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Abstract

Nowadays everybody uses web applications and need to protect their accounts with strong

authentication methods.

Following this need, this work research problems and solutions related with the au-

thentication, specially concerning textual and graphical passwords.

The common problem among the users is the difficulty remembering a textual password

that is long and random-looking. Because of the visual aspect, graphical passwords are

more easy to remember.

This work proposes a recognition and recall based graphical authentication methods

that can be used as a challenge to authenticate users. A security analysis is made to check

the correctness of the proposed solution and how it minimizes the vulnerabilities of the

authentication process.

These analysis will enable us to implement these challenges in future work as an exten-

sion to authentication, authorization and accounting services, supporting a multi-factor

authentication and combining theses challenges with others already available. The idea

is to extend an authentication method on Apache Shiro to provide developers with a

common framework to develop secure web application with strong authentication, autho-

rization and accounting.
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Resumo

Hoje em dia, as pessoas fazem uso de aplicações web e necessitam proteger as suas contas

com métodos de autenticação forte.

Considerando esta necessidade, este trabalho investiga os problemas e soluções de

autenticação, especialmente relacionadas com palavras chave textuais e gráficas.

Um problema comum dos utilizadores é a dificuldade de se lembrar de palavras chave

textuais que sejam longas e pareçam criadas aleatoriamente. Devido ao aspeto visual, as

palavras chave gráficas são mais fáceis de recordar.

Este trabalho propõe métodos de autenticação gráfica baseados em reconhecimento e

localização de pontos que podem ser utilizados como desafios de autenticação. É também

efetuada uma análise de segurança aos métodos propostos por verificar a sua correção e

que minimizam vulnerabilidades do processo de autenticação.

Estes resultados permitirão, no futuro, implementar desafios de autenticação adicionais

como uma extensão aos serviços de autenticação, autorização e contabilização, suportando

autenticação multi-fator. A ideia será estender os métodos de autenticação do Apache

Shiro para permitir os programadores desenvolverem, utilizando uma framework comum,

aplicações web seguras com autenticação, autorização e contabilização.
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Chapter 1

Introduction

The Internet and World Wide Web have become important parts of most people’s lives.

Users regularly use various Web applications that involve personal information, including,

among others, online banking, e-health services, online education, etc..

The organizations which provide these services maintain personal information on their

servers, as well as a variety of other types of sensitive information crucial to the organiza-

tions’ operation. These information is required to be secured and restricted to authorized

individuals.

The organizations must have a policy that protects the privacy of the users’ and ensure

that their personal information does not fall into the hands of people for whom it is not

intended.

Although there are many methods to limit access to information, they usually de-

pend on a process of authentication and authorization. The most common authentication

method is based on a user name and corresponding password. For this to be effective, it is

very important that users generate and use strong passwords that are resistant to guessing

and cracking. However, usually there is a trade-off between password memorability and

security. Passwords that are easy to remember, as a rule, are biographical information or

simple words that can be guessed or cracked by other people or computer programs. Re-

search has shown that users, in fact, tend to create passwords that are easy to remember.

For example, Leyden [1] reported that 12% of users used “password” as their password,
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and the three most common types of passwords included a user’s own name, date of birth,

or favorite football team. Another problem with passwords is that people tend to use the

same password for different accounts. If the password of one account gets hacked, then

the security for all the other accounts is endanger.

The user name and password authentication method provides less security than other

methods, such as biometric devices, smart cards, or token devices. However, for many

websites that support personal information about users, the combination of user name

and password still is the primary method of identifying and authenticating users. This

method is popular because it is widely accepted by many users and it is easy to implement.

It is unlikely that user name and password be replace in the near future, for reasons

of convenience and practicality. Therefore, it is important to determine the methods

for generating passwords that will allow you to obtain passwords that provide adequate

security, but that are also memorable.

1.1 Goals

Considering the previous scenario we set the main goals of this work as follows:

• Study web application authentication solutions

• Identify the risks of textual passwords and attack vectors

• Research graphical password methods

• Propose authentication solutions based on recognition and recall based methods

• Analyze security of the proposed methods
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1.2 Document structure

This document is structured in 5 chapters. The current chapter describes the main goals

of this work and makes an introduction about web application authentication, their chal-

lenges and identified a problem related with weakness of password authentication.

On chapter 2, we research the authentication methods for web applications, strengths

an weakness of textual and graphical passwords. We also research AAA frameworks and

other common solutions.

On chapter 3, we specify and explain our graphical authentication proposals for recog-

nition and recall based method.

On chapter 4 we discus the security of the proposed methods related with the previous

identified attack vectors.

The document finishes with the conclusion chapter, where goals completion is dis-

cussed, as well as the future challenges and work.
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Chapter 2

Background

In this chapter we discus the importance of web authentication as part of web application

security. We identify advantages and disadvantages of textual and graphical passwords.

Moreover, we analyzed some AAA frameworks and common used solutions for web appli-

cations.

2.1 Authentication, authorization and accounting

Authentication, authorization, and accounting (AAA) is a term for a framework that

intelligently controls access to computer resources, audits its’ usage, enforces policies and

provides information necessary to bill services usage. Authentication asks the question,

”Who or what are you?”. Authorization asks, ”What are you allowed to do?”. Finally,

accounting wants to know, ”What did you do?”. The use of AAA is considered essential

to effective network management and security.

First a user needs to go trough authentication process, usually users are queried to

provide a valid user name and password combination before gaining access. The AAA

server compares a user’s authentication credentials with other user’s ones that are stored

in a database. If the credentials match, the user is authenticated. If credentials are

rejected, authentication fails and access is denied.

Follows the authorization phase to check if the user is allowed to perform some tasks.
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After logging into a system, for instance, the user may try to issue commands. The

authorization process checks if the user has the permission to issue such commands. This

phase enforces the policies as it enables to define the types or properties of the activities,

resources or services that the user is allowed to use. Usually, authorization take place

within the context of authentication. Once you have authenticated a user, they may be

authorized for different types of access or activity.

The AAA framework, also provides accounting, which measures resources usage during

access. It can include the amount of system time or amount of data that the user sent and

received during the session. Accounting is performed by registering session statistics and

usage information and enables to control authorization, billing, trend analysis, resource

utilization, and capacity planning activities.

Authentication, authorization, and accounting services are often provided by a dedi-

cated AAA server, a program that performs these functions. A current standard by which

network access servers interface with the AAA server is the Remote Authentication Dial-

In User Service (RADIUS) [2].

2.2 Web-based authentication

The web-based authentication feature implements web-based authentication, which is also

known as Web Authentication Proxy. The Web-based environment is a communication

infrastructure, usually a network that uses specific technologies. Such as the Hypertext

Transfer Protocol (HTTP), the (Extensible) Hypertext Markup Language ((X)HTML) or

Uniform Resource Identifiers (URIs).

The biggest web-environment is the World Wide Web. However, web technologies

are used in diverse environments, from home to enterprise networks. There are two

main alternatives to authentication in such environments: authentication functions of the

communication protocol (HTTP) or authentication using application specific methods

and parameters, that are exchanged using forms. The following sections focus on user

authentication. Server authentication will not be pursued further in this thesis. There
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Figure 2.1: Web-based authentication device roles

are also a number of implicit methods to authenticate a server to a user. For example, the

URI which a server responds to can be used to authenticate it or information provided in

a SSL certificate that the server offers to secure communication. Further on this research

work the focus will be on user authentication.

When a user initiates an HTTP session, the Web authentication function intercepts

incoming HTTP packets from the host and sends the user’s HTML login page. The

user types his credentials, which the web-based authentication feature sends to the AAA

server for authentication. If the authentication succeeds, web-based authentication sends

a Login-Successful HTML page to the host and applies the access policies returned by the

AAA server [3].

With web-based authentication, the devices in the network have specific roles as shown

in 2.1

RFC 7235 specifies an authentication extension to HTTP [4], [5], [6]. This extension

allows for the exchange of authentication information on the protocol level. This allows,

for example, web servers that only understand HTTP to enforce a user authentication.

In contrast to form-based authentication (see below) the user client has to support the

authentication method since it is required to process it. The user client, for example,

has to recognize a HTTP authentication request, prompt the user for his credentials and

send them to the authenticator. Also, the HTTP authentication methods only arrange

for a username and a password as authentication credentials. Other parameters like an
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authentication provider or a control challenge, therefore, need to be guessed from the

context or encoded into the username/password tokens.

There are two authentication methods specified: basic and digest access authentica-

tion. The basic authentication transfers username and password in cleartext. This allows

for a direct comparison on the receiving end of the authentication with the values that are

present there. If the transmitted values match the ones stored before, the authentication

is successful. The transmission, especially of the password, in cleartext, however, bears a

number of security risks (which make basic authentication insecure).

The HTTP digest access authentication avoids to transfer the user password in cleart-

ext. To achieve this, the digest authentication method applies MD5 cryptographic hashing

combined with nonce values to prevent crypto-analysis. Additionally, to the authentica-

tion request, the authenticator sends the client a nonce value. Both, client and server,

then perform the digest authentication computations, shown in the formulas below, to

calculate the digest response value. The value HA1 contains a MD5 hash of the username,

the realm these credentials are valid for and the user password [7].

HA1 = MD5(A1) = MD5(Username : realm : password) (2.1)

HA2 = MD5(A2) = MD5(method : digestUri) (2.2)

request− digest = MD5(HA1 : nonce : nonceCount : clientNonce : qop : HA2) (2.3)

The authenticator can choose to store the HA1 value in the hashed version opposite

to storing the three input values in cleartext. This has the advantage that it saves the

HA1 computation every time an authentication needs to be performed. Also, in case the

authentication database is compromised, the attacker cannot get access to the cleartext

user password. On the other hand, the realm value cannot be changed after the hash

value is calculated. The second part of the digest computation is the HA2 value which

hashes the HTTP request method and URI. In the last step, the HA1 and HA2 value

are MD5 hashed using the nonce the authenticator provided and a number of values the
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client can choose to provide itself. Those additional attributes provide further security

enhancements. They include a Quality of Protection (qop) parameter that specifies which

of the security enhancements are required to be used, a nonce counter that is incremented

by the client, and a client generated random nonce. These enhancements are designed to

protect against cryptanalysis (e.g. chosen-plaintext attack) of the digest values.

2.3 Textual passwords

Passwords are the most common form of authentication, used to control access to infor-

mation, ranging from the Personal Identification Numbers (PIN) we use for automatic

teller machines, credit cards, telephone calling cards, and voice mail systems to the more

complex alphanumeric passwords that protect access to files, computers, and network

servers. Passwords are widely used because they are simple, not expensive, and conve-

nient mechanisms to use and implement.

At the same time, passwords are also recognized as being an extremely poor form

of protection. The Computer Emergency Response Team (CERT) estimates that about

80 percent of the security incidents reported to them are related to poorly chosen pass-

words [8]. Password problems are very difficult to manage because a single local computer

network may have hundreds or thousands of password-protected accounts and only one

needs to be compromised to give an attacker an entrance to the local system or network.

With today’s interconnected Internet, the problems are potentially devastating on an

even larger scale, a skillful intruder may break into one system and never harm it, using

it instead as a platform for attacks on a population of millions of targets [9].

Passwords are a weak form of protection for many reasons. One major reason is

that passwords depend on the weakest link in the computer and network security chain:

namely, the human user. There is a common trend among users to choose passwords,

which are simple words, can be found in any dictionary or commonly used by other users.

To make textual passwords safer we should follow several guidelines:

• Passwords should be easy to remember, and the user authentication protocol should

8



be executable quickly and easily by humans;

• Passwords should be secure, i.e., they should look random and should be hard to

guess;

• They should be changed frequently, and should be different on different accounts of

the same user;

• They should not be written down or stored in plain text.

The satisfaction of all these guidelines are virtually impossible to achieve. Conse-

quently, users ignore them, leading to poor password practices. According to the statis-

tics of xato.net, 30% of the users use one of the top 10,000 passwords, which makes it

ridiculously easy to hack their accounts [10] (Table 2.1).

Table 2.1: Ratio of users covered by the top n password.

Number of top passwords Covered percentage of users
3 0.9%
10 1.6%
100 4.4%
1000 13.2%
10000 30%

A further complication is that users have many passwords for computers, networks,

and web sites. The large number of passwords increases interference and is likely to lead

to forgetting or confusing passwords. Users typically cope with the password problem by

decreasing their memory load at the expense of security.

First, users write down their passwords. Second, when they have multiple passwords,

they use one password for all systems or trivial variations of a single password. As a

result, users are known to ignore the recommendations on password choice. Two recent

surveys have shown that users choose short, simple passwords that are easily guessable, for

example, ”password”, personal names of family members, names of pets, and dictionary

words. To users, the most important issue is having a password that can be remembered
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reliably and that can be input quickly. They are unlikely to give priority to security over

their immediate need to get on with their real work.

There are several ways in which an intruder can attack password-protected systems.

The most common used are:

• Brute force attacks

• Dictionary attacks

• Replay attacks

• Phishing attacks

• Shoulder surfing

Brute Force Attacks: In this type of attack, all possible combinations of a password

are tried to break the password. The brute force attack is generally applied to crack the

encrypted passwords where the passwords are saved in the form of encrypted text. Early

Linux systems use MD5 hashing schemes for storing the passwords. Passwords are usually

stored in a file or a registry in the operating system, together with the user names. If the

file is stolen by the attacker then the password can be checked. The original password is

not in the file but it is encrypted in the form of a hash (MD5 or other). The encrypted

password seems to be safe but, in fact, it is also vulnerable to brute force attack. For this,

the attacker first converts all combinations of passwords into their MD5 hashes. In order

to break the password, the attacker first extracts the MD5 hash of suspected password

from the password file placed in the system. The hash is then matched with all MD5

hashes one by one. When the hashes are matched, the corresponding password is found.

Brute force attacks are very time and processor consuming, as it requires trying all

the combinations and calculating the corresponding hash. For example, a user enters

a password of 8 characters and all characters are lower case letters then to break the

password using the brute force attack it requires 268 = 208827064576 combinations. If

a single computer takes 1000 passwords to check in one second then total time will be
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frac2088270645761000 = 208827064.576 seconds which is equal to 58007.52 hours. This

shows that brute force attack is effective for smaller passwords [11].

Dictionary Attack: This type of attack is relatively faster than the brute force

attack. Unlike checking all possibilities, the password combinations are matched to a

dictionary with the most occurring words or words of daily life usage. Many users gener-

ally write passwords related to the names of birds, familiar places, famous actors names

etc. These passwords can be judged by the dictionary attack. The attacker makes the

dictionary of most commonly used words that might have been be used as a password.

The attacker then applies all these words to break the password. Although the dictionary

attack is faster than brute force attack, it has some limitations too. It relies on a limited

set of words and sometimes it is impossible to crack the password because it is not be

present in the dictionary.

Replay Attacks: Also known as reflection attack, it is a way to attack the challenge

response user authentication mechanism (same type of protocols by each sender and re-

ceiver side). The method for this type of attack is that the attacker first enters her name

in the first login connection. To authenticate the user, the receiving device sends the

challenge to the sender (in this case attacker). The attacker opens another login at the

same time with its own valid user name and replies the receiving device as challenge of

previous connection. The receiving side accepts the challenge and responds to it. The

attacker then sends back that response through the account to be hacked and thus it gets

authenticated. Then the attacker gets access to that account.

Phishing Attacks: It is an attack in which the attacker redirects the user to the

fake website to get passwords/PIN codes of the user. To explain phishing, suppose a user

wants to open a website, such as “www.yahoo.com”. The attacker redirects the user to

another website e.g. “www.yah0o.com” whose interface is similar to that of the original

website to trick the user. The user then enters the login information which is retrieved

by the attacker. The attacker then redirects the user to the original website and logins

the user with the original website. Different phishing control filters are used nowadays

but still they are not much reliable.
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Shoulder surfing: Refers to a direct observation of PIN by looking over a person’s

shoulder or camera-based recording. The entry of a password can easily be observed in

crowded place by standing next to someone [12].

There are two types of passive adversaries. The shoulder-surfing attacker is a weaker

adversary whose capabilities are confined to those of a human. On the other hand,

the camera-based recording attacker is a stronger adversary equipped with automatic

recording devices Since PINs are so popularly used in, smartphones, automated teller

machines (ATM), and Point of Sale (PoS) terminals. There is a great need for a secure

PIN entry scheme that does not significantly sacrifice usability [13].

Nowadays nearly all computer systems store password in encrypted form. So, password

is a key to a cryptographic system. Its length is directly proportional to its security (keys

are more secure as they grow longer). However, a longer password it is still not strong

password as should be (Table 2.2).

Table 2.2: Number of keys possible with various password lengths and character set
constraints

Character Set 4 octet 5 octet 6 octet 7 octet 8 octet
Lowercase letters (26) 4.6x105 1.2x107 3.1x108 8.0x109 2.1x1011

Lowercase letters/digits (36) 1.7x106 6.0x107 2.2x109 7.8x1010 2.8x1012

All alphanumeric characters (62) 1.5x107 9.2x108 5.7x1010 3.5x1012 2.2x1014

Printable characters (95) 8.1x107 7.7x109 7.4x1011 7.0x1013 6.6x1015

7-bit ASCII characters (128) 2.7x108 3.4x1010 4.4x1012 5.6x1014 7.2x1016

8-bit ASCII characters (256) 24.3x109 1.1x1012 2.8x1014 7.2x1016 1.8x1019

The time is also proportional to the length of the password (Table 2.3). Clearly, longer

passwords provide better protection than shorter ones. Additionally, passwords that use

a wider combination of possible bit combinations are better than ones that are highly

constrained.

From this tables we can conclude that any password that people will memorize and

type in on a regular basis will not be as good as a 64-bit random number. Therefore,

passwords will be open to guessing attacks of one form or another [9].

A possible approach to simplify the memorability of passwords can be through the use
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Table 2.3: Amount of Time to Search All Possible Keys

Character Set 4 octet 5 octet 6 octet 7 octet 8 octet
Lowercase letters (26) 0.5 sec. 12 sec. 5.2 min. 2.2 hours 2.4days

Lowercase letters/digits (36) 1.7 sec. 1 min. 36.7 min. 21.7 hours 32.4 days
All alphanumeric characters (62) 15 sec. 15 min. 15.8 hours 40.5 days 27 years

Printable characters (95) 1.4 min. 2.1 hours 8.6 days 2.2 years 209 years
7-bit ASCII characters (128) 4.5 min. 9.4 hours 50.9 days 17.8 years 2283 years
8-bit ASCII characters (256) 1.2 hours 12.7 days 8.9 years 2283 years 570,776 years

of pictures or graphical sequences, promising the same degree of security.

2.4 Graphical Passwords

Graphical passwords were originally described by Blonder [14]. In his description of the

concept, an image would appear on the screen, and the user would click on a few chosen

regions of it. If the correct regions were clicked in, the user would be authenticated [15].

Graphical password is an alternative to alphanumeric passwords in which users click

on images to authenticate themselves rather than typing alphanumeric words. Graphical

passwords are more memorable compared to the alphanumeric passwords, because it is

easier to remember an image than a set of letters and numbers.

Using images instead of characters will help the user to improve the security because

the size of the corpus is unlimited, in alternative to the 26 letters and 10 numbers in the

case of alphanumeric password [16].

Graphical based password techniques have been proposed to solve the limitations of

the conventional text based password techniques, because pictures are easier to remember

than texts. It is referred as “Picture superiority effect”. A literature survey of papers

regarding graphical password techniques shows that the techniques can be categorized

into four groups (Figure 2.2).

A. Recognition-Based Technique In this category, users will select images, icons or

symbols from a collection of images. At the time of authentication, the users need to
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Figure 2.2: Categorization of graphical password authentication techniques.

recognize their images, symbols or icons which are selected at the time of registration

among a set of images. Researches were done to find the memorability of these

passwords and it shows that the users can remember their passwords even after 45

days.

B. Pure Recall-Based Technique In this category, users have to reproduce their pass-

words without being given any type of hints or reminder. Although this category

is very easy and convenient, but it seems that users can hardly remember their

passwords. Still it is more secure than the recognition based technique.

C. Cued Recall-Based Technique In this category, users are provided with the re-

minders or hints. Reminders help the users to reproduce their passwords or help

users to reproduce the password more accurately. This is similar to the recall based

schemes but it is recall with cuing.

D. Hybrid Schemes In this category, the authentication will be typically the combi-

nation of two or more schemes. These schemes are used to overcome the drawbacks

of a single scheme, such as spyware, shoulder surfing and so on [17].

Recognition-based systems are also known as cognometric systems. These systems
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generally require that users memorize a portfolio of images during the process of pass-

word creation and, when logged in, the users must recognize their images from decoys.

An exceptional ability of humans is to recognize images previously seen, which is making

recognition based algorithms popular. Various recognition based systems have been pro-

posed using different types of images, mostly like faces, icons, everyday objects, random

arts, among others [18].

Pure recall-based graphical password systems are also referred to as drawmetric sys-

tems because users recall an outline drawing on a grid that they created or selected during

the registration phase. In these types of systems, users usually draw their password either

on a grid or on a blank canvas. Memorability is difficult because the retrieval is done

without any reminders or clues [19].

Cued-recall systems are also known as locimetric systems as it related to identifying

specific locations. These systems typically require the users to remember and click on

specific locations within an image. This increases the memorability as it is easier to

memorize than pure recall based systems. This is a different memory task than simply

recognizing an image as a whole. In these types of schemes, users are provided with an

image so that they can choose points arbitrarily by clicking in the presented image as a

password. For successful login, the user has to click on right click points in the correct

order [16].

Hybrid schemes are the combination of two or more graphical password schemes. These

schemes are introduced to overcome the limitations of a single scheme, such as hotspot

problem, shoulder surfing, spyware, etc. Many single schemes on recognition-based and

recall-based schemes are discussed and some of these schemes are combined to develop

the hybrid schemes [16], [17].

In order to understand how users interact with this type of authentication mechanisms

a study was made comparing the use of graphical and textual passwords [20]. The success

rate for creating a password is higher with the text based password (Figure 2.3). In

addition, the amount of time to create a password is higher for graphical passwords

(Figure 2.4).
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Figure 2.3: Create graphical password rate.

Figure 2.4: Password create time.

And the final graph shows for each system the percentage of users, who successfully

logged in.

Figure 2.5: Login success rate
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According to the results, the textual passwords are more easy to implement than

graphical passwords. But in another to be complex to mak e them stronger to resist an

attack, user tend to store the password in an insecure way. The advantages of graphical

passwords are, that they are making passwords more human-friendly, increasing the level

of security and dictionary attacks are infeasible. And by using it with a multi-level

authentication option, security of the accounts will increase.

2.5 Other authentication mechanisms

2.5.1 OpenID

OpenID is an open framework, decentralized, a free infrastructure for a user’s digital

identification, which is built on the basis of Internet technologies, such as HTTP, SSL

and URI. The main idea of OpenID is that a person is identified by the URI as a personal

identifier that he can control. Moreover, an OpenID account can be used to log into any

site that supports OpenID logins.

Development of OpenID was started by Brad Fitzpatrick of LiveJournal but is now

being maintained by a community as open source software. The community gets financial

and legal support by the OpenID Foundation. Because a large number of organizations,

such as AOL, Microsoft, Sun and Novell, are providing OpenID support for its members,

the OpenID community claims that there are over 160 million OpenID enabled URIs and

nearly ten-thousand sites supporting OpenID logins. The 2.0 version of the specification

will among other things support the Yadis protocol increasing its coverage even further.

OpenID defines only how the website finds and exchanges information with the iden-

tity provider responsible for the user. The process of how the identity provider actually

identifies the user goes beyond the specification. This makes the framework vulnerable for

phishing attacks. On the other hand, however it allows OpenID providers to implement

exceptional authentication mechanisms that are more secure than password-based logins,
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Figure 2.6: OpenID login protocol flow.

such as client certificates or even more exotic approaches like image-based authentica-

tion [21].

OpenID follows a specific flow (Figure 2.6. If a user tries to access a web page that

requires him to login, the web application displays an HTML form, requesting the user

to supply his OpenID identifier. The login process is started when the user submits

his OpenID identifier, which is a simple URL (1). The web application, or consumer,

according to the OpenID specification, retrieves the document at the indicated URL. The

document is then parsed for information about the OpenID identity provider which is

responsible for this URL (2). Now the web application knows which identity provider is

responsible for the particular user and it responds with a HTTP redirect message to the

original user request (3). The redirect message sends the user agent to the web server of

the identity provider (4). The message also includes parameters that specify the web site

the user should be redirected back to once the authentication is complete, the claimed

identifier the user has submitted and the URL of the web application which requested

the authentication. At this point the identity provider will authenticate the user using

an arbitrary authentication method bidirectional with the user (5). If the authentication
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is successful, the identity provider sends another HTTP redirect message to the user,

delegating him back to the original web site (6). This results in a new request for the

page the user wanted to access to begin with. Only this time it includes authentication

information4 from the OpenID identity provider that the web application can use to verify

the identity of the inquiring user (7). After the application has verified the authentication

information, it allows the user access to the requested resource (9).

The verification of the user supplied authentication information can happen in two

different ways. First, the web application uses a dedicated HTTP request to the identity

provider to ask if the authentication message in question is valid (8). This option is called

dumb mode by the OpenID specification. It has to occur in each authentication run but

allows the consumer web application to be stateless in regard to the OpenID authen-

tication process. The second option is for the web application to establish a so-called

association with the OpenID provider. This is done independently from authentication

runs (0) and is used to negotiate a shared secret between the identity provider and the

web application. Until the shared secret expires, it is used in subsequent authentication

runs to sign and verify authentication messages. This option called smart mode allows

the consumer web application to directly declare authentication identifiers supplied by

the user in step (7) as valid. Its drawback is that the web application is required to

maintain those shared secrets individually for every identity provider it wants to use this

mode with [22].

2.5.2 Kerberos

Kerberos is a network security protocol originally developed by the Massachusetts Insti-

tute of Technology (MIT). Meanwhile it is sported and promoted by the Kerberos Working

Group of the Internet Engineering Task Force (IETF). The latest version of Kerberos (V5)

is specified in RFC 4120 [23]. Kerberos implements an approach to network authentica-

tion. After a successful authentication against the Authentication Service, the Kerberos

client receives a Ticket-Granting-Ticket. Using this ticket, it can request service specific
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tickets from the Ticket-Granting Server. Tickets related to services can then be used to

access a specific service. Using this approach to tickets, Kerberos supports single sign-on

for all supporting services [24].

Because Kerberos must be supported by the client and the server, it is not present in

normal web environments. There is some support for Kerberos as the authentication of

the web server, although there are several projects to support Kerberos authentication in

browsers. In September 2007, the MIT announced the launch of the Kerberos Consortium.

With prominent founding sponsors such as Google, Stanford University, Sun Microsystems

and the University of Michigan its goal is to advance the propagation of Kerberos. Their

plans also include web authentication [22].

2.6 Apache Shiro

Apache Shiro is a powerful and easy to use security framework written on Java. It performs

authentication, authorization, cryptography and session management which can be used

to protect most application, like command line applications, mobile applications, largest

web and enterprise applications [25].

Shiro provides the application security Application Programming Interface (API) to

perform the following:

• Authentication - proving user identity, often called user ‘login’.

• Authorization - access control

• Cryptography - protecting or hiding data from eavesdrop

• Session Management - per-user time-sensitive state

As was mentioned before, Apache Shiro is a framework implemented in Java language

that provides both authentication and authorization in an simple API. One of the big

advantages of Shiro is, that enables to implement application security without the need

of coding all functionality from scratch.
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The design objectives of Apache Shiro are to simplify application security, by be-

ing intuitive and easy to use. Shiro’s core design models how most people think about

application security.

At the highest conceptual level of architecture, Shiro has 3 basic concepts: the Subject,

SecurityManager and Realms (Figure 2.7) [26].

Figure 2.7: Shiro basic architecture.

The Subject is a security specific ’view’ of the currently executing user. The word

‘User’ usually mean a human being, a Subject can be a person, but it could also represent

a 3rd-party service, daemon account, cron job, or anything similar - basically anything

that is currently interacting with the software. All Subject instances are tethered to (and

require) a SecurityManager. When interacting with the subject, those interactions are

converted to specific user interaction with the SecurityManager.

The SecurityManager is a core part of Shiro’s architecture and aggregates its internal

security components in a form of an graph. Usually the SecurityManger and internal

graphs are configured once for the application and application developers spend almost

all of their time on the Subject API.

Realms are like a ’bridge’ or a ’connector’ between Shiro and the application’s security

data. When applications need to authenticate (login) and authorize (access control) users,

Shiro checks for information needed from one or more Realms that are configured for the

application.
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Basically a Realm is a security-specific Data Access Object (DAO): it contains connec-

tion details for data sources and retrieves required information to the Shiro as necessary.

During Shiro configuration it must be specified at least one Realm to use for authenti-

cation and/or authorization. The SecurityManager requires one Realm to be configured,

and supports multiple Realms configuration.
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Chapter 3

Proposal

As mentioned before, graphical passwords authentication can be a solution for some of

the problems discussed earlier. Two possibilities are:

• recognition-based method and

• recall-based method.

In case of the recognition-based method, the user have to recognize previously chosen

or given pictures or figures. While when using recall-based methods the user has to draw

a pattern or click a certain places of the screen. In addition, it is worth mentioning that

dictionary attacks are unfeasible, because there are no pre-existing searchable dictionaries

for graphical passwords. It will also be harder to make phishing and reply attacks.

Our proposal suggests integrating a new challenge authentication method on an AAA

service that can be used by generic applications. The user sends an authentication re-

quest to the web application, which will forward it to the AAA server which will use our

graphical user authentication challenge (Figure 3.1).

The AAA server will be based on the Apache Shiro framework. It is powerful and

easy to use framework, which performs authentication, authorization, cryptography, and

session management.

Based on the survey we can se a comparison of described categories (Table 3.1).
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Figure 3.1: Diagram of challenge.

Table 3.1: The attack Comparison in categories of graphical passwords.

Graphical
auth.
methods

Dictionary
Attack

Guessing
Attack

Shoulder
Surfing

Social
Engi-
neering

Reply
Attack

Brute
Force
Attack

Recognition
Based
Method

No Yes No No No Yes

Recall
Based
Method

No No Yes Yes No No

Dictionary attacks on graphical authentication is unfeasible because there are no pre-

existing searchable dictionaries for the graphical password methods.

Guessing attacks is impossible to do on recall based authentication method, because

the possible combinations of correct sequence is equal of the factorial of the total pixels

counts. For recognition based authentication method, implementing a guessing attack is

more feasible, although it would require a long time.

Shoulder surfing attacks are made more difficult, because the icons usually changes

their places every time. Unfortunately, we can not tell the same about recall based
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method.

Social engineering is practically impossible in graphical passwords, as keyboard input

is not involved, so words in dictionary cannot be used to crack the password [27]. But

if attacker will have information about victim, this attack can be implemented for re-

call based authentication method. Because the attacker can generate for the victim his

authentication image.

The brute force attack is a method that finds the password by inputting possible

password combinations one by one. The number of possible password combinations of

the proposed scheme is influenced by the grid size and the password length. As the grid

size of the implemented prototype is 4x4, the result for minimal sequence (which is equal

to 4) will be as shown in equations 3.1 and 3.2 [28].

Ak
n =

n!

(n− k)!
(3.1)

A4
16 =

16!

12!
= 43680 (3.2)

Graphical authentication systems are a kind of knowledge-based authentication sys-

tems, since they rely on something that only the user knows. It is much easier to remember

pictures and icons rather than sequences of characters, because during the evolution of

humans, we developed the ability to memorize places, faces or signs. Characters only

became a part of the life of an average person only in the last few centuries.

This type of systems are resistant to reply attacks. The resistance to reply attack

means [29] that even if the attacker has passed the authentication message, he can not

use them to authenticate it in a different time. Basically because authentication challenge

generated by the server uses sequence numbers and time stamps controlled on the server

side making unfeasible to generate a correct answer based on the past answers.

In addition, dictionary attacks are unfeasible, because there are no pre-existing search-

able dictionaries for the graphical password methods. However, in some cases it is possible

to write one as we will see in case of the Android pattern lock [16].
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3.1 Recognition based method

Recognition-based methods require the user to recognize previously chosen or given pic-

tures or figures (Figure 3.2). For example, a 4x4 matrix with the images is randomly

generated with several images, divided by categories. This means that the user should

remember the category, instead of the image. For example, first choose nature, than

human than nature again.

Figure 3.2: Recognition based method example

The user has the possibility to choose not only the same category several times, but

also the same image. The password length has no limit, so the user can choose whatever

images he wants.

The algorithm works as following (Figure 3.3):

1. On the first step, the client requests, to the server, to start a registration process.
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2. When the server gets the request from the user, it randomly generates a matrix with

images or pictures. The pictures are stored by categories in a database.

3. The generated matrix appears on the user’s screen, giving him the possibility to

choose his password sequence.

4. The server stores the category sequence (password) in the database.

Figure 3.3: The diagram for setting password

The user validation process is described as follows (Figure 3.4):

1. On the first step, the client requests the server for a protected resource.

2. The server sends a new generated matrix with images. By generating a new matrix

every time, the problem of shoulder surfing is minimized.

3. After the matrix appears, the user inputs the password by selecting the proper

images.

4. In the end, the server receives the sequence from client, compares it, and validate

the user.
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Figure 3.4: The diagram for validation

As we can see, the diagram of validation is similar with the diagram for choosing

passwords. The only difference between them is that the user sends a request for valida-

tion and in the end of the all process instead of storing password, the server making a

comparison between a password that is on DB and the one that was just given.

3.1.1 Recognition based implementation

The recognition based method, like many other authentication methods, requires the user

to have an identifier (or username). So, on the first step, the client sends the username

to the server and initiates a session on the server side (Algorithm 1).

Algorithm 1 Identification algorithm.
1: function Identification(username) ▷ Giving ability for getting a user name
2: sessionUser ← username Store(sessionUser)
3: end function

After receiving the username of an user, the server randomly generates a 4x4 matrix

with 16 images, selected among several categories stored in the database (Algorithm 2).

After the matrix appears, the user clicks on the preferred images for choosing the
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Algorithm 2 Generate matrix.
function GenMatrix(i, j) ▷ The function generates 4x4 matrix with JPG

X[i,j] = 0
2: for ( do a = 0; a < i; a++)

for ( do b = 0; b < j; b++)
4: X[a, b]← JPG

end for
6: end for

return X[i,j]
end function

password sequence. In the end of the process, the client sends the information to the

server (Algorithm 3). Before storing the password received from the client, the server has

to process it (Algorithm 4). It finally stores it (Algorithm 5).

Algorithm 3 Choosing the sequence.
function Choosing_Sequence(Grid, i, j) ▷ The function is giving ability to
choose sequence of password Print(Grid)

while NotFinish do
3: Pos← GetPos(JPG) ▷ Getting the images which are chosen by user

Append(Sequence,Pos)
end while

6: end function

Algorithm 4 Generate the result.
function Gen_Cat(Chosen_Seq,Gen_Matrix) ▷ Sorts the sequence by categories

Result← NULL
for i = 0; i <= SizeOf(Chosen-Seq); i++ do

4: [line, col]← Chosen_Seq[i]
Store_Cat← Gen_Matrix[line, col]
Result← Append(Result, Store_Cat)

end for
return Result ▷ The sequence of password presented with categories

8: end function

On the other hand, the user validation follows a similar process. The client starts by

sending a request for a protected resource, which makes the server start an authentication

process. The server generates the matrix and receives the sequence input by the user.
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Algorithm 5 Storing the password.
function Store-Pass(Result, SessionUser) ▷ Calculates hash value for each user

Hash← Calc-Hash(Result) Store(Hash,SessionUser)
end function

Then, it compares the sequence (Algorithm 6). The result, either success or failure, is

finally returned to the client.

Algorithm 6 Comparing the password.
function Compare-Pass(Result, SessionUser) ▷ This function is responsible for
final validation

Pass← Gen_Cat(Result)
Hash← Calc-Hash(Pass)
Stored− Pass← Get-Pass-ForUser(SessionUser)
if Hash == Stored-Pass then
return Success

6: else
return Fail

end if
end function

3.2 Recall based method

In case of using recall-based methods, the user has to draw a pattern or click in a certain

set of places of the screen. This method of authentication has a wide variety of possible

implementations. In our variation of recall based authentication method, we are giving

to the user an option to upload the photo for making an authentication. This allows

remembering the password easier. The main operation of this authentication process is to

choose points on the picture and remember the sequence. The user can choose as many

points as desired (Figure 3.5).

In our challenge, it will be implemented as follows (Figure 3.6):

1. The client initiates a registration request with the server.

2. The server allows the user to upload an image to use for his password.
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Figure 3.5: Recall based method example.

3. The client uploads the image for authentication.

4. After this, the server sends him an instruction to chose the sequence of points on

the image.

5. The user chooses points on the image and these are forward to the server.

6. The server gets the sequence and stores it on a database.

The validation of the user words as follows (Figure 3.7):

1. On the first step, the client sends a request for a protected resource.

2. After receiving a client request, the server sends the image received from the user

during registration.

3. On the third step, the user selects the sequence of points and the client sends it to

the server.

4. After getting the sequence of points from client, the server checks if it is valid or

not.

This method makes the password more user-friendly by giving an opportunity to user

to upload a specific image, making password more easy to remember.
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Figure 3.6: Diagram of setting password.

Figure 3.7: Diagram of validation
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3.2.1 Recall based implementation

On the first step of recall based authentication, the client initiates a registration process,

which makes the server request the username (or identification) (Algorithm 7).

Algorithm 7 Request of username.
1: function Identification(UserName) ▷ Giving ability for getting a user name
2: SessionUser ← UserName Store(SessionUser)
3: end function

After the identification process, the server sends a request to the user and gives him

permission to upload an image, which is going to be used for graphical authentication. By

getting the request from the server, the user uploads his preferred image for authentication

and sends it to the server (Algorithm ??).

Algorithm 8 Storing authentication JPG
function Upload(Auth-JPG,SessionUser) ▷ Giving ability to upload a JPG

Store(Auth-JPG,SessionUser) ▷ Saving JPG in the DB for current user
return Success

2: end function

The server receive an image from client and stores it under the client’s username.

Now, the server sends to the client a request to choose his password (Algorithm 9).

Algorithm 9 Choosing sequence.
function Choosing-Sequence(Auth-JPG) ▷ The function is giving ability to
choose sequence of password

Print(Auth-JPG)
while NotFinish do

3: Pos← GetPos(JPG− point) ▷ Gets the position of the chosen points
Append(Sequence,Pos)

end whilereturn Sequence
end function

By getting an instructions from server, the client selects the sequence of his password

and send it to the server that it will store (Algorithm 10).

For making a validation, the client sends the request of authentication to the server.

By getting the user name of client, server sends the image of user (Algorithm 11).
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Algorithm 10 Storing the password.
function Store-Pass(Sequence,Auth-JPG,SessionUser) ▷ Calculates hash value
for each user

Hash← Calc-Hash(Sequence) Store(Hash,Auth-JPG,SessionUser)
end function

Algorithm 11 Send the challenging image.
function Send-IMG(SessionUser) ▷

Auth− JPG← Get-IMG(SessionUser) ▷ The function is getting the
authentication image from DB by the user name

return Auth-JPG
end function

After receiving the image, the client will input the sequence of the password and sends

it to the server (Algorithm 12).

Algorithm 12 Comparing the password.
function Compare-Pass(Sequence,SessionUser) ▷ This function is responsible for
final validation

Hash← Calc-Hash(Sequence)
Stored− Pass← Get-Pass-ForUser(SessionUser)
if Hash == Stored-Pass then
return Success

else
return Fail

6: end if
end function

After receiving the password, the server compares it with the stored one and sends to

the client success or fail.
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Chapter 4

Discussion

In our work, for improving the security of web applications, we put focus on the authen-

tication. The main user concerns are the risk of shoulder surfing, encryption of graphical

password and entering passwords, that should be performed quickly and effortlessly. On

the other hand, most of them believe that graphical passwords would provide for a more

secure user experience [20].

According to the results of the research, graphical passwords are a promising way to

make authentication less vulnerable. Complementing this with a multi-level authenti-

cation option, security of the accounts can even increase. The advantages of graphical

passwords are more human-friendly, increases the level of security and dictionary attacks

are infeasible.

By using our challenge, web developers will have opportunity to also use graphical

passwords and use them as a single or multi-level authentication. The main advantage of

this it that it does not put an upper limit on the password length and it is possible to use

with a multi-level authentication option.

The goal of the recognition based authentication method is that it always randomly

generates a new matrix with different images. Due to this, shoulder surfing attacks are

unfeasible and other attacks normally used against textual password authentication are

minimized because of the dynamic nature of the challenge. In time, adding new images

and categories increases the possibility of combinations making the system more safer.
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Beyond this, it is easier to remember the sequence of categories, than remembering all

chosen images and positions.

The mapping between images and the categories that they belong is only made on

server side. This will protect against some client side attacks.

The goal of recall based authentication method is that it more user-friendly. By giving

an option to the user upload image that he prefers, remembering password becoming more

easier and also each user can have their own personalized challenge. Next big plus of this

method that it does not have limit of number of chosen points, so the attacker doesn’t

know the size of the sequence. The possible position of each point on the sequence is

related with a pixel of the photo, which can be reused on the sequence. These two

proprieties combined increases the possible combinations of a correct sequence, making a

brute force attack unfeasible.
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Chapter 5

Conclusions

During this work we made a research of web application authentication solutions. We

identified the risks of textual passwords and the possible attack vectors. We made a

research of graphical password authentication methods and made a comparison between

them. Due to the research results we propose authentication solutions based on recogni-

tion and recall based methods.

Based on the research, we developed an algorithm for graphical authentication which

can be used as single or multi-level authentication. As a future work we will integrate

this algorithms in Apache Shiro, in order to create the extension and enabling users to

use our graphical challenges.

Related with recognition based authentication method, we consider to analyze the

matrix, and how many categories will increase the difficulty for attackers and make it

comfortable to use.

For improving our proposed method of recall based authentication, we still need to

analyze the minimal and maximal resolutions of images which user can upload, and tune

the error region when validating the points, considering that should be a dynamic value

related with the screen resolution and input device (mouse, finger). Moreover, to further

improve the security of recall based method, we are planning to add to the identification

algorithm, a validation to check if the user can request this process. The main idea is that

when the user uploads the image, on registration process, an hash is calculated to the
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image, which the client will sent during the identification phase. Then server will check

if the photo stored has the same hash before sending the authentication challenge to the

user.

Also we should test the usability of our challenge with different web developing frame-

works and CMS (Content Management System) engines.
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