Provided by Biblioteca Digital do IPB

Metadata, citation and similar papers at core.ac.uk

Dynamic Composition of Service Oriented Multi-agent
System in Self-organized Environments

Nelson Rodrigue$? andPaulo Leitao'*andEugénio Oliveira??

Abstract.
dynamic environments has received special attentfmm
researchers during the last decade. Due to theofeeflexible and
quick response to the clients’ requirements, sysiess become
an important challenge. In this paper, self-orgagiznechanisms
capable to compose services in an automatic, fiexiand
decentralized manner are presented, mostly in wihieln adaptive
behavior is concerned. Due to the distributed apghp we also
investigate the adaptation regarding the structireach entity.
We thus propose an innovative self-learning medamnthat
allows the distributed entities to learn structushtions allowing
the system’s evolution. This hypothesis were exuorand
validated by implementing a multi-agent system,atordance
with trust mechanisms to improve the interactiomagénts.

The achieved results show the correct agent’'ssstatehich the
agents must evolve and self-organize, improving #ystem
benefits band increasing the organization perfooaan

1 INTRODUCTION

The increasing relevance of complex systems in mhna
environments (e.g. the buyer-supplier network) haseived
special attention during the last decade from #searchers. Such
systems need to satisfy client's desires, whichgrabeing
accomplished might change again, thus becomingyadgamic
situation [1]. Usually centralized approaches arglémented,
which might fall into a large monolithic softwar@gkages, being
inadequate because they do not efficiently suppioet needed
flexibility and real time re-configurability. Conceating the entire
control on a single coordinator can create a hwatte and, also,
the coordinator needs to have previous knowledgeitaach web
service component in the environment. Currently,edasn the
benefits of distributed control, decentralized agghes have been
pointed out as fitted to address this challenge (%} the other

L LIACC - Artificial Intelligence and Computer Sciem Laboratory, Rua

Campo Alegre 102, 4169-007 Porto, Portugal

2 Faculty of Engineering - University of Porto, RDa Roberto Frias s/n,

4200-465 Porto, Portugal , email: eco@fe.up.pt

3 Polytechnic Institute of Braganca, Campus Sta &pial, Apartado 1134,
5301-857 Braganca, email: {nrodrigues, pleitao}@upb

Permission to make digital or hard copies of afpart of this work for per-

sonal or classroom use is granted without fee gealithat copies are not

made or distributed for profit or commercial advgetand that copies bear

this notice and the full citation on the first paGepyrights for components

of this work owned by others than ACM must be hedoAbstracting with

credit is permitted. To copy otherwise, or republi® post on servers or to

redistribute to lists, requires prior specific pession and/or a fee. Request

permissions from Permissions@acm.org.

IAT4SIS '14, August 18 2014, Prague, Czech Republic

Copyright 2014 ACM 978-1-4503-2890-6/14/08. . . $1b

http://dx.doi.org/10.1145/2655985.2655990

The increasing relevance of complex systems irhand, the implementation of decentralized discqveoynposition

and execution can also increase the complexityhef gystem
regarding the network traffic to properly coordmats the
distributed control itself [3]. Thus, adaptationdamtelligence,
considering the requirements, must be properly estdd, being
multi-agent systems (MAS) a suitable paradigm fopp®rting
such distributed intelligence. A flexible and auttic integration
can be achieved by joining the intelligence anaaomy provided
by multi-agent systems and the interoperabilitet by Service-
Oriented Architecture (SOA) solutions [4].

This work explores the service-oriented multi-ageystem
benefits together with self-organization principlBsstributed self-
adaptation changes in each entity allow agentslfib the client’s
needs, by providing agility and quick responsesmting to the
clients to save time and money by simplifying thaskts
complexity to be carried out. To accomplish themis needs it is
necessary, in a dynamic manner, to compose a sservfces
provided by multi-agent systems, in order to offetter solutions
to the clients. Clearly, the minimization of theamhing and
execution time of services on demand, must be derssil.
Particularly, and since the self-organization ppieis explored, it
is necessary to take into consideration the QualityServices
(QoS) [5] of composition as a continuous task toycan.

QoS have to be based on service performance,aastability,
response time and also the trustworthiness of geata It will be
possible to adapt the agent’s behaviors seledtatvtill indirectly
change the network topology to a more consistest structured
with higher quality and better trustworthiness bé tperformed
services. The assumptions on this approach alléming several
agents belonging to different societies after thrake their mutual
connections evolve. Due to the automatic creatfamew relations,
an agent can smoothly enter into a society. OnofffEosite side,
the weak connections might be eliminated avoidiamstion of
the system with useless agents. In this way, tis¢esy achieves
equilibrium regarding the responsiveness from atlieties, since
the agents are able to evolve to accomplish theestq.

The experimental results we have obtained highligte
benefits of a truly distributed and decentralizenluon that
performs an accurate self-organization model, whdirectly
impacts the system performance. The system istabdelf-adapt
by performing the same services according to tient$ needs,
but with less costs and better response times.

The rest of the paper is organized as follows: iBec2
discusses the related work and Section 3 overvitwes main
principles of the self-organized, service-orienteajent-based
architecture, for dynamic and reconfigurable syste®ection 4
presents the formalization of the proposed modettfe dynamic,
decentralized service composition in evolutionarsteams. Section

https://core.ac.uk/display/153415067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5 details the system evolution of the learning nledumbedded in
each agent that will support the service discoesny composition
phases. Section 6 describes the experimental setipnalyses the
achieved results. Finally, Section 7 wraps up tleekwlone with

the conclusions and future work.

2 RELATED WORK

Self-organization was originally introduced by Aghfb], and
refers to a process of cooperation between indalidentities
without any centralized decision or centralized Wiealge. In
dynamic and complex systems, it arises as a caoatetinglobal
model [6] of a cooperative chaos. Self-organizataystems are
usually studied in the economy, biology, computeiersce and
other fields [7], [8]. Several authors have progbddifferent
representations of self-organization models, faaneple, cellular
automata and differential equations, fail to mowethe realistic
prototype, in a simple manner [9]. The literatureiew addresses a
large variety of self-organized systems, given samgortance to
the service selection, which has been widely studie
Unfortunately, the majority of the approaches fenvgce discovery
process rely on a centralized repository and tbesethe self-
organization of the system is centered in a battiknssue. Several
attempts have been tried to understand the benefitgshe
distributed adaptations, for example based on bio# cells to
maintain an efficient and robust network [10]. Clgathe key
question is “when and how do adapt” aiming to haveynamic
and adaptable network.

The interaction among the entities or observatieriee answer
for the “how”. For example, Val et al. [11] propose self-
organization network, where the agent’s relatiorescaeated based
on the social plasticity and incentives discoveoedthe network.
In relation to “when”, some approaches [11] chatigesystem due
to new policies and requirements from the consui®grwhen a
new service is requested [12] or in the worst cagen an error or
disturbance occurs. For instance, Vogel and Gi&8¢ tgke into
consideration the feedback loops and the critefi®a@S, using a
model-driven approach for self-adaptation, refera off-line
adaptation. Our approach uses an agent-based nsided it is
particularly easy and flexible to model complex teyss as a
collection of cooperative autonomous agents. Oup@sal differs
from the previous, since it evolves on the fly {ifhout the need
to stop, reprogram and reinitialize [14], [15], [1ihrough the
local behavior and structural relations adaptatiBarthermore,
learning mechanisms are demonstrated to maximeedhfidence
of the evolution, particularly from whom and whenetvolve.

SERVICE-ORIENTED AGENT-BASED
SYSTEMS

The proposed architecture, combines service-odeatad multi-

agent systems paradigms, taking advantage of somietsp
previously investigated [1]. The first paradigm negents the
interoperability, loose coupling and an abstractiérihe business
logic. The second one provides decentralizatiostribution of

decision-making entities and autonomy. Therefotearises the
necessity to separate a set of intelligent andramous agents,
capable to cooperate in order to accomplish theent$

requirements from the static part represented bys#rvices, as
illustrated in Fig. 1.

3

In the design agent's societies, the following dgeroles were
defined:consumer, provider, workflow, ontology andreputation. A
consumer represents the role entity that has the needdoest a
service, aprovider has the capability to provide one or more
services that correspond to its skills. Note thatheagent has the
autonomy to choose the service that it wants terpfis well the
conditions, e.g. price and QoS.
by somice

) S A

Agent’s skills Service-invocation

Encapsulates
S 4 agents-functionalities
>y ‘X
3G s

Agent &

(S

* Trust&Reputation {5 s

* Negotiation

* Cooperation

* Learning
Self.*

Figure 1. Combining the interoperability of SOA and the Iiigence and
autonomy of MAS [1].

Additionally, due to the provider due to the praidole, the
agent can decide according to its skills which isenbecomes
public, in order to be offered. Theorkflow monitors QoS and trust
values of available services, to perform, in a dyicaway, the
proposed workflow composition based on severalegat e.g.
availability and price. Thaeputation gathers agent's opinions
about a specific service for future advices. Ladtie agents have
the semantic capability, by tlomtology role, to translate concepts,
in order to support the proper understanding ambaggents and
to solve misunderstandings based on similarity raeigms. Thus
the agents proposes, continuously, a set of hypethef the
complex task of service composition. The proposeshigecture
follows a truly decentralized system, without theegence of a
central node that supports the discovery of thereksservices.
This means the removal of centralized coordinattich can be a
probable bottleneck.

y FIPA-ACL
»>

4 DYNAMIC AND DECENTRALIZED

SERVICE COMPOSITION

In distributed systems, agents must cooperate amibregn
themselves to perform their goals and increaseuttigy of the
whole systems. The self-organization of the sesvigmvided by
the agent-based system, appears as a crucial molesuch
environments. In our approach the self-organizatidrservices
comprises the execution of the following taskscagry, in a
decentralized manner, the desired dynamic compasitof
services, and finally execute the best designedcgecomposition.
Algorithm 1 describes the decentralized discovery selection of
the most trusted neighboring agents to achievedhgosition.

4.1 Decentralized discovery

The discovery procedure is triggered by an agehenwit receives
a request to provide the serviaginput (line 1), which is not able
to perform [ine 20). In this situation, or when the composition
quality is too low, the agent tries to find potahtneighbors who
can offer the servicdifies 9, 23), propagating the service request.
The discovery phase gathers only most promisingntage5] to
execute the service or to offer their atomic sawvifines 7, 21). It

is necessary a multi-criteria function, to selegpassible agent,
formalized by a Multi-Attribute Utility Theory (MAUW) to
maximize the utility value, represented &= Y. (w; * trust) +

(w; * QoS).

Algorithm 1: Requests (aglnput)

1. compResult ~ CompositionStrips(aginput)

2. i f compResult = successful t hen

3. conf — calculateQoSTrust(compResult)

4, if conf>0.5 t hen /10.5 for exanple
5. results — execCompOperation (compResult)
6. el se

7. Nt ~ SelectNeighbor(Aginput, this)

8. TTL -9 /1 for exanple
9. Results ~ forwardMessage(Aginput, TTL, Nt)
10. Sol ~ rankSolution(Results)

11. compResAux — CompositionStrips(Sol)

12. confAux ~ calculateQoSTrust(compResAux)
13. i f (confAux >conf & compResAux =successful) then
14. results = execCompOperation(compResAuXx)
15. el se

16. results = execCompOperation(compResult)

17. endl f

18. endl! f

19. updateAnalyze(this, aglnput, results)

20. el se

21. Nt ~ SelectNeighbor(Aginput, this)

22. Whi | e Nt.size <>0 do

23. Results —forwardMessage(Aginput, TTL, nt(i))
24. endWi | e
25. Sol ~rankSolution(Results)

26. Requests(sol, Aginput)
27. endl f

In this multi-attribute function, the utilityy stands for the overall
expected utility of different criteria, namely ttuseputation, QoS
and price, being); the weight of the criteria.

In order to control the amount of messages exchigrigdarger
societies, it is defined a cost to manage how dieepnessage can
go, namely how many times they are forwardéske@). The agent
after spreading the requests, waits for the fittex@meback
responses, during a specific time, then the agenst nselect
according to the consumer’s requirements the mpgtopriate
service composition to execulénés 5, 14, 16).

//forward the request soution

4.2 Service composition

The service composition, considering the set ofises discovered
in the previous phase is implemented in a decérdchlmanner.
The service composition takes insights from thevises’
choreography, which defines the way the servicescannected
and the data flows in specific directions [16]. tRatarly, each
agent can produce various plans with the same fsetmwices,
creating several composition hypotheses for the esanput
requirementslines 1, 11).

The planning algorithm embedded in each agentherservice
composition is based on the well-known automatedRIBS
planners, which input information comprises, mairthe pre- and
post-conditions for each action and the goal thatalgorithm is
trying to reach [17].

The results of the algorithm are a set of possisevice
compositions, the agent selects the plan (compaositiith the best
quality. Particularly, it is necessary another iretiteria function,
to select the best composition, based on global Qo and price.

If the agent needs to ask for distributed compasitielp (ines
9, 23), it is necessary to calculate the overall contpwsi
produced, by collecting from each composition p#stint the
service quality, price and trust. Being up to thestoner to take
the decision to accept or not such composition.

5 SYSTEM EVOLUTION

During the agent life-cycle, the agent is contimslgutrying to
learn from its history. The historical informatiooollected from

the learning agent’s interactions, permits the tgy@nevolve more
accurately. The agents can adapt and evolve irstefrbehavioral
self-organization, which means, modifications frahe agent's
local behavior, e.g. learn new services by analogydapt the
execution parameters, and secondly of structutkbsganization,
for example, modification of the relationships ama@gents.

5.1 Learning Behavioral Self-organization

The execution of behavioral adaptation will be sapgd by
embedding learning mechanisms. The agents can dtiept
knowledge, regarding the behavior, immediately raéigecuting
and updating the executioting 19 from Algorithm 1). Algorithm
2 describes the agent collecting information frém €énvironment.
In our case, this information is gathered from ihteractions of
agents, in which it is possible to qualify the antperformed.

In an effort to take accurate and better decisianthe future,
allowing the self-organization of future behaviorhie agent
updates and analyses its memory according to tbeuérn results

contractedl{nes 4 to 8), these lines measure the satisfaction of the

contract compared to what really happened. For pi@an@oS and
trust values after being saved and aggregatedenddtabasdifies
1, 2), are calculated the actual values for the particaggent (ines
3, 4), being these values used later.

All these steps lead to the best trustworthy chaicthe future
allowing the behavioral adaptation. However, thigtion is a
continuous task, since the feedback to assign omgness will
change, in a distributed manner, for example, ipaaticular
context, an agent can offer services with high icemice, which is
variable over time.

Algorithm 2: updateAnalyze (agent, service, results)
updateQoS(agent, service, results)
updateTrust(agent, service, results)
trustValue — getTrustResult(agent, service,results)
QoSValue - getQoSResult (agent, results)
reward — computeReward(trustValue, QoSValue)
state -~ getAgentState (agent)
act — getAgentAction (agent)

updateReinforcementLearning(state, act, reward)
createConnection(state, act, reward)

=

COoNOTOAWN

Just as important as the behavioral adaptatiohdsstructural
adaptation in the evolution of the system. The lhsé of
Algorithm 2 considers the evolution in the netwoekplicitly the
structural adaptation by managing the structurdhtins. In
addition, a novel approach it is introduced, whaclvocates that, at
least the structural decisions of the agents shoelcderformed
when the knowledge is stable.

5.2 Learning mechanism to support the
Structural Self-Organization

The agent possesses the necessary informatiocdagmee if it is
capable to evolve its structural relations in afictemt manner or
not, realizing if there is a slight disturbancettng@ght produce
significant results, leading to adapt to becomeenstable, and also
to ensure that the system becomes steadier andqumrgly more
robust to failure events.

This kind of knowledge is taken based on the agdegirning
mechanism, which recognizes the reward value (pesior
negative) of a specific action, in an agent’s inéistate. Thus the
Q-learning algorithm was used [11], since it is allsknown
reinforcement algorithm that allows getting the ected utility of

actions at particular states without the need tmwknthe
environment model, actually the environment modebuilt after
several interactions. In this specific case thenagaly needs to
recognize the reward for a specific action in dipalar state. The
value associated to each state-action pair, nariedyg-value,
represents the expected accumulated reward fortigydar action
at a given state. In our particular case the statdefined in the
expression (1).
State = < ActualTrust, ActualQoS, Si >
Si € {Sv1,...,Svn}

actualTrust € {good, normal, bad}

actualQoS € {good,normal, bad}
The state represents the agent's state at a gistamt. This level of
trust is built by the state and the quality of atipalar service. The
representation of an action is presented in exjmneg2),

Action = < path, Si >

path € {Agl,...,Agn}
This second g-learning vector is built by the Sfeagents that will
create a path of agents that are necessary to textwi service.
The reward considers the agent feedback stateraptior, and its
result is defined in the expression (3),

@

@)

Reward=<State, Action, AgentFeedback>)

The reward is calculated by a multi-attribute fumct equation (4),
after the agent has executed the service, usingea gveight for
each feedback, results in a single value, whereepresents
(QoSFeedback x w1l + trustFeedback X w2), note that the
range values {aluel, value2,value3}, can be parameterized, but
we will use {valuel = 0.5, value2 = 0.4, value3 = 0.1}

if valuel = result <1,
if value2 = result,
if value3 = result < value2,

good
normal
bad

Maut (x) = { 4)

After getting the classification of {good, norméalad} the reward
analysis is performed. If it is considered gooantla reward r is
given; if the result is “normal”, then the rewarsl half of the
“good" reward, since it has finished the taskt isi“bad” it suffers
a penalization. Summing up, the reward function vetrieve a
quantitative value from {good, normal, bad}, seeatipn (5).

if good, r
if normal, r/2

Reward(result) = .
if bad,E * penalization

®)

Thus, reward and punishment policies can be modaledder to
manage the responsibility of an agreed result.

Taking into account the learning model, the system evolve
in a stable manner, i.e. when it is converging @ge2). If such
behavior occurs, the agent proposes the creationnei/
connections.

14 T ; L I x T

T

r ——line 1, gamma=0.8, P(sucess)
| ——line 2, gamma=0.8, P(sucess)
L
8
T

R

§

Rewards

97
93

I | I |
100 120 140 160 1
T T T T T

s e @

8
3

0 200

T T
weak evolution

bad evolution evolve

gvalue
o

0 L . I L

L I L L
0 20 40 60 80 100 120 140 160 180 20C

Figure 2. Learning mechanism for a spécific service, cotitrgghe value
of learning with particular reward.

Analyzing theg-value axis in Fig. 2 it is notorious a tendency of
the line 1, with the probability of success agreenimtween two
agents of 97%, converging faster. In the convergihgse, for
example, at iteration 110, the agent is in a goasltipn to evolve
its structural relations with more utility. If thegent evolves too
quickly, for example in iteration 70, the utilityilnbe worse, since
the agent is not stable to take an accurate decisio

The utility of the structural self-organization isherefore,
strongly related to the success of the stability,eixample the line
2, with P(success)=93%, will take more time to lmeeaostable,
since it has more broken contracts than with higiebability, and
thus a more inaccurate behavior.

After the agent realizes that when it is a goodetitn evolve
structurally, it efforts go into its structural meichdaptation, trying
to optimize its own relations, for instance to cete directly with
other agents, and thus create new connections waduable. In
Algorithm 3 the function to manage the creation tbé new
connection is defined.

Algorithm 3: createConnection (state, action, reward)

1. Q' learning(state, action, reward)

2. convergenceValue ~0.001

3. i f (oldLearning-Q’) < convergenceValue then
4. i f count > countStability then //100 for exanple
5. agent — adaptModel()

6. sendMessage(agent)

7. el se

8. count —count+ 1

9. endl f

10. el se

11. count 0O

12. endl f

Analyzing the algorithm, each agent compares it3 avd
knowledge base with the latest otied 3), if the difference is less
than convergence value, then it is considered silplesstable
system, although it is necessary to have this saselt during
some amount of others iterations, in order to fydtie stability
(line 4). When the agent believes that it has a stablebeh he
tries to adapt the model of their worldné 5). Spontaneously, in
order to give opportunities to cooperate with neyerds, some of
the time it is selects an agent with lower quadibd trust value,
only if the reputation of that specific agent ig negative Ijne 6),
thus allowing the analyses of exploitation vs. exation of the
system.

The proposed structural model does not stop thentage
behaviors, since it is triggered as parallel betravihus it
continues to answer to other requests.

6 EXPERIMENTAL SETUP/VALIDATION

The proposed self-organization model was implentenaad
experimentally tested in a case study where ewslutis a
requirement.

6.1 Experimental setup

In the implemented setup, a society of agents vioflg the
described approach was implemented by using the EJAD
framework [18]. Each agent includes the rolegafducer, and
consumer. Thus it was created a network with 100 agent$ wit
random connections among them, to each agent itassigned a
set of services. Based on the assumption that eliffegents can
produce the same services, but with different cdbiss it were
defined the cost of the services by each agentidgesof the

service execution cost, the agents must pay fowditing
messages, this way we can control the amount ofdiated
messages), it also represents the probabilitiessuafcess for
agreements fulfilled, being these values creatediomly in the
agent network creation phase. Then, several semggaests to
different agents were performed, allowing the cosin,

discovery and execution tasks to be computed adicaiiyg,

expecting in parallel, the self-organization pheraon.

The implementation considers a system of decentdli
discovery, where is necessary to cooperate, creatiprimitive
frame (Id, TTL, Src, Dst, Sv, Perf, Res) to send between neighbors.
Theld reflects the identification of the servic®/) requestSrc tag,
represents the agent source andBethe agent destination. The
Perf indicates the type to requefReguest, Propose, Execute, etc.}
that will be forwarded until the TTL reaches 0, dimdlly the Res
is a container that comprises the result infornmatibthat frame.

Considering the structural learning mechanism, aoanwalk
algorithm was implemented, in order to select thieyepoint of the
service request, avoiding a greedy selection byesting always
to the same agent. The Q-learning configuratioreach agent
corresponds to gamma=0.8, thel for the good, normal or bad
rewards, and the acceptance of a good learningecgenmce is
equal or up to th=0.5.

6.2 Self-organization results

All the agents of the generated society can recg@veice requests
and answer them in the best possible manner, bingtryo
compose, discover and select the most approprggsts to offer
their services. To illustrate the proposed beneifitaras extracted
from the scenario produced a network of agentshEacvice is
composed by de-coupling of other services,
ServiceA={3,%,ss} and ServiceB={s,s1,%}. It can be observed
what services are provided by each agent, for elagpentagB
offers the services §s s} at the prices 1, 2 respectively. The
probability for the success agreement contract) wgent agC as
shown is 80%. It is notorious how the discoverywBoin the
network. Requests are directional, and responsesnacounter-
flow, for instance, agent agA can make requestgyent agB, after
that, agent agB to agent agC, but then, the agg@t @annot
forward requests to its neighbors.

The goal, as already stated, is to create autoafigtithe best
composition, forwarding messages if needed. Takimgo
consideration the global costs, which can be alémtto messages'
average cost before and after the evolution, akasehe services’
execution costs, which are stored in a vector amldwing a
clearer analytical perception. The insights abohis twork
demonstrate a network capable to solve the requeisits less
agents, in the same dataset.

Fig. 3 describes the relationships in the netwatwien agents,
before evolving (depicted by arrows with normakhnThe dotted
lines illustrate the potential connections that thgent agE
proposes, according to their experience. The aggAt have the
link to the agent agB, however, after running th&tesn requesting
the ServiceA, the agent agE will learn the envirenm
connections, and then proposes a new cooperatike {igE—
agB}.

{} Execution Cost

agB
52{1}, S5(2}

Figure 3. Agent’s network from, the agent agE point of view.

At this point the agent sends a message to co@pelietctly
with the agent agB, in order to reduce the executiosts. The
probabilities, created for the new links, as wellthe costs are
created randomly. Obviously new connections witghkir costs
and lower success probabilities, are not creatént dgent agE
executes the service composition with lower cosfinthg cost as
Costw; X O; + wox0; +wsX (1-0,), the tests were carried out for the
entire network with the weightsiw0.2, w=0.3 and w=0.5;

Table 1.Costs involved before and after the evolution oelifor the

request of the ServiceA.

Agent's chain [o Jo | o | Cost
Before Evolution
agE(s)—agA(s)—agB(s) 12| 6 0.56 4.42
agE(s1)»agE(s3}»agA—agB(s2)| 12 | 5 0.56 412
agE—agA(sl)»agA(s3)»agB(s2) 12 | 5 0.56 4.12
After Evolution
agE(sl)»agE(s3)»agB(s2) | 2] 5] 80 | 2

¢ execution costa connection cosb probability success

Regarding the execution’s results of the Servicdédstitated in
Table 1, the agent agE can evolve. Considering ongosition,

namelyfor example agent agE forwards the request to aggAt then

agent agA can execute the service s1, and ser8jdeus it is still

missing service s3, which will be executed by agegB by the
forwarding request of agent agA. The following mdare can be
stated as agE> agA(sl)— agA(s3)— agB(s2), where:

« execution cost is calculated by the table in Figex@cution of
service s1 and s3 by the agent agA it costs 1 aedfictively
and the service s2 in agent agB cost$ £ §).

« connection cost considers the connections fromtag&gA to
agB @ =12).

« regarding the probability results, it is considetteel probability
of agE with agA, and agA with ag® & 0.80x 0.70 = 0.56),
see the graph in Fig 3. for further details.

Since the g-value from the agent agE has stabjlithesh the agent
begins to explore the ServiceA composition, ushng agE(s1)—
agB(s2)— agE(s3) composition. Since this composition hésna
cost of execution and connection, and also a cdimmeavith
greater confidence, thereby being selected foréuteiquests.

For the execution of ServiceB, agent agE is alsaired as an
entry point. After several requests the agent agipgses a new
connection agE- agC, with probability success 70%, see Table 2.
After the evolution of these two connections hageuored, agent
agE when queried to perform ServiceB, it tendsttiar following
selection agE(s3yagB(s5)»agC(s4), because of the cost of the
composition. Note that the agents can explore asksible
compositions that are offered by the planner, @neple the agent
agE when performs the serviceB take advantageowfiection
created regarding the execution of serviceA.

Table 2.Costs involved before and after the evolution asmlifor the
request of the ServiceB.

Agent's chain [0]Jo [o [Cost

Before Evolution
agE(s3)»agF—agC(s4)»agC(sb) 10| 7 0.81 4,195
agE—agF(s3)»agC(s4)}»agC(s5) 10| 6 0.81 3.895
agE—agA(s3)y»agB—agC(s4)»agC(s5) 14 | 8 0.448 5.476
agE(s3y»agA—agB—agC(s4)y>agC(s5) 14 | 7 0.448 5.176
agE(s3)»agA(s4)-»agB—agC(sb5) 14 | 3 0.448 3.976
agE(s3)»agA—agB(s5)»agC(s4) 14| 6 0.448 4.876
agE(s3)>agA(s4)->agB(s5) 12| 5 0.56 4.12

After Evolution

agE(s3)»agC(s4)»agC(s5) 4 7 0.7 3.05
agE(s3)»agB(s5)»agC(s4) 4 6 0.64 2.78
agE(s3y»agB—agC(s4)-»agC(s5) 4 7 0.64 3.08

¢ execution costt connection cosb probability success

Therefore, it can be concluded that all links aedabring
benefits, otherwise the agents will not reach tcagreement and
they will not cooperate. However, this does not m#wat agents
will use it permanently. Note that the goal is cexgiing and
evolve in order to reduce the service compositi@msts; by
exploring different agents, to be offered to therdl

The system created was tested following the priasipased on
the self-organization paradigms [8], namely mudtihteractions
from the multi-agent system. We have tested als®,benefits of
the system stability in terms of exploitation amgleration of new
relations achieved through the positives and negmtiewards.

7 CONCLUSIONS

This paper starts by referring the research effdoise on service
composition in complex systems, where all netwodhtml is

centralized in a single entity. Some proposed Emist consider
centralized service registrations, which leads tmotleneck-type
of problem. Taking this issue into considerationd &xpecting to
provide services solutions with lowest throughpusts, we
introduce a truly distributed and decentralizedviser oriented
agent-based system that positively answers thikkecige. Despite
the fact that decentralization brings performaneadfits, it also
increases the complexity, as well as the data flovkeep the
distribution synchronized and coordinated. Thus, réquires

behavioral and structural modifications to the egstin order to
enhance the decentralization benefits. We advdbatea dynamic
system capable to discover, compose through irttersc and

negotiation protocols, provides an answer to theice requested
to be solved in a self-organized manner. As a apresece, there is
a reduction of the unnecessary traffic in the neftwwo compose or
execute a service by evolving in a correct way.

The developed scenario concerns several serviceseg|to the
society of agents, which comprise a set of autonmmeervice
oriented agents with no global control. The implatagon takes
into account a decentralized discovery mechanisrsetirch in a
dynamic manner for services that are then composedidering
their quality and trustworthiness. The proposedtsarh allows the
agents to adapt its structural relations, basethemneinforcement
learning mechanism. The experiment allows to exedifferent
flows of services composition, fulfilling every tamthe client
needs, namely the continuous requests to the systdditionally
the system’s organization performance has improdee, to the
self-organization achieved through the learning massms and
interactions among the distributed agents. As altiawore trusted
services with higher quality are allowed.

As a future work, we intend to investigate the dgesand
implementation of our approach in a real case samndor
example smart grids or business to business netapekations.
Also explore scenarios of self-organization whére intermediate
agents of service requests, do not share informadimout their
neighbors, exploring the benefits of selfish ageoviders.

REFERENCES

(1]

(2]
(3]

(4]
(5]

(7]

(8]

(9

(10]

(11]

(12]

(23]

(14]

(18]

[16]

(17]

(18]

N. Rodrigues, E. Oliveira, and P. Leitdo, “Self-@mgzation
Combining Incentives and Risk Management for a DyicaService-
Oriented Multi-agent System,” in Technological Inaton for
Collective Awareness Systems, Springer Berlin Heighg, pp. 101—
108, 2014.

M. J. Woolridge, Introduction to Multiagent Systenidew York,
NY, USA: John Wiley and; Sons, Inc., 2002.

G. B. Chafle, S. Chandra, V. Mann, and M. G. NariDacentralized
Orchestration of Composite Web Services,” in Prdoegs of the
13th International World Wide Web Conference oneAlate Track
Papers &Amp; Posters, pp. 134-143, 2004.

M. N. Huhns, “Agents as Web services,” Internet @amIEEE, vol.
6, no. 4, pp. 93-95, 2002.

W. R. Ashby, “Principles of the self-organizing @dynic system,” J.
Gen. Psychol., vol. 37, pp. 125-128, 1947.

Y. Bar-Yam, “Dynamics of complex systems,” Compstein
Physics, vol. 12. p. 864, 2003.

F. Heylighen, “The science of self-organization aadaptivity,”
Encycl. Life Support Syst., vol. 5, no. 3, pp. 2886, 2001.

E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarnelligence:
From Natural to Artificial Systems. New York, NY,SA: Oxford
University Press, Inc., 1999.

W. Elmenreich, R. D'Souza, C. Bettstetter, and Heek] “A Survey
of Models and Design Methods for Self-organizing tikeked
Systems,” in Proceedings of the 4th IFIP TC 6 Imaional
Workshop on Self-Organizing Systems, pp. 37-499200

M. Beber and M.-T. Hitt, “How do production systemdiological
cells maintain their function in changing enviromts®,” Logist.
Res., vol. 5, no. 3-4, pp. 79-87, 2012.

E. del Vval, M. Rebollo, and V. Botti, “Combinatioof self-
organization mechanisms to enhance service disgoireropen
systems,” Inf. Sci., 2014.

E. M. Maximilien and M. P. Singh, “A Framework a@utology for
Dynamic Web Services Selection,” IEEE Internet Campvol. 8,
no. 5, pp. 84-93, 2004.

T. Vogel and H. Giese, “Model-Driven EngineeringS#lf-Adaptive
Software with EUREMA,” ACM Trans. Auton. Adapt. Sysvol. 8,
pp. 1-33, 2014.

L. N. Foner, “A multi-agent referral system for mlataking,” First
International Conference on the Practical Applmatdf Intelligent
Agents and Multi-Agent Technology. pp. 245-261,8.99

J. Urbano, A. Rocha, and E. Oliveira, “Trust Evélafor Reliable
Electronic Transactions between Business Partngrs\ggent-Based
Technologies and Applications for Enterprise Inpemability SE -
12, vol. 98, K. Fischer, J. Miller, and R. Levy,sE&pringer Berlin
Heidelberg, pp. 219-237, 2012.

W3C Working Group, “Web Services Choreography Wagki
Group.” accessed on May, 1. 2014.

R. E. Fikes and N. J. Nilsson, “Strips: A new agmo to the
application of theorem proving to problem solvingAttificial
Intelligence, vol. 2. pp. 189-208, 1971.

F. L. Bellifemine, G. Caire, and D. Greenwood, Depé&ég Multi-
Agent Systems with JADE (Wiley Series in Agent Trealogy). John
Wiley & Sons, 2007.

