
Dynamic Composition of Service Oriented Multi-agent
System in Self-organized Environments

Nelson Rodrigues1,3 and Paulo Leitão1,3 and Eugénio Oliveira2,3

Abstract.1 The increasing relevance of complex systems in
dynamic environments has received special attention from
researchers during the last decade. Due to the need of a flexible and
quick response to the clients’ requirements, such systems become
an important challenge. In this paper, self-organizing mechanisms
capable to compose services in an automatic, flexible and
decentralized manner are presented, mostly in which their adaptive
behavior is concerned. Due to the distributed approach, we also
investigate the adaptation regarding the structure of each entity.
We thus propose an innovative self-learning mechanism that
allows the distributed entities to learn structural relations allowing
the system’s evolution. This hypothesis were explored and
validated by implementing a multi-agent system, in accordance
with trust mechanisms to improve the interaction of agents.

The achieved results show the correct agent’s states in which the
agents must evolve and self-organize, improving the system
benefits band increasing the organization performance.

1 INTRODUCTION

The increasing relevance of complex systems in dynamic
environments (e.g. the buyer-supplier network) has received
special attention during the last decade from the researchers. Such
systems need to satisfy client’s desires, which, after being
accomplished might change again, thus becoming a very dynamic
situation [1]. Usually centralized approaches are implemented,
which might fall into a large monolithic software packages, being
inadequate because they do not efficiently support the needed
flexibility and real time re-configurability. Concentrating the entire
control on a single coordinator can create a bottleneck and, also,
the coordinator needs to have previous knowledge about each web
service component in the environment. Currently, based on the
benefits of distributed control, decentralized approaches have been
pointed out as fitted to address this challenge [2]. On the other

1 LIACC - Artificial Intelligence and Computer Science Laboratory, Rua
Campo Alegre 102, 4169-007 Porto, Portugal
2 Faculty of Engineering - University of Porto, Rua Dr. Roberto Frias s/n,
4200-465 Porto, Portugal , email: eco@fe.up.pt
3 Polytechnic Institute of Bragança, Campus Sta Apolónia, Apartado 1134,

5301-857 Bragança, email: {nrodrigues, pleitao}@ipb.pt
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IAT4SIS ’14, August 18 2014, Prague, Czech Republic
Copyright 2014 ACM 978-1-4503-2890-6/14/08. . . $15.00.
http://dx.doi.org/10.1145/2655985.2655990

hand, the implementation of decentralized discovery, composition
and execution can also increase the complexity of the system
regarding the network traffic to properly coordinate as the
distributed control itself [3]. Thus, adaptation and intelligence,
considering the requirements, must be properly addressed, being
multi-agent systems (MAS) a suitable paradigm for supporting
such distributed intelligence. A flexible and automatic integration
can be achieved by joining the intelligence and autonomy provided
by multi-agent systems and the interoperability offered by Service-
Oriented Architecture (SOA) solutions [4].

This work explores the service-oriented multi-agent system
benefits together with self-organization principles. Distributed self-
adaptation changes in each entity allow agents to fulfil the client’s
needs, by providing agility and quick responses, permitting to the
clients to save time and money by simplifying the task’s
complexity to be carried out. To accomplish the client’s needs it is
necessary, in a dynamic manner, to compose a set of services
provided by multi-agent systems, in order to offer better solutions
to the clients. Clearly, the minimization of the planning and
execution time of services on demand, must be considered.
Particularly, and since the self-organization principle is explored, it
is necessary to take into consideration the Quality of Services
(QoS) [5] of composition as a continuous task to carry on.

QoS have to be based on service performance, cost, availability,
response time and also the trustworthiness of the agent. It will be
possible to adapt the agent’s behaviors selection that will indirectly
change the network topology to a more consistent one, structured
with higher quality and better trustworthiness of the performed
services. The assumptions on this approach allow joining several
agents belonging to different societies after they make their mutual
connections evolve. Due to the automatic creation of new relations,
an agent can smoothly enter into a society. On the opposite side,
the weak connections might be eliminated avoiding saturation of
the system with useless agents. In this way, the system achieves
equilibrium regarding the responsiveness from all societies, since
the agents are able to evolve to accomplish the requests.

 The experimental results we have obtained highlight the
benefits of a truly distributed and decentralized solution that
performs an accurate self-organization model, which directly
impacts the system performance. The system is able to self-adapt
by performing the same services according to the client’s needs,
but with less costs and better response times.

The rest of the paper is organized as follows: Section 2
discusses the related work and Section 3 overviews the main
principles of the self-organized, service-oriented, agent-based
architecture, for dynamic and reconfigurable systems. Section 4
presents the formalization of the proposed model for the dynamic,
decentralized service composition in evolutionary systems. Section

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153415067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5 details the system evolution of the learning module embedded in
each agent that will support the service discovery and composition
phases. Section 6 describes the experimental setup and analyses the
achieved results. Finally, Section 7 wraps up the work done with
the conclusions and future work.

2 RELATED WORK

Self-organization was originally introduced by Ashby [5], and
refers to a process of cooperation between individual entities
without any centralized decision or centralized knowledge. In
dynamic and complex systems, it arises as a coordinated global
model [6] of a cooperative chaos. Self-organization systems are
usually studied in the economy, biology, computer science and
other fields [7], [8]. Several authors have proposed different
representations of self-organization models, for example, cellular
automata and differential equations, fail to move to the realistic
prototype, in a simple manner [9]. The literature review addresses a
large variety of self-organized systems, given some importance to
the service selection, which has been widely studied.
Unfortunately, the majority of the approaches for service discovery
process rely on a centralized repository and therefore the self-
organization of the system is centered in a bottleneck issue. Several
attempts have been tried to understand the benefits of the
distributed adaptations, for example based on biological cells to
maintain an efficient and robust network [10]. Clearly, the key
question is “when and how do adapt” aiming to have a dynamic
and adaptable network.

The interaction among the entities or observations is the answer
for the “how”. For example, Val et al. [11] propose a self-
organization network, where the agent’s relations are created based
on the social plasticity and incentives discovered on the network.
In relation to “when”, some approaches [11] change the system due
to new policies and requirements from the consumer [6], when a
new service is requested [12] or in the worst cases when an error or
disturbance occurs. For instance, Vogel and Giese [13] take into
consideration the feedback loops and the criteria of QoS, using a
model-driven approach for self-adaptation, referred as off-line
adaptation. Our approach uses an agent-based model, since it is
particularly easy and flexible to model complex systems as a
collection of cooperative autonomous agents. Our proposal differs
from the previous, since it evolves on the fly [1] without the need
to stop, reprogram and reinitialize [14], [15], [11], through the
local behavior and structural relations adaptation. Furthermore,
learning mechanisms are demonstrated to maximize the confidence
of the evolution, particularly from whom and when to evolve.

3 SERVICE-ORIENTED AGENT-BASED
SYSTEMS

The proposed architecture, combines service-oriented and multi-
agent systems paradigms, taking advantage of some points
previously investigated [1]. The first paradigm represents the
interoperability, loose coupling and an abstraction of the business
logic. The second one provides decentralization, distribution of
decision-making entities and autonomy. Therefore, it arises the
necessity to separate a set of intelligent and autonomous agents,
capable to cooperate in order to accomplish the client’s
requirements from the static part represented by the services, as
illustrated in Fig. 1.

In the design agent’s societies, the following agent’s roles were
defined: consumer, provider, workflow, ontology and reputation. A
consumer represents the role entity that has the need to request a
service, a provider has the capability to provide one or more
services that correspond to its skills. Note that each agent has the
autonomy to choose the service that it wants to offer, as well the
conditions, e.g. price and QoS.

Figure 1. Combining the interoperability of SOA and the intelligence and

autonomy of MAS [1].
Additionally, due to the provider due to the provider role, the

agent can decide according to its skills which service becomes
public, in order to be offered. The workflow monitors QoS and trust
values of available services, to perform, in a dynamic way, the
proposed workflow composition based on several criteria, e.g.
availability and price. The reputation gathers agent’s opinions
about a specific service for future advices. Lastly, the agents have
the semantic capability, by the ontology role, to translate concepts,
in order to support the proper understanding among the agents and
to solve misunderstandings based on similarity mechanisms. Thus
the agents proposes, continuously, a set of hypotheses of the
complex task of service composition. The proposed architecture
follows a truly decentralized system, without the presence of a
central node that supports the discovery of the desired services.
This means the removal of centralized coordinator, which can be a
probable bottleneck.

4 DYNAMIC AND DECENTRALIZED
SERVICE COMPOSITION

In distributed systems, agents must cooperate among them
themselves to perform their goals and increase the utility of the
whole systems. The self-organization of the services provided by
the agent-based system, appears as a crucial role in such
environments. In our approach the self-organization of services
comprises the execution of the following tasks, discovery, in a
decentralized manner, the desired dynamic composition of
services, and finally execute the best designed service composition.
Algorithm 1 describes the decentralized discovery and selection of
the most trusted neighboring agents to achieve the composition.

4.1 Decentralized discovery

The discovery procedure is triggered by an agent, when it receives
a request to provide the service agInput (line 1), which is not able
to perform (line 20). In this situation, or when the composition
quality is too low, the agent tries to find potential neighbors who
can offer the service (lines 9, 23), propagating the service request.
The discovery phase gathers only most promising agents [15] to
execute the service or to offer their atomic services (lines 7, 21). It
is necessary a multi-criteria function, to select a possible agent,
formalized by a Multi-Attribute Utility Theory (MAUT) to
maximize the utility value, represented as, � � ∑��� ∗ �	
���
��� ∗ ����.

Algorithm 1: Requests (agInput)
1. compResult ← CompositionStrips(agInput)
2. if compResult = successful then
3. conf ← calculateQoSTrust(compResult)
4. if conf > 0.5 then //0.5 for example
5. results ← execCompOperation (compResult)
6. else
7. Nt ← SelectNeighbor(Aginput, this)
8. TTL ← 9 //for example
9. Results ← forwardMessage(Aginput, TTL, Nt)
10. Sol ← rankSolution(Results)
11. compResAux ← CompositionStrips(Sol)
12. confAux ← calculateQoSTrust(compResAux)
13. if(confAux >conf & compResAux =successful) then
14. results = execCompOperation(compResAux)
15. else
16. results = execCompOperation(compResult)
17. endIf
18. endIf
19. updateAnalyze(this, agInput, results)
20. else
21. Nt ← SelectNeighbor(Aginput, this)
22. While Nt.size <> 0 do
23. Results ←forwardMessage(Aginput,TTL, nt(i))
24. endWhile
25. Sol ← rankSolution(Results)
26. Requests(sol, Aginput) //forward the request soution
27. endIf

In this multi-attribute function, the utility � stands for the overall
expected utility of different criteria, namely trust, reputation, QoS
and price, being �� the weight of the criteria.

In order to control the amount of messages exchanged, in larger
societies, it is defined a cost to manage how deep the message can
go, namely how many times they are forwarded (line 8). The agent
after spreading the requests, waits for the filtered comeback
responses, during a specific time, then the agent must select
according to the consumer’s requirements the most appropriate
service composition to execute (lines 5, 14, 16).

4.2 Service composition

The service composition, considering the set of services discovered
in the previous phase is implemented in a decentralized manner.
The service composition takes insights from the services’
choreography, which defines the way the services are connected
and the data flows in specific directions [16]. Particularly, each
agent can produce various plans with the same set of services,
creating several composition hypotheses for the same input
requirements (lines 1, 11).

The planning algorithm embedded in each agent for the service
composition is based on the well-known automated STRIPS
planners, which input information comprises, mainly, the pre- and
post-conditions for each action and the goal that the algorithm is
trying to reach [17].

The results of the algorithm are a set of possible service
compositions, the agent selects the plan (composition) with the best
quality. Particularly, it is necessary another multi-criteria function,
to select the best composition, based on global QoS, cost and price.

If the agent needs to ask for distributed composition help (lines
9, 23), it is necessary to calculate the overall composition
produced, by collecting from each composition participant the
service quality, price and trust. Being up to the consumer to take
the decision to accept or not such composition.

5 SYSTEM EVOLUTION

During the agent life-cycle, the agent is continuously trying to
learn from its history. The historical information, collected from

the learning agent’s interactions, permits the agents to evolve more
accurately. The agents can adapt and evolve in terms of behavioral
self-organization, which means, modifications from the agent’s
local behavior, e.g. learn new services by analogy or adapt the
execution parameters, and secondly of structural self-organization,
for example, modification of the relationships among agents.

5.1 Learning Behavioral Self-organization

The execution of behavioral adaptation will be supported by
embedding learning mechanisms. The agents can adapt their
knowledge, regarding the behavior, immediately after executing
and updating the execution (line 19 from Algorithm 1). Algorithm
2 describes the agent collecting information from the environment.
In our case, this information is gathered from the interactions of
agents, in which it is possible to qualify the action performed.

In an effort to take accurate and better decisions in the future,
allowing the self-organization of future behaviors, the agent
updates and analyses its memory according to the execution results
contracted (lines 4 to 8), these lines measure the satisfaction of the
contract compared to what really happened. For example, QoS and
trust values after being saved and aggregated on the database (lines
1, 2), are calculated the actual values for the particular agent (lines
3, 4), being these values used later.

All these steps lead to the best trustworthy choice in the future
allowing the behavioral adaptation. However, this adaption is a
continuous task, since the feedback to assign agreements will
change, in a distributed manner, for example, in a particular
context, an agent can offer services with high confidence, which is
variable over time.

Algorithm 2: updateAnalyze (agent, service, results)
1. updateQoS(agent, service, results)
2. updateTrust(agent, service, results)
3. trustValue ← getTrustResult(agent, service,results)
4. QoSValue ← getQoSResult (agent, results)
5. reward ← computeReward(trustValue, QoSValue)
6. state ← getAgentState (agent)
7. act ← getAgentAction (agent)
8. updateReinforcementLearning(state, act, reward)
9. createConnection(state, act, reward)

Just as important as the behavioral adaptation is the structural
adaptation in the evolution of the system. The last line of
Algorithm 2 considers the evolution in the network, explicitly the
structural adaptation by managing the structural relations. In
addition, a novel approach it is introduced, which advocates that, at
least the structural decisions of the agents should be performed
when the knowledge is stable.

5.2 Learning mechanism to support the
Structural Self-Organization

The agent possesses the necessary information to recognize if it is
capable to evolve its structural relations in a confident manner or
not, realizing if there is a slight disturbance that might produce
significant results, leading to adapt to become more stable, and also
to ensure that the system becomes steadier and consequently more
robust to failure events.

This kind of knowledge is taken based on the agent’s learning
mechanism, which recognizes the reward value (positive or
negative) of a specific action, in an agent’s internal state. Thus the
Q-learning algorithm was used [11], since it is a well-known
reinforcement algorithm that allows getting the expected utility of

actions at particular states without the need to know the
environment model, actually the environment model is built after
several interactions. In this specific case the agent only needs to
recognize the reward for a specific action in a particular state. The
value associated to each state-action pair, namely the q-value,
represents the expected accumulated reward for a particular action
at a given state. In our particular case the state is defined in the
expression (1). State �	� ActualTrust, ActualQoS, Si " (1) Si	 ∈ $�%1, … , �%() actualTrust ∈ $*��+, (�	,-., /-+) -0�
-.��� ∈ $*��+, (�	,-., /-+)
The state represents the agent's state at a given instant. This level of
trust is built by the state and the quality of a particular service. The
representation of an action is presented in expression (2),

Action = < path, Si > (2) 1-�2	 ∈ 1{Ag ,...,Ag }n

This second q-learning vector is built by the set of agents that will
create a path of agents that are necessary to execute the service.
The reward considers the agent feedback state-action pair, and its
result is defined in the expression (3), Reward��State,	Action,	AgentFeedback" (3)

The reward is calculated by a multi-attribute function, equation (4),
after the agent has executed the service, using a given weight for
each feedback, results in a single value, where ; represents �QoSFeedback	 < 	w1	
 	trustFeedback	 < 	w2�, note that the
range values {	%-.
>1, %-.
>2, %-.
>3}, can be parameterized, but
we will use {	%-.
>1 � 0.5, %-.
>2 � 0.4, %-.
>3 � 0.1}

D-
�	�;� � E FG	%-.
>1 H 	>�
.� I 1, *��+FG	%-.
>2	 � 	>�
.�, (�	,-.FG	%-.
>3 H 	>�
.� I %-.
>2, /-+ (4)

After getting the classification of {good, normal, bad} the reward
analysis is performed. If it is considered good, then a reward r is
given; if the result is “normal”, then the reward is half of the
“good“ reward, since it has finished the task; If it is “bad” it suffers
a penalization. Summing up, the reward function will retrieve a
quantitative value from {good, normal, bad}, see equation (5).

J>K-	+�	>�
.�� � L FG	*��+	, 	FG	(�	,-., 	/2FG	/-+, 	2 ∗ 1>(-.FN-�F�((5)

Thus, reward and punishment policies can be modeled in order to
manage the responsibility of an agreed result.

Taking into account the learning model, the system can evolve
in a stable manner, i.e. when it is converging (see Fig 2). If such
behavior occurs, the agent proposes the creation of new
connections.

Figure 2. Learning mechanism for a specific service, contrasting the value

of learning with particular reward.

Analyzing the q-value axis in Fig. 2 it is notorious a tendency of
the line 1, with the probability of success agreement between two
agents of 97%, converging faster. In the converging phase, for
example, at iteration 110, the agent is in a good position to evolve
its structural relations with more utility. If the agent evolves too
quickly, for example in iteration 70, the utility will be worse, since
the agent is not stable to take an accurate decision.

The utility of the structural self-organization is, therefore,
strongly related to the success of the stability, for example the line
2, with P(success)=93%, will take more time to become stable,
since it has more broken contracts than with higher probability, and
thus a more inaccurate behavior.

After the agent realizes that when it is a good time to evolve
structurally, it efforts go into its structural model adaptation, trying
to optimize its own relations, for instance to cooperate directly with
other agents, and thus create new connections more valuable. In
Algorithm 3 the function to manage the creation of the new
connection is defined.

Algorithm 3: createConnection (state, action, reward)
1. Q’ ← learning(state, action, reward)
2. convergenceValue ← 0.001
3. if (oldLearning-Q’) < convergenceValue then
4. if count > countStability then //100 for example
5. agent ← adaptModel()
6. sendMessage(agent)
7. else
8. count ← count + 1
9. endIf
10. else
11. count ← 0
12. endIf

Analyzing the algorithm, each agent compares its own old
knowledge base with the latest one (line 3), if the difference is less
than convergence value, then it is considered a possible stable
system, although it is necessary to have this same result during
some amount of others iterations, in order to justify the stability
(line 4). When the agent believes that it has a stable behavior, he
tries to adapt the model of their world (line 5). Spontaneously, in
order to give opportunities to cooperate with new agents, some of
the time it is selects an agent with lower quality and trust value,
only if the reputation of that specific agent is not negative (line 6),
thus allowing the analyses of exploitation vs. exploration of the
system.

The proposed structural model does not stop the agent’s
behaviors, since it is triggered as parallel behavior, thus it
continues to answer to other requests.

6 EXPERIMENTAL SETUP/VALIDATION

The proposed self-organization model was implemented and
experimentally tested in a case study where evolution is a
requirement.

6.1 Experimental setup

In the implemented setup, a society of agents following the
described approach was implemented by using the JADE
framework [18]. Each agent includes the roles of producer, and
consumer. Thus it was created a network with 100 agents with
random connections among them, to each agent it was assigned a
set of services. Based on the assumption that different agents can
produce the same services, but with different costs, thus it were
defined the cost of the services by each agent (besides of the

service execution cost, the agents must pay for forwarding
messages, this way we can control the amount of forwarded
messages), it also represents the probabilities of success for
agreements fulfilled, being these values created randomly in the
agent network creation phase. Then, several service requests to
different agents were performed, allowing the composition,
discovery and execution tasks to be computed automatically,
expecting in parallel, the self-organization phenomenon.

The implementation considers a system of decentralized
discovery, where is necessary to cooperate, creating a primitive
frame (Id, TTL, Src, Dst, Sv, Perf, Res) to send between neighbors.
The Id reflects the identification of the service (Sv) request. Src tag,
represents the agent source and the Dst the agent destination. The
Perf indicates the type to request {Request, Propose, Execute, etc.}
that will be forwarded until the TTL reaches 0, and finally the Res
is a container that comprises the result information of that frame.

Considering the structural learning mechanism, a random walk
algorithm was implemented, in order to select the entry point of the
service request, avoiding a greedy selection by requesting always
to the same agent. The Q-learning configuration in each agent
corresponds to gamma=0.8, the 	=1 for the good, normal or bad
rewards, and the acceptance of a good learning convergence is
equal or up to th=0.5.

6.2 Self-organization results

All the agents of the generated society can receive service requests
and answer them in the best possible manner, by trying to
compose, discover and select the most appropriate agents to offer
their services. To illustrate the proposed benefits, it was extracted
from the scenario produced a network of agents. Each service is
composed by de-coupling of other services, namely,
ServiceA={s1,s2,s3} and ServiceB={s3,s4,s5}. It can be observed
what services are provided by each agent, for example agent agB
offers the services {s2, s5} at the prices 1, 2 respectively. The
probability for the success agreement contract, with agent agC as
shown is 80%. It is notorious how the discovery flows in the
network. Requests are directional, and responses are in counter-
flow, for instance, agent agA can make requests to agent agB, after
that, agent agB to agent agC, but then, the agent agC cannot
forward requests to its neighbors.
The goal, as already stated, is to create automatically the best
composition, forwarding messages if needed. Taking into
consideration the global costs, which can be allocated to messages'
average cost before and after the evolution, as well as the services’
execution costs, which are stored in a vector apart, allowing a
clearer analytical perception. The insights about this work
demonstrate a network capable to solve the requests with less
agents, in the same dataset.

Fig. 3 describes the relationships in the network between agents,
before evolving (depicted by arrows with normal line). The dotted
lines illustrate the potential connections that the agent agE
proposes, according to their experience. The agent agA have the
link to the agent agB, however, after running the system requesting
the ServiceA, the agent agE will learn the environment
connections, and then proposes a new cooperative link {agE→
agB}.

Figure 3. Agent’s network from, the agent agE point of view.

At this point the agent sends a message to cooperate directly
with the agent agB, in order to reduce the execution costs. The
probabilities, created for the new links, as well as the costs are
created randomly. Obviously new connections with higher costs
and lower success probabilities, are not created. The agent agE
executes the service composition with lower cost, defining cost as
Cost=w1< OF	+ w2<◊F	+w3<(1-○�), the tests were carried out for the
entire network with the weights w1 =0.2, w2=0.3 and w3=0.5;

Table 1. Costs involved before and after the evolution occurred for the
request of the ServiceA.

Agent's chain □ ◊ ○ Cost
Before Evolution

agE(s1)→agA(s3)→agB(s2) 12 6 0.56 4.42
agE(s1)→agE(s3)→agA→agB(s2) 12 5 0.56 4.12
agE→agA(s1)→agA(s3)→agB(s2) 12 5 0.56 4.12

After Evolution
agE(s1)→agE(s3)→agB(s2) 2 5 80 2

◊ execution cost □ connection cost ○ probability success

Regarding the execution’s results of the ServiceA illustrated in
Table 1, the agent agE can evolve. Considering one composition,
for example agent agE forwards the request to agent agA, then
agent agA can execute the service s1, and service s3, but it is still
missing service s3, which will be executed by agent agB by the
forwarding request of agent agA. The following procedure can be
stated as agE → agA(s1) → agA(s3) → agB(s2), where:

• execution cost is calculated by the table in Fig. 3. Execution of
service s1 and s3 by the agent agA it costs 1 and 3 respectively
and the service s2 in agent agB costs 1 (◊ = 5).

• connection cost considers the connections from agE to agA to
agB (□ = 12).

• regarding the probability results, it is considered the probability
of agE with agA, and agA with agB (○ = 0.80 <	0.70 = 0.56),
see the graph in Fig 3. for further details.

Since the q-value from the agent agE has stabilized, then the agent
begins to explore the ServiceA composition, using the agE(s1) →
agB(s2) → agE(s3) composition. Since this composition has a low
cost of execution and connection, and also a connection with
greater confidence, thereby being selected for future requests.

For the execution of ServiceB, agent agE is also required as an
entry point. After several requests the agent agE proposes a new
connection agE → agC, with probability success 70%, see Table 2.
After the evolution of these two connections have occurred, agent
agE when queried to perform ServiceB, it tends for the following
selection agE(s3)→agB(s5)→agC(s4), because of the cost of the
composition. Note that the agents can explore all possible
compositions that are offered by the planner, for example the agent
agE when performs the serviceB take advantages of connection
created regarding the execution of serviceA.

Table 2. Costs involved before and after the evolution occurred for the
request of the ServiceB.

Agent's chain □ ◊ ○ Cost
Before Evolution

agE(s3)→agF→agC(s4)→agC(s5) 10 7 0.81 4.195
agE→agF(s3)→agC(s4)→agC(s5) 10 6 0.81 3.895

agE→agA(s3)→agB→agC(s4)→agC(s5) 14 8 0.448 5.476
agE(s3)→agA→agB→agC(s4)→agC(s5) 14 7 0.448 5.176

agE(s3)→agA(s4)→agB→agC(s5) 14 3 0.448 3.976
agE(s3)→agA→agB(s5)→agC(s4) 14 6 0.448 4.876

agE(s3)→agA(s4)→agB(s5) 12 5 0.56 4.12
After Evolution

agE(s3)→agC(s4)→agC(s5) 4 7 0.7 3.05
agE(s3)→agB(s5)→agC(s4) 4 6 0.64 2.78

agE(s3)→agB→agC(s4) →agC(s5) 4 7 0.64 3.08
◊ execution cost □ connection cost ○ probability success

Therefore, it can be concluded that all links created bring
benefits, otherwise the agents will not reach to an agreement and
they will not cooperate. However, this does not mean that agents
will use it permanently. Note that the goal is cooperating and
evolve in order to reduce the service composition costs, by
exploring different agents, to be offered to the client.

The system created was tested following the principles based on
the self-organization paradigms [8], namely multiple interactions
from the multi-agent system. We have tested also, the benefits of
the system stability in terms of exploitation and exploration of new
relations achieved through the positives and negatives rewards.

7 CONCLUSIONS

This paper starts by referring the research efforts done on service
composition in complex systems, where all network control is
centralized in a single entity. Some proposed solutions, consider
centralized service registrations, which leads to a bottleneck-type
of problem. Taking this issue into consideration, and expecting to
provide services solutions with lowest throughput costs, we
introduce a truly distributed and decentralized service oriented
agent-based system that positively answers this challenge. Despite
the fact that decentralization brings performance benefits, it also
increases the complexity, as well as the data flow to keep the
distribution synchronized and coordinated. Thus, it requires
behavioral and structural modifications to the system, in order to
enhance the decentralization benefits. We advocate that a dynamic
system capable to discover, compose through interactions and
negotiation protocols, provides an answer to the service requested
to be solved in a self-organized manner. As a consequence, there is
a reduction of the unnecessary traffic in the network to compose or
execute a service by evolving in a correct way.

The developed scenario concerns several service requests to the
society of agents, which comprise a set of autonomous service
oriented agents with no global control. The implementation takes
into account a decentralized discovery mechanism to search in a
dynamic manner for services that are then composed considering
their quality and trustworthiness. The proposed solution allows the
agents to adapt its structural relations, based on the reinforcement
learning mechanism. The experiment allows to execute different
flows of services composition, fulfilling every time the client
needs, namely the continuous requests to the system. Additionally
the system’s organization performance has improved, due to the
self-organization achieved through the learning mechanisms and
interactions among the distributed agents. As a result, more trusted
services with higher quality are allowed.

As a future work, we intend to investigate the design and
implementation of our approach in a real case scenario, for
example smart grids or business to business network operations.
Also explore scenarios of self-organization where the intermediate
agents of service requests, do not share information about their
neighbors, exploring the benefits of selfish agent providers.

REFERENCES

[1] N. Rodrigues, E. Oliveira, and P. Leitão, “Self-organization
Combining Incentives and Risk Management for a Dynamic Service-
Oriented Multi-agent System,” in Technological Innovation for
Collective Awareness Systems, Springer Berlin Heidelberg, pp. 101–
108, 2014.

[2] M. J. Woolridge, Introduction to Multiagent Systems. New York,
NY, USA: John Wiley and; Sons, Inc., 2002.

[3] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized
Orchestration of Composite Web Services,” in Proceedings of the
13th International World Wide Web Conference on Alternate Track
Papers &Amp; Posters, pp. 134–143, 2004.

[4] M. N. Huhns, “Agents as Web services,” Internet Comput. IEEE, vol.
6, no. 4, pp. 93–95, 2002.

[5] W. R. Ashby, “Principles of the self-organizing dynamic system,” J.
Gen. Psychol., vol. 37, pp. 125–128, 1947.

[6] Y. Bar-Yam, “Dynamics of complex systems,” Computers in
Physics, vol. 12. p. 864, 2003.

[7] F. Heylighen, “The science of self-organization and adaptivity,”
Encycl. Life Support Syst., vol. 5, no. 3, pp. 253–280, 2001.

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence:
From Natural to Artificial Systems. New York, NY, USA: Oxford
University Press, Inc., 1999.

[9] W. Elmenreich, R. D’Souza, C. Bettstetter, and H. Meer, “A Survey
of Models and Design Methods for Self-organizing Networked
Systems,” in Proceedings of the 4th IFIP TC 6 International
Workshop on Self-Organizing Systems, pp. 37–49, 2009.

[10] M. Beber and M.-T. Hütt, “How do production systems in biological
cells maintain their function in changing environments?,” Logist.
Res., vol. 5, no. 3–4, pp. 79–87, 2012.

[11] E. del Val, M. Rebollo, and V. Botti, “Combination of self-
organization mechanisms to enhance service discovery in open
systems,” Inf. Sci., 2014.

[12] E. M. Maximilien and M. P. Singh, “A Framework and Ontology for
Dynamic Web Services Selection,” IEEE Internet Comput., vol. 8,
no. 5, pp. 84–93, 2004.

[13] T. Vogel and H. Giese, “Model-Driven Engineering of Self-Adaptive
Software with EUREMA,” ACM Trans. Auton. Adapt. Syst., vol. 8,
pp. 1–33, 2014.

[14] L. N. Foner, “A multi-agent referral system for matchmaking,” First
International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology. pp. 245–261, 1996.

[15] J. Urbano, A. Rocha, and E. Oliveira, “Trust Evaluation for Reliable
Electronic Transactions between Business Partners,” in Agent-Based
Technologies and Applications for Enterprise Interoperability SE -
12, vol. 98, K. Fischer, J. Müller, and R. Levy, Eds. Springer Berlin
Heidelberg, pp. 219–237, 2012.

[16] W3C Working Group, “Web Services Choreography Working
Group.” accessed on May, 1. 2014.

[17] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the
application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2. pp. 189–208, 1971.

[18] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-
Agent Systems with JADE (Wiley Series in Agent Technology). John
Wiley & Sons, 2007.

