
adfa, p. 1, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Building a Robotic Cyber-Physical Production
Component

Paulo Leitão1,2, José Barbosa1

1 Polytechnic Institute of Bragança, Campus Sta Apolónia, 5301-857 Bragança, Portugal
2 LIACC - Artificial Intelligence and Computer Science Laboratory, Rua Dr. Roberto Frias,

4200-465 Porto, Portugal
{pleitao,jbarbosa}@ipb.pt

Abstract. Cyber-physical systems are a network of integrated computational decisional com-
ponents and physical elements. The integration of computational decisional components with
the heterogeneous physical automation systems and devices is not transparent and constitutes a
critical challenge for the success of this approach. The objective of the paper is to describe an
approach to establish standard interfaces based on the use of the ISO 9506 Manufacturing Mes-
sage Specification international standard. The proposed approach is exemplified by the con-
struction of a robotic cyber-physical production component that is plug-in in a cyber-physical
system for a small-scale production system based on Fischertechnik systems.

Keywords: Cyber-physical systems, industrial agents, integration.

1 Introduction

The manufacturing world is being subject to a paradigm shift, both at the organiza-
tional and control levels, facing the current demands for more robust, flexible, modu-
lar, adaptive and responsive systems. Several opportunities arise for the introduction
of new and innovative approaches, such as the Cyber-Physical System (CPS) ap-
proach. This CPS approach is being supported by strong financing measures, such as
the European Horizon 2020 framework or the German Industrie 4.0 initiative, lever-
aging a new industrial revolution and capturing the attention of academia or industry.

CPS constitutes a network of interacting cyber and physical elements aiming a
common goal [1]. A major challenge is to integrate the computational decisional
components (i.e. cyber part) with the physical automation systems and devices (i.e.
physical part) to create such network of smart cyber-physical components. However,
this integration is not transparent and constitutes a critical challenge for the success of
this approach. In fact, it is not easy and transparent the integration of heterogeneous
automation devices, such as sensors, robots, numerical control machines or automa-
tion solutions based on Programmable logic Controllers (PLCs), which usually re-
quires a complex and time consuming activity. To face this problem, the challenge is
to define standard industrial interfaces that allow a completely transparent develop-
ment of the computational decisional components without knowing the particularities
of the automation device; in such process, these interfaces may be developed by au-
tomation providers or system integrators and (re-)used by the system developers.

mailto:pleitao,jbarbosa%7d@ipb.pt

The objective of the paper is to describe an approach to establish such standard in-
terfaces based on the use of the ISO 9506 Manufacturing Message Specification
(MMS) international standard [2], initially introduced by ADACOR holonic control
architecture [3]. This approach is exemplified by deploying a cyber-physical produc-
tion component for an industrial manipulator robot, which is part of a small-scale
production system based on Fischertechnik systems.

The rest of the paper is organized as follows: Section 2 overviews the concept of
cyber-physical systems and identifies the integration of computational components
with automation devices as a critical challenge for its industrial implementation. Sec-
tion 3 presents an approach to engineer cyber-physical production components and
Section 4 illustrates its applicability by developing a robotic cyber-physical produc-
tion component. Finally, Section 5 rounds up the paper with the conclusions.

2 Overview of Cyber-Physical Systems

Embedded systems have been in use for many years. They can be characterized by the
conjunction of computational, electrical and mechanical capabilities, being often exe-
cuted in real-time and providing some sort of intelligence to the system. Embedded
systems are present everywhere and in different sectors, such as civil infrastructure,
aerospace, energy, healthcare, manufacturing, transportation. Examples are vendor
machines, cars’ Automatic Breaking System (ABS) or even elevators.

With the widely improvement and spread of communication technologies, namely
wireless communication and optical fiber, used currently in internet infrastructures,
these embedded systems have gain a mean to share information, cooperate and col-
laborate each other. This missing communication capability and the collaboration
inability of embedded systems gave rise to CPS. In this way, CPS can be defined as a
triad of computation capabilities with a control component, interconnected over a
communication channel, as depicted in Fig. 1.

Fig. 1. Cyber-physical system triad [4]

The cyber, or logic world, can be found at the upper level of this triad, being re-
sponsible for bringing the logic and intelligence features found in CPS. At the lower
level resides the physical process, being often composed by the combination of elec-

tromechanical components. This triad is complete by the communication capability,
tying every Cyber Physical Component (CPC) from which the CPS is built upon.

The application of CPS will impose tremendous changes at several levels, particu-
larly in the way the systems are designed and how they interact. Referring to Fig. 1, at
the cyber level, the challenges are related to process modelling, computer science and
communication networks, while at the system level, new system engineering method-
ologies, developments in mechatronics and a new cybernetics discipline approach will
be mandatory. At the physical level, the challenges are related to sensors and actua-
tors, dynamics and concurrency. In manufacturing, CPS will imply the migration
from the typical ISA-95 organizational structure, where all levels are vertically inter-
connected, into a decentralization of these levels, meaning that the compo-
nents/applications placed at different levels can access to data provided by others.

An important feature is the need to integrate the cyber part, i.e. computational deci-
sional components, with the physical world, which are responsible to sense, process
and act on the environment. This fundamental feature, particularly in manufacturing,
implies several challenges where the definition of standardized interfaces assumes a
crucial importance to handle the usually heterogeneous automation device presented
at shop floor.

3 Engineering Cyber-Physical Components

The engineering of cyber-physical production components requires the integration of
the computational and physical automation counterparts. The computational compo-
nents may use the agent technology [5] to implement the intelligence and adaptation
layer that will control the automation hardware (HW) device. Intelligent software
agents developed in this context are known as industrial agents, which are faced with
industrial requirements, namely HW integration, reliability, fault tolerance, scalabil-
ity, industrial standards compliance, resilience, manageability, and maintainability
[6]. Additionally, the integration of computational and physical automation counter-
parts recalls the holon concept, which is composed by an informational component
(the agent) and the physical component (the HW device if exists) [7].

The integration of cyber and physical components can be performed in two differ-
ent manners, namely embedding the agent within the physical control device or con-
necting the agent with the existing control device in a coupled manner [8-9]. Inde-
pendently of the use of these two approaches, it is necessary to create a standard ap-
proach that allow the transparent and independent development of the computational
entities from the heterogeneity and particularities of the HW automation device and
communication infra-structure, which can expose their functionalities in terms of
services. This imposes a crucial challenge for the engineering of these components
regarding the establishment of standard interfaces, focusing the semantics and the
protocols, and industrial middleware.

Having this in mind, ADACOR holonic manufacturing control architecture [3]
proposed an approach based on the use of standard interfaces, using the service-
oriented architectures (SoA) principles, where the physical automation resource is

abstracted in form of standard services, as illustrated in Fig. 2. These services were
defined based on the ISO 9506 Manufacturing Message Specification (MMS) stand-
ard [2], which defines the syntax and semantics for a set of clusters of services for
automation domain, which are invoked by the agent (which plays the role of client)
independently from the device particularities. MMS was designed as a control and
monitoring specification for the OSI application layer, enabling the cooperation be-
tween applications and/or devices at the shop-floor. This specification is used in this
approach to provide the necessary interface specification guidelines, namely allowing
to define standard services that expose the functionalities of the HW automation de-
vice, namely in terms of variable handling, program handling and events [2].

Fig. 2. Integration of agents with low level automation functions to form a cyber-physical pro-

duction component

These services are implemented, usually by system integrators, in the server com-
ponent according to the particularities of the device available at the shop-floor (from
different types, e.g. robots and numerical control machines, and from different auto-
mation providers) and the communication infra-structure (e.g. serial communication,
Modbus or OPC-UA). These services, after being developed, can be re-used and of-
fered as drivers or wrappers, to be used in a pluggable and modular manner by other
control applications for similar resources.

The transparent and standard invocation of these services by the computational en-
tity requires the specification of the syntax of each service, i.e. the definition of input
and output parameters. As example, the services available in the Program Invocation

Service package, which are invoked in a unique way by the client side, i.e. the agents,
are the follow.

public interface ProgramInvocationService {
 boolean CreateProgramInvocation(String program);
 boolean DeleteProgramInvocation(String program);
 …
 boolean Start(String program);
 boolean Stop(String program);
 boolean Resume(String program);
 boolean Reset(String program);
 boolean Kill(String program);
 Attributes GetProgramInvocationAttributes(String program);
 boolean Select(String program);
 Attributes AlterProgramInvocationAttributes String program, At-
tributes att);
 …
 boolean ReconfigureProgramInvocation(String program);

}

Note that, as an example, whenever an agent needs to start the execution of a ro-

botic a program, it uses the service Start (String program), where program represents
the program to be executed.

At this point, agents invoke standardized services based on an abstraction layer,
which enables the transparent design and development of agents. The challenge here
focuses in the abstraction level that the standard interfaces impose to the generic de-
velopment of agents. In fact, this abstraction culminates with the generalization of the
parameters of the methods to be executed, where two instantiated agents from the
same type have the same method invocation but in reality the physical access differs
in each case. For instance, the parameter writing in a memory space differs from one
agent to the other, accordingly with the HW to be accessed (e.g. the physical address
where the temperature sensor is connected to the PLC).

System

Device
information
mapping

public class OperationalAgent
extends Agent {
protected void setup() {
loadResourceConfig(RobotParam
File);
}
class
WaitForMessagesBehaviour
extends SimpleBehaviour {
…
Start(pickAtStorage);
...
}
}

launch

Agents’ execution file

<resource>
 <type>PRODUCER</type>
<IO Mapping>
...
 <IO>
 <TAG>pickAtStorage</TAG>
 <VALUE>Progam-01</VALUE>
 </IO>
...
</IO Mapping>

Agents’ parameterization file

Agent

Initialization phase

Agent
Agents’ execution logic

HW
communication

Execution phase

Repository

RobotParamFile

public class OperationalAgent
extends Agent {
protected void setup() {
loadResourceConfig(RobotParam
File);
}
class
WaitForMessagesBehaviour
extends SimpleBehaviour {
…
Start(Progam-01);
...
}
}

Fig. 3. Agent-HW interface: initialization and execution phases

As illustrated in Fig. 3, initially when launched, each agent parameterizes the ge-
neric parameters used in the MMS-based interface layer in a xml configuration file.
This file contains pairs of {tag, value}, where tag represents the service parameter
name used in the agent development, while value points to the physical/logical con-
nection that the agent need to access. It is worthy to be noted also that value can rep-
resent more complex structures aside direct/simple type. On example of such pair is
{part_input, IRB1400.signaldi.DI10_1}, where part_input represents the sensor that
detects that a part is at the beginning of a conveyor, and IRB1400.signaldi.DI10_1 is
the physical label used in the OPC server. This is crucial to guarantee that two similar
automation devices have the same processing logic from the agent’s point of view but
due to their HW differences they must be parameterized differently.

4 Deploying a Robotic Cyber-Physical Component

This section describes the application of the described engineering approach to deploy
a robotic cyber-physical component to be used in an agent-based control system for a
small scale production system.

4.1 Description of the Case Study

The robotic device is an IRB 1400 ABB robot that is part of a real small-scale produc-
tion system, which also comprises two punching machines and two indexed lines
supplied by Fischertechnik™, as illustrated in Fig. 4.

Fig. 4. Layout of the small-scale production system

The punching and indexed machines are controlled by IEC 61131-3 programs run-
ning in a Modicon M340 PLC. Two different parts circulate in the system, each one
having a particular process plan. The circulation of parts within the flexible produc-
tion system is tracked by a radio-frequency identification (RFiD) reader. An industrial
manipulator robot executes the transfer of the parts between the machines using prop-

er RAPID programs and is accessible through the ABB S4 DDE Server (that can be
accessed by OPC).

The idea in this work is to describe the way the cyber-physical production compo-
nent for the industrial robot was engineered, and particularly how the software agent,
which is providing intelligence and adaptation to the robot, was interfaced with the
physical controller of the automation device.

4.2 Development of the Software Agent

An ADACOR-based system [3] was developed to control, in a distributed manner,
this small-scale production system, using agent technology to implement the control
logic, i.e. the cyber part. For this purpose, product, task, operational and supervisor
holons were developed to represent the system components, each one contributing
with their knowledge and skills to achieve the system’s goals, by interacting through
several cooperation patterns. Particularly, two product holons were created, one for
each product type defined in the catalogue of available parts. Task holons are
launched by the associated product holons according to the order demand. The eco-
system of heterogeneous resources has associated an operational holon (OH) for each
one, namely for the two punching machines, for the two indexed lines, for the RFID
reader, for the manipulator robot and for the human inspector. Finally, aiming to in-
troduce production optimization into the system, a supervisor holon is also consid-
ered. The computational decisional component of these holons is implemented as
software agents. The dynamic behaviour of these agents was modelled using the Petri
nets formalism [10], which is a suitable approach to support the formal analysis and
simulation of the desired agent functionality, allowing to detect undesired behaviour
or possible execution deadlocks at the design stage.

Fig. 5. Petri net model for the behaviour of the Operational Holon

In particular, a software agent is managing the activities of the robotic device, in-
troducing intelligence and adaptation do this automation device. The Petri net model
representing the dynamic behaviour of this software agent is illustrated in Fig. 5.

The agents’ behaviours were implemented using the well- known JADE frame-
work [11], enabling the development of an intelligent and distributed architecture in a
transparent manner. Despite this, and since the underground technology used in JADE
is the Java™ programming language, a Java Virtual Machine (JVM) container is
mandatory as the support to the developed agents. The need to have this JVM limits
the number of devices that have the HW resources necessary to accommodate JADE
agents. JADE agents follow the object oriented paradigm and consequently they use
objects, methods and threads as the core components.

As illustrated in Petri nets model, the agent invokes several services defined in the
resource interface, namely the start service to start the execution of a pick-and-place
program, the read to detect the end of the robotic program and notification to warm
about the occurrence of a failure during the program execution. The invocation of
these services is made in an undistinguished manner, and without knowing the partic-
ularies of the automation device.

4.3 Integrating the Automation HW Device

Having the interface defined, particularized instantiations of those services are per-
formed according to the existing HW in the system (and particularly their controllers).
Illustratively, two different examples, implementing the read of a bit, one using the
OPC connection to a server and the other using a Modbus command, are described in
the following.

public Boolean read (String var) {
...
JIVariant intaux = null;
String straux = null;
try {
final Item item = group.addItem (var);
item.setActive (true);
intaux = item.read (false).getValue();
straux=intaux.toString();
String straux1 = straux.substring(2, 3);

}
catch (final JIException e){e.printStackTrace();}
return(extractValue(straux1));

}

where the var parameter contains the specification of the PLC type and address ex-
tracted from the xml configuration file. The same read interface, using a Modbus
communication protocol is now recoded using the following code excerpt.

public Boolean read (String var) {
...
try {

int regReference = Integer.parseInt(var);
rcreq=new ReadCoilsRequest(regReference, 1);

trans=new ModbusTCPTransaction(con);
trans.setRequest(rcreq);
trans.execute();
rcres=(ReadCoilsResponse)trans.getResponse();

}
Catch(Exception e){e.printStackTrace();}
return(extractValue(rcres.getCoils().toString().trim());

}

More examples could be given using the same approach, namely interfacing differ-

ent robot controllers or using different communication infra-structures, e.g. a serial
communication channel.

It is worthy to mention that all the aforementioned examples use a decoupled ap-
proach, where the agent control layer, due to the JVM needs, is not directly deploya-
ble into the controlled HW, i.e. into the robot controller. Despite this, the standard
interfaces approach is also used when a direct HW control can be performed, using an
agent coupled approach, as in the case of a Raspberry Pi [9].

The experimental tests shows that this approach simplifies the development and
deployment of agent based systems in the control of physical devices. On one side
agents developers can only focus on developing the desired agents’ functionalities,
while, on the other side, automation integrators can focus on developing these inter-
faces, parameterized according to the particularities of the physical HW devices.

5 Conclusions

This paper presents a simple and effective approach to develop standardized interfac-
es that can be used to access physical automation components by the cyber layer in
CPS. The proposed methodology uses the MMS standard as the ground base for the
specification of the interface layer. This abstraction layer allows a fast integration of
the agent with the physical world, being only necessary the implementation of the
service interfaces and the parameterization of an xml like file that maps the used pa-
rameters, or tags, in the agent development to the real physical/logical address.

In ADACOR holonic architecture, at this stage, only the OHs use the proposed
methodology. Despite this, all the other holons can benefit from this approach, where,
e.g., the SH has access to different mathematical solvers, and the THs and PHs have
access to their different data sources, through the use of a common interface to access
different legacy systems.

In this work, this approach was exemplified to build a robotic cyber-physical pro-
duction component that is deployed in a cyber-physical system for a small-scale pro-
duction system. Although the use of the simplicity of the proposed approach, it turn
out to be a very effective solution allowing the fast development and deployment of
industrial agent-based systems.

The experimental development, parameterization and deployment of the agent
based system were successfully achieved. In fact, after having the underlying OHs
agents’ logic developed, the tasks needed to fully complete the integration was to
instantiate the libraries of the different communication protocols present at the sys-

tem, namely an OPC server, a Modbus communication and a serial protocol, and to
create the parameterization files. Although every communication protocol could be
wrapped around the OPC server, it was opted to develop this amount of libraries in
order to further push this methodology.

As future work, this approach will further forester the CPS where higher level ap-
plications could use the developed services to compose more complex services, e.g.,
a SCADA system could use a service that is also used by the agents. Additionally, this
approach must be deployed in more test beds. Only at this point one can truly take
advantage of this, since, expectedly, the deployment efforts would be greatly reduced.

References

1. P. Leitão, A.W. Colombo and S. Karnouskos. Industrial Automation based on Cyber-
Physical Systems Technologies: Prototype Implementations and Challenges. Accepted for
publication in Computers in Industry, Elsevier, 2015.

2. ISO/IEC 9506-1: Industrial Automation Systems - Manufacturing Message Specification,
Part 1 - Service Definition, 1992.

3. P. Leitão and F. Restivo. ADACOR: A Holonic Architecture for Agile and Adaptive Man-
ufacturing Control. Computers in Industry, vol. 57, nº 2, pp. 121-130, Elsevier, 2006.

4. M. Schmid. Cyber-Physical Systems ganz konkret. Technical Article,
ELEKTRONIKPRAXIS, n. 7, 2014.

5. M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley & Sons, 2002.
6. P. Leitão and S. Karnouskos. A Survey on Factors that Impact Industrial Agent Ac-

ceptance, Industrial Agents: Emerging Applications of Software Agents in Industry, P.
Leitão and S. Karnouskos (eds.). Elsevier, pp. 401-429, 2015.

7. M. Winkler and M. Mey. Holonic Manufacturing Systems. European Production Engineer-
ing, 1994.

8. L. Ribeiro. The Design, Deployment, and Assessment of Industrial Agent Systems. Indus-
trial Agents: Emerging Applications of Software Agents in Industry, P. Leitão and S. Kar-
nouskos (eds.). Elsevier, pp. 45-63, 2015.

9. J. Dias, J. Barbosa and P. Leitão. Deployment of Industrial Agents in Heterogeneous Au-
tomation Environments. Proceedings of the 13th IEEE International Conference on Indus-
trial Informatics (INDIN’15), 22-25 July, Cambridge, UK, pp. 1330-1335, 2015.

10. T. Murata, “Petri Nets: Properties, Analysis and Applications,” IEEE, vol. 77, no. 4, pp.
541-580, 1989.

11. F. Bellifemine, G. Caire, D. Greenwood. Developing Multi-Agent Systems with JADE.
Wiley, 2007.

	1 Introduction
	2 Overview of Cyber-Physical Systems
	3 Engineering Cyber-Physical Components
	4 Deploying a Robotic Cyber-Physical Component
	4.1 Description of the Case Study
	4.2 Development of the Software Agent
	4.3 Integrating the Automation HW Device

	5 Conclusions
	References

