Chapter Title	Evaluating Aflatoxin Gene Expre	ession in Aspergillus Section Flavi	
Copyright Year	2017		
Copyright Holder	Springer Science+Business Med	ia LLC	
Corresponding Author	Family Name	Rodrigues	
	Particle		
	Given Name	Paula Cristina Azevedo	
	Suffix		
	Division	CIMO/School of Agriculture	
	Organization/University	The Polytechnic Institute of Bragança	
	Address	Campus de Santa Apolónia, 5301- 855, Bragança, Portugal	
	Email	prodrigues@ipb.pt	
Author	Family Name	Gil-Serna	
	Particle		
	Given Name	Jéssica	
	Suffix		
	Division	Facultad de Ciencias Biologicas, Departmento de Genetica	
	Organization/University	Universidad Complutense de Madrid	
	Address	Jose Antonio Novais 12, E-28040, Madrid, Spain	
Author	Family Name	González-Jaén	
	Particle		
	Given Name	M. Teresa	
	Suffix		
	Division	Facultad de Ciencias Biologicas, Departmento de Genetica	
	Organization/University	Universidad Complutense de Madrid	
	Address	Jose Antonio Novais 12, E-28040, Madrid, Spain	
Abstract	The determination of aflatoxin production ability and differentiation aflatoxigenic strains can be assessed by monitoring the expression of on several key genes using reverse transcription polymerase chain reaction PCR). We herein describe the methods for RNA induction, extraction, quality determination, and the RT-PCR conditions used to evaluate the ab of a given <i>Aspergillus</i> strain to produce aflatoxins.		

Metadata of the chapter that will be visualized online

Author's Proof

Keywords (separated	Aspergillus flavus - Mycotoxins - Aflatoxigenic fungi - RNA extraction - RT-
by " - ")	PCR - Gel electrophoresis

Chapter 15

Evaluating Aflatoxin Gene Expression in Aspergillus Section Flavi

AUI Paula Cristina Azevedo Rodrigues, Jéssica Gil-Serna, and M. Teresa González-Jaén

6

14

2

3

4

Abstract

The determination of aflatoxin production ability and differentiation of aflatoxigenic strains can be assessed 7 by monitoring the expression of one or several key genes using reverse transcription polymerase chain reaction (RT-PCR). We herein describe the methods for RNA induction, extraction, and quality determination, and the RT-PCR conditions used to evaluate the ability of a given *Aspergillus* strain to produce 10 aflatoxins. 11

Key words Aspergillus flavus, Mycotoxins, Aflatoxigenic fungi, RNA extraction, RT-PCR, Gel 12 electrophoresis

1 Introduction

Aflatoxins (AF) are the most widely studied of all mycotoxins pro-15 duced by Aspergillus species. Although aflatoxin production ability 16 has been detected in various species, A. flavus Link:Fr. and A. par-17 asiticus Speare (belonging to Aspergillus section Flavi) remain the 18 most important and representative aflatoxin producers occurring 19 naturally in food commodities. Molecular techniques have been 20 widely applied in order to discriminate between aflatoxigenic and 21 non-aflatoxigenic strains, through the correlation of presence/ 22 absence of genes involved in the aflatoxin biosynthetic pathway 23 with the ability/inability to produce aflatoxins. However, AF bio-24 synthesis is based on a highly complex pathway which requires at 25 least 25 structural and 2 regulatory genes [1], with possible alter-26 native pathways. Additionally, there are reports on genes that are 27 present but not expressed, even under highly aflatoxin-inductive 28 conditions [2]. Furthermore, it is important to highlight that some 29 genes are not exclusive of the aflatoxin biosynthetic pathway, which 30 could create false positives in the case of sterigmatocystin-producing 31 fungi [3] such as Aspergillus nidulans. More recently, aflatoxin 32

Paula Cristina Azevedo Rodrigues et al.

 33 34 35 36 37 38 39 40 		production and aflatoxigenic strain differentiation are being assessed by monitoring the expression of one or several key genes using reverse transcription polymerase chain reaction (RT-PCR). Such systems have been applied to monitor AF production and biosynthetic gene expression based on various regulatory and structural AF pathway genes in <i>A. parasiticus</i> and/or <i>A. flavus</i> [2, 4–7]. Although with different levels of success, they were found to be rapid, sensitive, and reliable.
41	2 Materials	
42		Prepare all solutions using ultrapure water and analytical grade
43		reagents. Prepare and store all reagents at room temperature
44		(unless indicated otherwise). All materials and solutions involved
45		in RNA-handling procedures must be RNase-free. Wear gloves during the whole process when working with RNA to protect sam-
46 47		ples from degradation by RNases.
		Γ··· ·································
48	2.1 Mycotoxin Safety	All the necessary safety precautions must be taken into account
49	Precautions	when handling mycotoxin solutions or other potentially contami-
50		nated materials since they are highly toxic and potent carcinogenic
51		compounds. Handle contaminated material with protective gear;
52		decontaminate all disposable materials by autoclaving before being
53 54		disposed; decontaminate reusable materials by immersion in 10% commercial bleach overnight, followed by immersion in 5% ace-
54 55		tone for 1 h and washing with distilled water several times.
56	2.2 Media	1. Malt extract agar (MEA): Malt extract 20 g/L, glucose
57	Preparation	20 g/L, peptone 1 g/L, agar 20 g/L. Mix the components,
58		autoclave (121 °C, 20 min), and plate in 90 cm Petri dishes.
59		2. Yeast extract sucrose (YES) broth: Yeast extract 20 g/L,
60		sucrose 150 g/L. Mix the components, autoclave (121 °C,
61		20 min). Distribute 25 mL of YES in 50 mL Falcon tubes.
62		3. Yeast extract peptone (YEP) broth: Yeast extract 20 g/L, pep-
63		tone 150 g/L. Mix the components, autoclave (121 °C,
64		20 min). Distribute 25 mL of YES in 50 mL Falcon tubes.
65	2.3 RNA Extraction	1. Paper towels: Cover a stack of paper towels by aluminum foil
66	2.0 IIIA LAUGUUN	and sterilize in a sterilization oven at 160 °C, overnight.
67		2. Spatula, mortar, and pestle: Cover by aluminum foil, sterilize
68		in a sterilization oven at 160 °C, overnight, and refrigerate
69		(-20 °C) before use.
70		3. Eppendorf tubes, PCR tubes, pipette tips: Sterilize by auto-
71		clave (121 °C, 1 h). Whether possible, use RNase-free filter
72		pipette tips.

	4.	Liquid nitrogen.	73
	5.	RNeasy Plant Mini Kit (Qiagen) (see Note 1).	74
2.4 RNA Analysis by Gel Electrophoresis		RNase-free water: Treat ultrapure water with 0.1% diethyl pyrocarbonate (DEPC) (v/v), mix thoroughly, and store overnight. Autoclave at 121 °C for 1 h to eliminate DEPC. Prepare all solutions with DEPC-treated water (<i>see</i> Notes 2 and 3). EDTA 0.5 M: pH 8.0: Weigh 93.05 g EDTA-Na ₂ (FW = 372.2). Dissolve in 400 mL RNase-free water and adjust to pH 8.0 with NaOH. Make up to a final volume of 500 mL with water	75 76 77 78 79 80 81
	3.	(see Note 4). Tris-acetate-EDTA (TAE $50\times$): 2 M Tris-acetate, 0.05 M EDTA. Weigh 242 g Tris base (FW=121.14) and dissolve in approximately 750 mL of RNase-free water (see Note 5). Carefully add 57.1 mL glacial acetic acid and 100 mL of 0.5 M EDTA (pH 8.0) previously prepared. Adjust the solution up to a final volume of 1 L. The pH of this buffer does not need to be adjusted and should be about 8.5. Store in the dark at room temperature.	82 83 84 85 86 87 88 89 90
	4.	Tris-acetate-EDTA (TAE $1\times$): Dilute the stock solution TAE 50× in RNase-free water. For example, to prepare 1 L of TAE 1×, dilute 20 mL of TAE 50× in 980 mL of water. Final solution contains Tris-HCl (40 mM), glacial acetic acid (40 mM), and EDTA (1 mM).	91 92 93 94 95
	5.	SDS washing solution (SDS 10%): Weight 50 g of sodium dodecyl sulfate (SDS) and dissolve in RNase-free water to a final volume of 500 mL (<i>see</i> Note 6).	96 97 98
	6.	DNA/RNA dye (see Notes 7 and 8).	99
	7.	Non-denaturing agarose gel (<i>see</i> Note 9): Prepare a 1.2% agarose gel in TAE $1\times$ and add the recommended amount of DNA/RNA dye.	100 101 102
	8.	RNA loading buffer (6×): 30% (v/v) glycerol; 0.25% (w/v) bromophenol blue. Store at 4 $^\circ C.$	103 104
	9.	RNA molecular weight marker.	105
	10.	Horizontal electrophoresis apparatus (see Note 10).	106
	11.	Ultraviolet (UV) transilluminator (preferentially coupled to a gel image analysis software).	107 108
2.5 RNA Analysis by Spectrophotometry	1.	Tris-EDTA (TE) buffer: 10 mM Tris-HCl, 1 mM EDTA (pH 8.0). Add 1 mL of a 1 M Tris-HCl (pH 8.0) stock solution and 0.2 mL of 0.5 M EDTA (pH 8.0) stock solution to 98.8 mL of RNase-free water. Store at room temperature.	109 110 111 112
	2.	Spectrophotometer.	113
	3.	Quartz cuvette.	114

Paula Cristina Azevedo Rodrigues et al.

115 116	2.6 Analysis of Gene Expression	 One-Step RT-PCR Pre-Mix (<i>see</i> Note 11). Primers for <i>β-tubulin</i> and <i>aflQ</i> genes (Table 1).
117 118		 RNase-free water. RNase-free filter tips.
119 120		5. Agarose gel and electrophoresis apparatus (as described for RNA analysis).
121		6. DNA molecular weight marker (100 pb ladder or similar).

Ċ.

122 **3 Methods**

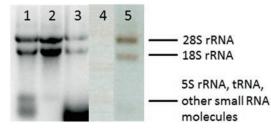
123 124 125 126 127	3.1 Biological Material Preparation	 Grow the isolates under both AF inductive and noninductive conditions (<i>see</i> Note 12). For that, inoculate a loop full of spores from a 7-day-old culture in MEA into 25 mL of YES (AF inductive) and YEP (noninductive) broths (in 50 mL Falcon tubes).
128 129		2. Incubate the cultures horizontally for 4 days at 28 °C, in the dark, with slight agitation (100 rpm).
130 131 132		3. Collect the mycelium with a sterilized spatula, dry the myce- lium in sterilized absorbent paper, and rapidly divide it into aliquots of 100 mg.
133 134		 Preserve the mycelium at -80 °C until use or proceed with the RNA extraction protocol immediately (<i>see</i> Note 13).
135 136 137 138	3.2 RNA Extraction	1. The Qiagen RNeasy Plant Mini Kit is used for RNA isolation according to the manufacturer's protocol. Grind 100 mg of mycelium to a fine powder with liquid nitrogen (N_2) in a cold mortar and pestle (<i>see</i> Note 14).

t1.1 Table 1

t1.2 Details of the target genes, primer sequences and expected product length in base pairs (bp) for PCR t1.3 and RT-PCR

t1.4 t1.5	Primer pair	Gene	Primer sequence (5' \rightarrow 3')	PCR product size (bp)	RT-PCR product size (bp)	Reference
t1.6 t1.7 t1.8 t1.9	Tub1-F Tub1-R	tub1	GCT TTC TGG CAA ACC ATC TC GGT CGT TCA TGT TGC TCT CA	1406	1198	[5]
t1.10 t1.11 t1.12 t1.13	Ord1-gF Ord1-gR	aflQ	TTA AGG CAG CGG AAT ACA AG GAC GCC CAA AGC CGA ACA CAA A	719	599	[4]

Aflatoxin Gene Expression


	 Transfer the powder with a residual amount of N₂ into a 2.0 mL Eppendorf tube previously refrigerated by immersion in N₂. Leave the N₂ to evaporate completely and immediately follow the extraction protocol as described by the manufacturer (<i>see</i> Notes 15–17). Store RNA at -70 °C in 5 µL aliquots, to avoid repeated freeze and thaw that would damage RNA. 	139 140 141 142 143 144 145
Analysis ve (Non- AgaroseGel esis	Determine general quality and yield of extracted RNA, as well as contamination with genomic DNA, by native agarose gel electrophoresis.	146 147 148
)	1. Thaw a 5 μ L aliquot of each RNA sample (at all times kept on ice) and add 1 μ L of 6× loading buffer. Gently mix by reflux and load into the gel (on native gels, the samples are loaded directly without heating).	149 150 151 152
	2. Make sure to include an RNA marker and/or a positive con- trol RNA (commercial RNA or one of your samples known to be intact) in the gel to rule out unusual results due to gel arti- facts and to aid in yield determination.	153 154 155 156
	3. Run the gel in TAE buffer, at constant voltage of 5 V/cm (measured between the electrodes) for approximately 1 h.	157 158
	4. Observe the gel under UV light. Compare fluorescence inten- sities between samples and standards, and estimate RNA con- centration. Even though you might want a more accurate RNA quantitation (<i>see</i> below), the gel is still essential to determine RNA quality in terms of degradation and contamination (with protein or genomic DNA) (Fig. 1).	159 160 161 162 163 164
ctrophotometry B)	1. Place the sample in a quartz cuvette. Zero the spectrophotom- eter with the solvent. For accurate readings, dilute the sample with TE (<i>see</i> Note 19) to obtain absorbance (optical density, OD) values between 0.1 and 1.0.	165 166 167 168
N	2. The OD at 260 nm (OD260) equals 1.0 for a 40 μ g/mL solution of RNA. For RNA concentration apply the following calculation: RNA concentration=40 μ g/mL×OD260×dilution factor.	169 170 171 172
	3. For an indication of RNA purity, calculate the OD260/OD280 and OD A260/A230 ratios. For pure RNA, both ratios should be very close to 2.0 in TE (<i>see</i> Note 20) [8]. Lower or higher ratios could be caused by protein, salts, or ethanol contamination.	173 174 175 176 177
	4. Dilute some aliquots of RNA in water to obtain a working solution of approximately 1 μ g/mL and retain others at the original concentration (stock solution).	178 179 180
	5. Store RNA at -70 °C in 5 μ L aliquots.	181

3.3 RNA Ana

3.3.1 Native (N denaturing) Agaro Electrophoresis (See Note 9)

3.3.2 Spectrop (See Note 18)

Paula Cristina Azevedo Rodrigues et al.

Fig. 1 Native (non-denaturing) agarose gel electrophoresis of RNA samples obtained by different maceration and extraction methods, showing various types of RNA molecules: $1-N_2$, RNeasy Plant Mini Kit (RLT buffer); $2-N_2$, RNeasy Plant Mini Kit (RLC buffer); $3-N_2$, Trizol method (Invitrogen); 4-Glass Beads, RNeasy Plant Mini Kit (RLC buffer); 5-TissueRuptor (Qiagen), RNeasy Plant Mini Kit (RLC buffer)

182 183 184	3.4 Analysis of Key Aflatoxin Gene Expression	1.	Perform a Multiplex RT-PCR with the obtained RNA (1 μ g/mL) using a One-Step RT-PCR Premix (e.g., iNtRON Biotechnology) (<i>see</i> Note 11).
185 186		2.	Prepare the mix as described in Table 2, or adjust to the manufacturer's instructions.
187 188 189 190 191 192		3.	Prepare a multiplex reaction by using both primer pairs Ord1-gF/ gR and Tub1-F/R (Table 1) in the same tube. Primer pair Ord1-gF/gR will amplify the aflatoxin-related gene <i>aflQ</i> (for- merly <i>ord1</i>) gene (<i>see</i> Note 21). The pair Tub1-F/R will amplify a part of the housekeeping β -tubulin gene <i>tub1</i> , which will be used as internal control of amplification (<i>see</i> Note 22).
193 194		4.	Set the amplification program in the thermal cycler as described in Table 2.
195 196 197 198 199 200 201	S	5.	Check for contamination with genomic DNA. Carry out a PCR as described for the amplification step of RT-PCR (Table 2), using the same primers and 1 μ g of total RNA as template (<i>see</i> Note 16). Use the following PCR mix: Taq buffer 1×, MgCl ₂ 1.5 mM, dNTPs 0.2 mM, each primer 0.2 μ M, Taq 1 U (e.g., GoTaq [®] Flexi DNA Polymerase, Promega), 1 μ g of RNA, make up to 20 μ L with ultra pure water.
202 203 204 205 206 207 208 209 210 211 212		6.	Prepare a 1.2% agarose gel in TAE $1\times$ (not necessary to be cautious such as in the case of gels to run RNA). Confirm that you have amplification for the internal control (Fig. 2). The absence of a band at the internal control position (Fig. 2, lane 4) reflects a failed reaction, potentially due to bad RNA quality or amplification inhibitors (false negative). The presence of a product with the expected RT-PCR size confirms aflatoxin gene expression (Fig. 2, lanes 2 and 3) whereas its absence implies no expression (Fig. 2, lanes 1 and 5). The presence of a band with the PCR expected size confirms genomic DNA contamination, but that will not interfere with your analysis,
212			containination, but that will not interfere with your analysis,

Reaction mix (20 µL)			t2.3
One-step RT-PCR pre-mix	8 μL		t2.4
Each primer forward	0.2 μΜ		t2.5
Each primer reverse	0.2 μΜ		t2.6
Total RNA	1 µg		t2.7
Amplification program			t2.8
Reverse transcription	45 °C, 30 min		t2.9
Initial denaturation	94 °C, 4 min		t2.10
Denaturation	94 °C, 1 min	5×	t2.11
Annealing	60 °C, 1 min		t2.12
Extension	72 °C, 1 min		t2.13
Denaturation	94 °C, 1 min	30×	t2.14
Annealing	55 °C, 1 min		t2.15
Extension	72 °C, 1 min		t2.16
Final extension	72 °C, 6 min		t2.17
M 1 2 3 4 5	6 —— 1406 bp (gD —— 1196 bp (cD		

Fig. 2 Electrophoretic pattern of RT-PCR products for *Aspergillus flavus* and *Aspergillus parasiticus* isolates. Lanes: *M*—100 bp DNA ladder (Promega); *1* and *5*—*A. flavus* AF non-producing strain; *2* and *3*—*A. parasiticus* AF producing-strain; *4*—false negative result for *A. parasiticus*; *6*—*A. parasiticus* DNA-PCR control

because primers have been constructed in such a way that 213 genomic DNA and cDNA amplification products will have different sizes (*see* **Note 16**). 215

4 Notes

 The *RNeasy Plant Mini Kit* (Qiagen) is one of the most cited 217 methods for fungal RNA extraction and it seems to show the 218 best results for RNA extraction from *Aspergillus* mycelium 219 and conidia. It is, though, more expensive than other routine 220

216

719 bp (gDNA – *aflQ*) 599 bp (cDNA – *aflQ*) 221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Paula Cristina Azevedo Rodrigues et al.

protocols. An alternative protocol using the *TRIzol* reagent (Invitrogen) is also available (Fig. 1) [9].

- 2. Diethylpyrocarbonate (DEPC) treatment is the most commonly used method for eliminating RNase contamination from water, buffers, and other solutions, as it destroys enzymatic activity by modifying –NH, –SH, and –OH groups in RNases. Solutions containing Tris and EDTA cannot be DEPC-treated. Solutions that cannot withstand autoclaving also cannot be DEPC-treated since autoclaving is essential for inactivating DEPC. It is thus preferable to prepare all solutions with DEPC-treated water instead of treating the solutions themselves. DEPC will dissolve some plastics; glass should be used whether possible.
- 3. DEPC is highly toxic (oral, dermal, and inhalation), so take special care while handling the reagent. DEPC must be always handled at the fume hood wearing high-protection gloves. When mixing DEPC with water, take special care to avoid spilling; make sure that the flask is tightly closed and even cover the flask with absorbent paper. After the treatment, autoclave the gloves and any other material that has been in contact with DEPC. After being autoclaved, DEPC-treated water is safe to be handled without special care.
- 4. EDTA solutions must be prepared ahead of time since EDTA dissolution only takes place when the pH is about 8.
- 5. Tris will dissolve better if you already have *ca*. 100 mL of water and a magnetic stirrer in the cylinder before you add the salt.
- 6. Wear face mask or use the fume hood when preparing SDS solutions to avoid inhalation of SDS dust. SDS is synonymous to sodium lauryl sulfate. 10% SDS solution will precipitate at room temperature and this solution has to be kept at 37 °C.

7. There are numerous new generation fluorescent DNA and RNA dyes designed to replace the highly toxic ethidium bromide (EtBr) such as SYBR Green I, Gel Red, or Green Safe. The amount of dye recommended by the manufacturer is usually excessive, and you can try to reduce it by one-half or one-third. However, depending on the sample a loss of sensibility might occur using these dyes.

- 8. If you are not able to avoid EtBr, it is preferable to add it directly to the gel ($0.5 \ \mu g/mL$) to avoid the additional step of gel staining (potentially RNase-prone). EtBr is highly toxic and potentially carcinogenic; make sure that you wear protective gear (highly protective gloves and goggles) when handling it and that you use it in a confined and appropriately identified area.
- 9. A denaturing gel system (which involves the use of acrylamide, TEMED and formamide) is sometimes suggested because

RNA might form secondary structures. Denaturing conditions 266 prevent RNA from migrating strictly according to its size. 267 Native agarose gel electrophoresis is sufficient to judge the 268 integrity and overall quality of a total RNA preparation by 269 inspection of the 28S and 18S rRNA bands (Fig. 1). Bands are 270 generally not as sharp as in denaturing gels, but native gels are 271 safer and easier to prepare. 272

- 10. Use electrophoresis equipment (tank, trays, and combs) exclusively for RNA analysis, and wash it regularly with 10% SDS and RNase-free water.
- 11. You may choose between one-step RT-PCR or two-step RT-276 PCR procedures. Both have pros and cons. Using sequence-277 specific primers, it might be better the former since it allows 278 easier processing of large numbers of samples and helps mini-279 mize carryover contamination (all steps happen in the same 280 tube). However, in some situations two-step procedures are 281 the best option. Independent PCR reactions need to be per-282 formed if: (i) you want to test in the same cDNA sample the 283 expression of several genes which require different amplifica-284 tion conditions; (ii) the amplification products are similar in 285 size or; (iii) some interference or cross reaction might be 286 suspected. 287
- 12. In order to confirm that AF genes are only expressed under 288 inductive conditions, some isolates should also be tested on 289 YEP (non-AF inductive) broth. It is important to perform this 290 analysis in a wide range of isolates. While testing your method, 291 the presence or absence of AF must be checked by HPLC in 292 both YEP and YES broths used for fungal growth to confirm 293 the correlation between expression of the test gene and AF 294 production. Because AF production is extremely dependent on 295 growth conditions, it is important to determine aflatoxigenic 296 ability under the same test conditions as gene expression. The 297 description of the HPLC method for AF analysis is not within 298 the scope of this text. 299
- 13. RNA extraction should be performed on freshly produced 300 material immediately after harvest to avoid RNA degradation. 301 If you are not able to carry out RNA isolation immediately, 302 you must store the harvested mycelium either at -70 °C or at 303 4 °C after immersion in an RNA-stabilizing solution (e.g., 304 *RNAlatter*, Ambion) until use. 305
- 14. The maceration of biological material for RNA extraction is probably the most important and critical step of the procedure. 307
 Maceration with liquid nitrogen will result in higher RNA 308
 yield and quality (Fig. 1), but requires extra care and skills to avoid RNA contamination and degradation. 310

Paula Cristina Azevedo Rodrigues et al.

311 312 313	15. Using the Qiagen protocol, we found RLC extraction buffer to work slightly better than RLT buffer for <i>Aspergillus</i> myce-lium and conidia (Fig. 1).
 314 315 316 317 318 319 320 	16. A DNase treatment is recommended to avoid contamination with genomic DNA but it is not mandatory if you choose primers that differentially amplify genomic DNA (gDNA) and complementary DNA (cDNA). Make sure to select primers that span a part of the gene containing at least one intron. That way, you can easily differentiate gDNA from cDNA on the basis of the amplification product size (Fig. 2; Table 1).
321 322 323	17. At the final step of the procedure, elute the RNA in water instead of Elution Buffer to avoid buffer interferences in sub-sequent reactions.
324 325 326 327	18. RNA analysis can be performed using a NanoDrop spectro- photometer (ThermoScientific), which is simpler to use and requires smaller amounts of sample than classic spectrophotometers.
328 329 330 331 332 333 334	 19. OD ratios will vary depending on the solvent. While RNA concentration is independent of the solvent you use, OD260/230 and OD260/280 ratios are more reliable if TE is used as solvent (turning pH-dependent variations in the OD230 and OD280 readings null). RNA samples are eluted with water for optimal subsequent reactions, but for spectrophotometer analysis it is better to dilute the samples in TE.
335 336	20. In water, OD260/230 and OD260/280 ratios are expected to be 1.8-2 [8].
337 338 339 340 341	21. Besides <i>aflQ</i> , other key genes in the aflatoxin pathway have been used, e.g., <i>aflD</i> , <i>aflO</i> , <i>aflP</i> , and <i>aflR</i> [2, 4–7]. We recommend <i>aflQ</i> , since it is the last known gene in the pathway necessary for aflatoxin production and the only one specific for aflatoxin producers.
342 343 344 345 346 347 348 349	22. When testing isolates for presence/absence of specific genes, you must include an internal control, which consists of a housekeeping gene, universally expressed in all isolates tested regardless of aflatoxin production ability and culture conditions. Make sure that you choose control primers that work exactly under the same conditions as your test primers. The detection of expression of this internal control is mandatory to rule out false negatives.
	Tute out fuice negatives.

350 **References**

355 1. Yu J, Bhatnagar D, Cleveland TE (2004)
350 Completed sequence of aflatoxin pathway gene
353 cluster in *Aspergillus parasiticus*. FEBS Lett
358 564:126–130

2. Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N (2009) A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of *Aspergillus* Section *Flavi* isolated from

Portuguese almonds. Int J Food Microbiol 129:187-193

- 3. Paterson RPM (2006) Identification and quantification of mycotoxigenic fungi by PCR. Process Biochem 41:1467–1474
- Sweeney MJ, Pàmies P, Dobson ADW (2000) The use of reverse transcription-polymerase chain reaction (RT-PCR) for monitoring aflatoxin production in *Aspergillus parasiticus* 439. Int J Food Microbiol 56:97–103
- Scherm B, Palomba M, Serra D et al (2005) Detection of transcripts of the aflatoxin genes *aflD*, *aflO*, and *aflP* by reverse-transcriptionpolymerase chain reaction allows differentiation of aflatoxin-producing isolates of *Aspergillus flavus* and *Aspergillus parasiticus*. Int J Food Microbiol 98:201–210
- 6. Degola F, Berni E, Dall'Asta C et al (2007) A
 multiplex RT-PCR approach to detect aflatoxigenic strains of *Aspergillus flavus*. J Appl Microbiol 103:409–417
 369
- 7. Jamali M, Karimipour M, Shams-Ghahfarokhi M et al (2013) Expression of aflatoxin genes *aflO (omtB)* and *aflQ (ordA)* differentiates levels of aflatoxin production by *Aspergillus flavus* strains from soils of pistachio orchards. Res Microbiol 164:293–299
 380
 381
 382
 383
 384
 385
 384
 385
 386
 387
 388
 388
 388
 389
 389
 389
 380
 381
 381
 382
 383
 384
 386
 384
 386
 387
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 388
 <l
- Heptinstall J, Rapley R(2000) Spectrophotometric analysis of nucleic acids. In: Rapley R (ed) The nucleic acid protocols handbook. Humana Press, USA
 389 389 389
- Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010)
 Purification of RNA using TRIzol (TRI reagent).
 Cold Spring Harb Protoc (6):pdb.prot5439
 392

Author's Proof

Author Query

Chapter No.: 15 0002849247

Queries	Details Required	Author's Response
AU1	Please check if the affiliation is presented correctly.	

Rected