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The aim was to examine the variation of linear and nonlinear proprieties of the 
behavior in participants with different levels of swimming expertise among the 
four swim strokes. Seventy-five swimmers were split into three groups (highly 
qualified experts, experts and nonexperts) and performed a maximal 25m trial 
for each of the four competitive swim strokes. A speed-meter cable was attached 
to the swimmer’s hip to measure hip speed; from which speed fluctuation (dv), 
approximate entropy (ApEn) and fractal dimension (D) variables were derived. 
Although simple main effects of expertise and swim stroke were obtained for dv 
and D, no significant interaction of expertise and stroke were found except in 
ApEn. The ApEn and D were prone to decrease with increasing expertise. As a 
conclusion, swimming does exhibit nonlinear properties but its magnitude differs 
according to the swim stroke and level of expertise of the performer.

Keywords: swimming, nonlinear parameters, variability, predictability, complexity

To displace in water, a swimmer concurrently performs several limbs’ motions 
that must be properly synchronized. These actions aim to increase the thrust (pro-
pulsive forces) and minimize the resistance (drag force) (Barbosa, Bragada, Reis, 
Marinho, Carvalho & Silva, 2010a). Swim speed is the result of the interaction 
between these two external forces acting upon the subject within each stroke cycle 
and over different stroke cycles (Craig, Termin & Pendergast, 2006). Therefore 
the assessment of the intracyclic and intercyclic variations of the swim speed is a 
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topic of interest for several researchers (Seifert, Komar, Barbosa, Toussaint, Millet, 
& Davids, 2014).

The intracyclic variation of the speed (dv) is monitored by the “speed fluc-
tuation” (Barbosa, Bragada, Reis, Marinho, Carvalho & Silva, 2010a). This is an 
index to quantify the changes of speed over a full stroke cycle. It expresses the ratio 
between the amount of variation or dispersion of the speed over an entire cycle 
and the mean speed. The dv falls under the field of “classic” linear kinematics. It 
has been reported by experimental research and numerical simulations that there 
is a trend for the dv to decrease with increasing speeds and it is different among 
the four swim strokes (Barbosa et al., 2013; Cohen, Cleary, Harrison, Mason & 
Pease, 2014). This parameter is convenient for researchers and practitioners to have 
some insight on the forces acting upon the swimmer and the limbs’ synchroniza-
tion in a straightforward way (Craig, Termin & Pendergast, 2006; Seifert, Komar, 
et al., 2014). However, others have concerns on the sensitivity of this parameter 
and suggested to alternatively assess the difference between maximal and minimal 
speed (Figueiredo, Kjendlie, Vilas-Boas, & Fernandes, 2012), or the ratio of the 
difference between maximal and minimal speed with average speed (Psycharakis 
& Sanders, 2009). Therefore, it seems that other parameters to learn about one’s 
motor behavior should be explored.

“Nonlinear” dynamics presents a framework from which it is possible to 
investigate nonlinear parameters (Abarbanel, Rabinovich & Sushchik, 1993). In a 
linear system, a small change in one input may have a small and easily quantifiable 
change in the output. On the other hand, nonlinear systems exhibit a very sensitive 
dependence on the inputs. Due to its sensitivity properties, linear measurements 
cannot identify small changes in the inputs that may lead to significant variations 
in the output. Two of the nonlinear parameters are the approximate entropy and 
the fractal dimension (Bravi, Longtin & Seely, 2011). The approximate entropy 
(ApEn) is a nonlinear technique quantifying the temporal structure of the unpre-
dictability in its fluctuations over a time-series dataset. Therefore, it can help in 
the understanding of the intercyclic variations over consecutive swim cycles. The 
fractal dimension (D) quantifies the complexity and irregularity of a time-series 
dataset. Thus, it can provide a different insight on the complexity of the intracyclic 
variations. The dv can be considered as an outcome of the swimming behavior. 
Behavioral parameters can exhibit nonlinear properties. Hence, dv may be the 
resultant of nonlinear properties in the behavior.

It is known that performance is strongly related to proportional changes in the 
inputs. The “marginal gains theory” in sports performance gained popularity a few 
years ago. It encompasses the assumption that small changes in the input (or the 
sum of several changes) may have a significant effect on the output. Hence, motor 
behavior in these settings clearly falls under nonlinear dynamics. To understand 
such complexity, irregularity and unpredictability of the motor behavior in these 
settings, fields such as mathematics, computer sciences and motor control may be 
quite useful. The more classical and more mainstream procedures may not be sen-
sitive and insightful enough. Under this framework, it is advised that the selection 
of a couple of nonlinear measures concurrent to a linear parameter (e.g., for this 
case the dv) can have a more comprehensive understanding of the different motor 
behaviors (Neumeister, Cellucci, Rapp, Korn, & Faber, 2004). Yet, only a few 
papers can be found in the literature reporting nonlinear parameters in sportsmen 
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or sports techniques. With swimming as a challenging sport as explained earlier, 
it is ideal to assess nonlinear motor behaviors.

The ApEn has been selected for the analysis of youth and elderly gait (Arif, 
Ohtaki, Nagatomi & Inooka, 2004), as well as young swimmers but only at Front-
crawl (Barbosa, Morais, Marques, Silva, Marinho & Kee, 2015). It was reported 
that ApEn was higher for elderly than young subjects in walking at 100 steps/
minute and 120 steps/minute (Arif, Ohtaki, Nagatomi & Inooka, 2004). In young 
swimmers, the ApEn decreased, becoming more predictble, over a season and this 
was coupled with a performance enhancement (Barbosa, Morais, Marques, Silva, 
Marinho & Kee, 2015). Thus, both land-based and aquatic locomotion seem to 
involve a given degree of unpredictability. The unpredictability can be related to 
changes in the subject´s biomechanics and motor control with an impact ultimately 
on his performance and motor behavior. These findings also suggest that there might 
be a relationship between the level of expertise and the ApEn. As far as swimming 
goes, this parameter can provide insight on the predictability of consecutive cycles. 
For instance, allowing us to understand the predictability of consecutive swim 
strokes over an entire lap. Hence, one can wonder if this predictability is higher or 
lower based on the level of expertise.

Fractal dimension has been reported for gait (Sekine, Tamura, Akay, Fujimoto, 
Togawa & Fukui, 2002; Schiffman, Chelidze, Segala, & Hasselquist, 2009), albeit 
not yet in swimming. Fractal dimension values tend to decrease over time from the 
beginning to end of a 120 min load carriage march (Schiffman, Chelidze, Segala, 
& Hasselquist, 2009). Whereas, fractal dimension was significantly higher for 
elderly subjects than the young counterparts (Sekine, Tamura, Akay, Fujimoto, 
Togawa & Fukui, 2002). The fractal dimension can enlighten us on the level of 
complexity of the motor behavior. However, caution should be exercised because 
very limited evidence is available on this topic yet. The findings on land-based 
locomotion point out that the level of expertise is related to the complexity of the 
motor behavior. However, it remains to be known if swimmers of different levels 
of expertise will likewise show different nonlinear behaviors or, if the magnitude 
of these parameters is different among the four swim strokes.

A better understanding of the behavioral complexity can provide valuable 
details in Nonlinear Pedagogy. The Nonlinear Pedagogy provides a practical frame-
work for practitioners (Chow, Davids, Button, Shuttleworth, Renshaw & Araújo, 
2007). The principles of this pedagogical approach are based on the constraints-led 
approach (Davids, Hristovski, Araùjo, Balague Serre, Button, & Passos, 2014). The 
latter encompasses key principles and features of the nonlinear dynamical systems. 
Therefore, the constraints-led approach provides the main theoretical framework, 
while the Nonlinear Pedagogy provides the practical framework with both embed-
ded in the field of nonlinear dynamical systems.

The aim of this research was thus to examine the variation of linear and non-
linear behavior: (i) in subjects with different levels of swimming expertise and; 
(ii) among the four swim strokes. It was hypothesized that the behavior will be 
more predictable and less complex as the level of expertise increases and different 
among the four swim strokes.
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Methods

Subjects

A convenience sample of seventy-five swimmers was split into three groups of 25 
subjects in accordance to their level of expertise (highly qualified experts, experts 
and nonexperts).

Subjects were assigned to one group based on their competitive level and 
therefore, swimming performance. Swimmers that compete on a regular basis at 
major international events (e.g., World Championships, continental and regional 
Games), hold national records and/or are national medallists were considered as 
“highly qualified experts” (21 males and 04 females, 15.73 ± 1.52 years old). Those 
competing on a regular basis at local competitions (e.g., national championships) but 
do not fall under the criteria reported earlier were assigned to the group of “expert” 
swimmers (11 males and 14 females, 15.74 ± 3.55 years old). “Non-expert” swim-
mers were subjects that practice the sport at a noncompetitive level on a regular 
basis (18 males and 07 females, 22.86 ± 3.40 years old).

The swimmers and when needed, coaches, parents or guardians, gave informed 
consent/assent for participation in this study. All procedures were in accordance 
with the Helsinki Declaration regarding human research. The University IRB also 
approved the research design.

Protocol

The swimmers performed a self-selected warm-up with a volume and intensity 
adjusted to their expertise and fitness level. Warm-up featured continuous swim-
ming at low-moderate intensity, drills and sprints. Each swimmer undertook a set 
of maximal 4 × 25m swims (Front-crawl, Backstroke, Breaststroke and Butterfly 
strokes) after a push-off start, in a randomly assigned order (30min rest between 
trials). Participants performed each trial alone with no other swimmer in the lane or 
nearby lanes to minimize drafting, pacing effect or extra drag force acting upon the 
body. The swimmers were advised to start the swim stroke immediately after the 
push-off, hence minimizing gliding and not to perform underwater dolphin kicks.

Data Collection

A speedo-meter cord (Swim speedo-meter, Swimsportec, Hildesheim, Germany) 
was attached to the swimmer’s hip (Barbosa et al., 2015). The speedo-meter was 
set on the forehead-wall of the swimming pool. A software interface in LabVIEW 
(v. 2015) was used to acquire (f = 50Hz), display and process speed-time data for 
each trial. Data were transferred from the speedo-meter to the software by a 12-bit 
acquisition card (USB-6008, National Instruments, Austin, Texas, USA). Then, data 
were exported to a signal processing software (AcqKnowledge v. 3.9.1, Biopac 
Systems, Santa Barbara, USA) and filtered with a 5Hz cut-off low-pass fourth order 
Butterworth filter (beforehand it was plotted the residuals vs. cut-off frequency). The 
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push-off start and the finish were discarded for the follow-up analysis and hence, 
not reflected in the parameters to be reported. To compute some of the nonlinear 
parameters, notably the ApEn, it is required to collect several consecutive cycles. 
For accuracy’s sake, the algorithm required a minimum length in the dataset of 
at least 500 speed-time pairs. When benchmarked with other devices available to 
collect kinematic data (e.g., motion-capture systems or inertial measurement units), 
mechanical speedo-meters are the most convenient piece of equipment to collect 
such large datasets.

Speed Fluctuation

The intracyclic variation of the horizontal velocity of the hip (dv) was computed 
as reported earlier (Barbosa et al., 2010a):

  dv = 

(vi − v)
_ 2

.Fi
i
∑

n
vi .Fi

i
∑

n

⋅100  (1)

Where dv is the intracyclic variation of the horizontal velocity of the hip, v is the 
mean swimming velocity, vi is the instant swimming velocity, Fi is the acquisition 
frequency, and n is the number of speed-time pairs. The dv of three consecutive 
stroke cycles between the 11thm and 24thm from the starting wall were considered 
for further analysis.

Approximate Entropy

The intercyclic variation of the horizontal velocity of the hip was monitored by the 
ApEn and computed as (Pincus, 1991):

 ApEn(N ,m,r) = ln
Cm (r)

Cm+1(r)

⎡

⎣
⎢

⎤

⎦
⎥  (2)

Where ApEn is the approximate entropy, N is the data length [N = 700 speed-time 
pairs, as suggested by Yentes, Hunt, Schmid, Kaipust, McGrath & Stergiou (2013)], 
m is the embedding dimension (m = 2, because two consecutive cycles contributing 
to two data points were considered for each mobile window), r is the tolerance 
value or similarity criterion [r = .1, determined beforehand as the maximum ApEn 
for a wide range of r values between 0.01 and 0.3 as suggested by Yentes et al. 
(2013)], and:

 Cim (r) =
nim

N − m +1
 (3)

Where Cim is the fraction of patterns of length, nim is the number of patterns that 
are similar between two sets (given the similarity criterion, r), N is the data length, 
and m is the embedding dimension.
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Fractal Dimension

The Fractal dimension (D) as an index of complexity of the stroke cycles was 
computed by the Higuchi’s algorithm (Higuchi, 1988):

 D =
d logN L k( )( )

d log k( )  (4)

Where D is the fractal dimension and N is the number of points from the speed-
time series, k is the integer and L the length of the time series. The box-counting 
and the Higuchi’s algorithm are the methods most often reported to quantify the 
fractal dimension (Wang, Sourina & Nguyen, 2011). The box-counting is a reli-
able method assessing geometric forms (Liu, Zhang & Yue, 2003). The Higuchi’s 
algorithm is suitable for time series data as in the case of our research (Castiglioni, 
di Rienzo, Parati & Faini, 2011).

Statistical Procedures

Data normality was tested by the Kolmogorov-Smirnov test, described as mean± 
1 SD and 95% of the confidence interval.

Two-way repeated-measures ANOVAs (between × within-subject analysis; 
group × swim stroke; 3 levels of expertise × 4 swim strokes; p ≤ .05) was performed 
for each selected variable. Whenever needed, analysis of the variations and dif-
ferences between conditions was carried out by one-way or repeated-measures 
ANOVAs plus Bonferroni post hoc test (p ≤ .05). All assumptions to run ANOVAs 
have been checked beforehand (data are normally distributed, independent samples, 
equal variances, same sample size) and sphericity tested.

Effect size was computed by the eta-squared (η2) and: without effect if 0< η2 
≤ 0.04; minimum if 0.04< η2 ≤ 0.25; moderate if 0.25<η2 ≤ 0.64 and; strong if η2 
> 0.64. Whenever suitable and appropriate, Cohen’s d was also computed for the 
post hoc testing showing: (i) small effect size if 0≤ d| ≤0.2; (ii) moderate effect 
size if 0.2<|d|≤0.5 and; (iii) large effect size if |d|>0.5.

Results

Significant and strong main effects of the expertise level (F2,72 = 208.84; p < .001; 
η2 = 0.75) and swim stroke (F3,72 = 69.511; p < .001; η2 = 0.66) were found in 
the swim speed. There was an expertise x swim stroke interaction (F6,72 = 3.564; 
p < .001; η2 = 0.13) in the swim speed. Performance increased with the level of 
expertise (p < .001). Front-crawl was the fastest stroke, followed by the Butterfly, 
Backstroke and Breaststroke being the slowest (p < .001).

Speed Fluctuation

Moderate-strong main effects of the expertise level (p < .001; η2 = 0.20) and the 
swim stroke (p < .001; η2 = 0.84) were verified (Table 1). No Expertise × Stroke 
interaction was found (p = .07; η2 = 0.01).
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Follow-up analysis showed that compared with the highly qualified experts (p 
< .001; 0.26 ≤ d ≤ 1.24) and expert swimmers (p < .001; 0.26 ≤ d ≤ 1.22), nonex-
pert swimmers had a higher dv with a large effect size in three of the swim strokes 
(Front-crawl, Backstroke and Butterfly). No differences were found between the 
two top-tier groups (highly qualified experts vs. experts). The absence of differences 
between highly qualified expert and expert swimmers can also be verified by the 
overlapping of the 95% confidence interval limits of both groups. There was no 
significant difference between Front-crawl and Backstroke. Breaststroke showed 
a higher dv than the remaining strokes (p < .001). Overall, the 95% confidence 
interval ranges roughly between 36 and 43%. Butterfly stroke is more prone to a 
higher dv than Front-crawl and Backstroke (p < .001). Its 95% confidence interval 
ranges between 23 and 35%, while it ranges between 11 and 22% for Front-crawl 
and Backstroke.

Altogether, breaststroke featured the highest dv, followed by the Butterfly, then 
Front-crawl and Backstroke with similar magnitudes in all groups of expertise. 
The dv was higher in nonexpert swimmers than expert or highly qualified expert 
swimmers.

Approximate entropy

A moderate main effect of the swim stroke (p < .001; η2 = 0.41) and a group trivial 
effect (p = .12; η2 = 0.05) was found for the ApEn (Table 2). There was an Expertise 
× Stroke interaction (p < .001; η2 = 0.06).

Table 1 The Variation of the Speed Fluctuation (dv) Across  
the Three Different Levels of Expertise

Speed Fluctuation (dv, %)

Front-crawl Backstroke Breaststroke Butterfly

Highly qualified 15.11 ± 2.97 
(13.88–16.33)

14.31 ± 6.35 
(11.68–16.92)

39.44 ± 6.66 
(36.68–42.18)

25.51 ± 3.80 
(23.94–27.07)

Experts 15.57 ± 2.91 
(14.27–16.86)

14.11 ± 4.12 
(12.43–15.77)

39.72 ± 4.13 
(38.00–41.43)

25.17 ± 4.74 
(23.21–27.12)

Nonexperts 18.40 ± 6.00 
(15.41–21.38)

18.94 ± 8.75 
(15.41–22.45)

41.19 ± 6.69 
(38.48–43.88)

32.44 ± 6.92 
(29.06–35.81)

ANOVA

DoF F p η2

Expertise × 
stroke interaction 6,72 1.935 .07 .01

Expertise level 
effect 2,72 9.017 < .001 .20

Swim stroke 
effect 3,72 404.611 <. 001 .84

Note. Reported in mean ± 1 standard-deviation (SD) and 95% of confidence interval (95CI).
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There were significant differences among all pairwise comparison (p < .001), 
except between Front-crawl and Butterfly (p = .75). Backstroke (p < .001) showed 
the highest ApEn, while Breaststroke the lowest (p < .001) in comparison with 
the remaining swim strokes. Because there was an Expertise × Stroke interaction, 
univariate analysis was carried out to further investigate the hypothetical effect of 
the group. There were no significant variations at Front-Crawl (F2,72=1.668; p = 
.19; η2 = 0.05) and Butterfly (F2,72=1.565; p = .21; η2 = 0.05) but significance was 
found for Backstroke (F2,72=3.412; p = .04; η2 = 0.05) and Breaststroke (F2,72=5.251; 
p = .01; η2 = 0.13). Pairwise comparison revealed moderate-large effect sizes at 
Front-crawl (0.26 ≤ d ≤ 0.58), Backstroke (0.32 ≤ d ≤ 0.84) and Breaststroke (0.20 
≤ d ≤ 0.88) but small-moderate effect sizes at Butterfly (0.00 ≤ d ≤ 0.50).

In this sense, a higher predictability of the intercyclic variations is found at 
Breaststroke and a random one at Backstroke. Regarding the expertise level, mixed 
findings were obtained. While ApEn shows a slight trend to be more predictable 
at Front-Crawl and Butterfly stroke in top-tier swimmers, the opposite might be 
happening at the two other swim strokes.

Fractal dimension

There was a moderate effect of the swim stroke (p < .001; η2 = 0.41) and a small 
effect of the expertise level (p = .01; η2 = 0.12; Table 3). However, we failed to 
find an Expertise × Stroke interaction (p = .13; η2 = 0.03)

Table 2 The Variation of the Approximate Entropy (ApEn) Across 
the Three Different Levels of Expertise

Approximate Entropy (ApEn, dimensionless)

Front-crawl Backstroke Breaststroke Butterfly

Highly qualified 0.66 ± 0.12 
(0.60–0.71)

0.83 ± 0.15 
(0.76–0.89)

0.65 ± 0.11 
(0.60–0.69)

0.73 ± 0.10 
(0.68–0.77)

Experts 0.69 ± 0.11 
(0.64–0.73)

0.87 ± 0.09 
(0.82–0.91)

0.67 ± 0.08 
(0.63–0.70)

0.73 ± 0.11 
(0.68–0.77)

Nonexperts 0.73 ± 0.12 
(0.67–0.77)

0.77 ± 0.14 
(0.71–0.83)

0.58 ± 0.12 
(0.52–0.62)

0.68 ± 0.10 
(0.64–0.72)

ANOVA

DoF F p η2

Expertise × 
stroke interaction 6,72 3.880 < .001 0.06

Expertise level 
effect 2,72 2.106 .12 0.05

Swim stroke 
effect 3,72 55.175 < .001 0.41

Note. Reported in mean ± 1 standard-deviation (SD) and 95% of confidence interval (95CI).
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The fractal dimension was higher with large effect sizes in the group of nonex-
perts than the other two (highly qualified experts: p = .01, 0.70 ≤ d ≤ 1.0; experts: p 
= .05, 0.52 ≤ d ≤ 0.78). The variable was different among all pair wises (p < .001) 
except in Front-crawl vs. Backstroke. Hence, Breaststroke presented the highest 
level of complexity followed by Butterfly, Front-crawl and Backstroke. This level 
of intracyclic complexity is clearly higher for nonexpert swimmers than their better 
counterparts. In the four strokes we can see a shift of the 95% confidence interval 
band to the left side (i.e., a decrease of the fractal dimension) comparing nonexperts 
with competitive swimmers. For instance, in Front-crawl the confidence interval 
is 1.86–1.91 for nonexperts and about 1.80–1.88 for highly qualified experts and 
experts.

Discussion
The aim was to examine the variation of linear and nonlinear behavior in subjects 
with different levels of swimming expertise among the four swim strokes. Swim-
ming does exhibit nonlinear properties but its magnitude differs according to the 
swim stroke and level of expertise of the performer.

For a long time, motor control was concealed under a cognitivist perspective 
inspired by Cybernetics, such as the schema theory by Schmidt. The motor pro-
gram is made up of an invariant part, the plan and parameters that allow the plan 

Table 3 The Variation of the Fractal Dimension (D) Across the Three 
Different Levels of Expertise

Fractal Dimension (D, dimensionless)

Front-crawl Backstroke Breaststroke Butterfly

Highly qualified 1.84 ± 0.08 
(1.80–1.87)

1.83 ± 0.06 
(1.79–1.85)

1.92 ± 0.02  
(1.90–1.93)

1.88 ± 0.07  
(1.85–1.91)

Experts 1.85 ± 0.09 
(1.81–1.88)

1.85 ± 0.06 
(1.82–1.87)

1.92 ± 0.03  
(1.90–1.93)

1.88 ± 0.06  
(1.84–1.90)

Nonexperts 1.89 ± 0.06 
(1.86–1.91)

1.88 ± 0.04 
(1.86–1.90)

1.94 ± 0.02  
(1.92–1.95)

1.92 ± 0.04  
(1.90–1.94)

ANOVA

DoF F P η2

Expertise × 
stroke interaction 6,72 1.661 0.13 0.03

Expertise level 
effect 2,72 5.070 0.01 0.12

Swim stroke 
effect 3,72 51.689 <0.001 0.41

Note. Reported in mean ± 1 standard-deviation (SD) and 95% of confidence interval (95CI).
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to be fulfilled under a given setting (Komar, Seifert & Thouvarecq, 2015). Hence, 
a motor behavior that drifts away from the plan is considered as the result of an 
error or mistake and associated to low levels of expertise or poor performances. 
Eventually this framework has been challenged by the complex systems approach 
(Davids et al., 2014). This approach encompasses the main features and assump-
tions of the nonlinear dynamical systems. We can find a set of features that interact 
among themselves in a dynamical fashion. This can be deterministic (i.e., at a given 
moment one single future state of the system can happen, depending on the pres-
ent state) or stochastic (i.e., a random later state). As shared earlier, it is nonlinear 
because there is no direct proportionality between input and output in the system. 
Applying these concepts to motor behavior, the latter depends upon several fac-
tors and the interrelationship among them, making it a highly complex system. In 
such circumstances, different motor behaviors (i.e., behavior variability) to reach 
a given performance outcome are no longer considered as errors or mistakes but a 
proxy of adaptability (i.e., a ratio between stability regardless of external changes 
and flexibility accommodating to a dynamic environment) (Komar, Seifert & 
Thouvarecq, 2015). On top of that, small changes in the motor behavior that are 
undetected by mainstream and classical measures may have a large effect in the 
output. This could explain why it is often challenging to have a deep understanding 
of some phenomena regarding motor behavior. Thus, nonlinear parameters can be 
quite useful and enlightening. Because of its highly complex nature and lack of 
full understanding, some research groups have addressed the concern that motor 
behavior complexity should be a main topic of interest in swimming (Barbosa, 
Silva, Reis, Costa, Garrido, Policarpo & Reis, 2010b; Seifert, Komar, et al., 2014a).

There was no Expertise × Stroke interaction for the dv, while moderate-strong 
main effects of the expertise level and swim stroke were verified. Breaststroke 
featured the highest dv, followed by the Butterfly, then Front-crawl and Backstroke 
with similar magnitudes. This same order was reported earlier in the literature and 
is due to a set of biomechanical (i.e., environmental) constraints that are imposed 
on the swimmer performing different strokes (Craig & Pendergast, 1979; Barbosa 
et al., 2013). The dv is the balance between two main external forces acting upon 
the swimmer: the thrust and the drag. If the thrust increases for a given drag, like-
wise, the speed increases; whereas for a given thrust, in the event of an increasing 
drag, the speed decreases. Hence, swim strokes producing more thrust and drag 
impose a higher dv. It is also reported that there is a relationship between the dv 
and energy expenditure. The energy expenditure would be minimized if the swim 
motion was uniform (i.e., dv = 0%). In fact each time there is a change in the speed 
within a stroke cycle, the body needs to overcome inertia, resulting in higher energy 
expenditure (Barbosa, Bragada, Reis, Marinho, Carvalho & Silva, 2010a). The 
dv was higher in nonexpert swimmers than their expert or highly qualified expert 
counterparts. It has also been reported as a trend for dv to decrease with increas-
ing speeds or swim paces (Manley & Atha, 1992; Barbosa et al., 2013; Cohen et 
al., 2014). Therefore as far as one is concerned, the dv is a linear parameter that is 
sensitive to the expertise level in swimming. That said, the selection of multiple 
nonlinear measures including linear parameters enhances the behavioral discrimi-
nations, allowing a better understanding of different motor behaviors, and should 
not be disregarded (Neumeister et al., 2004).
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The ApEn was selected to monitor the intercyclic variations over the trials; 
where the lower the value, the more predictable the time-series is. An Expertise × 
Swim stroke interaction was reported where a lower ApEn was found at Breaststroke 
than at Backstroke. This parameter was reported as being determined by sensory 
inputs, motor control mechanisms and biomechanical behavior (Arif et al., 2004). 
The findings reported earlier can be related to the interlimb synchronization and the 
body positioning requirements of different swim strokes. Breaststroke involves the 
simultaneous action of both arms and legs. The arms feature only 3 phases (outs-
weep, insweep and recovery) and the legs feature 4 phases (outsweep, downsweep, 
insweep and recovery) making it the most predictable of the four techniques. On 
the other hand, backstroke features a supine position (changing several sensory 
inputs by vision and vestibular systems) concurrent to the synchronization of four 
alternated limbs (the arms must each perform 4–5 phases and the legs 6 kicks) almost 
in antiphase, plus the body rotation (in the longitudinal axis to each side). These 
challenging features can explain the higher intercyclic randomness of this stroke. 
Top-tier swimmers showed a low ApEn at Front-crawl and Butterfly stroke. This 
is reflective of a previous study where young swimmers that were monitored over 
a season reported an improvement in their performance in relation to a decrease in 
ApEn (Barbosa et al., 2015). The shifts in the balance between thrust and drag over 
consecutive cycles changes not only the body’s acceleration and speed but also the 
energy cost of swimming (Barbosa et al., 2010a). Therefore, expert swimmers are 
aware that keeping an “even” and similar speed pattern over the trial will minimize 
the energy cost and improve the swimming efficiency. As far as land-based gait 
goes, ApEn is higher for elderly than young subjects at selected paces (Arif, Ohtaki, 
Nagatomi & Inooka, 2004). Hence, it seems that with higher levels of expertise 
the ApEn is prone to diminish, regardless of land-based or in-water locomotion.

The D provides insight on the complexity and irregularity of intracyclic varia-
tions. The higher the parameter, the more complex and irregular the time-series is. 
There was no Expertise × Stroke interaction. Nevertheless, main effects of the swim 
stroke and the expertise level were obtained. Breaststroke showed the highest D 
followed by Butterfly, Front-crawl and Backstroke in all groups of expertise level. 
The D was higher in nonexpert swimmers than their better counterparts, again in 
all groups of expertise level. The level of complexity can be due to different con-
straints acting upon the swimmer. Hence, the constraint-led approach can provide 
a framework explaining it (Davids et al., 2014). The D may be the result of the 
interaction between individual, environmental and task constraints. As shared earlier, 
the propulsive and resistive forces produced or acting on the swimmer are different 
among the four strokes (environmental constraints). To reach a given speed or pace, 
different combinations of stroke rate and stroke length can be selected by the subject 
(task constraints). At least for the top-tier swimmers, their specialty (best stroke or 
distance, i.e., swim event) can also play a role (organismic constraint). The higher 
level of irregularity for nonexpert swimmers than their top-tier counterparts seem 
to be aligned with the understanding that significant changes in the speed within a 
stroke cycle will lead to a higher energy cost and lower swim efficiency (Barbosa 
et al., 2010a). In on-land locomotion, this parameter was significantly higher in 
elderly than young participants (Sekine, Tamura, Akay, Fujimoto, Togawa & Fukui, 
2002). Our findings in swimming seem to be in tandem with these findings. Alto-
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gether, this suggests that a lower level of complexity may be found in high levels 
of expertise in both on-land and in-water locomotion.

Overall, the effects seem to be large when comparing nonexpert swimmers 
with both the top-tier groups, despite small-moderate effects between the latter 
ones. Nonexpert swimmers exhibited a higher level of complexity than expert and 
highly qualified expert swimmers. This supports a similar finding that compared 
the elbow-knee continuous relative phase at Breaststroke between recreational and 
competitive swimmers (Seifert, Leblanc, Hérault, Komar, Button & Chollet, 2011). 
To become an expert swimmer, subjects must undergo a considerable amount of 
practice and instruction, and at this stage of learning, interindividual coordination 
variability is compressed to a narrower range of movement solutions. A research 
question under this topic is to explore the types of effective deliberate practice based 
on linear or a nonlinear pedagogy (Chow, Davids, Button, Shuttleworth, Renshaw 
& Araújo, 2007). It has been suggested that to achieve world-class standards, elite 
swimmers must once again explore the environment to optimize their technique 
to leverage over direct contenders (Seifert et al., 2011). Unfortunately we failed 
to obtain evidence on this because for most of the parameters selected, there were 
no significant differences and/or small effect sizes between expert and highly 
qualified expert swimmers. As periodization was not considered in this study, it 
forms a possible limitation. While data collection was held at the same time in 
both groups, there was a time lag between the main competitions of the season 
for them. While the expert swimmers were tapering for the main competition of 
their season and in their peak performance, the highly qualified experts were still 
building up because the most important competition was still 6–8 weeks away. As 
the gap between experts and highly qualified experts are theoretically narrow, this 
explanation could point out why meaningful differences were not found between 
these two groups (Chow, Davids, Button, Shuttleworth, Renshaw & Araújo, 2007).

Our main finding is that swimming is indeed a highly complex locomotion 
technique, even more so for subjects with lower levels of expertise. E.g., walking 
on-land, the fractal dimension was reported as ranging between 1.10 and 1.40 
(Schiffman, Chelidze, Segala, & Hasselquist, 2009). Our highly qualified expert 
swimmers (the ones with lower complexity scores) showed a fractal dimension range 
of 1.80–1.90. Fractal dimension it is expected to range between 0 and 3. Higher 
fractal dimension, likewise a more complexity of the behavior is being shown. The 
explanation for this higher complexity of in-water locomotion may rely on three 
reasons. In an aquatic environment there are four main external forces acting on the 
body (buoyancy, weight, thrust and drag); whereas on land the number of forces is 
reduced to just the weight and thrust as buoyancy and drag forces can be neglected. 
As expected, a higher number of forces impose a higher complexity in the control 
of the system. This may be valid for swimming, and also for other water sports such 
as canoeing, rowing, etc. Although evidence on the latter ones has yet to be found. 
Another explanation for the higher complexity relies on the meaningful changes 
that do happen in several sensory systems when in water. Having the face immersed, 
the visual information will be affected. In addition, swimming is characterized by 
staying in the horizontal position, which impacts the vestibular information. Last 
but not least, the input in the somatosensory system in water is also quite different 
from what is experienced on land. The third reason is the different number of seg-
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ments to be synchronized over a cycle (i.e., interlimb coordination). On land there 
are two main propulsive segments (lower limbs) and two other segments (upper 
limbs) helping to keep the balance. In water, at least four propulsive limbs are used 
(both upper and lower limbs) and in some circumstances, such as Butterfly stroke, 
the wave motion by the torso can add some extra thrust.

Future research should consider the periodization plan, such that the hypo-
thetical relationships between nonlinear parameters, hydrodynamics, kinematics, 
interlimb coordination and neuromuscular response can be further understood. 
Eventually, research may provide some understanding if and how nonlinear peda-
gogy is more effective than other approaches in helping one to excel and improve 
his expertise level in swimming.

Conclusions

As a conclusion, swimming does exhibit nonlinear properties and encompasses a 
“typical” complex system. The magnitudes of the linear and nonlinear parameters 
are indeed different according to the swim stroke and level of expertise of the 
performer. The effects seemed to be quite large for the nonexpert swimmers in 
comparison with both top-tier groups; while between the latter ones, the effects 
were overall small-moderate.
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