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A B S T R A C T

The present study established multiple linear regression models using two ultrasound in vivo measurements (at
lumbar and sternal regions, with different real-time ultrasonography machines and probes) and live weight, to
predict simultaneously carcass composition and body fat depots of different breeds of sheep and goat. This study
is important for the small ruminant industry, considering the feasibility of using the ultrasound methodology in
field conditions, as well as an online system of the carcass evaluation. The multiple linear regression models were
obtained by selecting the best subset of variables between using the in vivo measurements (raw variables), their
second degree and interactions, evaluated in terms of prediction performance using cross-validation “K-folds”
and validated by a test group. Overall, high accuracy (adj R2) was obtained from the linear relationship between
predicted and experimental values of the group test for each of the nine dependent variables, with values varying
between adj R2 0.88 and 0.98.

1. Introduction

The development of precise methods for predicting body and car-
cass composition in meat animals is of major importance for perfor-
mance testing, grading and for breeding selection schemes (Bünger
et al., 2011; Scholz et al. 2015). In recent years, there have been im-
portant developments in non-invasive and non-destructive image
techniques to obtain objective data of carcass and body composition
(Szabo Cs et al., 1999; Scholz et al. 2015). Among the various image
methods available, real-time ultrasonography (RTU) has become the
most common technique for body and carcass composition assessment
of sheep and goat species (Stouffer 2004; Scholz et al. 2015). Different
imaging methods were also used to evaluate carcass composition of
meat producing species as the light lamb carcasses by video image
analysis (Silva et al. 2014) and light kid carcass by bioelectrical im-
pedance analysis (Silva et al. 2017). Extensive experimental work has
been carried out to collect information about the relationship between
measurements obtained with RTU and carcass traits of the principal
meat animals (Teixeira et al. 2008; Silva et al. 2006; Hopkins et al.
2007; Leeds et al. 2008; Greiner et al. 2003; Moeller and Christian
1998).

The present work falls within the scope of the application of RTU
parameters towards prediction of carcass and body composition of meat
animals (Thwaites 1984; Teixeira 2008, 2015). Most of the previous

works used linear regression models to demonstrate that it was possible
to estimate carcass and body composition (Silva et al. 2006; Hopkins
et al. 2007; Teixeira et al. 2006, 2008; Ripoll et al. 2010). However, it is
recognized that more complex linear and nonlinear models can be ap-
plied to successfully estimate, at the same time, several dependent
variables (Peres et al. 2010). It is recognized that more complex linear
and nonlinear models can be applied to successfully estimate several
dependent variables (Font-i-Furnols et al. 2013; Peres et al. 2010).
However, there is much to be learned from the use of more adequate
models build from RTU measurements to ensure that carcass compo-
sition traits can be accurately and consistently predicted to allow solid
benefits to the small ruminant meat industry.

The aim of this study was to establish whether two ultrasound in
vivo measurements and live weight were adequate to predict simulta-
neously carcass composition and body fat depots of different breeds of
sheep and goat species. This objective has great relevance for the sheep
and goat meat industry considering the reduced number of non-invasive
measurements made in the live animal; the models were built using
data from different breeds of sheep and goats, reared under different
production systems in the Iberian Peninsula, enabling their use by
technicians as an alternative to reference methods to assess carcass
composition and body fat deposits, as the dissection of the carcass,
which requires time and is expensive. In general, it will allow to find
out a more assertive economic value of the animal or carcass that meets
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the needs of the meat industry, with the objectivity required by the
producer and in accordance with the consumer's requirements.

2. Materials and methods

2.1. Animal datasets

The database used corresponds to the data of 125 animals from the
databases of the works referenced in Table 1, which includes data of
carcass composition, body fat depots, total body fat and RTU in vivo
measurements of the following sheep and goat breeds: three sheep
breeds: Rasa Aragonesa, Roya Bilbilitana and Ojinegra de Teruel (Delfa
et al. 1995; Ripoll et al. 2009) and two goat breeds: Serrana goats
(Cadavez et al. 2002) and Blanca Celtiberica goats (Teixeira et al.
2008).

2.2. Live weight and carcass parameters

The animals were slaughtered after 24 h fasting under the same
conditions and in accordance with European laws. Live weight (LW)
was recorded immediately before slaughter. After slaughter, the
omental fat (OME), mesenteric fat (MES), and pericardial fat (PER)
were removed, weighed and recorded separately. These fat depots were
named body fat depots. Carcasses were cooled at 4 °C for 24 h. After,
the carcasses were halved and the left side of each carcass was dissected
with a scalpel and the carcass composition was obtained into bone,
muscle (MUSC), subcutaneous fat (SF), intermuscular fat (IF), kidney
and pelvic fat (KPF), subcutaneous fat tail (SFT) and remainder (major
blood vessels, ligaments and tendons). The total body fat (TF) resulted
from the sum of the dissected fat depots on carcasses (SF, IF, KPF and
SFT) with the body fat depots (OME, MES and PER). The carcass and
body fat depots were full described in previous work by Teixeira et al.
(1989).

The gathered dataset presents the values for LW, in kilograms, as
well as the values of ultrasound measurements, in millimeters, which
are the independent variables. Also, as dependent variables in this
study, it was recorded the carcass composition tissues, the body fat
depots and the total body fat. All those variables are expressed in
grams.

2.3. Ultrasound measurements

The ultrasound measurements of fat thickness were obtained at
lumbar (U_LUMB, ultrasonic fat thickness measurement between the
3rd-4th lumbar vertebra) and sternal (U_STER, ultrasonic fat thickness
measurement on 3rd sternebra) regions, with different RTU machines
and probes according to the different studies (Cadavez et al. 2002; Delfa
et al. 1995; Ripoll et al. 2009; Teixeira et al. 2008). In Ternasco lambs
(Rasa Aragonesa, Roya Bilbilitana and Ojinegra de Teruel breeds) and
Serrana goats, the fat thickness measurements were taken using a Aloka
SSD-500 V equipped with a probe of 7.5 MHz (Cadavez et al. 2002). For
Blanca Celtiberica goats, the fat thickness was measured using a
Toshiba Sonolayer SAC-32B equipped with a 5 MHz probe (Teixeira
et al. 2008). All RTU image capture was performed 24 h before
slaughter.

2.4. Statistical analysis

All data processing and statistical methods were performed using
the statistical program “open source” R, version 2.15, with the caret
(Kuhn and Johnson 2013), prospectr (Stevens and Ramirez-Lopez
2013), relaimpo (Grömping 2006) and Subselect (Cadima et al. 2004;
Cadima et al. 2012) packages.

This study, in an initial exploratory analysis (Maroco 2007), pre-
sents the overall values of each animal used in this work (carcass tis-
sues, body fat depots, LW and ultrasound measurements) by analyzing
the range values within each different sheep and goat breeds. The fol-
lowing statistical analysis was performed in order to ascertain whether
the combined ultrasound in vivo measurements and live weight data
were able to predict simultaneously carcass composition and body fat
depots of different sheep and goat breeds.

To establish the MLR predictive models, it was considered that the
relative growth of fat depots in relation to body or carcass weight in
sheep (Teixeira et al. 1989) and goat (Delfa et al. 1994; Teixeira et al.
1995) are not linear. So, the database included the original three
variables (LW, U_LUMB and U_STER) as well, the respective squared
variables and the possible interactions between them, obtained by
mathematical calculation, corresponding to a total of 10 variables.
These variables were centered and scaled to avoid the influence of
different order of magnitude in variables.

The multiple linear regression (MLR) models were evaluated in
terms of the performance of prediction (Maroco 2007), using train
group with internal validation (cross-validation “K-folds”) and test
group. The data from Internal cross-validation “K-folds”, root mean
squared error (RMSE) and adjusted determination coefficient (Adjusted
R2), is not shown since their results were similar to the residual stan-
dard error (RSE) and Adjusted R2 of the selected models. Multiple linear
regression is a supervised technique that allows to obtain a linear
equation (the model) between two or more explanatory variables (in-
dependent variables) and a response variable (dependent variable). The
division of the samples in train group (60% of original data to set the
model) and test group (40% of original data for external validation) was
carried out by the algorithm Kennard-stone, a uniform mapping algo-
rithm (Stevens and Ramirez-Lopez 2013). This algorithm is based in the
principal components of the independent variables (two ultrasound in
vivo measurements and live weight) and it allowed to ensure that each
breed of sheep and goat species were represented in both groups. First,
it starts to include in the train group, samples that are farthest apart.
Afterward, the remaining variables are selected by stepwise procedure
by maximizing the Euclidean distance within samples in the principal
components space. To ensure that the best MLR model is obtained, the
simulated annealing (SA) algorithm (meta-heuristic variable selection
algorithm) was applied to choose the best sub-set of the independent
variables that allows to have the highest quality criterion (a function of
the standard Wilks' Lambda statistic, which in the context of a uni-
variate linear regression is the coefficient of determination) and lowest
RMSE values in the predictive results. To ensure a greater confidence in
finding a true optimal solution, 10,000 attempts were used (Cadima
et al. 2004; Cadima et al. 2012). The SA variable selection algorithm
mimics annealing physic process, where it is intended to have a slow
controlled cooling process of a heated material in order to obtain a
more stable material, i.e., a structure without defects. Also, it is a meta-
heuristic algorithm, since it allows to select a subset of the original
independent variables (significant variables) within a large search
space of other possible subsets of variables, which corresponds to a
global optimum for a given approximation criterion (Cadima et al.
2004; Cadima et al. 2012).

To obtain the MLR model, it was used a cross-validation (internal
validation) using the procedure K-folds cross-validation, which in this
work was a 10-folds application (Kuhn and Johnson 2013).

The model's goodness-of-fit was assessed using RSE and Adjusted R2

values. Since RSE is the average amount that the response will deviate

Table 1
Overview of the data collected from four databases used in this study.

Specie Breed n Reference

Sheep Rasa Aragonesa 19 Delfa et al. (1995) and Ripoll et al. (2009)
Roya Bilbilitana 22 Delfa et al. (1995) and Ripoll et al. (2009)
Ojinegra de Teruel 8 Delfa et al. (1995) and Ripoll et al. (2009)

Goat Serrana 20 Cadavez et al. (2002)
Blanca Celtiberica 56 Teixeira et al. (2008)
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from the true regression model, the lower the RSE, the better the model.
The Adjusted R2 is the proportion of data variation that is explained by
the obtained model, being the better the model whose Adjusted R2
value is the closest to the unit.

The evaluation of the model predictive capacity was made through
the values of the slope and intercept (as well as, the respective con-
fidence intervals) plus the RSE and Adjusted R2 obtained from the re-
lationship between the expected experimental and predicted values for
the established model using data of train and test group.

In the final MLR model, the significance of the independent vari-
ables used in the model was also verified by the level of significance of
0.05 (p-value) and R2 contribution averaged over orderings among re-
gressors (Grömping 2006). In order to visualize that the obtained linear
models are validated in their predicting performance (Maroco 2007), it
is presented graphically, as example, the results from best and worst
cases obtained in this work:

linear relationship between the predicted values obtained by the
multiple linear regression model and the expected values of the train
group data (including linear adjustment) and test group data;

• dispersion of residuals of test group data in order to verify that the
residuals follow any trend or have a random distribution; included is
an adjustment line to pass through the data;
• normal Q-Q to evaluate the normality of the standardized residuals
of the test group data following the theoretical quantile, to verify if
the distribution was normal (represented by the graph line defined);
• Cook distance of each sample of the test group to check whether
there was a presence of “outliers” in the test group data, considering
that values greater than 1 are indicative that it is excessively in-
fluential data in the estimation of the regression coefficients.

3. Results and discussion

In this study, data was gathered from several studies (Delfa et al.
1995; Ripoll et al. 2009; Cadavez et al. 2002; Teixeira et al. 2008) in
order to incorporate different breeds of two species in the prediction
models. The purpose was to confirm whether it was possible to have
common predictive models for carcass composition, body fat depots and
total body fat using in vivomeasurements of those animals. As a result, a
database was gathered with 125 animals and in the following sections it
is shown the descriptive analysis of each animal breed/species and the
evaluation of prediction models using MLR.

3.1. Descriptive analysis of data

In Table 2 is shown the range values (minimum and maximum) of
LW and ultrasound measurements obtained at lumbar and sternal re-
gions (3 independent variables), as well as the carcass composition,
body fat depots and total body fat (9 dependent variables) for the dif-
ferent sheep and goat breeds. As can be seen, the Serrana goats had the
lowest values of LW, followed by the Rasa Aragonesa, Ojinegra de
Teruel and Roya Bilbilitana lambs, whose values are similar and,
therefore, forming a mixed a group with a LW range between 20 and
24 kg. The Blanca Celtiberica goats have a wider range of values
comprising the higher LW data of the dataset. The same trends are
found in the remaining variables as they showed to be highly correlated
with the variable LW (generally R > 0.84, with exceptions of SF and
SFT presenting R values equal to 0.75 and 0.67, respectively; data not
shown). The overall data matrix presents wide range of values for all
dependent variables and for the three independent variables, LW and
thickness measurements of subcutaneous fat in lumbar and sternum
regions, suggesting that this is a representative animal sample. The
wide variation of data is an essential attribute in the studies aiming the
in vivo prediction of carcass composition (Scholz et al. 2015; Silva et al.
2020). Several studies highlighted that the best prediction models are
from traits that show a high coefficient of variation (Hopkins et al.

1993; Silva et al. 2006; Teixeira et al. 2008). Those authors report low
accuracy in predicting carcass composition traits when used RTU
measurements that show reduced variation.

3.2. MLR models using variable selection algorithm

Table 3 presents the best subsets of independent variables selected
by the SA meta-heuristic algorithm of variable selection for the nine
dependent variables, the RSE and adjusted R2 values, as well the R2

contribution averaged of each independent variable in the obtained
model. The results showed that the selected subsets contained 2 to 7
independent variables and that the selected models showed R2 values
higher than 0.79. The simplest model was obtained for the muscle
variable, which also corresponds to the model with the best predictive
power in cross-validation. All obtained MLR models had included ul-
trasound measurements, being significant in all models (p-value<
0.05). Table 3 shows that the LW variable has contributions varying
between 16.6% and 62.6% in the obtained models while the raw ul-
trasonic measurements vary between 6.5% and 33.5%. Also, only the
predictive models of MUS, OME and MES presented a linear contribu-
tion of at least one of the ultrasound variables. These overall results
showed that the 3 independent variables bring relevant information to
improve prediction of carcass and body components relating to animals
of different breeds of sheep and goat.

These results confirm the improvement in the body and carcass
composition estimation models using LW and two ultrasound mea-
surements as independent variables in goats (Teixeira et al. 2008;
Teixeira et al. 2019) and in lambs (Teixeira et al. 2006; Ripoll et al.
2009), as well as to assess the internal adipose depots in dairy sheep
(Afonso et al. 2019).

3.3. MLR models predictive capacity

The predictive capacity of the best MLR model obtained, for each
dependent variable, was evaluated through the results obtained from
the relationship between the expected experimental and model pre-
dicted values using the train data and test group: slope, intercept,
confidence intervals at 0.05 level, RSE and adjusted R2. In Tables 4 and
5 are shown these results for the train and test group, respectively.

It was found that the model slope was significantly different from 0
(p-values< 0.001) in all the models obtained. The data from train
group allowed to establish MLR models with adjusted determination
coefficients varying between 0.80 and 0.96 (Table 4), which although
acceptable, could be improved if the variables did not show great dis-
persion mainly on the data for Blanca Celtiberica goats. So, it turns out
that, in general, the models obtained with the train group data have
slopes close to one (1) in the relationship between the predicted and
expected training values by the obtained MLR model, but only in MUSC
and TF models, the theoretical slopes are considered in the slope con-
fidence interval. In the case of the intercept values for this relationship,
only five dependent variables (MUSC, SF, IF, OME and TF) had con-
fidence intervals containing the zero value.

The robustness of predictive models is evaluated for its ability to
predict the values of new samples (test group), which is the main ob-
jective of this work, and so it will be given more importance to the
results shown in Table 5. So, as can be seen, the adjusted R2 obtained
from the linear relationship between experimental values of the group
test of each of the nine dependent variables and predicted values for
these variables varied between 0.76 and 0.98. Also, confidence inter-
vals for the slope and intercept contain the theoretical values 1 and
zero, respectively, with the exception of variables MUSC, SFT and PER.

The best linear model was the prediction model of muscle mass
where it was possible to obtain a linear relationship between the values
predicted by multiple linear regression model and expected, whose
slope and intercept cannot be considered the theoretical (one and zero,
respectively). In this adjusted model, the selection of variables by SA
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algorithm, the LW and U_STER, as significant independent variables,
explains 98% of the muscle variability (Table 5). This result shows that
it is possible to determine the muscle mass of sheep and goat of dif-
ferent breeds together.

Fig. 1 shows the overall appreciation of the results obtained with the
MLR models for the muscle variable in terms of the relationship be-
tween the predicted values by the model and the experimental for the
test group data, as well the normality of the residuals, according to the

Table 2
Minimum and maximum ranges of live weight, ultrasound measurements and carcass composition, body fat depots and total body fat components.

LAMBS GOATS

Rasa Aragonesa Ojinegra de Teruel Roya Bilbilitana Serrana Blanca Celtiberica

Min Max Min Max Min Max Min Max Min Max

LW, kg 20.2 22.8 20.3 22.5 20.0 24.0 9.4 13.1 33.0 91.5
U_LUMB, mm 2 5 4 8 2 8 1 2 0 7
U_STER, mm 13 22 18 22 15 22 11 21 8 52
Carcass composition, g
MUSC 2675 3122 2567 2857 2438 3145 1157 1955 4197 12,500
SF 204 450 346 567 247 626 34 192 57 5550
IF 390 593 442 629 377 677 127 275 231 4746
KPF 54 236 88 211 78 204 42 306 75 3004
SFT 9 34 19 58 17 37 1 6 4 199
Body fat depots, g
OME 138 306 258 596 176 407 28 230 208 8134
MES 165 309 272 393 187 285 70 223 439 3619
PER 4 27 10 19 8 43 3 21 30 440
Total body fat, g
TF 1790 2828 2409 3824 2028 3503 534 1683 1572 38,771

LW –live weight; U_LUMB – lumbar subcutaneous fat depth; U_STER – sternum fat depth.
MUSC – muscle; SF - subcutaneous fat; IF - intermuscular fat; KPF - kidney and pelvic fat; SFT - subcutaneous fat tail; OME - omental fat; MES - mesenteric fat; PER -
Pericardial fat; TF - total body fat.

Table 3
Independent variables selected by ANNEALING algorithm for each dependent variable.

Dependent variable Independent variablesa RSE Adj R2

MUSC LW (62.6%); U_STER (33.5%) 600 0.96
SF U_LUMB (7.9%); U_STER (13.8%); LWxU_LUMB (18.0%); U_LUMBxU_STER (15.5%); LWxU_LUMBxU_STER (22.6%);

U_STER2 (15.1%)
266 0.92

IF U_STER (19.9%); LWxU_STER (28.7%); LWxU_LUMBxU_STER (24.3%); U_STER2 (20.4%) 221 0.93
KPF LWxU_LUMB (38.0%); LWxU_STER (43.0%); U_LUMB2 (10.4%) 248 0.91
SFT U_STER (16.5%); LWxU_LUMB (23.5%); LWxU_LUMBxU_STER (26.1); U_STER2 (17.8%) 17 0.83
OME LW (17.4%); U_LUMB (7.9%); LWxU_LUMB (21.5%); LWxU_STER (23.4%); LWxU_LUMBxU_STER (20.7%) 714 0.90
MES U_LUMB (8.1%); LWxU_LUMB (26.2%); LWxU_STER (30.3%); LWxU_LUMBxU_STER (21.7%) 389 0.86
PER LW (35.0); U_LUMB (6.5%); U_LUMBxU_STER (17.8%); U_STER2 (21.5%) 366 0.79
TF LW (16.6%); U_STER (16.0%); LWxU_STER (23.0%); U_LUMBxU_STER (16.2%); U_LUMB2 (6.4%); U_STER2 (17.0%) 0.24 0.95

Dependent variables: MUSC – muscle; SF - subcutaneous fat; IF - intermuscular fat; KPF - kidney and pelvic fat; SFT - subcutaneous fat tail; OME - omental fat; MES -
mesenteric fat; PER - Pericardial fat; TF - total body fat.
Independent variables: LW –live weight; U_LUMB – lumbar subcutaneous fat depth; U_STER – sternum fat depth. Variable with superscript value “2” is indicative of a
second order variable.
RSE – Residual standard error; Adj R2 – adjusted determination coefficient.
a Within brackets, the R2 contribution, in percentage, averaged of each independent variable in the obtained model.

Table 4
Parameters of the linear relationship between the values predicted by the model obtained and the expected for the train group data.

Dependent variable Parameter Confidence interval Intercept ± sd Confidence interval RES Adj R2

Slope ± sd

MUSC 0.96 ± 0.02*** [0.92;1.01] 234 ± 152 [−69;537] 584 0.96
SF 0.93 ± 0.03*** [0.87;0.99] 62 ± 39 [−16;139] 248 0.93
IF 0.93 ± 0.03*** [0.87;0.99] 73 ± 40× [−6;153] 209 0.93
KPF 0.91 ± 0.03*** [0.85;0,98] 94 ± 45* [5;184] 234 0.91
SFT 0.84 ± 0.04*** [0.75;0.92] 7 ± 3* [2;12] 15 0.84
OME 0.91 ± 0.03*** [0.84;0.98] 195 ± 105× [−15;404] 662 0.91
MES 0.86 ± 0.04*** [0.78;0.94] 171 ± 65* [42;300] 354 0.86
PER 0.80 ± 0.05*** [0.70;0.89] 23 ± 7*** [9;37] 334 0.80
TF 0.95 ± 0.02*** [0.90;1.00] 408 ± 294 [−178;993] 0.22 0.95

Significant codes: 0 `***´ 0.001`**´ 0.01 `*´ 0.05 `x´ 0.1. MUSC – muscle; SF - subcutaneous fat; IF - intermuscular fat; KPF - kidney and pelvic fat; SFT - subcutaneous
fat tail; OME - omental fat; MES - mesenteric fat; PER - Pericardial fat; TF - total body fat; sd - standard deviation; RSE – Residual standard error; Adj R2 – adjusted
determination coefficient.
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predicted value and according to Cook distance. Observing the Fig. 1.A,
the degree of association between variables and the tendency of var-
iation together follows a clear linear tendency. In respect of residuals
according to the predicted value (Fig. 1.B), there is an independence of
residuals (residues are distributed on a random basis around zero), so,
the magnitude of a residue does not influence the magnitude of next
residue. In the Fig. 1.C (Normal Q-Q), the values represented are dis-
tributed more or less on the main diagonal suggesting a normal dis-
tribution of errors. From the Fig. 1.D, the information from Cook dis-
tance allowed to infer that within the observations there was the
presence of an outlier, a G_BC sample with the lowest muscle mass
(sample 3 in the test group data), showing that this experimental
muscle quantity is not in accordance to the experimental in vivo mea-
sures. Even so, the obtained prediction model is acceptable to provide
muscle mass through the animal's measure in vivo. Overall, it was also
found the presence of one outlier in the test data group results in more 4
dependent variables (SF, KPF, OME and PER) and three outliers in the
MES variable. An outlier in 50 samples of the test data group did not
bring major changes to the predictive results, except for the variable
MES, which worsened.

The models with the lowest predictive performances were obtained
for the SFT and PER variables, with a low slope value of 0.52 and 0.78,
respectively, and an adjusted R2 of 0.76 and 0.88, respectively, for the
linear relation between experimental values and predicted values. With
regard to the SFT dependent variable, the overall appreciation of the
model obtained, and its predictive capability is presented in Fig. 2. As
can be seen in Fig. 2.A, there is a huge data variability that explains the
lower performance of the obtained MLR model. This variability can be
justified by the low weight of this parameter in each different animal
breed and species, which increases the experimental error in its mea-
surement. This situation was also found for the PER variable. Observing
the other representations in the Fig. 2, it is shown that, even so, the
model data showed independence of residuals, normal distribution of
errors and not very influential values in the estimation of the regression
coefficients.

Regarding the RSE results obtained in the model fitting (Table 3)
and in the linear relationship between the real values and predicted by
the model for the training data (Table 4), they are considered high, but
acceptable. It is possible to see in Figs. 1 and 2 that in the training group
there are some points that deviate from the adjusted models, justifying
the results of RSE and adjusted R2.

Also, in the study of predictive capability of the MLR model using
the test group data, there was no evidence of the presence of outliers,
which contributed to smaller RSE results, demonstrating acceptable
predictive performance of the adjusted models.

The muscle mass prediction accuracy results (percentage relative
error, RE%) are presented in Table 6, showing the minimum and
maximum values of each subset of specie/breed. As can be seen, the
prediction accuracy is acceptable as expected, since in Fig. 1.A, the test

group predicted muscle mass values are close to the adjusted line de-
fined by the train group data. Moreover, it was verified that the RE%
values varied between 0.1 and 16.2%, with only 6% of the samples with
values higher than 15%. The other dependent variables showed ex-
pected wider intervals, considering their lower fitting adjusted R2 va-
lues.

The overall results showed that the multiple linear regression
models obtained can be used in predicting body content and fat depots
and muscle of new animals. The database allowed having high data
amplitude favoring the study of the applicability of the prediction
models based on body weights and two ultrasound measurements. The
results corroborate the fact that the independent variables, live weight
and ultrasound measurements, allow to obtain multiple linear regres-
sion models with acceptable results prediction using data from two
species of animals and five different breeds since, in general, the ad-
justed R2 values are higher than 0.87 except for the model sub-
cutaneous fat tail with an adjusted R2 of 0.76.

This work results from the fusion of multiple data groups used in
previous works, which focused on the same topic but using data for
different animal breed and species (Delfa et al. 1995; Ripoll et al. 2009;
Cadavez et al. 2002; Teixeira et al. 2008) and, due to the small number
of data, to obtain estimation models. Due to the broader data matrix, it
allowed to evaluate the MLR models in its predictive capacity of the
dependent variables in new data. Also, the MLR models were obtained
by selecting the best subset of variables between using three in vivo
measurements (raw variables), their second degree and interactions,
and evaluated using the adjusted determination coefficient (determi-
nation coefficient with a correction of the number of samples).

Although a detailed comparison of the estimation and prediction
results of the obtained MLR models is not possible since different fitting
procedures were used in relation to those reported in other research
studies of ultrasound application in the quantification of muscle and fat
tissue in carcass/live animals, a comparison to other works was carried
out using the coefficients of determination obtained from the relation
using model's estimation/prediction data and the expected data. Three
works that presented estimation models of several measurements of
carcass composition and body fat depots and high accuracy values were
considered for modeling results comparison: Silva et al. (2006), which
presented R2 values varying between 0.68 and 0.99 for in vivo estima-
tion of sheep (native Churra da Terra Quente breed) carcass composi-
tion (muscle, subcutaneous fat, inter-muscular fat, internal fat and total
fat weights); Ribeiro et al. (2008) that achieved R2 values between 0.89
and 0.97, in models to estimate internal body fat (carcass kidney fat
depth, carcass KPH weight, and internal fat) of cattle (Angus steers);
and, Orman et al. (2010) that estimated the carcass traits (carcass
subcutaneous fat thickness, carcass LM area, cold carcass weight, car-
cass yield) of Awassi lambs, showing R2 values ranging from 0.17 to
0.90. Lastly, the work of Lambe et al. (2010) presented the prediction of
carcass composition and tissue distribution in beef cattle of crossbred

Table 5
Parameters of the linear relationship between the values predicted by the model obtained and the expected for the test group data.

Dependent variable Parameter Confidence interval Intercept ± sd Confidence interval RES Adj R2

Slope ± sd

MUSC 0.94 ± 0.02*** [0.90;0.97] 218 ± 62*** [93;343] 225 0.98
SF 0.95 ± 0.05*** [0.85;1.05] -12 ± 25 [−63;39] 109 0.88
IF 0.95 ± 0,04*** [0.87;1.03] -11 ± 26 [−63;40] 102 0.92
KPF 0.93 ± 0.04*** [0.85;1.00] −4 ± 24 [−53;44] 96 0.93
SFT 0.52 ± 0.04*** [0.44;0.61] 9 ± 1*** [6;12] 7 0.76
OME 1.07 ± 0.04*** [0.99;1.15] −22 ± 39 [−101;56] 239 0.94
MES 0.98 ± 0.05*** [0.89;1.07] 28 ± 29 [−29;85] 160 0.91
PER 0.78 ± 0.04*** [0.69;0.86] 12 ± 3*** [6;17] 192 0.88
TF 1.04 ± 0.04*** [0.97;1.11] −2 ± 164 [−331;328] 0.20 0.94

Significant codes: 0 `***´ 0.001. MUSC – muscle; SF - subcutaneous fat; IF - intermuscular fat; KPF - kidney and pelvic fat; SFT - subcutaneous fat tail; OME - omental
fat; MES - mesenteric fat; PER - Pericardial fat; TF - total body fat; sd – standard deviation; RSE – Residual standard error; Adj R2 – adjusted determination coefficient.
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steers and heiferstat. In this work, data was divided into train group, to
establish the mathematical models, and test group for validation, to
evaluate the model's prediction performance. For this last data, the best
results of the relation between predicted and expected values had

prediction accuracies (R2) between 0.52 and 0.64 for fat, muscle
weights and fat proportion in the carcass side.

Overall, these results showed that the estimation models obtained in
the present work had adjusted R2 values similar or higher to the R2

Fig. 1. The MLR model prediction capability obtained to measure muscle mass in animals of different breeds and species (sheep and goat): A – Model predicted versus
expected values for the train group data (including linear adjustment) and test group data; B - Dispersion of residuals of the test group data; C - Normal QQ graph of
standardized residues of the test group data following the theoretical quantile; D - Cook distance of each sample of the test group.
The black solid circular marker represents the train group data and the different open markers represent different breeds of sheep and goat species of the test group
data: G_BC –Blanca Celtiberica goat; G_S- Serrana goat; L_ARA –Rasa Aragonesa lamb; L_OJI –Ojinegra de Teruel lamb; L_ROY –Roya Bilbilitana lamb.
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values obtained in the works mentioned above but, it is possible to
verify that the methodology applied in this work showed high perfor-
mance adjustment, which can be inferred from the high accuracy
(generally, higher than 0.88) obtained in the models' validations.

However, in future work other nonlinear regression multivariate tech-
niques should also be tested to improve the data fit and prediction
performance.

Fig. 2. The MLR model prediction capability obtained to measure subcutaneous fat tail mass in animals of different breeds and species (sheep and goat): A – Model
predicted versus expected values for the train group data (including linear adjustment) and test group data; B - Dispersion of residuals of the test group data; C -
Normal QQ graph of standardized residues of the test group data following the theoretical quantile; D - Cook distance of each sample of the test group.
The black solid circular marker represents the train group data and the different open markers represent different breeds of sheep and goat species of the test group
data: G_BC –Blanca Celtiberica goat; G_S- Serrana goat; L_ARA –Rasa Aragonesa lamb; L_OJI –Ojinegra de Teruel lamb; L_ROY –Roya Bilbilitana lamb.
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4. Conclusions

In this study was shown that it was possible to use live weight and
two real-time ultrasonography measurements (non-invasive technique)
taken in live animals, to get common models to predict body and car-
cass components for different goat and sheep breeds. These results
allow to infer that there is possibility of more extensive applications
using the proposed methodology, since these predictive models are
open to more data from other different production systems of goat and
sheep breeds, in order to increase their robustness and accuracy. The
advantages of this methodology are evident because, it is inexpensive;
easy to obtain in field conditions; and, by considering that robust pre-
diction models were obtained even using ultrasound data from different
real-time ultrasonography machines and probes. Overall, these pre-
dictive models can support the assessment of body composition in vivo
and carcass classification, which meets the needs of the sheep and goat
industry for an objective system of animal evaluation, carcass grading
and classification recognized by producers, slaughterhouses, retailers
and according to the consumer requirements.
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