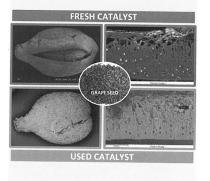
EUROPEAN CONFERENCE ON ENVIRONMENTAL APPLICATIONS OF ADVANCED OXIDATION PROCESSES

21-24 October 2015, Athens - Greece Conference

ARISTOTLE UNIVERSITY OF THESSALONIKI

PROGRAM AND

BOOK OF ABSTRACTS


POSTER PRESENTATIONS - 2nd DAY

SYNTHESIS OF Fe ON CARBON CATALYSTS OBTAINED FROM GRAPE SEEDS FOR CWPO OF BISPHENOL A

PP2-21

E. Diaz, I.F. Mena, A.F. Mohedano, J.J. Rodríguez

Sección de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomas y Valiente 7, 28924 Madrid, Spain. angelf.mohedano@uam.es



Grape seeds were used as precursor to develop a catalytic support for the synthesis of Fe catalysts to be used in catalytic wet peroxide oxidation reactions. Grape seeds were subjected to pyrolysis and activation with air and HNO_3 oxidation before the Fe incorporation by incipient wetness impregnation. The characterization results indicated that the catalysis presented a significant narrow porosity and a heterogeneous distribution of the Fe, mainly located on the external surface of the catalyst. The catalysts showed a total oxidation of BPA and a relatively high TOC conversion. In spite of the leaching of Fe during the first stages of the reaction, the most active catalyst showed a remarkable stability in a long term run.

CARBON NANOTUBES AS CATALYSTS FOR WET PEROXIDE OXIDATION: STRUCTURE-REACTIVITY RELATIONSHIPS

PP2-22

R.S. Ribeiro¹, M. Martin-Martinez¹, B.F. Machado², P. Serp², S. Morales-Torres³, A.M.T. Silva³, J.L. Figueiredo³, J.L. Faria³, H.T. Gomes¹. (1) Laboratório Associado LSRE-LCM, Instituto Politécnico de Bragança, Bragança, Portugal. rui.ribeiro@ipb.pt. (2) Laboratoire de Chimie de Coordination UPR CNRS 8241, composant ENSIACET, Université de Toulouse UPS-INP-LCC, Toulouse, France. (3) Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.

Magnetic neat and N-doped carbon nanotubes with different properties have been synthesized by chemical vapour deposition and tested in the catalytic wet peroxide oxidation of 4-nitrophenol solutions (5 g L⁻¹) at relatively mild operating conditions (atmospheric pressure, T = 50 °C, pH = 3) using a catalyst load = 2.5 g L⁻¹ and $[H_2O_2]_0 = 17.8$ g L⁻¹. The results demonstrate that the catalyst hydrophobicity/ hydrophilicity is a determinant property in the CWPO reaction, since it affects the rate of H₂O₂ decomposition. The controlled formation of reactive radicals (HO[•] and HOO[•]) at hydrophobic surfaces avoids the formation of non-reactive species (O₂ and H₂O), increasing significantly the activity of the catalysts for pollutant removal.