E+10			
HEB180	22,22	6,2E+11	2,3E+11	1,2E+11	1,2E+11			
HEB200	20,00	1,3E+12	5,3E+11	2,4E+11	2,0E+11			
HEB220	18,18	2,4E+12	1,0E+12	4,5E+11	3,3E+11			
HEB240	16,67	3,5E+12	1,5E+12	6,8E+11	4,7E+11			
HEB260	15,38	6,2E+12	2,8E+12	1,3E+12	7,6E+11			
HEB280	14,29	8,2E+12	3,7E+12	1,8E+12	1,0E+12			
HEB300	13,33	1,1E+13	4,9E+12	2,5E+12	1,5E+12			
HEB320	12,92	1,1E+13	5,1E+12	2,6E+12	1,7E+12			
HEB340	12,55	1,5E+13	7,1E+12	3,7E+12	2,3E+12			
HEB360	12,22	1,6E+13	7,3E+12	3,8E+12	2,5E+12			
HEB400	11,67	1,7E+13	8,2E+12	4,6E+12	3,5E+12			
HEB450	11,11	1,9E+13	8,7E+12	4,9E+12	3,8E+12			
HEB500	10,67	2,0E+13	9,1E+12	5,2E+12	4,2E+12			
IPE200	30,00	4,3E+10	1,8E+10	1,2E+10	1,1E+10			
IPE220	27,27	9,3E+10	3,5E+10	2,0E+10	1,9E+10			
IPE240	25,00	1,5E+11	5,8E+10	2,9E+10	2,8E+10			
IPE270	22,22	3,5E+11	1,4E+11	5,4E+10	5,1E+10			
IPE300	20,00	5,9E+11	2,4E+11	8,3E+10	7,9E+10			
IPE330	18,56	8,1E+11	3,4E+11	1,2E+11	1,0E+11			
IPE360	17,32	1,5E+12	6,7E+11	2,4E+11	1,8E+11			
IPE400	16,11	2,0E+12	9,0E+11	3,4E+11	2,3E+11			
IPE450	14,97	2,6E+12	1,2E+12	4,8E+11	2,9E+11			
IPE500	14,00	3,9E+12	2,0E+12	9,8E+11	6,2E+11			

Tabela AI 74 – Rigidez de flexão efetiva dos perfis.

4. PROPAGAÇÃO DA TEMPERATURA

Tabela AI 75 – Temperatura em HEB 160 e HEB 180 para R30, R60, R90 e R120 **HEB160 HEB180** NODAL SOLUTION TIME=1800 TEMP (AVG) RSYS=0 SMN =290.664 SMX =805.034 ANSYS R17.0 NODAL SOLUTION TIME=1800 TEMP (AVG) RSYS=0 SVM =216.233 SVX =803.775 ANSYS R17.0 PLOT NO. PLOT NO. R30 140 620 380 860 140 380 620 860 NODAL SOLUTION TIME=3600 TEMP (AVG) RSYS=0 SVN =593.407 SVX =937.028 ANSYS B17.0 ANSYS R17.0 NODAL SOLUTION TIME=3600 TEMP (AVG) RSYS=0 SMN =515.124 SMX =936.257 PLOT NO. PLOT NO. R60 740 500 620 740 860 260 140 140 380 380 620 860 1100 ANSYS B17.0 NODAL SOLUTION TIME=5400 TEMP (AVG) RSYS=0 SVN =697.823 SVX =1001.83 ANSYS B17.0 NCDAL SOLUTION TIME=5400 TEMP (AVG) RSYS=0 SMN =765.306 SMX =1002.23 PLOT NO. PLOT NO. R90 260 380 ⁵⁰⁰ 620 ⁷⁴⁰ 860 620 ⁷⁴⁰ 860 140 380 140 ANSYS B17.0 ANSYS R17.0 NODAL SOLUTION NODAL SOLUTION PLOT NO. 1 STEP=1 SUB =126 TIME=7200 TEMP (AVG) RSYS=0 SUM =890.059 SUM =1046.85 PLOT NO. 1 STEP=1 SUB =134 TIME=7200 TEMP (AVG) RSYS=0 SVN =826.765 SVN =1046.06 R120 140 260 380 ⁵⁰⁰ 620 ⁷⁴⁰ 860 ⁹⁸⁰ 1100 140 260 380 ⁵⁰⁰ 620 ⁷⁴⁰ 860 980 1100

4.1. Campos de Temperatura

Tabela AI 76 – Temperatura em HEB 200 e HEB 220 para R30, R60, R90 e R120

Tabela AI 78 – Temperatura em HEB 280 e HEB 300 para R30, R60, R90 e R120 HEB 280 HEB 300

Tabela AI 80 – Temperatura em HEB 360 e HEB 400 para R30, R60, R90 e R120HEB 360HEB 400

Tabela AI 84 – Temperatura em IPE 300 e HEB 330 para R30, R60, R90 e R120

4.2. Isotérmica de 500°C

Leonardo Jorge Calió

Tabela AI 89 – Isotérmica de 500°C dos perfis HEB240 e HEB260 para R30, R60 e R90.HEB240HEB260

Tabela AI 91 – Isotérmica de 500°C dos perfis HEB320 e HEB340 para R30, R60, R90 e R120.HEB320HEB340

Tabela AI 93 – Isotérmica de 500°C dos perfis HEB450 e HEB500 para R30, R60, R90 e R120.HEB450HEB500

Tabela AI 96 – Isotérmica de 500°C dos perfis IPE300 e IPE330 para R30 e R60. IPE300

Leonardo Jorge Calió

Tabela AI 98 – Isotérmica de 500°C dos perfis IPE450 e IPE500 para R30, R60, R90 e R120.

4.3. Isotérmica de 400°C

Tabela AI 100 – Isotérmica de 400°C dos perfis HEB200 e HEB220 para R30 e R60.

Tabela AI 101 – Isotérmica de 400°C dos perfis HEB240 e HEB260 para R30 e R60.

Leonardo Jorge Calió

Tabela AI 103 – Isotérmica de 400°C dos perfis HEB320 e HEB340 para R30, R60 e R90.HEB320HEB340

Tabela AI 105 – Isotérmica de 400°C dos perfis HEB450 e HEB500 para R30, R60, R90 e R120.

Tabela AI 107 – Isotérmica de 400°C dos perfis IPE240 e IPE270 para R30.

Tabela AI 108 – Isotérmica de 400°C dos perfis IPE300 e IPE330 para R30 e R60.

Tabela AI 110 – Isotérmica de 400°C dos perfis IPE450 e IPE500 para R30, R60 e R90.