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a b s t r a c t

Product intelligence is a new industrial manufacturing control paradigm aligned with the context of
cyber-physical systems and addressing the current requirements of flexibility, reconfigurability and
responsiveness. This paradigm introduces benefits in terms of improvement of the entire product's life-
cycle, and particularly the product quality and customization, aiming the customer satisfaction. This
paper presents an implementation of a system of intelligent products, developed under the scope of the
GRACE project, where an agent-based solution was deployed in a factory plant producing laundry
washing machines. The achieved results show an increase of the production and energy efficiency, an
increase of the product quality and customization, as well as a reduction of the scrap costs.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, manufacturing domain operates in a conservative
market place, with plants running for more than 10 years,
unanticipated downtime provoking significant losses and using
Enterprise Resource Planning (ERP) systems focused on mass
production. However, worldwide markets are imposing strong
requirements in terms of cost, quality, customization and respon-
siveness (ElMaraghy, 2006). These requirements create new needs
related to the introduction of new manufacturing paradigms and
methods, and especially decentralized approaches, being manu-
facturing companies forced to adopt more modular, flexible,
adaptive and reconfigurable systems aiming to remain competitive
in this severe context. Particularly, manufacturing systems should
cope with the high degree of complexity required to implement
agility, flexibility and reactivity in customized manufacturing
(Morel, Valckenaers, Faure, Pereira, & Diedrich, 2007).

The factory of the future can be seen as a large and complex
system of systems, where collaboration takes place to reach global
goals, complemented with other key issues like intelligence,
responsiveness and adaptation. The achievement of the factory
of the future raises several challenges, namely interoperability,

plug and play, self-adaptation, reliability, energy awareness, cross
layer integration, event propagation and management. The
achievement of these advanced functionalities requires the use
of new paradigms, such as Cyber-Physical Systems (CPS)
(Rajkumar, Lee, Sha, & Sankovic, 2010; Colombo et al., 2014). In
opposite to the concept of Internet of Things (Gershenfeld,
Krikorian, & Cohen, 2004), where the focus is more in the
interconnection of cooperative objects, the CPS concept also
considers the computational decision-making components to
provide intelligence, responsiveness and adaptation. In fact, CPS
combines mechatronics and Information Technology (IT) to control
physical processes and systems, designed as a network of inter-
acting software and hardware components, devices and systems,
each one with a higher level of autonomous decision making. CPS
focus intelligent, dynamic and self-n large-scale systems, such as
manufacturing and processes plants, electrical power grids and
pipelines, logistics and transportation.

Industrie 4.0 is a German initiative constituting a concretiza-
tion of CPS to promote the computerization of traditional indus-
tries aiming to achieve intelligent factories characterized by
adaptability, efficiency, reliability, safety, and usability, and sup-
porting the integration of the supply chain (Böhler, 2012). This
vision, seen as the 4th industrial revolution, considers distributed
intelligence and self-n methods, e.g., adaptation, configuration and
diagnosis. In the United States, a similar concept is the Industrial
Internet that aims the integration of complex physical machinery
with networked sensors and software. The Industrial Internet
Consortium comprise General Electric, AT&T, Cisco Systems, Intel,
IBM and United States government and has a broader scope than
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industrial production, namely covering also smart electrical grids,
smart transportation and smart healthcare.

The concept of intelligent product (Meyer, Främling, &
Holmströmc, 2009; McFarlane, Giannikas, Wong, & Harrison,
2013) is a new industrial manufacturing control paradigm, aligned
with CPS. Intelligent products carry the knowledge about their
characteristics, wirelessly connected to share, in real‐time, infor-
mation about their state or environment, or to communicate with
other cooperative objects of the Internet of Things (IoT). Intelligent
products collect and store data to support the implementation of
monitoring, traceability and decision-making functions.

The use of intelligent products can bring important benefits in
the Industrie 4.0 and Industrial Internet contexts, namely:

� Establishment of a product-driven production approach (i.e.
the product takes the initiative during the plan execution
(Wang, Huang, & Dismukes, 2004)).

� Improvement of the entire life-cycle of the product, comprising
the design, production, distribution, operation and end of life
(Parlikad & McFarlane, 2007) phases.

� Improvement of the product quality and performance through
the application of self-n methods, such as self-learning, self-
diagnosis, self-adaptation and self-optimization.

� Improvement of the next generation of the product.

Multi-agent systems constitute a software engineering para-
digm, derived from distributed artificial intelligence, which is
based on a set of distributed, autonomous and cooperative entities,
known as agents (Ferber, 1999; Wooldridge, 2002; Leitão, Mařík, &
Vrba, 2013). Each agent possesses its own knowledge and skills,
being the intelligent global system behaviour emerged from the
interaction among the distributed agents. Following the principle
of “divide to conquer”, multi-agent systems replace the centralized
control by a decentralized functioning, allowing reaching a high
degree of flexibility, robustness and responsiveness, which are not
provided by centralized solutions. Multi-agent systems approach is
being applied in several domains, namely electronic commerce,
manufacturing and logistics (see e.g., Leitão (2009) for a deeper
analysis), and constitutes a suitable technology to implement the
intelligent product paradigm.

The objective of this paper is to explore the industrial control
paradigm of product intelligence by describing a practical imple-
mentation in the manufacturing domain based on the experience
gathered during the execution of the GRACE (Integration of
process and quality control using multi-agent technology) project
(http://grace-project.org/). During this project, a product-driven
agent-based solution was installed in a factory plant producing
laundry washing machines aiming the integration of process and
quality control. The intelligence embedded in distributed and
cooperative agents, and particularly in the products, allowed to
self-adapt and self-optimize the production and product para-
meters, improving the production and energy efficiency and the
product quality, as well as reducing the costs of scraps.

The paper is organized as follows: Section 2 overviews the
concepts and deployment challenges regarding the product intel-
ligence concept and Section 3 overviews the main principles of the
GRACE multi-agent system to integrate the process and quality
control. Section 4 introduces the concept of intelligent product
deployed in an industrial factory plant according to the perspec-
tive of the GRACE project, namely describing the embedded
intelligence for the on-line decision-making during the production
phase and analysing the achieved results. Section 5 presents the
intelligence mechanisms for the operation phase to be embedded
in the agents hosted in each individual washing machine. Finally,
Section 6 rounds up the paper with the conclusions.

2. Intelligent products: concepts and deployment challenges

The concept of intelligent products is being studied by the
research community in intelligent manufacturing field (a state of
the art in the field can be found in (Meyer et al., 2009; McFarlane
et al., 2013)).

2.1. Concepts and theory

The definition of intelligent product is not unique. A possible
definition is provided by Meyer et al. (2009) that defines intelli-
gent product as a “physical order or product instance that is linked to
information and rules governing the way it is intended to be made,
stored and transported that enables the product to support or
influence these operations”. This definition highlights the processes
regarding to manufacturing and distribution phases, but should be
extended by considering also the operation phase of the product,
i.e. when the product is performing the functions for what was
created and produced, supporting the closed-loop Product Life-
cycle Management (PLM) systems, as described in Kiritsis (2011).

According to Wong, McFarlane, Alunad Zaharudin, and Agarwal
(2002), an intelligent product possesses the following five char-
acteristics (or partially):

a) The product possesses a unique identification.
b) The product is capable of communicating with its environment.
c) The product can store data about itself.
d) The product deploys a language to share its features, require-

ments and plans.
e) The product is capable of participating in relevant decision-

makings to its own destiny.

Therefore, an intelligent product comprises IT in the form of
software, microprocessors and sensors, and is able to collect and
process information and generate knowledge, and even provide
reasoning capabilities, as illustrated in Fig. 1. The traceability and
identification of products are generally processed by using bio-
metric information or instrumenting the product with related
technologies such as barcode or RFID (Radio Frequency Identifier).
Each intelligent product provides a set of product related servi-
ces, e.g., monitoring, data analytics, self-diagnosis and self-mai-
ntenance.

Meyer et al. (2009) introduced a three dimensional framework
to analyse the intelligence product concept, based on the levels of
intelligence, location of the intelligence and aggregation level of
intelligence. In terms of levels of intelligence, different levels can
be defined, namely:

� Passive: i.e. cooperative objects can only collect and store
information.

� Active: i.e. cooperative objects can collect, store, process
information (even generating new knowledge), and retrieve
information.

� Intelligent: i.e. cooperative objects can reason over collected
and stored data and participate in decision-making processes.

The second dimension is related to the location of the intelli-
gence, which can be completely outside the physical product, e.g.,
running in a remote PC, or located at the physical product itself (in
this case, the computational and storing capabilities are required
and network connectivity is necessary to interact with other
entities). The two possibilities to locate the intelligence are
illustrated in Fig. 1. The third dimension is related to the kind of
aggregation of the product intelligence, ranging from intelligence
only about the product itself or also aware of the components that
it is made of (Meyer et al., 2009).
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Additionally to these three dimensions, a fourth dimension
focusing the product life-cycle is necessary to be considered. In
fact, the roles and functionalities of intelligent products, and also
the provided services, are varying along its life-cycle, e.g., con-
sidering the design, production, distribution, operation and end of
life phases, as illustrated in Fig. 2.

During the production phase, the intelligent product is capable
to collect data and to decide the way the product is being
produced in a product-driven approach (e.g., implementing func-
tions of monitoring, traceability, re-routing, self-adaptation and
self-optimization of the production process and product config-
uration/customization). In the distribution phase, the intelligent
product controls the safety and conditions during the transporta-
tion by registering data about e.g., transportation time, accelera-
tion, temperature, inclination and breaks, and applying functions
of monitoring and data analysis. At last, in the operation phase, the
intelligent product senses the functioning conditions and controls

the functioning behaviour during its operation being capable to
self-adapt to condition changes (provoked by external factors, e.g.,
temperature, or internal factors, e.g., materials wearing). At this
stage, several functions may be implemented, namely monitoring,
self-diagnosis and maintenance. In the begin of life and end of life
phases, similar functions are expected, e.g., aiming to improve the
re-design of the product based on the feedback from posterior
phases, and the way the product is recycled to improve or adapt its
behaviour to condition changes.

Aiming to achieve the described features, potential functional-
ities that product intelligence can provide are the collection,
storage and retrieval of data, and also the decision-making. These
functionalities, e.g., provided by intelligent agents, can be encap-
sulated as services, using the service-oriented principles, and then
simplifying the integration of intelligent products in bigger sys-
tems. For this purpose, a kind of middleware located in the cloud,
may manage the services offered by the cooperative objects (e.g.,
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other intelligent products), including data collection and storage,
and decision-making functionalities.

The concept of intelligent product has several instantiations,
namely the active products introduced by Sallez, Berger, and
Trentesaux, 2009, which are defined as the product capability “to
act based on the real state of the system”, being composed of a
physical product embedded with IT capabilities. Another interest-
ing concept is the holon, introduced by Koestler (1969), which by
its nature comprises an information part and a physical part
(Winkler & Mey, 1994), and particularly a product holon that
may include the physical product and an intelligent agent to
implement the information part. However, product holons usually
found in holonic manufacturing control architectures, such as
PROSA (Brussel, Wyns, Valckenaers, & Bongaerts, 1998) and
ADACOR (Leitão & Restivo, 2006), focus the management of the
product model and knowledge and not necessarily the real time
management of the product life-cycle functions. Similar to the
holon concept is the mechatronic unit concept (Lüder et al., 2010)
that also relies on combining IT with the physical devices, but here
the focus is on hardware resources and not in products being
produced, transported and stored. Smart objects (López,
Ranasinghe, Patkai, & McFarlane, 2011) and physical BDI agents
(Garcia Higuera & de las Morenas, 2014) also consider the
inspiration on intelligent products.

Several related concepts to intelligent products have been
developed throughout the years, preparing the path and enhan-
cing the concept of intelligent product. Auto-ID1 is one initiative
that is paving the way by promoting the open-standardization, the
use of RFID technology and data repository systems as the way to
enable an intelligent decision making and product control of the
item associated to the RFID tag (McFarlane, Sarma, Chirn, Wong, &
Ashton, 2003). Several research Auto-ID institutes are spread all
over the world, each one focusing on different intelligent products
topics, ranging from hardware to business process and applica-
tions, targeting several application domains such as manufactur-
ing and supply chain.

European Projects are also steering the development of intel-
ligent products related technology and concepts. One of the first of
such projects was the EU FP6 PROMISE (Product lifecycle Manage-
ment and Information tracking using Smart Embedded systems)
(Anke et al., 2008) that firstly coined the term PEID (Product
Embedded Information Device), which primary's goal was to
design and develop a seamless information exchange architecture
covering all the PLM phases, setting foundation on the use of RFID,
wireless communication and innovative business models. The
PEID concept enables the link between the product and its
environment that, in the most simplistic way, is only responsible
for its unique identification that could additionally have built-in
computations capabilities. In fact, for such diversity of functions
and intelligent products capabilities, the PROMISE consortium has
defined 5 PEID groups, starting with identification only capabilities
for type 0 and growing in terms of features and capabilities for
type 4. This group division is also aligned with the levels of
intelligence proposed by Meyer et al. (2009).

The ID@URI approach, i.e. a unique identification associated
with a computer address, is used as the informational ground base
to the development of a GUPI (Globally Unique Product Identifier).
This solution is being developed at the Helsinki University of
Technology under the name of DIALOG (Distributed Information
Architectures for collaborative LOGistics) and has a similar
approach to the one promoted under the Auto-ID initiative. One
of the major premises taken by the DIALOG approach is that every
physical agent, i.e. a product, must be represented by a virtual

counterpart, i.e. an agent, during it whole life-cycle, handling all
the physical agent informational part such as location, service
lookup or any other transactions (Kärkkäinen, Ala-Risku, &
Främling, 2003).

Although the real applications of product intelligence models
are still very limited, some examples can be found in logistics, e.g.,
addressing the dynamic routing in the intermodal transportation
problem (Giannikas & McFarlane, 2012). The warehouse manage-
ment is also addressed by using a product intelligence solution
(Giannikas, Lu, McFarlane, & Hyde, 2013), particularly focusing on
defining adaptive storage location strategies and on the dynamic
order-picking rescheduling. Biological inspiration was used to
support the product intelligence solution that has been developed
for the dynamic routing within a flexible manufacturing system
(Sallez et al., 2009).

2.2. Deployment challenges

The deployment of product intelligence introduces several
challenges that deserve to be discussed. The first critical issue is
how to collect the data, and also which type of data should be
handled (note that a proper selection of the type of data impacts
the amount of data retrieved). Operators and automatic systems
must actively acquire, clear and load data into appropriate systems
and maintain the data properly. Important at this stage is the
integration of RFID technology for the automatic identification of
products and wireless sensor networks for a transparent collection
and transmission of data. As an example, García, Chang, and
Valverdeet (2006) analyse the impact of using automatic identifi-
cation and data capturing technologies based on the RFID technol-
ogy in highly automated distribution centres following the
intelligent products principles.

The second issue is related to the storage and retrieval of data.
Particularly, the use of semantics and ontologies (Gruber, 1995) to
represent the acquired and exchanged knowledge, providing a
common understanding, is crucial to ensure interoperability
among distributed entities and legacy systems. Since, the current
RFID technology, usually used to identify products, does not allow
to store a big amount of information, as well the internal memory
or database of intelligent entities, the need for cloud systems to
store data is gaining an increasing importance. In this context,
speed, security, safety and trust are important issues to be
considered during the access, storage and retrieval of data, and
particularly when cooperative objects may interact or use the
cloud. As example of security, a car producer is interested to access
the data collected by the associated intelligent products, probably
stored in the cloud, for posterior implementation of maintenance
or product re-design tasks, but cannot access to data of intelligent
products associated to one of its competitors. On the other hand,
can one car producer trust on the data that is being collected by its
intelligent products? Concerning the increasing importance of
cyber-security issues, it is important to consider the use of private
clouds to store the collected data and to encrypt the exchanged
messages.

Another issue is related to the decision-making. By nature, data
is passive, being necessary to implement proper mechanisms to
transform the available data into knowledge supporting decision-
making tasks. For this purpose, intelligent products can reason
about their desired characteristics, e.g., using artificial intelligence
techniques or data mining techniques (see e.g., Thomas and
Thomas (2013) where data mining techniques were used for
product-driven systems), introducing data analytics and exploring
the incorporation of self-n properties like self-diagnosis, self-
adaptation and self-healing. More advanced functionalities can
be designed, e.g., sending notifications for the product producers1 http://autoidlabs.org.
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asking maintenance interventions or support from the other
cooperative objects.

The integration of the human-in-the-loop and legacy systems
are also very important topics, being required the use of standard
interfaces. The humans are important pieces in these systems,
with human-centred technology playing a special role (Boy, 2012).
The success of new manufacturing paradigms requires their
inclusion in the automation loop, avoiding the errors exhibited
of some past paradigms, e.g., CIM (Computer Integrated Manufac-
turing). The interaction with humans can be achieved by the use of
mobile devices, such as the smartphones and tablets, which can
act as the interface for a bidirectional communication. First, the
intelligent product can act in an active way and inform the user of
overpassed functioning limits or just issuing daily (or periodically)
working reports. On the other direction, the user can enquire its
product for the current status diagnosis, which will start an
internal product check-up, just to give one example. Regarding
the industrial automation, the use of standard interfaces, e.g., OPC-
UA (Open Process Control - Unified Architecture) and DPWS
(Device Profile for Web Services), should be followed for the
transparent interconnection with hardware automation systems.

The product complexity may affect the application of the
product intelligence concept. In fact, this concept can be applied
to distinct application areas, such as electrical grids, traffic
management, building automation, logistics, transportation and
manufacturing. However, in some situations, the identification of
the products is difficult, e.g., the product in smart grids, i.e. energy,
is hard to sense, being necessary to discretise this kind of products.

The deployment of product intelligence in several situations,
and particularly when the storage and intelligence is embodied in
the physical product, e.g., clothes, requires the miniaturization of
electronic devices, namely microchips and sensors using nano-
technology. In spite of the long road to be covered in the near
future, the concept of communicating material (Jover, Thomas,
Leban, & Canet, 2010) is related to the use of a plethora of
elements, with storage and communication capabilities, that are
embedded in the products, e.g., clothes and wood materials. Also
important are the use of batteries to provide autonomy to these
intelligent devices and the hostage of intelligence (e.g., using agent
technology) in low-cost devices, such as Raspberry Pi or Arduino
controllers.

3. GRACE Multi-agent system for integrating process and
quality control

The objective of the GRACE project is to develop a system that
integrates process and quality control for the implementation of
self-adaptation and self-optimization procedures leading to the
adjustment of variables of production process and product con-
figuration. The need to develop such system comes from the idea
to achieve a more efficient and adaptive production line sustained
by real-time feedback control loops that uses the quality control
information to adapt the process and product parameters. Nowa-
days, this feedback control loop is not properly handled in real-
time, culminating in a non-optimal process adaptation and pro-
duct customization, reflected in terms of non-optimal energy and
production efficiency and product quality.

For this purpose, multi-agent systems principles are applied
taking advantage of their intrinsic characteristics. A crucial
assumption considered in this work is to keep the existing low-
level control based on a network of Programmable Logic Con-
trollers (PLCs) running state-of-the-art IEC 61131-3 control pro-
grams. These PLC programs ensure the real-time responsiveness
and the use of the multi-agent system, located at higher control
level, provides an infrastructure for the integration of process and

quality control by means of intelligence and adaptation function-
alities (Rodrigues et al., 2013b).

The GRACE multi-agent system approach introduces several
differences when comparing with existing holonic and agent-
based approaches, such as PROSA and ADACOR. In fact, PROSA
and ADACOR are generic holonic architectures and GRACE focuses
on the product-driven production where the intelligent products
play a central role. Additionally, GRACE aims the adaptation of the
process and product variables to achieve the improvement of the
product efficiency and quality, and not particularly the re-
configuration of the production process towards an agile manu-
facturing system.

3.1. GRACE Multi-agent system

The multi-agent system application distributes the manufac-
turing functions by a society of agents representing the manufac-
turing objects. In particular, several types of agents were
considered, namely the Product Type Agent (PTA), Product Agent
(PA), Resource Agent (RA) and Independent Meta Agent (IMA)
(Rodrigues et al., 2013b). PTAs represent the catalogue of products
that can be produced by the production line and contain the
process and product knowledge required to produce the product.
PAs manage the production of product instances in the production
line (e.g., washing machines and drums). Note that products might
not only be final products commercialized by the OEM (Original
Equipment Manufacturer) company but also intermediate parts/
components.

RAs are associated to the physical resources placed in the
production line, such as robots, quality control stations and
operators. Specializations of the RA were developed focusing
particular specifications while inherit the RA functionalities,
namely Machine Agents (MA) representing the mechatronic
equipment, such as robots and machines, and Quality Control
Agents (QCA) associated to the quality control stations.

IMAs introduce a kind of hierarchy in the decentralized system
allowing to implement global monitoring and optimized global
operating strategies for the system. These entities are continuously
collecting information of the production system from RAs and PAs,
and performing data analytics to detect deviations or trends on the
system operation that will require the optimization of the operat-
ing parameters. Based in their broader perspective, they send
these optimized operation parameters as guidelines to the other
agents, namely RAs and PAs.

The manufacturing components must cooperate to produce a
product, and must coordinate their actions according to the
product dependencies and production plan, as illustrated in Fig. 3.

Particularly, the integration of process and quality control
aiming the implementation of feedback control loops for the
self-adaptation of process and product configuration is achieved
by the interaction among these types of agents.

3.2. Product agent functionalities

As on-demand production is typically a product-driven
approach, PAs assume critical importance in the GRACE multi-
agent system architecture. Mainly, product agents contain the
knowledge, intelligence and capability to adapt themselves auton-
omously and are associated to physical mechatronic products
being produced. The PA together with the mechanical, electronic
and software based components of the physical product, forms the
intelligent product. The PA concentrates its knowledge mainly
about the product it represents, being the knowledge and intelli-
gence about the sub-products that the product is made of
associated to the PTA agent.

P. Leitão et al. / Control Engineering Practice 42 (2015) 95–105 99



PAs possess the process plan to produce the product and are
responsible for the following main functions (provided as intelli-
gent services) along their life-cycle, during the production phase:

� Management of the production process of the product by
interacting with RAs to coordinate their actions according to
the production dependencies and the production plan.

� Data collection along the production line about the production
execution of the product aiming to support the monitoring,
traceability and data analysis.

� Re-routing of pallets and particularly adaptation of the control
structure to face the current situation of the production
process.

� Optimization/adaptation of the processing and inspection
operations by correlating the collected processing and
inspection data.

� Customization of the product by considering the adjustment of
the parameters used by the on-board controller that regulates
the product operation.

PAs, by interacting with RAs, are continuously acquiring the
information related to the production process, namely the perfor-
mance indexes, Pj, of the processes executed at the workstations,
which reflects the degree of success of the execution of such
processing or inspection operation. The Pj parameter is expressed
in the interval [0, 1], being 1 the representation of a good process
and 0 a bad process. The determination on this parameter,
performed at the end of each processing or inspection operation
by the associated RA, is dependent of the particularities of each
process; an example, the MA associated to the bearing insertion
station collects data correlating the torque and depth variables
during the execution of the operation, and at the end it determines
the Pj by calculating the proximity of some pre-defined points of
the achieved curve with the optimal curve for this process.

GRACE also introduces the Material/Process/Function/Quality
(MPFQ) model (Rodrigues et al., 2013a) that correlates materials
(something that is needed to produce a product), processes
(operations to process and transform materials into final goods)
and also functions (characteristics of a product item) to the quality

of the product being produced. In this work, the quality is
expressed in several quality indexes (Qi), particularly those related
to noise, energy saving, component conformity, assembly confor-
mity, no-leakage, washing performance, safety and green foot-
print. Considering only the contribution of the processes, the
quality index of a product is given by:

Qi ¼
Xn

j ¼ 1

Pj � SQij ð1Þ

where n is the number of workstations along the production line,
Pj is the performance index of the process performed at the
workstation j and SQij is the parameter correlating the contribu-
tion of each process to the final quality of the product.

The use of the feedback information related to the results of
processing/inspection operations and the MPFQ concept can be
used to design proper self-adaptation mechanisms according to
the particularities of the production system. Examples of these
mechanisms, which will be detailed later, are the configuration of
the inspection tests to be executed by the quality control stations,
through the selection of the proper algorithms and/or testing
parameters, and the customization of the control programme that
regulates the product operation.

PAs can run on the cloud, particularly using High Processing
Computing (HPC) environments to achieve faster processing
capabilities, and can also dynamically self-organize in different
clusters.

4. Embedded intelligence for the on-line decision-making in
the production phase

This section details the use of product intelligence to achieve
self-adaptation and self-optimization in the production phase of
the life-cycle, namely by instantiating the GRACE architecture to
be applied in an industrial factory plant. For this purpose, several
self-adaptation mechanisms were implemented, namely the mon-
itoring of the quality achievement, the adjustment of the func-
tional tests plan and the customization of the parameters of the
appliance's on-board controller.
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4.1. Industrial use case

The use case considered in this work to apply the GRACE
system is an industrial production line that produces a set of
different models of laundry washing machines. A simplified
schema of the production line is illustrated in Fig. 4, being
composed of the washing unit lines A and B, and the assembly
line, complemented by the drum and cabinet lines. Each one of
these lines comprises a set of workstations organized in a
sequential manner according to the assembly process.

The pallets carry the products to be produced through the
production line using a conveyor system, according to a process
plan that specifies the sequence of operations needed to produce
that washing machine model. Workstations disposed along the
production line perform the operations specified in the process
plan, namely processing operations (e.g., seal insertion or tube
welding), inspection operations (e.g., gap control or assembly
visual check) and manual operations (e.g., electronics assembly).
Each pallet is equipped with an active RFID tag, which has a
unique identifier and is capable to store some relevant information
from processes that are being executed. More detailed data related
to the production execution, e.g., results and measurements of
each operation performed in the production area, are dynamically
and real-time stored in a central SQL server database.

The designed agent-based system was implemented using the
JADE framework (Bellifemine, Caire, & Greenwood, 2007), and
deployed in the factory plant by installing the agents in different
PCs distributed along the production line. Each PA is running in a
remote PC that is connected to the physical product through a TCP/
IP network by using the RFID tag placed in the product pallet: the
RFID readers placed in the workstations allow to identify the
current location of the product.

According to the framework established by Meyer et al. (2009),
the positioning of the GRACE PA agent as intelligent product is
illustrated in Fig. 5.

The options concerning the location, level and aggregation of
the intelligence were performed taking into consideration the end
user requirements and the factory constraints. In terms of the level
of intelligence, PAs should be able to reason and apply self-
adaptation mechanisms using the gathered production data, while
in terms of the aggregation of intelligence, the objective was to
consider intelligence about the product itself, namely its quality.
Finally, in terms of location of the intelligence, a remote approach
was considered due to the factory constraints and the need to
preserve the current low-level control running in the
production line.

4.2. Monitoring the quality achievement

PAs are performing an online monitoring of the evolution of the
product quality along the production process by analysing the
evolution of the quality indexes. This mechanism permits to
detect, in real time and at any point of the production line,
generating a yellow warning when the desired quality of a
washing machine being produced is at risk or a red warning when
it is not possible anymore to achieve the desired quality, even if all
the remaining operations would be performed with a performance
of 100%. In this last case, the agent may decide to stop the
production of the washing machine, removing it from the produc-
tion line. The expression to trigger a red warning for the quality
index i at station k, where krn, is the following:

Xk

j ¼ 1

1�Pj
� �� SQijZgapi ð2Þ

where gapi is the maximum allowed margin for missing quality for
the index i.

Fig. 6 illustrates the evolution of the quality index related to the
noise quality parameter along the production stage for two
different washing machines (id “11321003670” and id
“11321003673”) and considering an admissible 10% for the max-
imum gap for the desired final quality. As shown, the washing
machine id “11321003670” was produced fulfilling the desired
quality (at the end, the gap for the optimal quality is 8% which is
within the accepted margin for the product quality). However, the
washing machine id “11321003673” has a red signal at the
execution of the operation #9, which means that the PA decided,
at that point, to remove the washing machine from the production
line since the desired quality will never be reached even if all the
remaining processes are be executed with a success of 100%.

The application of mechanisms for monitoring the quality
achievement can lead to an increase of the production efficiency
and a reduction of the scraps from 3% to 5%. These estimations are
supported by the capability to identify earlier washing machines
being produced that will never reach the desired quality due to
quality unconformities and remove them from the production line
(i.e. saving time and money since good parts are not assembled in
non-acceptable washing machines).

4.3. Adaptation of the functional tests plan

A similar procedure is used to adjust the set of functional tests
to be performed in the Functional Test Area, located near the end

Fig. 4. Layout of the use case production line.
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of the production line, which was designed to verify that the
product components are properly assembled.

The execution of the functional tests uses a parameterized
testing rule that is composed by a list of “elementary action
blocks”, which sequence follows Boolean rules conditioned by
events like the success or the failure of one test/action contained
in a block. Acting on the variable conditions, it is possible to
change the sequence of the testing plan (i.e. if a value is inside or
outside a boundary, the test can jump on a sequence of blocks
instead of others). PAs can customize the default testing plan by:

� Adjusting the sequence of the tests for a specific washing
machine, e.g., removing some unnecessary tests or adding
new ones.

� Personalizing the operator messages, e.g., highlighting particu-
lar aspects that deserve a more detailed test.

The function embedded in the PA considers the gathered infor-
mation along the production line for each process (i.e. the Pj
information), and the advices provided by the IMA, to calculate the
set of variables that define the sequence of tests in the generic testing
rule that is used by the PLC to control the functional test station. For
this purpose, the set of collected Pj is correlated with the MPFQ
table (representing the dependencies between the causes, i.e. Pj, and

the consequences, i.e. the vark parameters), taking into consideration
the model of the washing machine, as illustrated in Fig. 7.

As an example, the calculation of var1 (related to the noise
index) considers the Pj collected along the production line to
customize the testing rule, and particularly those related to the
bearing insertion and vibration analysis stations since they are the
main causes for this performance deviation.

The calculated vark parameters are written in the “Table of
Parameters”, which are posteriorly used by the testing rule running
in the PLC. When matching the generic testing rule and the vark
parameters written in the “Table of Parameters”, the testing plan is
customized for the particularities of the produced washing
machine, performing measures and sequences adapted for the
specific appliance under test. As example Rodrigues et al. (2013a):

� If the var1 is set in the interval [0.7, 1]: no additional message is
displayed to the operator.

� If the var1 is set in the interval [0.3, 0.7]: a message is displayed
to the operator, warning to take special attention during the
execution of the functional test.

� If the var1 is set in the interval [0, 0.3]: a different message is
displayed to the operator, warning that something suspicious
happened during the production that requires the implemen-
tation of additional procedures during the execution of the
functional test.

The adaptation of the functional tests for each washing
machine allowed to reduce, by approximately 20%, the time
devoted to perform the functional tests, which implies an increase
of the production efficiency. Additionally, the introduction of more
effective and self-adapted quality control procedures allows an
estimated increase of the product quality and to reduce the non-
conformities of about 1.5%.

4.4. Adaptation of the on-board controller parameters

Another important and innovative control loop integrating
process and quality control is related to the customization of the
parameters of the on-board controller installed in the produced
washing machine (and not derived from a default programme and
parameters). The adaptive adjustment of the parameters of the on-
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Fig. 5. Positioning of the GRACE Product Agent as Intelligent Product according to the framework established by Meyer et al. (2009).

P. Leitão et al. / Control Engineering Practice 42 (2015) 95–105102



board controller allows to reduce significantly the dispersion of
performance between products, taking into account the results of
the inspection tests performed along the production line and to
keep its performance within specifications even in case of assem-
bly problems. In this way, each final product will be calibrated for
its specific characteristics in order to reach maximum efficiency
and optimize compliance to specifications.

As illustrated in Fig. 8, the PA correlates the acquired knowl-
edge along the production line using proper algorithms, also
combined with the advices provided by the IMA agent, to
determine the optimized parameters to be written in the EEPROM
(Electrically-Erasable Programmable Read-Only Memory) of the
on-board controller. This allows to adapt the functioning of the
controller according to the individual characteristics of each
machine, keeping its performance within the specifications. The
operation of writing these parameters to the EEPROM, updating
the default parameters already stored in the controller, is accom-
plished by a writer machine represented by a RA, which receives
the optimized parameters from the PA.

The installed demonstrator considered the individual setting of
the control board parameter for the inlet flow valve. This para-
meter is used in the calculation of the time interval the valve is

open, and is therefore crucial for controlling the water consump-
tion of the washing machine. Currently, the same value is used for
all produced machines, although it is known that the valves'
characteristics are different.

The adaptation of the parameters of the on-board microcon-
troller embedded in each washing machine allows to customize
each one to achieve an optimized functioning operation and
providing a significant impact on the sustainability of the washing
machine operation. In particular, the calibration of the inlet flow
valve permits to reduce by approximately 50% the standard
deviation in the washing machine water consumption. This
reduction implies that more efficient washing machine programs
can be implemented with a 5% reduction in water and energy
consumption.

5. Embedded intelligence for the operation phase

An extension to the GRACE project is the consideration of
product intelligence to cover the post-production life-cycle phases,
namely the distribution and operation phases.

Fig. 7. Customization of the testing plan Rodrigues et al. (2013a).
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For this purpose, intelligent software agents, i.e. the product
agents, are not anymore running on remote PCs but instead
embedded in the on-board controller of each washing machine
(process performed at the end of the production line and using the
on-board controller already installed in each washing machine). In
particular, the PA is embedded in the mechatronic component
comprising the product itself, a set of sensors and actuators and
the product intelligence.

At this stage, the PA is collecting data about the functioning
operation of the washing machine by using a network of sensors
to measure a set of different parameters, namely the motor current
value, vibration, temperature, tilt, humidity and water flow. The
data gathered during the washing machine operation allows to
perform on-line monitoring and data analysis, being able to self-
adapt the functioning parameters written in the on-board con-
troller (based on pre-defined correlation functions). Additionally,
and besides to adjust the controller parameters, the PA is able to
use data analytics to ask maintenance interventions and also
provide feedback information to the owner company regarding
the post-sales services and the re-design of future models. For this
purpose, the huge amount of data collected during the product's
functioning, stored in cloud systems, may require the application
of big data techniques, probably also running in the cloud.

The main benefits of the product intelligence at this phase rely
on two different vectors:

� Improvement of the quality and behaviour of the washing
machine aiming the customer satisfaction.

� Improvement of the design of future models of the product to
be delivered by the manufacturing company.

These vectors are linked to the levels of granularity associated
to the product scope, being the first one related to the short
operational functioning and customer satisfaction, and the second
one related to longer feedback loops associated to strategic and re-
design of future product models.

6. Conclusions

Product intelligence is a new industrial manufacturing control
paradigm aligned with the context of cyber-physical systems,
providing benefits in terms of production efficiency, energy
efficiency, product quality, and product customization by offering
a new kind of services, e.g., on-line monitoring, traceability, self-
diagnosis, self-maintenance and remote maintenance, aiming the
customer satisfaction.

The paper explores the product intelligent concept by describ-
ing the GRACE experience acquired during the implementation of
an agent-based solution in a factory plant producing laundry
washing machines for integrating process and quality control.

The PA established in the GRACE architecture addresses the
requirements defined by Wong et al. in the following manner:

a) It possesses a unique identification, namely using a RFID tag
identifier attached to each pallet carrying on the washing
machine.

b) It is capable of effectively communicating within its environ-
ment, particularly with RAs representing processing and
inspection stations for allocating and adapting the execution
of operations and with IMAs to get optimized advices over the
production policies.

c) It stores data about itself, namely the data collected locally by
the agents in charge of the process and quality control, namely
MAs and QCAs, during the execution of the product along the
production line.

d) It displays its features or production requirements to the other
system actors by using the FIPA ACL (Agent Communication
Language) and the proper FIPA interaction protocols.

e) It participates in relevant decision-making processes to its own
destiny, particularly defining and adapting the best parameters
for the execution of processing and inspection operations,
selecting the functional tests to be performed on the product
and customizing the parameters to be written on the on-board
controller.

The preliminary achieved results for the production phase
showed an increase of the production and energy efficiency, an
increase of the product quality and customization, as well as a
reduction of the scrap costs. Usually, the product intelligence
focuses the re-scheduling in shop-floor or supply chain. However,
in this work, the innovation relies on the use of product intelli-
gence to provide self-adaptation and self-optimization of process
and product configuration.

The deployment of such hybrid intelligent product solution,
and particularly the intelligence levels, can be performed incre-
mentally and in a modular manner according to the different
phases of the product's life-cycle. In fact, at the moment, the
production phase was deployed and tested in the Whirlpool
factory plant, being the future work related to testing the product
intelligence embedded in the washing machines for the operation
phase, since it requires longer feedback loops.

Acknowledgements

This work has been partly financed by the EU Commission, within
the research contract GRACE coordinated by University Politecnica
delle Marche and having partners SINTEF, AEA srl, Instituto Politécnico
de Bragança, Whirlpool Europe srl, Siemens AG.

References

Anke, J., Wolf, B., Hackenbroich, G., Do, H., Neugebauer, M., & Klein, A. (2008).
PROMISE: product lifecycle management and information tracking using smart
embedded systems. In: M. Mühlhäuser, & I. Gurevych (Eds.), Handbook of
research on ubiquitous computing technology for real time enterprises (pp. 559–
566). Hershey, PA: Information Science Reference. http://dx.doi.org/10.4018/
978-1-59904-832-1.ch025.

Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems
with JADE. Wese Sussex, England: Wiley.

Böhler, T.. “Industrie 4.0 - Smarte Produkte und Fabriken revolutionieren die Industrie”,
Produktion Magazin, 10 Mai 2012. Aaccessed on 3.4.14.

Colombo, A. W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R.,
Jammes, F., & Lastra, J. M. (Eds.). (2014). “Industrial cloud-based cyber-physical
systems: the IMC-AESOP approach”. Switzerland: Springer ISBN: 978-3-319-
05623-4.

Boy, G. (2012). Orchestrating human-centered design. London: Springer.
Brussel, H. V., Wyns, J., Valckenaers, P., & Bongaerts, L. (1998). Reference architec-

ture for holonic manufacturing systems: PROSA. Computers in Industry, 37(3),
255–274.

ElMaraghy, H. (2006). Flexible and reconfigurable manufacturing systems para-
digms. International Journal of Flexible Manufacturing Systems, 17, 261–271.

Ferber, J. (1999). Multi-agent systems, an introduction to distributed artificial
intelligence. Boston, USA: Addison-Wesley.

García, A., Chang, Y. S., & Valverdeet, R. (2006). Impact of new identification and
tracking technologies on a distribution center. Computers and Industrial
Engineering, 51, 542–552.

Garcia Higuera, A., & de las Morenas, J. (2014). Application of the classical levels of
intelligence to structuring the control system in an automated distribution
centre. Journal of Intelligent Manufacturing, 25(5), 1197–1206.

Gershenfeld, N., Krikorian, R., & Cohen, D. (2004). The internet of things. Scientific
American, 291(4), 76–81.

Giannikas, V., McFarlane, D. 2012. Product intelligence in intermodal transporta-
tion: the dynamic routing problem. In Proceedings of the 3rd international
conference on dynamics in logistics (LDIC’12), Bremen, Germany.

Giannikas, V., Lu, W., McFarlane, D. & Hyde, J. 2013. Product intelligence in
warehouse management: a case study. In V. Marik, J. L. M. Lastra, and P.
Skobelev (Eds.), Proceedings of the 6th international conference on industrial

P. Leitão et al. / Control Engineering Practice 42 (2015) 95–105104

http://dx.doi.org/10.4018/978-1-59904-832-1.ch025
http://dx.doi.org/10.4018/978-1-59904-832-1.ch025
http://dx.doi.org/10.4018/978-1-59904-832-1.ch025
http://dx.doi.org/10.4018/978-1-59904-832-1.ch025
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref2
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref2
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref3
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref3
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref3
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref3
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref4
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref5
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref5
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref5
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref6
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref6
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref7
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref7
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref8
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref8
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref8
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref9
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref9
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref9
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref10
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref10


applications of holonic and multi-agent systems (HoloMAS’13), lecture notes in
computer science (pp. 224–235). Vol. 8062. Springer Berlin Heidelberg.

Gruber, T. (1995). Toward principles for the design of ontologies used for knowl-
edge sharing. International Journal of Human and Computer Studies, 43(5–6),
907–928.

Jover, J., Thomas, A., Leban, J., & Canet, D. 2010. Pertinence of new communicating
material paradigm: a first step towards wood mass marking. In Proceedings of
the new achievements in materials and environmental sciences. Nancy, France.

Kärkkäinen, M., Ala-Risku, T., & Främling, K. (2003). The product centric approach: a
solution to supply network information management problems? Computers in
Industry, 52, 147–159.

Kiritsis, D. (2011). Closed‐loop PLM for intelligent products in the era of the internet
of things. Computer‐Aided Design, 43(5), 479–501.

Koestler, A. (1969). The ghost in the machine. London: Arkana Books.
Leitão, P. (2009). Agent-based distributed manufacturing control: a state-of-the-art

survey. Engineering Applications of Artificial Intelligence, 22(7), 979–991.
Leitão, P., & Restivo, F. (2006). ADACOR: a holonic architecture for agile and

adaptive manufacturing control. Computers in Industry, 57(2), 121–130.
Leitão, P., Mařík, V., & Vrba, P. (2013). Past, present, and future of industrial agent

applications. IEEE Transactions on Industrial Informatics, 9(4), 2360–2372.
López, T., Ranasinghe, D., Patkai, B., & McFarlane, D. (2011). Taxonomy, technology

and applications of smart objects. Information Systems Frontiers, 13(2), 281–300.
Lüder, A., Hundt, L., Foehr, M., Holm, T., Wagner, T., Zaddach, J.-J. 2010. Manufactur-

ing system engineering with mechatronical units. In Proceedings of the IEEE
conference on emerging technologies & factory automation (ETFA’10) (pp. 1–8).

McFarlane, D., Sarma, S., Chirn, J. L., Wong, C. Y., & Ashton, K. (2003). Auto ID
systems and intelligent manufacturing control. Engineering Applications of
Artificial Intelligence, 16(4), 365–376.

McFarlane, D., Giannikas, V., Wong, A. C. Y., & Harrison, M. (2013). Product
intelligence in industrial control: theory and practice. Annual Reviews in Control,
37(1), 69–88.

Meyer, G., Främling, K., & Holmströmc, J. (2009). Intelligent products: a survey.
Computers in Industry, 60, 137–148.

Morel, G., Valckenaers, P., Faure, J.-M., Pereira, C. E., & Diedrich, C. (2007).
Manufacturing plant control challenges and issues. Control Engineering Practice,
15(11), 1321–1331.

Parlikad, A. K., & McFarlane, D. (2007). RFID-based product information in end-of-
life decision making. Control Engineering Practice, 15(11), 1348–1363.

Rajkumar, R., Lee, I., Sha, L., Sankovic, J. 2010. Cyber-physical systems: the next
computing revolution. In Proceedings of the 47th ACM/IEEE design automation
conference (DAC’10), 13–18 June 2010( pp. 731–736).

Rodrigues, N., Leitão, P., Foehr, M., Turrin, C., Pagani, A., Decesari, R.2013a.
Adaptation of functional inspection test plan in a production line using a
multi-agent system. In Proceedings of the IEEE international symposium on
industrial electronics (ISIE’13), May 28–31, Taipei, Taiwan.

Rodrigues, N., Pereira, A., & Leitão, P. (2013b). Adaptive multi-agent system for a
washing machine production line Lecture Notes in Computer Science. In:
V. Marik, J. Lastra, & P. Skobelev (Eds.), Industrial applications of holonic and
multi-agent systems for manufacturing, Vol. 8062 (pp. 212–223). Berlin/Heidel-
berg: Springer.

Sallez, Y., Berger, T., & Trentesaux, D. (2009). A stigmergic approach for dynamic
routing of active products in FMS. Computers in Industry, 60, 204–216.

Thomas, P., & Thomas, A. (2013). An approach to data mining for product-driven
systems Studies in Computational Intelligence. In: T. Borangiu (Ed.), Service
orientation in holonic and multi agent manufacturing and robotics, Vol. 472 (pp.
181–194). Springer-Verlag.

Wang, G., Huang, S. H., & Dismukes, J. P. (2004). Product-driven supply chain
selection using integrated multi-criteria decision-making methodology. Inter-
national Journal of Production Economics, 91(1), 1–15.

Winkler, M., & Mey, M. (1994). Holonic manufacturing systems. European Produc-
tion Engineering, 19(3), 10–12.

Wong, C.Y., McFarlane, D., Alunad Zaharudin, A., Agarwal, V. 2002. The intelligent
product driven supply chain. In Proceedings of the ieee international conference
on systems, man and cybernetics (SMC’02).

Wooldridge, M. (2002). An introduction to multi-agent systems. UK: JohnWiley &
Sons.

P. Leitão et al. / Control Engineering Practice 42 (2015) 95–105 105

http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref11
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref11
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref11
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref12
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref12
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref12
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref13
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref13
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref14
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref15
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref15
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref16
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref16
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref17
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref17
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref18
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref18
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref19
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref19
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref19
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref20
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref20
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref20
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref21
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref21
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref22
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref22
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref22
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref23
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref23
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref24
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref24
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref24
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref24
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref24
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref25
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref25
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref26
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref26
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref26
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref26
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref27
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref27
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref27
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref28
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref28
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref29
http://refhub.elsevier.com/S0967-0661(15)00091-X/sbref29

	Intelligent products: The grace experience
	Introduction
	Intelligent products: concepts and deployment challenges
	Concepts and theory
	Deployment challenges

	GRACE Multi-agent system for integrating process and quality control
	GRACE Multi-agent system
	Product agent functionalities

	Embedded intelligence for the on-line decision-making in the production phase
	Industrial use case
	Monitoring the quality achievement
	Adaptation of the functional tests plan
	Adaptation of the on-board controller parameters

	Embedded intelligence for the operation phase
	Conclusions
	Acknowledgements
	References




