

Comparison of the fractal dimension among swimmers with different levels of expertise

Tiago M. Barbosa^{1,2,3}, Jorge E. Morais^{2,3}, Raul Bartolomeu³, Mario J. Costa^{3,4}

¹ Nanyang Technological University, Singapore; ² Polytechnic Institute of Braganca, Portugal; ³ Research Centre in Sports, Health and Human Development/CIDESD, Portugal; ⁴ Polytechnic Institute of Guarda, Portugal

Introduction

Background: It is known that performance is strongly related to proportional changes in the inputs. The "marginal gains theory" in sports performance gained popularity a few years ago. It encompasses the assumption that small changes in the input (or the sum of several changes) may have a significant effect on the output.

Yet, it is unclear if nonlinear parameters such as fractal dimension (D) are able to distinguish subjects with different levels of expertise.

Statistical procedures: 2-ways repeated-measures ANOVAs (group x swim stroke; 3 levels of expertise x 4 swim strokes; P≤0.05)

Results

Speed: There was an expertise x swim stroke interaction ($F_{6,72}$ =3.564; P<0.001; η^2 =0.13) in the swim speed.

Front-crawl was the fastest stroke, followed by the Butterfly, Backstroke and Breaststroke (P<0.001).

Aim: The aim was to compare the fractal dimension in swimmers with different levels of swimming expertise.

Methods

Sample: 3 groups of 25 swimmers (total 75):

- highly qualifies (international level)
- Experts (national level)
- Non-experts (non-competitive swimmers)

Protocol: randomly assigned 4 x 25m all-outs at:

- Front-crawl
- Backstroke
- Breaststroke
- Butterfly stroke

Data collection: Speedo-meter (Swim speedo-meter, Swimsportec, Hildesheim, Germany) [1] (Fig 1).

D (expertise x stroke interaction): There was a non-significant expertise x stroke interaction.

D (swim stroke effect): A moderate effect of the swim stroke was noted.

Breaststroke showed the highest D followed by Butterfly, Front-crawl and Backstroke.

D (expertise effect): A small but significant effect of the expertise level was found.

Higher in non-experts than remaining groups.

There was a shift of the 95CI to the left side (i.e. a decrease of the FD) comparing non-experts with competitive counterparts.

		Fractal dimension (D, dimensionless)							
		Front-crawl	Backstroke		Breaststroke		Butterfly		
		Mean ± 1SD	Mean	Mean ± 1SD		Mean ± 1SD		Mean ± 1SD	
		(95CI)	(95	SCI)	(95	SCI)	(95CI)		
	Highly	1.84±0.08	1.83	±0.06	1.92±0.02		1.88±0.07		
	qualified	(1.80-1.87)	(1.79	-1.85)	(1.90-	-1.93)	(1.85-1.91)		
	Experts	1.85±0.09	1.85	±0.06	1.92:	£0.03	1.88±0.06		
		(1.81-1.88)	(1.82	-1.87)	(1.90-	-1.93)	(1.84-1.90)		
	Non-experts	1.89±0.06	1.88:	1.88±0.04 (1.86-1.90)		1.94 ± 0.02		1.92±0.04	
		(1.86-1.91)	(1.86			(1.92-1.95)		(1.90-1.94)	
	ANOVA								
			DoF	F		Р		η²	
Expertise x stroke interaction Expertise level effect			6,72	1.661		0.13		0.03	
			2,72	5.070		0.01		0.12	
Swim stroke effect		3,72	51.689		<0.001		0.41		

Fig. 1. The speedo-meter selected for data collection.

Data analysis: Computation of the fractal dimension (eq. 1) [2]:

$$D = \frac{d \log N(L(k))}{d \log(k)}$$
(1)

Conclusions

The D is prone to decrease with increasing expertise. Hence, the complexity level of the motor behaviour in swimming is dependent on the swimmer's expertise.

References

[1] Barbosa, T.M., et al (2010a). *Scandinavian Journal of Medicine and Science in Sports*, 25, 184-196.
[2] Higuchi, T. (1988). *Physica*, 31, 277-83.

www.ntu.edu.sg