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Abstract	

Numerous evidences have confirmed the multitude of health benefits of plant products 

and its derived formulations. Echinacea purpurea (L.) Moench is a good example 

widely used due to its therapeutic properties. In the present study, the antioxidant 

properties of E. purpurea hydroethanolic and aqueous extracts obtained from dry or 

fresh raw material were evaluated and compared with dietary supplements based on the 

same plant (tablets and syrup), in order to conclude about the most active 

phytopharmacological preparation or formulation. The chemical composition of the 

different samples was also assessed. Overall, the hydroethanolic extract of fresh plant 

revealed the highest activity, directly related with its higher contents in phenolic 

(229.22±4.38 mg GAE/mL), flavonoids (124.83±7.47 mg GAE/mL), organic acids 

(8.89±0.10 g/100 g) and tocopherols (4.55±0.02 mg/100 g). Tablets followed by syrup 

revealed the worst effect, positively correlated with the lowest abundance in bioactive 

molecules. The weak in vitro antioxidant potential of commercial phytopharmacological 

formulations could be related with their chemical composition, including the addition of 

excipients. Further studies are necessary to deepen knowledge on this area, namely 

focusing in vivo experiments, in order to establish upcoming guidelines to improve the 

quality and bioavailability of phytopharmacological formulations. 

 

Keywords: Medicinal plants; purple cone flower; aqueous/hydroethanolic extracts; 

antioxidant activity 
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Introduction 

Ethnopharmacological preparations have been secularly used for their efficient and 

specific health improving effects. The whole plant, but mainly specific plant parts 

comprise the most commonly raw materials used to develop phytopharmacological 

formulations [1–3]. Bioactive molecules represent the pivotal focus of attention, and 

their abundance in natural matrices clearly determines their preference. In fact, the 

bioactive potential of botanical preparations is directly dependent to the richness in the 

pool of phytochemicals, from which some of them are biologically active, while other 

ones need to be metabolized and/or extracted to exert beneficial effects [2,4,5]. 

Echinacea purpurea (L.) Moench, commonly known as purple coneflower, is a member 

of the Echinacea genus (Asteraceae), a group of wild and perennial plants, native from 

the North of America [6,7]. E. purpurea possess a secular story of use, being even 

known by primitive societies as “anti-infectious” agent, due to a great potential to treat 

viral and bacterial infections, varying from a simple acne and ulcers to mild septicemias 

[6–9]. Interestingly, over the years, its imunomodulatory properties have been 

increasingly reported both through in vitro as also in vivo studies, which confirm its 

traditional use. However, other biological effects have been described, also derived 

from their modulatory potential, such as antifungal, antiviral, antibacterial, anti-

inflammatory, antioxidant and even antitumor properties [6,10–12]. Not least interesting 

to highlight is the fact that, despite to the wide variety of bioactive constituents that 

have been isolated, it was not already possible to identify and to relate the most 

important phytochemical with a specific biological potential, due to their complex 

chemical structures; so, synergic reactions have been stated as the basis of these 

promissory bioactivities [13]. 
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Stimulation of the natural killer (NK) cells activity is considered one of the most 

representative imunomodulatory potentialities of E. purpurea; in fact, these cells plays a 

crucial role in the defensive status of body, through phagocytosis, free radicals 

generation, intermediaries of the inflammatory process and in the secretion of a wide 

variety of biochemically different substances, among them enzymes, anti and pro-

inflammatory citoquines, such as tumor necrosis factor α (TNF-α), nitric oxide (NO) 

and reactive oxygen species (ROS), which increase the ability of the body to impair the 

tumor growth and to eliminate a wide variety of bacteria and fungi [14–17]. Therefore, 

through modulation pathways, E. purpurea acts in a multitude of biological processes. 

For example, Matsiopa et al. observed that, in carbon tetrachloride intoxicated mouse, 

Echinacea tincture greatly improved catalase and glutathione transferase enzymes 

activity [18]. On the other hand, Dogan et al. in a colite-induced model, described a 

mucosal protective effect, mainly conferred by the Echinacea antioxidative constituents, 

caffeic acid and echinacoside [19].  

Considered one of the most controversial and current hot topic, premature aging and 

oxidative stress-related diseases among active population have demanded an increasing 

attention by the medical community [20–22]. Indeed, not only environmental and 

alimentary patterns acts as main triggering factors, but also free radicals overproduction 

by organic metabolism plays an important role [23–26]. In spite of the human body 

possess proper detoxifying mechanisms, the lost of the organic homeostasis leads to 

several changes in metabolic pathways which consequently improves the oxidative 

stress, mainly characterized by lipid, protein and DNA modifications, and then the 

likelihood of diseases/disorders occurrence [27,19]. E. purpurea has been showing 

promissory antioxidant properties, most of them directly related with its richness in 

phenolic compounds, including flavonoids and phenolic acids [6,19,28]. Furthermore, 
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and despite availability of commercial products containing E. purpurea, their 

antioxidant properties should be determined and compared with the raw material and 

derived extracts, which was the main purpose of this pioneer study. 

 

Materials and methods 

Samples and samples preparation 

From raw material. The raw material of Echinacea purpurea (L.) Moench (aerial parts 

and inflorescences) was provided by “Cantinho das Aromáticas”, an organic and 

certified farm from Vila Nova de Gaia, Portugal 

(http://cantinhodasaromaticas.blogspot.pt/), and was used as (i) fresh material, which 

was then lyophilized (FreeZone 4.5, Labconco, Kansas City, MO, USA); (ii) and dried 

material using heated and forced atmosphere, and packaged for bulk marketing. Both 

samples were reduced to powder and submitted to different procedures to obtain the 

following extracts: infusions (mixing 1 g with 200 mL of boiling distilled water for 5 

min, and filtering under reduced pressure); decoctions (mixing 1 g with 200 mL of 

distilled water and boiling for 5 min, plus more 5 min at room temperature and filtering 

under reduced pressure); and hydroethanolic extracts (stirring 4 g with 30 mL of 

ethanol: water (80:20, v/v) for 1 h, filtering, re-extracting in the same conditions and 

removing the ethanol in a rotary evaporator (Büchi R-210, Flawil, Switzerland).  

The water was removed from all the extracts by lyophilisation and the following stock 

solutions were prepared: aqueous extracts: 5 mg/mL and hydroethanolic extract (20 

mg/mL), from which several dilutions were performed in order to evaluate the 

antioxidant activity. 
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From dietary supplements. Two dietary supplements were used, namely tablets 

(Echinaforce Kids® tablets, A. Vogel) and syrup (Syrup ECHINACIN®, Madaus), both 

based on extracts prepared from dried aerial parts of E. purpurea. These supplements 

were selected considering the results from a preliminary inquiry conducted in 

pharmacies of Bragança, Portugal (data not shown).  

The tablets (300 mg) contained concentrated hydroalcoholic extract of E. purpurea (6.2 

mg) and excipients (sorbitol, vegetal magnesium stearate and natural orange flavour). 

Each tablet was pulverized, dissolved in 10 mL of distilled water and then filtered under 

reduced pressure, in order to obtain a stock solution of 0.62 mg/mL.  

Syrup (100 mL of solution) contained dried and pressed extract of E. purpurea (2.34 g) 

and excipients (potassium sorbate, anhydrous citric acid, xanthane, flavours and purified 

water). Therefore, a syrup concentration of 23.4 mg/mL was used as stock solution.  

Successive dilutions were prepared from the initial stock solutions of both dietary 

supplements in order to evaluate the antioxidant activity. 

 

Standards and reagents 

The solvents n-hexane 95%, acetronile 99% and ethyl acetate 99.98% and HPLC grade 

were purchased to Fisher Scientific (Loures, Portugal). Ethanol and analytical grade 

were acquired in Fisher Chemical (Lisbon, Portugal). The standards of sugars and 

derivatives, organic acids, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 

acid), gallic acid and (+)-catechin were purchased from Sigma Chemical Co. (St. Louis, 

MO, USA). Tocopherols standards and tocol (50 mg/mL) were provided from Matreya 

(Pleasant Gap, Pensilvânia, EUA), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) from 

Alfa Aesar (Ward Hill, MA, EUA). Water was treated in a Milli-Q water purification 

system (TGI Pure Water Systems, Greenville, SC, USA). 
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Evaluation of the antioxidant activity 

Antioxidant activity assays. The antioxidant activity of all extracts was evaluated 

through four different in vitro assays. 

Scavenging effects on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals (RSA) was 

evaluated using an ELX800 microplate Reader (Bio-Tek Instruments, Inc; Winooski, 

VT, USA), and calculated as a percentage of DPPH discolouration through the formula: 

[(ADPPH-AS)/ADPPH] × 100, where AS is the absorbance of the solution containing the 

sample at 515 nm, and ADPPH is the absorbance of the DPPH solution [29].  

Reducing power (measured by ferricyanide Prussian blue assay) (RP) was evaluated by 

the capacity to convert Fe3+ into Fe2+, measuring the absorbance at 690 nm in the 

microplate Reader mentioned above. Sodium phosphate buffer (200 mmol/L, pH 6.6, 

0.5 mL) and potassium ferricyanide (1 % w/v, 0.5 mL) were added at the different 

concentration solutions (0.5 mL).  Then, the mixture was incubated at 50 ºC for 20 min, 

and trichloroacetic acid (10 % w/v, 0.5 mL) was added. The final mixture (0.8 mL) was 

put in a 48-wells, and also deionised water (0.8 mL) and ferric chloride (0.1 % w/v, 0.16 

mL) was joined. Finally, the absorbance was measured at 690 nm [29]. 

β-Carotene bleaching inhibition (CBI) was evaluated though the β-carotene/linoleate 

assay; the zero time absorbance was measured at 470 nm in a spectrophotometer 

(AnalytikJena, Jena, Germany). The neutralization of linoleate free radicals avoids β-

carotene bleaching, which is measured by the formula: β-carotene absorbance after 2h 

of assay/initial absorbance) × 100 [29]. 

Lipid peroxidation inhibition (LPI) was evaluated in porcine brain cell homogenates by 

the decreasing in thiobarbituric acid reactive substances (TBARS); the colour intensity 

of the malondialdehyde-thiobarbituric acid (MDA-TBA) abduct was measured by its 



	 8	

absorbance at 532 nm; the inhibition ratio (%) was calculated using the following 

formula: [(A - B)/A] × 100%, where A and B were the absorbance of the control and the 

sample solution, respectively.  

The results were expressed in EC50 values, i.e. sample concentration providing 50% of 

antioxidant activity or 0.5 of absorbance in the reducing power assay [29]. Trolox was 

used as positive control. 

 

Determination of total antioxidants. Total phenolics were estimated according with 

Wolfe et al. (2003), with some modifications. Folin-Ciocalteu (2.5 mL, previously 

diluted in water 1:10 v/v) was added to an aliquot (0.5 mL) of each sample preparation, 

and sodium carbonate (75 g/L, 2 mL). The mixture was centrifuged during 15 s and let 

stand for 30 min at 40ºC, in order to allow the coloration development. The 

corresponding absorbance was measured at 765 nm (Analytikjena, Jena, Germany). 

Gallic acid was used to calculate the standard curve (0.05-0.8 mM: y = 1.683x + 0.044; 

R2 = 0.999), and the results were expressed in mg of gallic acid equivalents (GAE) by 

mL of extract solution. 

Total flavonoids were determined according Jia et al. (1999), with some modifications. 

An aliquot (0.5 mL) of each sample solution was mixed with deionized water (2 mL), 

and then with NaNO2 solution (5 %, 0,15 mL). After 6 min, an AlCl3 solution (10 %, 

0,15 mL) was added and let to rest for 6 min more. Afterwards, a NaOH solution (4%, 2 

mL) and distilled water were added to perform a final volume of 5 mL. Finally, the 

obtained mixture was allowed to stand during 15 min, and the pink color intensity was 

measured at 510 nm. (+)-Catechin was used to determine the standard curve (0.0156-1.0 

mM; y = 0.98766x – 0.0008; R2 = 0.999), and the results were expressed in mg of (+)-

catechin equivalents by mL of extract solution. 
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Determination of the chemical composition 

Free sugars and derivatives. Free sugars and derivatives were determined by High 

Performance Liquid Chromatography (HPLC), coupled to a detector of refraction index 

(HPLC-RI), as described by Barros et al. (2010). Each sample (1 g) was enriched with 

melezitose as an internal standard (IS, 5 mg/mL) and further extracted (except the 

syrup, which was directly analyzed after dilution) with ethanol 80%, at 80 ºC, during 30 

min. The resulted suspension was centrifuged (refrigerated centrifuge Centorium 

K240R-2003) at 15000g, during 10 min. The supernatant was concentrated and vestiges 

of lipids were removed by washing three times with ethyl ether (10 mL). After 

concentration, solid residues were dissolved in water to a final volume of 5 mL. Sugars 

were determined by using an HPLC system (HPLC, Knauer, Smartline system, Berlin, 

Germany) at 35ºC, coupled with a RI detector (Knauer Smartline 2300) and a column 

100-5 NH2 Eurospher (4.6 × 250 mm, 5 µm, Knauer). The mobile phase was 

acetronile/deionized water, 70:30 (v/v), with a caudal of 1 mL/min. Sugars 

identification was done by comparison of the relative retention times of the sample 

peaks with standards, and its quantification by using the internal pattern method. 

 

Organic acids. Organic acids were determined by following the previous procedure 

described by Pereira et al. (2012). The samples (2 g) were extracted (except the syrup, 

which was directly analyzed after dilution), being shacked with methaphosphoric acid 

(25 mL), at 25 ºC and 150 rpm, during 45 min and, then filtered first through Whatman 

nº4 paper, and next through filters of nylon (0.2 µm). The analysis was performed in an 

ultra fast liquid chromatography (UFLC, Shimadzu 20A) system, with a column of 

reverse phase C18 SphereClone (4.6 × 250 mm, 5 µm, Phenomenex, Torrance, CA, 
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USA), operating at 35 ºC. The elution was carried out with sulfuric acid 3.6 mM by 

using a caudal of 0.8 mL/min and the detection was carried out with a photodiode array  

(PDA) detector, in which 215 nm and 245 nm (only for ascorbic acid) were the 

preferential wavelengths. Finally, organic acids were quantified by comparison the 

respective areas of registered peaks with the calibration curves obtained from the 

commercial standards. 

 

Tocopherols. Tocopherols were determined by using an optimized procedure described 

by Barros et al. (2010). Previously to the extraction procedure, BHT in hexane (10 

mg/mL; 100 µL) and the IS in hexane (tocol: 50 µg/mL; 400 µL) solutions were added 

to the samples (500 mg), and then homogenized (except the syrup, which was directly 

analyzed after dilution) with methanol (4 mL) during 1 min (vortex). Afterwards, 

hexane (4 mL) was added, homogenized once again during 1 min (vortex), mixed with a 

concentrated NaCl aqueous solution (2 mL), homogenized (1 min) and centrifuged (5 

min, 4000g). The supernatant was carefully transferred to a vial, and each sample was 

re-extracted twice again with hexane. The combined extracts were dried in a nitrogen 

stream, re-dissolved in 2 mL of hexane, dehydrated with anhydrous sodium sulfate, 

filtered through a LC disposable filter  (0.22 µm), transferred to a vial injection and 

analyzed by HPLC. The HPLC equipment (Knauer) was coupled to a detector of 

fluorescence (FP-2020, Jasco, Easton, MD, USA). All the data were analyzed by using 

Clarity 2.4 (DataApex) software. The chromatographic separation was achieved by 

using a normal phase column of Polyamide II (4.6 × 250 mm, 5 µm, YMC Waters, 

Lisboa, Portugal), at 30ºC. The mobile phase used was a mixture of hexane and ethyl 

acetate (70:30, v/v) with a caudal of 1 mL/min. The quantification was based in the 
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fluorescence signal, by using an internal standard method and by comparison with the 

standards.  

 

Statistical analysis  

Three samples were used for each preparation and all the assays were carried out in 

triplicate. The results are expressed as mean values and standard deviation (SD). The 

results were analyzed using a Student´s t-test, in order to determine the significant 

difference among different samples, with α = 0.05. This treatment was carried out using 

SPSS v. 22.0 program (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY, 

USA, IBM Corp.).  

 

Results and discussion 

Antioxidant activity of phytopharmacological preparations based on E. purpurea 

There are several methods that can be used to assess the in vitro antioxidant activity of 

natural matrices, from which several constrains and advantages are commonly 

associated [35–37]. In the present work, the free radical scavenging activity (RSA), 

reducing power (RP), β-carotene bleaching inhibition (CBI) and lipid peroxidation 

inhibition (LPI) assays were used.  

Table 1 shows the results of the antioxidant activity of hydroethanolic and aqueous 

extracts obtained from dry or fresh E. purpurea, as also of dietary supplements based on 

the same plant (tablets and syrup). A global comparison was performed in order to find 

the most active phytopharmacological preparation or formulation. 

No significant statistical differences were found between the RSA of all the extracts 

prepared from fresh material, the hydroalcoholic extract of dried plant and the 

commercial tablets, which showed the highest capacity. The lowest RSA was observed 
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for the syrup. In relation to the RP ability, the hydroalcoholic extract prepared from the 

fresh plant and tablets presented the most pronounced effects, while the syrup was once 

again the least effective. Concerning to the CBI, the hydroalcoholic extract of the fresh 

plant continued to be the most effective, while the aqueous extract prepared by infusion 

of the dried material presented the lowest activity. Lastly, the hydroalcoholic extract of 

the fresh plant revealed to be the most active in LPI, while syrup provided the lowest 

potential. In addition, and once lipid peroxidation is responsible for progressive and 

significant damages on the membrane potential of cells, the study of natural matrices 

with protective effects is of the utmost importance. For example, neuronal cells are 

highly affected by free radicals and reactive oxygen species (ROS), being 

neurodegenerative disorders one of the most frequent worldwide aging-related diseases 

[20,38–40]. In fact, brain cells are highly susceptible to oxidative damages, once cares 

an intense and continuous supplying of oxygen; furthermore, it has no effective 

detoxifying systems and antioxidant defenses, apart from its richness in vulnerable 

substances (i.e., polyunsaturated fatty acids, catecholamines, ions from the transition 

metals such as iron, etc.) [38,41–43]. In this case, through TBARS assay, it was 

observed a high inhibition of lipid peroxidation; so, purple coneflower extracts and 

related commercial preparations revealed to be promissory antioxidant agents.  

The highest antioxidant potential was achieved by the hydroalcoholic extract of the 

fresh plant (in all the assays), which is directly related with its highest content in 

phenolics and flavonoids. Similar evidences were observed regarding the lowest 

concentration of phenolics and flavonoids found in the syrup, which provided the lowest 

antioxidant activity (Table 1). It should be also highlighted that the aqueous extract 

prepared by infusion of the dried plant also presented a weak effect, directly correlated 

with its scarce content in flavonoids and phenolics. It is important to highlight that 
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phenolic compounds have been increasingly related with the antioxidant potential of 

natural matrices; in fact, they have important chemical structures with reducing abilities, 

which confer significant effects at a level of free radicals neutralization [28,42,44,45]. 

They also act both in the initiation steps and in the propagation of the oxidative 

pathways, by neutralizing damaging effects, once forms stable intermediate compounds 

(conferred by its phenolic rings and hydroxyl radicals) [46–49]. 

Henning et al. (2011) by evaluating the antioxidant potential of several herbs and spices, 

observed that not only different extraction solvents as also phytochemical forms (dry, 

fresh and blended paste) cause direct interferences on their phenolic contents and 

consequently affects the final bioactivity of the studied matrices. In the same line, 

Pinela et al. (2012) by determining the antioxidant potential, phenolic and ascorbic acid 

contents in different samples of Tuberaria lignosa (Sweet) Samp., achieved significant 

differences that varied according with the plant origin (wild vs. commercial), 

preparation method (infusion vs. decoction) and even storage procedures (freeze vs. 

shade-dried). The authors observed a higher antioxidant potential, phenolics and 

flavonoids contents in the wild samples; overall, freeze-dried preparation presented the 

most promissory antioxidant effects; however, while freeze-dried decoction preparation 

presented the highest abundance in flavonoids (19.48±0.50 mg/g), shade-dried infusion 

was more rich in phenolics (250.14±0.57 mg/g) [51].  

In the present study, the hydroalcoholic extract of the fresh aerial parts of E. purpurea 

evidenced the most promissory antioxidant effects, while syrup exhibit the weakest 

potential, which is in accordance with previous studies. For example, several authors 

demonstrated that the dried extracts of purple coneflower and its derived syrups were 

not efficient to reduce symptoms, duration and time of colds [52–54]. On the other 

hand, Almeida et al. (2011) by assessing the antioxidant potential of several dietary 



	 14	

supplements, among them pills, capsules and infusions, achieved significant differences 

in the final bioactive potential. In spite of capsules presented the highest antioxidant 

potential, evaluated by DPPH scavenging activity, reducing power and TBARS 

inhibition assays, when combined with other preparations (namely infusions and 

resveratrol) a pronounced improvement on their final potential (nearly to 92% of cases) 

was observed [55]. Therefore, the combination of several plant preparations appears to 

improve and confer additional health benefits. For example, Pereira et al. (2014) studied 

the effects of the type of plant-based formulations and compositional mixtures on the 

antioxidant and cytotoxic activities of dietary supplements. The authors observed the 

existence of synergistic reactions when plant-derived formulations were used in 

combination; furthermore, and apart from that the syrup presented the highest 

antioxidant potential, followed by infusion preparation and then pills, it was the infusion 

preparation that provided the most pronounced toxic effects on hepatocellular 

carcinoma cell lines (HepG2) [56]. It means that probably other interfering factors, such 

as excipients, can exert significant modulatory effects and, therefore, while in the 

infusion preparation the bioactive molecules are free and able to exert their biological 

activity, they can be linked with other chemical constituents in phytopharmacological 

preparations (such as syrup and pills). 

 

Chemical composition of phytopharmacological preparations based on E. purpurea 

Table 2 shows the obtained results of the chemical composition of E. purpurea dried 

and fresh raw material, respectively; being identified and then quantified four different 

sugars and tocopherols, and six organic acids. In general, fresh plant (which was 

lyophilized immediately after recollection) presented the highest abundance in chemical 

constituents: sugars > tocopherols > organic acids. By analyzing the free sugars 
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contents, fructose, glucose and arabinose were detected in dried and fresh material, and, 

for the last one, sucrose was also detected. While glucose was the most abundant in the 

dried aerial parts of E. purpurea (1.15±0.02 g/100 g), sucrose (4.39±0.17 g/100 g) 

predominated in the fresh plant. In relation to the tocopherols contents, the fresh plant 

presented all the tocopherol isoforms (α-, β-, γ- and δ-tocopherol), being α-tocopherol 

(3.84±0.04 mg/100 g) the most representative, while in the dried plant δ-tocopherol was 

absent. Lastly for organic acids, six were detected in dried and fresh material, being 

succinic, citric, quinic and malic acids the most abundant; citric acid was the most 

abundant in the fresh plant (5.19±0.18 g/100 g), while succinic acid was the prevalent in 

the dried material (2.15±0.07 g/100 g). 

A particular attention should be given to tocopherols, once they are important natural 

antioxidants in foods. Their action as free radicals scavengers and hydrogen donators, 

confer a pronounced protection to the organisms against several disorders, among them 

degenerative and cardiovascular diseases [24]. So, tocopherols present a pivotal 

importance at intracellular level, and its absence increase the membrane fragility and 

consequent vulnerability to the free radicals attack. Among them, α-tocopherol is the 

isoform with the highest biological potential [27], which explains and even confirms the 

obtained promissory antioxidant potential of the fresh preparation obtained from E. 

purpurea. Other authors have already confirmed the interesting tocopherols abundance 

in Echinacea seeds. For example, Oomah et al. (2006) by evaluating the 

physicochemical characteristics of three different Echinacea species, observed that not 

only α-tocopherol was the most abundant tocopherol isoform in E. purpurea seeds, but 

also its content varied according to the Echinacea species, harvesting time and plant 

source/origin. However, and to the authors’ knowledge, there are no studies evaluating 
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the respective sugars, tocopherols and organic acid contents in aerial parts of E. 

purpurea. 

Table 3 shows the obtained results for the chemical composition of two 

phytopharmacological formulations (i.e. tablets and syrup) based on E. purpurea. In 

spite of syrup presented the highest abundance in sugars, being xylitol (15.25±0.55 

g/100 mL) the most prominent (which is in agreement with the indication of the 

package label), in the tablets only sorbitol (0.34±0.01 g/tablet) and vestigial amounts of 

sucrose were detected. Among the following organic acids identified, namely citric, 

oxalic, malic, xiquimic and succinic acids, citric acid was the most abundant in tablets 

(1.41±0.21 g/tablet), while in syrup it was succinic acid (0.93±0.01 g/100 mL). 

Regarding tocopherols, only α-tocopherol was quantified in tablets (0.14±0.01 

µg/tablet), while in the syrup no tocopherol isoforms were identified.  

The pronounced differences observed between commercial and traditional 

phytopharmacological preparations appears to be directly related with the type of 

excipients used. For example, by comparing the sugars contents with those presents in 

dried and fresh plant, xylitol and sorbitol were absent; it means that both of them 

derived from external addition (i.e. excipients), respectively in the syrup and tablets 

based on E. purpurea. However, it is interesting to highlight that, at the same time, it 

was possible to confirm the labeled nutritional information. There are several reports 

evidencing the modulatory effects of preservatives on the products bioavailability 

[58,59]. In fact, not all the bioactive molecules are easily solubilized, chemically stable 

or organoleptically acceptable; therefore, it is crucial to proceed with their homogeneity 

in order to improve the tolerability by consumers. However, it is also important to 

ensure that no blocking effects and interferences will occur with their use, much more 

than focusing the organoleptic acceptance of plant-derived supplements. 
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Conclusion 

Considering the magnitude of oxidative stress-related disorders, the use of efficient 

alternatives, namely based on natural matrices have shown to constitute an upcoming 

and promissory approach to improve the health and wellbeing of individuals.  

In the present experiment, and despite the existence of several reports that evaluated the 

bioactive potential of E. purpurea, it was very interesting to observe that depending on 

different procedures used to process raw materials (fresh material or dried under heated 

and forced atmosphere; infusion, decoction, others), noticeable variations in the 

antioxidant potential were obtained. So, it is possible to conclude that not only the 

extraction solvent but also the extraction conditions and the formulation act as 

conditioning factors to the final bioactivity. Otherwise, the type of raw plant material 

(fresh or dried) used, also plays a crucial role. In this case, the hydroalcoholic extract of 

the fresh plant proved to be the most antioxidant, while the syrup, prepared with dried 

plants, presented the lowest activity. All of these achievements appear to be directly 

correlated with the contents in phenolics and flavonoids. However, further studies are 

necessary in order to assess the in vivo potential and related modes of action, including 

the establishment of therapeutic and prophylactic doses. 
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Table 1. Antioxidant potential of different phytopharmacological formulations based on Echinacea purpurea (mean ± SD). 

(I)- infusion; (D)- decoction; GAE- gallic acid equivalents; CE- (+)-catechin equivalents. *- Pro-oxidant effect. EC50 values correspond to 
the sample concentration providing 50% of antioxidant activity or 0.5 of absorbance in the reducing power assay. In each row, different 
letters means significant differences between extracts (p <0,05). 

 

 Dried plant Fresh plant Supplements 

EC50 values (mg/mL) Hydroethanolic  Aqueous (I) Aqueous (D) Hydroethanolic Aqueous (I) Aqueous (D) Tablets Syrup 

DPPH scavenging activity 
(RSA) 

0.76±0.02d 2.41±0.22b 1.43±0.03c 0.28±0.22d 0.47±0.05d 0.35±0.07d 0.28±0.01d 26.38±1.2a 

Reducing power (RP) 0.55±0.04d 1.82±0.05b 0.96±0.01c 0.18±0.01g 0.40±0.01e 0.29±0.01f 0.17±0.02g 2.20±0.02a 

β-carotene bleaching 
inhibition (CBI) 

5.51±0.63b 7.05±0.36a 4.10±0.10c 0.36±0.03f 1.95±0.18de 2.21±0.10d * 1.79±0.03e 

TBARS inhibition (LPI) 0.84±0.01c 1.64±0.01b 0.72±0.02d 0.04±0.01g 0.45±0.02e 0.30±0.02f 0.07±0.01h 2.27±0.06a 

Phenolics (mg GAE/mL) 49.26±1.34e 13.79±0.56g 24.96±0.46f 229.22±4.38a 55.02±0.16d 73.32±2.33c 154.61±2.74b 9.67±0.07h 

Flavonoids (mg CE/mL) 22.82±2.06e 5.65±0.30f 7.49±1.30f 124.83±7.47a 29.09±1.76d 52.33±2.45c 73.76±1.13b 3.29±0.06f 



Table 2. Chemical composition of different raw materials derived from Echinacea purpurea 
(mean ± SD). 

* and lyophilized material. n.d., not detected. 

	

 Dried plant Fresh plant* 
t-Students test  

p-value 

Sugars  (g/100 g)	 (g/100 g)	  

Arabinose 0.32±0.01 1.02±0.03 <0.001 

Fructose 0.07±0.02 3.45±0.16 <0.001 

Glucose 1.15±0.02 4.08±0.23 <0.001 

Sucrose n.d. 4.39±0.17 - 

Sum  1.54±0.01 12.94±0.59 <0.001 

Organic acids  (g/100 g)	 (g/100 g)	  

Oxalic acid 0.32±0.04 0.36±0.02 0.072 

Quinic acid 1.98±0.12 1.10±0.04 0.001 

Malic acid 1.09±0.05 1.04±0.10 0.291 

Shikimic acid 0.02±0.0001 0.01±0.001 0.003 

Citric acid 1.23±0.01 5.19±0.18 <0.001 

Succinic acid 2.15±0.07 1.19±0.04 <0.001 

Sum  6.79±0.04 8.89±0.10 <0.001 

Tocopherols  (mg/100 g)	 (mg/100 g)	  

α-Tocopherol 0.14±0.04 3.84±0.04 <0.001 

β-Tocopherol 0.15±0.01 0.49±0.01 <0.001 

γ-Tocopherol 0.060±0.001 0.07±0.01 0.158 

δ-Tocopherol n.d. 0.15±0.01 - 

Sum  0.35±0.04 4.55±0.02 <0.001 
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Table 3. Chemical composition of different phytopharmacological formulations based 
on Echinacea purpurea (mean ± SD). 

Tab, tablet; n.d., not detected; tr.- traces. 

 

 Syrup Tablets 

Sugars (g/100 mL) (g/tab) 

Xylitol 15.25±0.55 nd 

Fructose 0.53±0.01b nd 

Glucose 0.25±0.02c nd 

Sucrose nd tr 

Sorbitol nd 0.34±0.01 

Sum  16.03±0.57a 0.34±0.01 

Organic acids (g/100 mL) (mg/tab) 

Oxalic acid 0.25±0.01b 0.17±0.02 

Quinic acid nd tr 

Malic acid 0.22±0.02b 0.51±0.04 

Shikimic acid tr 0.01±0.00 

Citric acid 0.41±0.01c 1.41±0.21 

Succinic acid 0.93±0.01c 0.65±0.03 

Fumaric acid tr tr 

Sum 1.81±0.01c 2.75±0.20 

Tocopherols (mg/100 mL) (µg/tab) 

α-Tocopherol nd 0.14±0.01 

Sum  nd 0.14±0.01 




