

Architectural Element Points: Estimating Software
Development Effort by Analysis of Logical

Architectures*

Luís M. Alves1, Pedro Ribeiro2, Ricardo J. Machado2

1 Polytechnic Institute of Bragança, School of Technology
and Management Dept. of Informatics and Communications, Bragança, Portugal

lalves@ipb.pt
2 Centro ALGORITMI, Engineering School of University of Minho, Guimarães, Portugal

{pmgar, rmac}@dsi.uminho.pt

Abstract. Empirical studies are important in software engineering to evaluate
new tools, techniques, methods and technologies. In object-oriented analysis,
use case models describe the functional requirements of a software system, so
they can be the basis for software measurement and sizing. The purpose of this
study is to develop a new metric called Architectural Element Points (AEPoint)
that enables to calculate the effort required to develop a software solution, us-
ing the 4-Step Rule Set (4SRS) method. This paper describes a case study with
60 undergraduate students grouped in four teams that developed a software sys-
tem (Web application) for a real customer. In this study, we used the AEPoint
metric to estimate the resources needed to develop a software system. The re-
sults of the AEPoint and Use Case Points (UCP) metrics and the real software
development effort are compared, conclusions drawn and recommendations are
proposed.

Keywords: empirical studies; software engineering management; software
quality; software requirements; software metrics.

1 Introduction

In last decades, the software engineering community researchers have developed
several empirical studies to evaluate tools, techniques, methods and technologies. The
main goal is to provide to the practitioners the research results found in laboratories
in order to improve their software products and processes. Thus, the practitioners can
have evidence about innovative products and processes in order to assess their value
and the risks that must be managed during their institutionalization.

In 1992, Basili et al. introduced the concept of experience factory [1]. Basically,
the experience factory is an organizational schema that shows how to institutionalize

* This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT –

Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

the collective learning of an organization [2]. This schema presents two entities, the
project organization that plan and execute the project and the experience factory that
collect and package experiences and reuse the empirical results in order to diffuse,
generalize, analyze the knowledge contained.

That Basili et al. schema was designed based on many years of the Software Engi-
neering Laboratory (SEL) work. Empirical studies developed within the SEL in-
volved students from different USA (United States of America) universities and in-
dustry partners.

In our case, to perform empirical studies we created an environment similar to an
industrial set involved graduated and undergraduate students. All this students attend
computer science and information systems program degrees of University of Minho
(Portugal). We collected knowledge from the literature to build an environment
where each student knows very well her/his role in the project. In a previous work we
presented in detail our research environment [3].

As a factor of success it is important to estimate the total amount of resources early
in developing process in order to ensure compliance, in terms of cost, schedule and
quality of an IT (Information and Technology) project. In the development of a soft-
ware system, the most complex activity is probably the transformation of a require-
ments specification into an architectural design. The process of designing software
architectures is less formalized and often is greatly an intuitive ad-hoc activity, poorly
based on engineering principles [4]. Since the architecture of a software system con-
strains the solution space, the design decisions made during the architectural design
should be done very carefully, whereas they typically have a large impact on the
quality of the final system. The 4-Step Rule Set (4SRS) method employs successive
model transformations in order to obtain a logical architecture that satisfies the previ-
ously elicited user requirements. It is based on the mapping of UML (Unified Model-
ing Language) use case diagrams into object diagrams. The iterative nature of the
method and the usage of diagrammatic models help to ensure that the obtained logical
architecture reflects the user requirements [4].

The Use Case Points (UCP) can predict the total amount of resources at the begin-
ning of a software development process. It is easier to plan and predict the remaining
project if there is a metric that allows to know the expected effort during the devel-
opment phase of the project. With these metrics we can make a better analysis of the
costs and the time it will take to complete a project [5].

The existence of a metric on the 4SRS process gives an estimate of the software
development effort more precise than the UCP. With 4SRS implementation there is
already an architecture aligned with the solution and not just an alignment with the
problem. For this purpose we developed a metric to apply on 4SRS that allows to
estimate the effort required in the software process development. This metric will be
called Architectural Element Points (AEPoint).

After the development of the metric, the next step was to test it. In this sense, we
considered to perform an empirical study in educational context. We intend to answer
the following research question: the AEPoint metric gives a rough estimate of the
resources that we should allocate to projects with this complexity level? Mainly, we
hope that this metric gives an approximate number of hours to perform all steps of the
software development.

In our empirical study we used graduate and undergraduate students of our univer-
sity. The students were distributed in random groups in four teams. Each team devel-
oped a software system of medium/high complexity. We applied the original UCP
method for estimate the effort needed to develop each one of that software systems.

In this paper, a description of 4SRS is presented in Section 2. Section 3 describes
related work with Use Case Points methods. In Section 4, we present in detail the
AEPoint metric that we use in the next section. In section 5 we briefly describe the
empirical study we have developed to initially assess the effectiveness of using AE-
Point metric in educational context. Finally, in Section 6 we present the conclusions
and future work.

2 Purpose of the 4-Step Rule Set Method

The 4SRS purpose is to make the bridge between user requirements and the design
elements of a complex system. The most complex activity during development of
software systems is probably the transformation of a requirement specification into an
architectural design [4]. These diagrams represent the logical architecture of the sys-
tem, integrating the system-level entities, their responsibilities and the relationships
between them. The logical architecture captures the functional and nonfunctional
requirements of the system.

The 4SRS method for identifying the system components for such architecture (the
conceptual model) requires the software engineer to start the development by defining
the functional model (use case diagram) that reflects the system functionalities of-
fered to its users from their perspectives. The method is based on a sequence of steps
that are inscribed in a tabular representation that is used to derive the software archi-
tecture for a focused part of the global system. The method’s iterative nature and the
use of graphical models ensure that architectures reflect user requirements [4].

The 4SRS method is based on use cases and transformation rules that create other
elements (objects). The elements are created and their names are prefixed with a code
in brackets, which is used to ensure the uniqueness and easy visual identification. It
uses an approach whereby a use case is realized by a collaboration of three types of
components: control, data and interface. After this initial transformation, a series of
steps with rules is proposed to transform the initial component model in a consistent
component model, which is compatible with the requirements. Basically, at each step
a set of refactoring rules are applied by modifying the initial model components
across groups, divisions or removal of components. Some of these rules can be auto-
mated, but others depend on human intervention [4].

As advantages for 4SRS approach, we can point out that the identified classes
properly represent the system requirements as they are identified through a recursive
process embedded in the 4SRS method that ensures the elimination of redundancy
and the identification of missing requirements. Additionally, the recursive nature of
the 4SRS method permits that several components of a system can be treated one at a
time (each one with its own 4SRS execution) [4].

This approach reduces the complexity of the overall system design, avoiding the
construction of a global and massively complex class diagram for the whole system.

Instead, we obtain a single class diagram for each system component, when the 4SRS
executions adopt the recursive approach. When compared to the existing approaches,
the current version of the 4SRS method adopts a complementary approach by using
both object-driven artefacts and use cases to support the complex process of identify-
ing class diagrams from user requirements. A complete description of the 4SRS
method can be found in [4].

3 Effort Estimation Methods

We can find in the literature great efforts and contributions to measure the size of a
software system and estimate the effort needed to develop it. Measuring the size of a
software system is different to estimate the effort needed to develop it, although the
two concepts are connected. The first is an activity that consists to assign a measure-
ment unit to represents the size of a software system while the second estimates the
effort required to developing it. The relationship between the size of a software sys-
tem and effort required to develop it is given by the productivity of the software de-
velopment team.

Metrics are measurement methodologies whose main objective is to estimate the
size of software system and assist, as an indicator, the project management of soft-
ware system development. The estimated size is one of the most commonly used
metrics for software size, since has direct impact on development effort and project
management. It is an indicator of the amount of work to be performed and this kind of
knowledge can be used to help us to estimate the cost and the lead time for the project
[6]. According to Pressman, measurement enables managers to plan, monitor, im-
prove and enhance the software process development [7].

The size of the software system means the amount of work to be performed in a
project development. Each project can be estimated according to the physical size
(which is measured through the requirements specification, analysis, construction and
testing), based on the functions that the user gets, in the complexity of the problem
that the software system will solve and in the reusability of the project, which
measures how much the product will be copied or modified from another existing
product [8, 9].

3.1 Use Case Points

The UCP metric was defined to estimate Object Oriented (OO) projects based on the
same philosophy of Function Points and in the process "Objectory", where the use
case concept was developed. Later, Ivar Jacobson developed "Object-Oriented Soft-
ware Engineering (OOSE)", methodology based in use cases, a technique widely used
in industry to describe and collect the functional requirements of the software. Con-
sidering that the use cases model was developed to collect the requirements based on
use and users vision, it makes sense to base the estimation of size and resources of
software projects in use cases [10].

The UCP metric was developed to predict the resources needed for a specific pro-
ject in early developing process e.g. after the requirements analysis. With such an
early estimation, one could more easily plan and predict for the rest of the project [6].
The first description of the method was published by Gustav Karner [6] with the aim
of creating a model that would allow estimating the resources required to develop a
software system under Objectory AB (later acquired by Rational Software).

The UCP method consists in calculating a metric called Use Case Points that give
us an estimation of the size and complexity of a software project. If we know the
development team productivity (to be obtained based on previous projects), we can
derive an estimate of the effort required to develop the software project. The UCPs
are related to functional, technical and environmental complexity of the software
project.

When applying the method, we must first calculate the complexity of actors and
use cases in the system to quantify the variables Unadjusted Actor Weight (UAW)
and Unadjusted Use Case Weight (UUCW), respectively. When combined with their
weight, we obtain an inadequate measure of the size and complexity of the system
called Unadjusted Use Case Points (UUCP). The next step is to adjust this measure
with a number of technical factors and environmental factors given by Technical
Complexity factor (TCF) and Environmental Factor (EF) variables, respectively.
These factors combined with the UUCP variable will produce the effective number of
UCPs that reflect the size and complexity of the software project. In the following
subsections we detail the steps needed to calculate the UCPs. For space reasons we do
not present in detail the UCP method, however, it can be found in [6, 11, 12].

4 The Architectural Element Point (AEPoint)

In software projects there is a significant conceptual difference between the prob-
lem domain and solution domain. When there are such differences between the speci-
fied requirements and design decisions, the architecture can become unsynchronized
with the specific requirements of the system. Thus, the 4SRS method support the
transition of the system requirements to software architectures and elements of de-
sign. In this sense, it is useful that there is a method that allows to predict the total
amount of resources at the beginning of the development process. Although there is
already the UCP method, in this paper we propose a new metric, called Architectural
Element Points (AEPoint). This metric will provide some advantages: it provides an
estimate of the total amount of resources closer to reality because the metric runs on
4SRS method and there was already an alignment between the problem domain and
solution; it provides data that allow allocate and reallocate resources, since we al-
ready take into account the software architecture and its elements of design.

The AEPoint metric will run on 4SRS method and is based on the UCP method.
This metric is based on three key factors, namely: Unadjusted Architectural Element
Point (UAEP), Technical Complexity Factor (TCF) and Environmental Factor (EF).
The AEPoint are then calculated by the product of these three factors.

 AEPoint = UAEP x TCF x EF (1)

After calculating the AEPoint, we obtain a result about the architectural elements,
lacking a factor to convert estimation points to effort in person hours. After applica-
tion of the UCP method in three real projects, Karner found that it takes 20 man hours
to complete one UCP [6]. This factor has been accepted as an historically collected
figure representing productivity [10, 13]. In a previous work, also in an educational
context, we find that in average it takes 9 man hours to complete one UCP [11]. This
discrepancy between Karner value and our value to the productivity can be explained
by several factors. In our view, the main factors are the environment context, using
students instead of professionals and the partial implementation of the uses cases.
Since we are evaluating metrics applied early in software development process and
that there is no more literature about this subject we consider that an AEPoint also
corresponds to 9 man hours of work.

4.1 Unadjusted Architectural Element Point (UAEP)

This factor must be calculated based on two components, namely, the Architectur-
al Element Impact (AEI) and the Architectural Element Complexity (AEC). As equa-
tion (2) shows the calculation of UAEP is obtained by adding the two components
that comprise it.

 UAEP = AEI + AEC (2)

The AEI indicates the impact that a given element has to architecture. The impact
is related to the links of this elements. We created a scale to quantify the impact. This
scale is then applied to the effect that Software Architects, Analysts and Developers
attribute to a particular architectural element. Note that the impacts attributed by the
work team’s members consider a scale from 0 to 1 at intervals of 0.1. Table 1 shows
the levels of impact considered, as well as a correlation with impact attributed by the
work team members and their respective weights. The assignment of the impact by
the team members will be obtained by averaging the impact that members assign to a
particular architectural element.

Table 1. Architectural Element Impact (AEI)

Impact Impact assigned by team members Weight
Low 0 to 0.3 1
Average 0.4 to 0.7 2
High 0.8 to 1 3

The AEI variable is calculated by the sum of the products of the weight impacts by
the number of architectural elements in each category impact.

Another component that allows us to infer the size and effort of a software archi-
tecture is the complexity of an architectural element. The complexity is related to the
internal structure of this elements. As greater the complexity of an architectural ele-
ment, greater the effort required to develop it and consequently its weight in the ar-
chitecture. We created a scale to quantify the impact. This scale is then applied to the
effect that Software Architects, Analysts and Developers attribute to a particular

architectural element. Note that the impacts attributed by the work team’s members
consider a scale from 0 to 1 at intervals of 0.1. Table 2 shows the levels of impact
considered, as well as a correlation with impact attributed by the work team members
and their respective weights. The assignment of the impact by the team members will
be obtained by averaging the impact that members assign to a particular architectural
element.

Table 2. Architectural Element Complexity (AEC)

Impact Impact assigned by team members Weight
Very Low 0 to 0.2 1
Low 0.3 to 0.4 2
Average 0.5 to 0.6 3
High 0.7 to 0.8 4
Very High 0.9 to 1 5

The AEC variable is calculated by the sum of the products of the weight impacts
by the number of architectural elements in each category impact.

4.2 Technical Complexity Factor (TCF)

The size of the software system depends also, on the quality characteristics of the
system. Therefore, there are a number of technical or non-functional factors that must
be considered to measure the size of the system based on what was agreed between
the customer and the supplier. A list describing all technical factors proposed by
Karner is shown in Table 3 [6].

Table 3. Technical Factors contributing to complexity

Factor Description Weight
T1 Distributed systems 2
T2 Performance 2
T3 Efficiency 1
T4 Complex internal processing 1
T5 Code reusability 1
T6 Installation ease 0.5
T7 Usability 0.5
T8 Portability 2
T9 Changeability 1
T10 Concurrency 1
T11 Security 1
T12 Accessibility of others 1
T13 Training 1

The impact of each factor within the project is rated on a scale 0, 1, 2, 3, 4 and 5,
where 0 means that it is irrelevant and 5 means it is essential. If the factor is neither
important nor irrelevant it must be rated with the value of 3 [5, 12, 14, 15]. The rate

of the factor must be multiplied by the associated weight as shown in Table 3. The
sum of all the products calculates the TFactor value, which is used to calculate the
Technical Complexity Factor (TCF):

 TCF = 0.6 + (0.01 x TFactor) (3)

Karner based the constants 0.6 and 0.01 on the adjustment factors of Function
Points created by Albrecht [16].

4.3 Environmental Factor (EF)

The characterization of the software development teams is also important to obtain
a measure of the size and complexity of the software project; thus there is a set of
aspects related to the development environment that must be weighed. A list describ-
ing all environmental factors proposed by Karner is shown in Table 4 [6]. We believe
that as on the UCP method the environment factors also influence the software archi-
tecture development, then we decide to consider these factors in our AEPoint metric.

Table 4. Environmental Factors contributing to efficiency

Factor Description Weight
E1 Experience with a software development process 1.5
E2 Development experience with similar projects 0.5
E3 Experience with OOP 1
E4 Maturity in OO analysis 0.5
E5 Motivation 1
E6 Stability of requirements 2
E7 Part time workers -1
E8 Experience with technologies adopted -1

The impact of each factor within the project is rated on a scale 0, 1, 2, 3, 4 and 5,
where 0 means that it is irrelevant and 5 means it is essential. If the factor is neither
important nor irrelevant it must be rated with the value of 3. The rate of the factor
must be multiplied by the associated weight as shown in Table 4. The sum of all the
products calculates the EFactor value, which is used to calculate the Environmental
Factor (EF):

 EF = 1.4 + (−0.03 x EFactor) (4)

The constants 1.4 and -0.03 were obtained by Karner from interviews performed to
the resources projects analyzed. The evaluation of UAEP and technological factors
occurred by contact with development teams. The environmental assessment factors
occurred by online questionnaires realized in milestones defined by teacher’s staff.

5 Case Study

Based on the previously described approach for calculating the AEPoint, a case
study was developed to determine the productivity of some student software devel-
opment teams.

The teams were constituted by second year students of the course 8604N5 Soft-
ware System Development (SSD) from the Integrated Master's in Engineering and
Management of Information System in University of Minho (the first University to
offer in Portugal, DEng, MSc and PhD degrees in Computing). The teams had 60
people (1 team with 16, 2 teams with 15 and 1 team with 14). Each team receives a
sequential identification number (Team 1, Team 2, Team 3 and Team 4) and the de-
scription of the customer problem.

The teams developed a software project of medium complexity, using the Unified
Modeling Language (UML) notation encompassed in an iterative and incremental
software development process, in this case, the Rational Unified Process (RUP). The
teams followed the guidelines established by the RUP reduced model, executing the
phases of inception, elaboration and construction according to the best practices sug-
gested by CMMI-DEV v1.3 ML2. The project lasted 4 months. This software project
was to develop a Web solution using object-oriented technologies (Java or C#) and
relational databases (SQL Server or MySQL), to support the information system of
one local professional handball team that provided all the information about the or-
ganization and interacted directly with the teams. The logical architecture of the soft-
ware project was built through the 4SRS method presented in section two.

The main goal of case study was to apply the AEPoint metric in a real software
development project although in an educational context. The impact and complexity
analysis of 4SRS elements in order to calculate the AEI and AEC components was
made based on documentation provided by the teams. Table 5 shows the results of
AEPoint and UCP metrics obtained from the software development projects.

Table 5. Results of the software development teams

Description Team1 Team2 Team3 Team4
Number of elements 15 16 15 14
Total effort [hours] 3321 3542 3321 3099
Architectural Element Impact (AEI) 144 58 209 51
Architectural Element Complexity (AEC) 132 79 325 57
Unadjusted Architectural Element Point (UAEP) 276 137 534 108
TFactor 47.5 52.5 48.0 45.0
Technical Complexity Factor (TCF) 1.075 1.125 1.08 1.05
EFactor 10 10 10 10
Environmental Factor (EF) 1.1 1.1 1.1 1.1
Architectural Element Point (AEPoint) 326 170 634 125
Use Case Points (UCP) 477 225 513 281

In order to validate the results obtained with the AEPoint metric we decided also to
calculate the UCP of the four project teams. Table 6 shows the comparison of the
AEPoint and UCP metrics results. In this table, we also present the average of the real
effort recorded by the teams.

Table 6. Comparison of the AEPoint and UCP metrics results

AEPoint
Effort
(Hours)

UCP
Effort
(Hours)

Real Effort

Team1 326 2934 477 4293 3321
Team2 170 1530 225 2027 3542
Team3 634 5706 513 4619 3321
Team4 125 1125 281 2526 3099

As referred previously, based on our previous work, we consider that it takes 9
man hours to complete one UCP [11]. We used that reference value to estimate the
software development effort by the teams, thus, we assume that the time to apply one
UCP is the same as the time to apply one AEPoint.

From the analysis of Table 6 we can draw some interesting conclusions. It is in
Team2 that is a greater closeness between the values obtained from the two metrics,
approximately 500 hours of difference. In the case of Team1 and Team4 the differ-
ence is greater, approximately 1400 hours of difference. Regarding Team3 we can see
that there is a difference of about 1000 hours, but the effort is almost 6000 hours so
the difference is not as significant. We can also verify from Table 6 analysis that the
efforts obtained by the metrics presents some difference from the real effort declared
by the teams. AEPoint metric gives a close value to the real effort for the Team1 and
UCP metric gives a close value to the real effort for the Team4 and also for the
Team1. For both metrics and for the other teams the difference is above of 1000
hours. In Fig. 1 we can check this analysis throughput with a graph.

Fig. 1. Comparison of the real effort and effort got from AEPoint and UCP metrics

AEPoint metric gives a considerable different value to the real effort for the
Team3. In our opinion, this happen because it is the team that has a more robust soft-
ware architecture, but, in its final application, its implement only part of that architec-
ture. Analyzing the traceability matrix we can check that the final solution only im-
plements part of the architecture designed. In this matrix we can analyze what were
modeled, what were designed and what were implemented in the final solution.

Table 7 shows the number of architectural elements of the teams software applica-
tions and their final grade in the SSD course. This table shows that team3 has the
highest number of architectural elements, but they has not the highest grade. This

reinforce the previous analysis, in the sense that this team presented a very optimistic
architecture, but in their final application we can find implemented just some parts of
the global architecture. In other and, Team1 has the most realistic architecture, in
terms of what they intended to implement and what they implemented. This team got
the best grade because, among other factors, they built the most complete application.
Team2 and Team4 have the lowest number of architectural elements. As the Team3,
Team4 just implemented some part of the architecture, thus, your grade was the low-
est.

Table 7. Number of architectural elements versus student assessment

Architectural Elements Grade (0-20)
Team1 59 17
Team2 21 15
Team3 84 14
Team4 22 13

Fig. 2 shows the software architecture of the Team2 and Team3 applications. This
figure is intentionally not zoomed (and thus not readable), just to show the complexi-
ty of each one of the architectures.

The 4SRS method execution results in a logical architecture diagram, presented in
Fig. 2. This logical architecture diagram represents the architectural elements, from
which the constructors can be retrieved, their associations and packaging. The archi-
tectural elements derive from the use case model by the execution of the 4SRS meth-
od.

Fig. 2. Software Architecture of Team2 and Tema3 applications

We find possible causes of the discrepancy between the values of the metrics (see
Table 6): (1) incorrect development of the AEPoint metric; (2) non-implementation of
the overall architecture previously defined (3) poor control of the real effort record by
the project manager and team members; (4) poor quality of inputs, including use
cases and 4SRS models. The quality of artifacts, mainly the use case models, are
limited by the reduced experience of the teams in requirements specification. We
could observe in all teams, use cases with poor quality, leading to a subjective inter-
pretation to identify transactions in the main and alternative courses. Additionally, the
majority of the use cases were classified as simple according the UCP method be-
cause it had few transactions. It was not easy to analyze the use cases diagrams to

identify transactions. Sometimes we had to analyze activity and sequence diagrams as
a way to validate the existence of transactions.

Throughout the semester, we observed a difference between use cases and archi-
tectural elements between projects of different teams, although the purpose of the
project was the same. Furthermore, we observed some discomfort in the technological
factors evaluation by team members due to lack of knowledge. These facts might
have led to a poor quality of inputs.

Since the quality of inputs was one of the factors that most influenced the results,
the use of methods that achieve better quality in defining architectures would be an
asset. In our research, we propose the Active Review for Intermediate Designs
(ARID), Architecture Tradeoff Analysis Method (ATAM) and Software Architecture
Analysis Method (SAAM). As a future work, we can use one or a combination of that
methods to improve the inputs collected from uses case and 4SRS models.

6 Conclusions

The software development effort in man hours obtained from UCP and AEPoint
metrics are relatively close. For some teams, the estimate effort obtained by the met-
rics is so close to the real effort declared by the teams, but, for other teams there is a
considerable difference. It should be needed further research to find the reason of this
discrepancy. With some tune in the metric parameters we believe that we can use
AEPoint metric to estimate the resources that we should allocate to projects with the
medium/high complexity. Furthermore, we also believe, that empirical studies involv-
ing students on these subjects are important for the scientific community and the
industry.

As future work, we suggest the following actions: (1) partial implementation of
ARID, SAAM and ATAM methods early in development process to improve the
quality of inputs and solution architecture; (2) application of the AEPoint metric on
projects that have teams with more experienced and mature elements; (3) Reviewing
the AEPoint metric trying to tune the weights and variables needed to calculate it; test
AEPoints metric in different approaches, away from the UCP method. We suggest for
future editions of the SSD courses that all teams use a development tool, for example
Teamwork Project Manager [17] in order to accurately determine the effective in-
volved effort. We intent to assess the influence of this tool in the teams performance.

As a strong validation of the AEPoint metric, we will test it in real design of in-
formation systems and we will carry out action research in order to allow practition-
ers to develop metric as well.

Acknowledgments

The authors would like to thank the referees for their valuable comments.

References

1. Basili, V., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.: The
Software Engineering Laboratory-an Operational Software Experience Factory. In: 14th ICSE,
pp. 370-381. ACM, (1992)
2. Visaggio, G.: Empirical Experimentation in Software Engineering. In: Lucia, A.D.,
Ferrucci, F., Tortora, G., Tucci, M. (eds.) Emerging Methods, Technologies and Process
Management in Software Engineering, pp. 227. John Wiley & Sons, Inc., Hoboken, New
Jersey (2008)
3. Alves, L.M., Ribeiro, P., Machado, R.J.: Project-Based Learning: An Environment to
Prepare IT Students for an Industry Career. Overcoming Challenges in Software Engineering
Education: Delivering Non-Technical Knowledge and Skills, pp. 230-249. IGI Global (2014)
4. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of
UML models for service-oriented software architectures. In: 12th IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems (ECBS '05), pp.
173-182. (2005)
5. Karner, G.: Resource Estimation for Objectory Projects. Objectory Systems SF AB
(1993)
6. Karner, G.: Use Case Points: Resource Estimation for Objectory Projects. Objective
Systems SF AB. (1993)
7. Pressman, R.S.: Software Engineering: A practitioner's approach. McGraw-Hill, New
York, USA (2005)
8. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: CFSE 2000, pp. 357-370.
ACM, 336588 (2000)
9. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
PWS Publishing Company, Boston, USA (1997)
10. University of Houston-Victoria, http://bfpug.com.br/Artigos/UCP/Damodaran-
Estimation_Using_Use_Case_Points.pdf
11. Alves, L.M., Sousa, A., Ribeiro, P., Machado, R.J.: An empirical study on the
estimation of software development effort with use case points. In: 2013 Frontiers in Education
Conference, pp. 101-107. IEEE, (2013)
12. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on
Use Case Points. Information and Software Technology 53, 200-213 (2011)
13. Anda, B., Dreiem, H., Sjoberg, D.I.K., Jorgensen, M.: Estimating Software
Development Effort Based on Use Cases-Experiences from Industry. In: 4th International
Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools
(UML' 2001), pp. 487-502. Springer-Verlag, (2001)
14. Anda, B., Benestad, H.C., Hove, S.E.: A multiple-case study of software effort
estimation based on use case points. In: International Symposium on Empirical Software
Engineering, pp. 407-416. (2005)
15. Yavari, Y., Afsharchi, M., Karami, M.: Software complexity level determination
using software effort estimation use case points metrics. In: 5th Malaysian Conference
Software Engineering (MySEC 2011), pp. 257-262. (2011)
16. Albrecht, A.J.: Measuring application development productivity. In: IBM
Application Development Symposium, pp. 83-92. IBM Press, (1979)
17. http://www.teamworkpm.net/

